source-engine/public/tier1/utlvector.h
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

1514 lines
41 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
// A growable array class that maintains a free list and keeps elements
// in the same location
//=============================================================================//
#ifndef UTLVECTOR_H
#define UTLVECTOR_H
#ifdef _WIN32
#pragma once
#endif
#include <algorithm>
#include <string.h>
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "tier0/threadtools.h"
#include "tier1/utlmemory.h"
#include "tier1/utlblockmemory.h"
#include "tier1/strtools.h"
#include "vstdlib/random.h"
#define FOR_EACH_VEC( vecName, iteratorName ) \
for ( int iteratorName = 0; (vecName).IsUtlVector && iteratorName < (vecName).Count(); iteratorName++ )
#define FOR_EACH_VEC_BACK( vecName, iteratorName ) \
for ( int iteratorName = (vecName).Count()-1; (vecName).IsUtlVector && iteratorName >= 0; iteratorName-- )
// UtlVector derives from this so we can do the type check above
struct base_vector_t
{
public:
enum { IsUtlVector = true }; // Used to match this at compiletime
};
//-----------------------------------------------------------------------------
// The CUtlVector class:
// A growable array class which doubles in size by default.
// It will always keep all elements consecutive in memory, and may move the
// elements around in memory (via a PvRealloc) when elements are inserted or
// removed. Clients should therefore refer to the elements of the vector
// by index (they should *never* maintain pointers to elements in the vector).
//-----------------------------------------------------------------------------
template< class T, class A = CUtlMemory<T> >
class CUtlVector : public base_vector_t
{
typedef A CAllocator;
public:
typedef T ElemType_t;
typedef T* iterator;
typedef const T* const_iterator;
// Set the growth policy and initial capacity. Count will always be zero. This is different from std::vector
// where the constructor sets count as well as capacity.
// growSize of zero implies the default growth pattern which is exponential.
explicit CUtlVector( int growSize = 0, int initialCapacity = 0 );
// Initialize with separately allocated buffer, setting the capacity and count.
// The container will not be growable.
CUtlVector( T* pMemory, int initialCapacity, int initialCount = 0 );
~CUtlVector();
// Copy the array.
CUtlVector<T, A>& operator=( const CUtlVector<T, A> &other );
// element access
T& operator[]( int i );
const T& operator[]( int i ) const;
T& Element( int i );
const T& Element( int i ) const;
T& Head();
const T& Head() const;
T& Tail();
const T& Tail() const;
T& Random();
const T& Random() const;
// STL compatible member functions. These allow easier use of std::sort
// and they are forward compatible with the C++ 11 range-based for loops.
iterator begin() { return Base(); }
const_iterator begin() const { return Base(); }
iterator end() { return Base() + Count(); }
const_iterator end() const { return Base() + Count(); }
// Gets the base address (can change when adding elements!)
T* Base() { return m_Memory.Base(); }
const T* Base() const { return m_Memory.Base(); }
// Returns the number of elements in the vector
// SIZE IS DEPRECATED!
int Count() const;
int Size() const; // don't use me!
/// are there no elements? For compatibility with lists.
inline bool IsEmpty( void ) const
{
return ( Count() == 0 );
}
// Is element index valid?
bool IsValidIndex( int i ) const;
static int InvalidIndex();
// Adds an element, uses default constructor
int AddToHead();
int AddToTail();
T *AddToTailGetPtr();
int InsertBefore( int elem );
int InsertAfter( int elem );
// Adds an element, uses copy constructor
int AddToHead( const T& src );
int AddToTail( const T& src );
int InsertBefore( int elem, const T& src );
int InsertAfter( int elem, const T& src );
// Adds multiple elements, uses default constructor
int AddMultipleToHead( int num );
int AddMultipleToTail( int num );
int AddMultipleToTail( int num, const T *pToCopy );
int InsertMultipleBefore( int elem, int num );
int InsertMultipleBefore( int elem, int num, const T *pToCopy );
int InsertMultipleAfter( int elem, int num );
// Calls RemoveAll() then AddMultipleToTail.
// SetSize is a synonym for SetCount
void SetSize( int size );
// SetCount deletes the previous contents of the container and sets the
// container to have this many elements.
// Use GetCount to retrieve the current count.
void SetCount( int count );
void SetCountNonDestructively( int count ); //sets count by adding or removing elements to tail TODO: This should probably be the default behavior for SetCount
// Calls SetSize and copies each element.
void CopyArray( const T *pArray, int size );
// Fast swap
void Swap( CUtlVector< T, A > &vec );
// Add the specified array to the tail.
int AddVectorToTail( CUtlVector<T, A> const &src );
// Finds an element (element needs operator== defined)
int Find( const T& src ) const;
// Helper to find using std::find_if with a predicate
// e.g. [] -> bool ( T &a ) { return a.IsTheThingIWant(); }
//
// Useful if your object doesn't define a ==
template < typename F >
int FindPredicate( F&& predicate ) const;
void FillWithValue( const T& src );
bool HasElement( const T& src ) const;
// Makes sure we have enough memory allocated to store a requested # of elements
// Use NumAllocated() to retrieve the current capacity.
void EnsureCapacity( int num );
// Makes sure we have at least this many elements
// Use GetCount to retrieve the current count.
void EnsureCount( int num );
// Element removal
void FastRemove( int elem ); // doesn't preserve order
void Remove( int elem ); // preserves order, shifts elements
bool FindAndRemove( const T& src ); // removes first occurrence of src, preserves order, shifts elements
bool FindAndFastRemove( const T& src ); // removes first occurrence of src, doesn't preserve order
void RemoveMultiple( int elem, int num ); // preserves order, shifts elements
void RemoveMultipleFromHead(int num); // removes num elements from tail
void RemoveMultipleFromTail(int num); // removes num elements from tail
void RemoveAll(); // doesn't deallocate memory
// Memory deallocation
void Purge();
// Purges the list and calls delete on each element in it.
void PurgeAndDeleteElements();
// Compacts the vector to the number of elements actually in use
void Compact();
// Set the size by which it grows when it needs to allocate more memory.
void SetGrowSize( int size ) { m_Memory.SetGrowSize( size ); }
int NumAllocated() const; // Only use this if you really know what you're doing!
void Sort( int (__cdecl *pfnCompare)(const T *, const T *) );
void Shuffle( IUniformRandomStream* pSteam = NULL );
// Call this to quickly sort non-contiguously allocated vectors
void InPlaceQuickSort( int (__cdecl *pfnCompare)(const T *, const T *) );
// reverse the order of elements
void Reverse( );
#ifdef DBGFLAG_VALIDATE
void Validate( CValidator &validator, char *pchName ); // Validate our internal structures
#endif // DBGFLAG_VALIDATE
/// sort using std:: and expecting a "<" function to be defined for the type
void Sort( void );
/// sort using std:: with a predicate. e.g. [] -> bool ( T &a, T &b ) { return a < b; }
template <class F> void SortPredicate( F &&predicate );
protected:
// Can't copy this unless we explicitly do it!
CUtlVector( CUtlVector const& vec ) { Assert(0); }
// Grows the vector
void GrowVector( int num = 1 );
// Shifts elements....
void ShiftElementsRight( int elem, int num = 1 );
void ShiftElementsLeft( int elem, int num = 1 );
CAllocator m_Memory;
int m_Size;
#ifndef _X360
// For easier access to the elements through the debugger
// it's in release builds so this can be used in libraries correctly
T *m_pElements;
inline void ResetDbgInfo()
{
m_pElements = Base();
}
#else
inline void ResetDbgInfo() {}
#endif
private:
void InPlaceQuickSort_r( int (__cdecl *pfnCompare)(const T *, const T *), int nLeft, int nRight );
};
// this is kind of ugly, but until C++ gets templatized typedefs in C++0x, it's our only choice
template < class T >
class CUtlBlockVector : public CUtlVector< T, CUtlBlockMemory< T, int > >
{
public:
explicit CUtlBlockVector( int growSize = 0, int initSize = 0 )
: CUtlVector< T, CUtlBlockMemory< T, int > >( growSize, initSize ) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorMT class:
// An array class with spurious mutex protection. Nothing is actually protected
// unless you call Lock and Unlock. Also, the Mutex_t is actually not a type
// but a member which probably isn't used.
//-----------------------------------------------------------------------------
template< class BASE_UTLVECTOR, class MUTEX_TYPE = CThreadFastMutex >
class CUtlVectorMT : public BASE_UTLVECTOR, public MUTEX_TYPE
{
typedef BASE_UTLVECTOR BaseClass;
public:
// MUTEX_TYPE Mutex_t;
// constructor, destructor
explicit CUtlVectorMT( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {}
CUtlVectorMT( typename BaseClass::ElemType_t* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorFixed class:
// A array class with a fixed allocation scheme
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE >
class CUtlVectorFixed : public CUtlVector< T, CUtlMemoryFixed<T, MAX_SIZE > >
{
typedef CUtlVector< T, CUtlMemoryFixed<T, MAX_SIZE > > BaseClass;
public:
// constructor, destructor
explicit CUtlVectorFixed( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {}
CUtlVectorFixed( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorFixedGrowable class:
// A array class with a fixed allocation scheme backed by a dynamic one
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE >
class CUtlVectorFixedGrowable : public CUtlVector< T, CUtlMemoryFixedGrowable<T, MAX_SIZE > >
{
typedef CUtlVector< T, CUtlMemoryFixedGrowable<T, MAX_SIZE > > BaseClass;
public:
// constructor, destructor
explicit CUtlVectorFixedGrowable( int growSize = 0 ) : BaseClass( growSize, MAX_SIZE ) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorConservative class:
// A array class with a conservative allocation scheme
//-----------------------------------------------------------------------------
template< class T >
class CUtlVectorConservative : public CUtlVector< T, CUtlMemoryConservative<T> >
{
typedef CUtlVector< T, CUtlMemoryConservative<T> > BaseClass;
public:
// constructor, destructor
explicit CUtlVectorConservative( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {}
CUtlVectorConservative( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {}
};
//-----------------------------------------------------------------------------
// The CUtlVectorUltra Conservative class:
// A array class with a very conservative allocation scheme, with customizable allocator
// Especialy useful if you have a lot of vectors that are sparse, or if you're
// carefully packing holders of vectors
//-----------------------------------------------------------------------------
#pragma warning(push)
#pragma warning(disable : 4200) // warning C4200: nonstandard extension used : zero-sized array in struct/union
#pragma warning(disable : 4815 ) // warning C4815: 'staticData' : zero-sized array in stack object will have no elements
class CUtlVectorUltraConservativeAllocator
{
public:
static void *Alloc( size_t nSize )
{
return malloc( nSize );
}
static void *Realloc( void *pMem, size_t nSize )
{
return realloc( pMem, nSize );
}
static void Free( void *pMem )
{
free( pMem );
}
static size_t GetSize( void *pMem )
{
return mallocsize( pMem );
}
};
template <typename T, typename A = CUtlVectorUltraConservativeAllocator >
class CUtlVectorUltraConservative : private A
{
public:
// Don't inherit from base_vector_t because multiple-inheritance increases
// class size!
enum { IsUtlVector = true }; // Used to match this at compiletime
CUtlVectorUltraConservative()
{
m_pData = StaticData();
}
~CUtlVectorUltraConservative()
{
RemoveAll();
}
int Count() const
{
return m_pData->m_Size;
}
static int InvalidIndex()
{
return -1;
}
inline bool IsValidIndex( int i ) const
{
return (i >= 0) && (i < Count());
}
T& operator[]( int i )
{
Assert( IsValidIndex( i ) );
return m_pData->m_Elements[i];
}
const T& operator[]( int i ) const
{
Assert( IsValidIndex( i ) );
return m_pData->m_Elements[i];
}
T& Element( int i )
{
Assert( IsValidIndex( i ) );
return m_pData->m_Elements[i];
}
const T& Element( int i ) const
{
Assert( IsValidIndex( i ) );
return m_pData->m_Elements[i];
}
void EnsureCapacity( int num )
{
int nCurCount = Count();
if ( num <= nCurCount )
{
return;
}
if ( m_pData == StaticData() )
{
m_pData = (Data_t *)A::Alloc( sizeof(Data_t) + ( num * sizeof(T) ) );
m_pData->m_Size = 0;
}
else
{
int nNeeded = sizeof(Data_t) + ( num * sizeof(T) );
int nHave = A::GetSize( m_pData );
if ( nNeeded > nHave )
{
m_pData = (Data_t *)A::Realloc( m_pData, nNeeded );
}
}
}
int AddToTail( const T& src )
{
int iNew = Count();
EnsureCapacity( Count() + 1 );
m_pData->m_Elements[iNew] = src;
m_pData->m_Size++;
return iNew;
}
void RemoveAll()
{
if ( Count() )
{
for (int i = m_pData->m_Size; --i >= 0; )
{
// Global scope to resolve conflict with Scaleform 4.0
::Destruct(&m_pData->m_Elements[i]);
}
}
if ( m_pData != StaticData() )
{
A::Free( m_pData );
m_pData = StaticData();
}
}
void PurgeAndDeleteElements()
{
if ( m_pData != StaticData() )
{
for( int i=0; i < m_pData->m_Size; i++ )
{
delete Element(i);
}
RemoveAll();
}
}
void FastRemove( int elem )
{
Assert( IsValidIndex(elem) );
// Global scope to resolve conflict with Scaleform 4.0
::Destruct( &Element(elem) );
if (Count() > 0)
{
if ( elem != m_pData->m_Size -1 )
memcpy( &Element(elem), &Element(m_pData->m_Size-1), sizeof(T) );
--m_pData->m_Size;
}
if ( !m_pData->m_Size )
{
A::Free( m_pData );
m_pData = StaticData();
}
}
void Remove( int elem )
{
// Global scope to resolve conflict with Scaleform 4.0
::Destruct( &Element(elem) );
ShiftElementsLeft(elem);
--m_pData->m_Size;
if ( !m_pData->m_Size )
{
A::Free( m_pData );
m_pData = StaticData();
}
}
int Find( const T& src ) const
{
int nCount = Count();
for ( int i = 0; i < nCount; ++i )
{
if (Element(i) == src)
return i;
}
return -1;
}
bool FindAndRemove( const T& src )
{
int elem = Find( src );
if ( elem != -1 )
{
Remove( elem );
return true;
}
return false;
}
bool FindAndFastRemove( const T& src )
{
int elem = Find( src );
if ( elem != -1 )
{
FastRemove( elem );
return true;
}
return false;
}
bool DebugCompileError_ANonVectorIsUsedInThe_FOR_EACH_VEC_Macro( void ) const { return true; }
struct Data_t
{
int m_Size;
T m_Elements[0];
};
Data_t *m_pData;
private:
void ShiftElementsLeft( int elem, int num = 1 )
{
int Size = Count();
Assert( IsValidIndex(elem) || ( Size == 0 ) || ( num == 0 ));
int numToMove = Size - elem - num;
if ((numToMove > 0) && (num > 0))
{
Q_memmove( &Element(elem), &Element(elem+num), numToMove * sizeof(T) );
#ifdef _DEBUG
Q_memset( &Element(Size-num), 0xDD, num * sizeof(T) );
#endif
}
}
static Data_t *StaticData()
{
static Data_t staticData;
Assert( staticData.m_Size == 0 );
return &staticData;
}
};
#pragma warning(pop)
// Make sure nobody adds multiple inheritance and makes this class bigger.
COMPILE_TIME_ASSERT( sizeof(CUtlVectorUltraConservative<int>) == sizeof(void*) );
//-----------------------------------------------------------------------------
// The CCopyableUtlVector class:
// A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers)
// WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens
// Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap)
//-----------------------------------------------------------------------------
template< class T >
class CCopyableUtlVector : public CUtlVector< T, CUtlMemory<T> >
{
typedef CUtlVector< T, CUtlMemory<T> > BaseClass;
public:
explicit CCopyableUtlVector( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {}
CCopyableUtlVector( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {}
virtual ~CCopyableUtlVector() {}
CCopyableUtlVector( CCopyableUtlVector const& vec ) { this->CopyArray( vec.Base(), vec.Count() ); }
};
//-----------------------------------------------------------------------------
// The CCopyableUtlVector class:
// A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers)
// WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens
// Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap)
//-----------------------------------------------------------------------------
template< class T, size_t MAX_SIZE >
class CCopyableUtlVectorFixed : public CUtlVectorFixed< T, MAX_SIZE >
{
typedef CUtlVectorFixed< T, MAX_SIZE > BaseClass;
public:
explicit CCopyableUtlVectorFixed( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {}
CCopyableUtlVectorFixed( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {}
virtual ~CCopyableUtlVectorFixed() {}
CCopyableUtlVectorFixed( CCopyableUtlVectorFixed const& vec ) { this->CopyArray( vec.Base(), vec.Count() ); }
};
// TODO (Ilya): It seems like all the functions in CUtlVector are simple enough that they should be inlined.
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template< typename T, class A >
inline CUtlVector<T, A>::CUtlVector( int growSize, int initSize ) :
m_Memory(growSize, initSize), m_Size(0)
{
ResetDbgInfo();
}
template< typename T, class A >
inline CUtlVector<T, A>::CUtlVector( T* pMemory, int allocationCount, int numElements ) :
m_Memory(pMemory, allocationCount), m_Size(numElements)
{
ResetDbgInfo();
}
template< typename T, class A >
inline CUtlVector<T, A>::~CUtlVector()
{
Purge();
}
template< typename T, class A >
inline CUtlVector<T, A>& CUtlVector<T, A>::operator=( const CUtlVector<T, A> &other )
{
int nCount = other.Count();
SetSize( nCount );
for ( int i = 0; i < nCount; i++ )
{
(*this)[ i ] = other[ i ];
}
return *this;
}
#ifdef STAGING_ONLY
inline void StagingUtlVectorBoundsCheck( int i, int size )
{
if ( (unsigned)i >= (unsigned)size )
{
Msg( "Array access error: %d / %d\n", i, size );
DebuggerBreak();
}
}
#else
#define StagingUtlVectorBoundsCheck( _i, _size )
#endif
//-----------------------------------------------------------------------------
// element access
//-----------------------------------------------------------------------------
template< typename T, class A >
inline T& CUtlVector<T, A>::operator[]( int i )
{
// Do an inline unsigned check for maximum debug-build performance.
Assert( (unsigned)i < (unsigned)m_Size );
StagingUtlVectorBoundsCheck( i, m_Size );
return m_Memory[ i ];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::operator[]( int i ) const
{
// Do an inline unsigned check for maximum debug-build performance.
Assert( (unsigned)i < (unsigned)m_Size );
StagingUtlVectorBoundsCheck( i, m_Size );
return m_Memory[ i ];
}
template< typename T, class A >
inline T& CUtlVector<T, A>::Element( int i )
{
// Do an inline unsigned check for maximum debug-build performance.
Assert( (unsigned)i < (unsigned)m_Size );
StagingUtlVectorBoundsCheck( i, m_Size );
return m_Memory[ i ];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::Element( int i ) const
{
// Do an inline unsigned check for maximum debug-build performance.
Assert( (unsigned)i < (unsigned)m_Size );
StagingUtlVectorBoundsCheck( i, m_Size );
return m_Memory[ i ];
}
template< typename T, class A >
inline T& CUtlVector<T, A>::Head()
{
Assert( m_Size > 0 );
StagingUtlVectorBoundsCheck( 0, m_Size );
return m_Memory[ 0 ];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::Head() const
{
Assert( m_Size > 0 );
StagingUtlVectorBoundsCheck( 0, m_Size );
return m_Memory[ 0 ];
}
template< typename T, class A >
inline T& CUtlVector<T, A>::Tail()
{
Assert( m_Size > 0 );
StagingUtlVectorBoundsCheck( 0, m_Size );
return m_Memory[ m_Size - 1 ];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::Tail() const
{
Assert( m_Size > 0 );
StagingUtlVectorBoundsCheck( 0, m_Size );
return m_Memory[ m_Size - 1 ];
}
//-----------------------------------------------------------------------------
// Count
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::Size() const
{
return m_Size;
}
template< typename T, class A >
inline T& CUtlVector<T, A>::Random()
{
Assert( m_Size > 0 );
return m_Memory[ RandomInt( 0, m_Size - 1 ) ];
}
template< typename T, class A >
inline const T& CUtlVector<T, A>::Random() const
{
Assert( m_Size > 0 );
return m_Memory[ RandomInt( 0, m_Size - 1 ) ];
}
//-----------------------------------------------------------------------------
// Shuffle - Knuth/Fisher-Yates
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::Shuffle( IUniformRandomStream* pSteam )
{
for ( int i = 0; i < m_Size; i++ )
{
int j = pSteam ? pSteam->RandomInt( i, m_Size - 1 ) : RandomInt( i, m_Size - 1 );
if ( i != j )
{
V_swap( m_Memory[ i ], m_Memory[ j ] );
}
}
}
template< typename T, class A >
inline int CUtlVector<T, A>::Count() const
{
return m_Size;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Reverse - reverse the order of elements, akin to std::vector<>::reverse()
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::Reverse( )
{
for ( int i = 0; i < m_Size / 2; i++ )
{
V_swap( m_Memory[ i ], m_Memory[ m_Size - 1 - i ] );
#if defined( UTLVECTOR_TRACK_STACKS )
if ( bTrackingEnabled )
{
V_swap( m_pElementStackStatsIndices[ i ], m_pElementStackStatsIndices[ m_Size - 1 - i ] );
}
#endif
}
}
//-----------------------------------------------------------------------------
// Is element index valid?
//-----------------------------------------------------------------------------
template< typename T, class A >
inline bool CUtlVector<T, A>::IsValidIndex( int i ) const
{
return (i >= 0) && (i < m_Size);
}
//-----------------------------------------------------------------------------
// Returns in invalid index
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::InvalidIndex()
{
return -1;
}
//-----------------------------------------------------------------------------
// Grows the vector
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::GrowVector( int num )
{
if (m_Size + num > m_Memory.NumAllocated())
{
MEM_ALLOC_CREDIT_CLASS();
m_Memory.Grow( m_Size + num - m_Memory.NumAllocated() );
}
m_Size += num;
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// Sorts the vector
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::Sort( int (__cdecl *pfnCompare)(const T *, const T *) )
{
typedef int (__cdecl *QSortCompareFunc_t)(const void *, const void *);
if ( Count() <= 1 )
return;
if ( Base() )
{
qsort( Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare) );
}
else
{
Assert( 0 );
// this path is untested
// if you want to sort vectors that use a non-sequential memory allocator,
// you'll probably want to patch in a quicksort algorithm here
// I just threw in this bubble sort to have something just in case...
for ( int i = m_Size - 1; i >= 0; --i )
{
for ( int j = 1; j <= i; ++j )
{
if ( pfnCompare( &Element( j - 1 ), &Element( j ) ) < 0 )
{
V_swap( Element( j - 1 ), Element( j ) );
}
}
}
}
}
//----------------------------------------------------------------------------------------------
// Private function that does the in-place quicksort for non-contiguously allocated vectors.
//----------------------------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::InPlaceQuickSort_r( int (__cdecl *pfnCompare)(const T *, const T *), int nLeft, int nRight )
{
int nPivot;
int nLeftIdx = nLeft;
int nRightIdx = nRight;
if ( nRight - nLeft > 0 )
{
nPivot = ( nLeft + nRight ) / 2;
while ( ( nLeftIdx <= nPivot ) && ( nRightIdx >= nPivot ) )
{
while ( ( pfnCompare( &Element( nLeftIdx ), &Element( nPivot ) ) < 0 ) && ( nLeftIdx <= nPivot ) )
{
nLeftIdx++;
}
while ( ( pfnCompare( &Element( nRightIdx ), &Element( nPivot ) ) > 0 ) && ( nRightIdx >= nPivot ) )
{
nRightIdx--;
}
V_swap( Element( nLeftIdx ), Element( nRightIdx ) );
nLeftIdx++;
nRightIdx--;
if ( ( nLeftIdx - 1 ) == nPivot )
{
nPivot = nRightIdx = nRightIdx + 1;
}
else if ( nRightIdx + 1 == nPivot )
{
nPivot = nLeftIdx = nLeftIdx - 1;
}
}
InPlaceQuickSort_r( pfnCompare, nLeft, nPivot - 1 );
InPlaceQuickSort_r( pfnCompare, nPivot + 1, nRight );
}
}
//----------------------------------------------------------------------------------------------
// Call this to quickly sort non-contiguously allocated vectors. Sort uses a slower bubble sort.
//----------------------------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::InPlaceQuickSort( int (__cdecl *pfnCompare)(const T *, const T *) )
{
InPlaceQuickSort_r( pfnCompare, 0, Count() - 1 );
}
template< typename T, class A >
void CUtlVector<T, A>::Sort( void )
{
//STACK STATS TODO: Do we care about allocation tracking precision enough to match element origins across a sort?
std::sort( Base(), Base() + Count() );
}
template< typename T, class A >
template <class F>
void CUtlVector<T, A>::SortPredicate( F &&predicate )
{
std::sort( Base(), Base() + Count(), predicate );
}
//-----------------------------------------------------------------------------
// Makes sure we have enough memory allocated to store a requested # of elements
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::EnsureCapacity( int num )
{
MEM_ALLOC_CREDIT_CLASS();
m_Memory.EnsureCapacity(num);
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// Makes sure we have at least this many elements
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::EnsureCount( int num )
{
if (Count() < num)
{
AddMultipleToTail( num - Count() );
}
}
//-----------------------------------------------------------------------------
// Shifts elements
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::ShiftElementsRight( int elem, int num )
{
Assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 ));
int numToMove = m_Size - elem - num;
if ((numToMove > 0) && (num > 0))
Q_memmove( &Element(elem+num), &Element(elem), numToMove * sizeof(T) );
}
template< typename T, class A >
void CUtlVector<T, A>::ShiftElementsLeft( int elem, int num )
{
Assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 ));
int numToMove = m_Size - elem - num;
if ((numToMove > 0) && (num > 0))
{
Q_memmove( &Element(elem), &Element(elem+num), numToMove * sizeof(T) );
#ifdef _DEBUG
Q_memset( &Element(m_Size-num), 0xDD, num * sizeof(T) );
#endif
}
}
//-----------------------------------------------------------------------------
// Adds an element, uses default constructor
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::AddToHead()
{
return InsertBefore(0);
}
template< typename T, class A >
inline int CUtlVector<T, A>::AddToTail()
{
return InsertBefore( m_Size );
}
template< typename T, class A >
inline T *CUtlVector<T, A>::AddToTailGetPtr()
{
return &Element( AddToTail() );
}
template< typename T, class A >
inline int CUtlVector<T, A>::InsertAfter( int elem )
{
return InsertBefore( elem + 1 );
}
template< typename T, class A >
int CUtlVector<T, A>::InsertBefore( int elem )
{
// Can insert at the end
Assert( (elem == Count()) || IsValidIndex(elem) );
GrowVector();
ShiftElementsRight(elem);
Construct( &Element(elem) );
return elem;
}
//-----------------------------------------------------------------------------
// Adds an element, uses copy constructor
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::AddToHead( const T& src )
{
// Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) );
return InsertBefore( 0, src );
}
template< typename T, class A >
inline int CUtlVector<T, A>::AddToTail( const T& src )
{
// Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) );
return InsertBefore( m_Size, src );
}
template< typename T, class A >
inline int CUtlVector<T, A>::InsertAfter( int elem, const T& src )
{
// Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) );
return InsertBefore( elem + 1, src );
}
template< typename T, class A >
int CUtlVector<T, A>::InsertBefore( int elem, const T& src )
{
// Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || (&src < Base()) || (&src >= (Base() + Count()) ) );
// Can insert at the end
Assert( (elem == Count()) || IsValidIndex(elem) );
GrowVector();
ShiftElementsRight(elem);
CopyConstruct( &Element(elem), src );
return elem;
}
//-----------------------------------------------------------------------------
// Adds multiple elements, uses default constructor
//-----------------------------------------------------------------------------
template< typename T, class A >
inline int CUtlVector<T, A>::AddMultipleToHead( int num )
{
return InsertMultipleBefore( 0, num );
}
template< typename T, class A >
inline int CUtlVector<T, A>::AddMultipleToTail( int num )
{
return InsertMultipleBefore( m_Size, num );
}
template< typename T, class A >
inline int CUtlVector<T, A>::AddMultipleToTail( int num, const T *pToCopy )
{
// Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || !pToCopy || (pToCopy + num <= Base()) || (pToCopy >= (Base() + Count()) ) );
return InsertMultipleBefore( m_Size, num, pToCopy );
}
template< typename T, class A >
int CUtlVector<T, A>::InsertMultipleAfter( int elem, int num )
{
return InsertMultipleBefore( elem + 1, num );
}
template< typename T, class A >
void CUtlVector<T, A>::SetCount( int count )
{
RemoveAll();
AddMultipleToTail( count );
}
template< typename T, class A >
inline void CUtlVector<T, A>::SetSize( int size )
{
SetCount( size );
}
template< typename T, class A >
void CUtlVector<T, A>::SetCountNonDestructively( int count )
{
int delta = count - m_Size;
if(delta > 0) AddMultipleToTail( delta );
else if(delta < 0) RemoveMultipleFromTail( -delta );
}
template< typename T, class A >
void CUtlVector<T, A>::CopyArray( const T *pArray, int size )
{
// Can't insert something that's in the list... reallocation may hose us
Assert( (Base() == NULL) || !pArray || (Base() >= (pArray + size)) || (pArray >= (Base() + Count()) ) );
SetSize( size );
for( int i=0; i < size; i++ )
{
(*this)[i] = pArray[i];
}
}
template< typename T, class A >
void CUtlVector<T, A>::Swap( CUtlVector< T, A > &vec )
{
m_Memory.Swap( vec.m_Memory );
V_swap( m_Size, vec.m_Size );
#ifndef _X360
V_swap( m_pElements, vec.m_pElements );
#endif
}
template< typename T, class A >
int CUtlVector<T, A>::AddVectorToTail( CUtlVector const &src )
{
Assert( &src != this );
int base = Count();
// Make space.
int nSrcCount = src.Count();
EnsureCapacity( base + nSrcCount );
// Copy the elements.
m_Size += nSrcCount;
for ( int i=0; i < nSrcCount; i++ )
{
CopyConstruct( &Element(base+i), src[i] );
}
return base;
}
template< typename T, class A >
inline int CUtlVector<T, A>::InsertMultipleBefore( int elem, int num )
{
if( num == 0 )
return elem;
// Can insert at the end
Assert( (elem == Count()) || IsValidIndex(elem) );
GrowVector(num);
ShiftElementsRight( elem, num );
// Invoke default constructors
for (int i = 0; i < num; ++i )
{
Construct( &Element( elem+i ) );
}
return elem;
}
template< typename T, class A >
inline int CUtlVector<T, A>::InsertMultipleBefore( int elem, int num, const T *pToInsert )
{
if( num == 0 )
return elem;
// Can insert at the end
Assert( (elem == Count()) || IsValidIndex(elem) );
GrowVector(num);
ShiftElementsRight( elem, num );
// Invoke default constructors
if ( !pToInsert )
{
for (int i = 0; i < num; ++i )
{
Construct( &Element( elem+i ) );
}
}
else
{
for ( int i=0; i < num; i++ )
{
CopyConstruct( &Element( elem+i ), pToInsert[i] );
}
}
return elem;
}
//-----------------------------------------------------------------------------
// Finds an element (element needs operator== defined)
//-----------------------------------------------------------------------------
template< typename T, class A >
int CUtlVector<T, A>::Find( const T& src ) const
{
for ( int i = 0; i < Count(); ++i )
{
if (Element(i) == src)
return i;
}
return -1;
}
//-----------------------------------------------------------------------------
// Finds an element using a predicate, using std::find_if
//-----------------------------------------------------------------------------
template< typename T, class A >
template< class F >
int CUtlVector<T, A>::FindPredicate( F &&predicate ) const
{
const T * begin = Base();
const T * end = begin + Count();
const T * const &elem = std::find_if( begin, end, predicate );
if ( elem != end )
{
int idx = (int)std::distance( begin, elem );
StagingUtlVectorBoundsCheck( idx, m_Size );
return idx;
}
return InvalidIndex();
}
template< typename T, class A >
void CUtlVector<T, A>::FillWithValue( const T& src )
{
for ( int i = 0; i < Count(); i++ )
{
Element(i) = src;
}
}
template< typename T, class A >
bool CUtlVector<T, A>::HasElement( const T& src ) const
{
return ( Find(src) >= 0 );
}
//-----------------------------------------------------------------------------
// Element removal
//-----------------------------------------------------------------------------
template< typename T, class A >
void CUtlVector<T, A>::FastRemove( int elem )
{
Assert( IsValidIndex(elem) );
// Global scope to resolve conflict with Scaleform 4.0
::Destruct( &Element(elem) );
if (m_Size > 0)
{
if ( elem != m_Size -1 )
memcpy( &Element(elem), &Element(m_Size-1), sizeof(T) );
--m_Size;
}
}
template< typename T, class A >
void CUtlVector<T, A>::Remove( int elem )
{
// Global scope to resolve conflict with Scaleform 4.0
::Destruct( &Element(elem) );
ShiftElementsLeft(elem);
--m_Size;
}
template< typename T, class A >
bool CUtlVector<T, A>::FindAndRemove( const T& src )
{
int elem = Find( src );
if ( elem != -1 )
{
Remove( elem );
return true;
}
return false;
}
template< typename T, class A >
bool CUtlVector<T, A>::FindAndFastRemove( const T& src )
{
int elem = Find( src );
if ( elem != -1 )
{
FastRemove( elem );
return true;
}
return false;
}
template< typename T, class A >
void CUtlVector<T, A>::RemoveMultiple( int elem, int num )
{
Assert( elem >= 0 );
Assert( elem + num <= Count() );
// Global scope to resolve conflict with Scaleform 4.0
for (int i = elem + num; --i >= elem; )
::Destruct(&Element(i));
ShiftElementsLeft(elem, num);
m_Size -= num;
}
template< typename T, class A >
void CUtlVector<T, A>::RemoveMultipleFromHead( int num )
{
Assert( num <= Count() );
// Global scope to resolve conflict with Scaleform 4.0
for (int i = num; --i >= 0; )
::Destruct(&Element(i));
ShiftElementsLeft(0, num);
m_Size -= num;
}
template< typename T, class A >
void CUtlVector<T, A>::RemoveMultipleFromTail( int num )
{
Assert( num <= Count() );
// Global scope to resolve conflict with Scaleform 4.0
for (int i = m_Size-num; i < m_Size; i++)
::Destruct(&Element(i));
m_Size -= num;
}
template< typename T, class A >
void CUtlVector<T, A>::RemoveAll()
{
for (int i = m_Size; --i >= 0; )
{
// Global scope to resolve conflict with Scaleform 4.0
::Destruct(&Element(i));
}
m_Size = 0;
}
//-----------------------------------------------------------------------------
// Memory deallocation
//-----------------------------------------------------------------------------
template< typename T, class A >
inline void CUtlVector<T, A>::Purge()
{
RemoveAll();
m_Memory.Purge();
ResetDbgInfo();
}
template< typename T, class A >
inline void CUtlVector<T, A>::PurgeAndDeleteElements()
{
for( int i=0; i < m_Size; i++ )
{
delete Element(i);
}
Purge();
}
template< typename T, class A >
inline void CUtlVector<T, A>::Compact()
{
m_Memory.Purge(m_Size);
}
template< typename T, class A >
inline int CUtlVector<T, A>::NumAllocated() const
{
return m_Memory.NumAllocated();
}
//-----------------------------------------------------------------------------
// Data and memory validation
//-----------------------------------------------------------------------------
#ifdef DBGFLAG_VALIDATE
template< typename T, class A >
void CUtlVector<T, A>::Validate( CValidator &validator, char *pchName )
{
validator.Push( typeid(*this).name(), this, pchName );
m_Memory.Validate( validator, "m_Memory" );
validator.Pop();
}
#endif // DBGFLAG_VALIDATE
// A vector class for storing pointers, so that the elements pointed to by the pointers are deleted
// on exit.
template<class T> class CUtlVectorAutoPurge : public CUtlVector< T, CUtlMemory< T, int> >
{
public:
~CUtlVectorAutoPurge( void )
{
this->PurgeAndDeleteElements();
}
};
// easy string list class with dynamically allocated strings. For use with V_SplitString, etc.
// Frees the dynamic strings in destructor.
class CUtlStringList : public CUtlVectorAutoPurge< char *>
{
public:
void CopyAndAddToTail( char const *pString ) // clone the string and add to the end
{
char *pNewStr = new char[1 + strlen( pString )];
V_strcpy( pNewStr, pString );
AddToTail( pNewStr );
}
static int __cdecl SortFunc( char * const * sz1, char * const * sz2 )
{
return strcmp( *sz1, *sz2 );
}
CUtlStringList(){}
CUtlStringList( char const *pString, char const *pSeparator )
{
SplitString( pString, pSeparator );
}
CUtlStringList( char const *pString, const char **pSeparators, int nSeparators )
{
SplitString2( pString, pSeparators, nSeparators );
}
void SplitString( char const *pString, char const *pSeparator )
{
V_SplitString( pString, pSeparator, *this );
}
void SplitString2( char const *pString, const char **pSeparators, int nSeparators )
{
V_SplitString2( pString, pSeparators, nSeparators, *this );
}
private:
CUtlStringList( const CUtlStringList &other ); // copying directly will cause double-release of the same strings; maybe we need to do a deep copy, but unless and until such need arises, this will guard against double-release
};
// <Sergiy> placing it here a few days before Cert to minimize disruption to the rest of codebase
class CSplitString: public CUtlVector<char*, CUtlMemory<char*, int> >
{
public:
CSplitString(const char *pString, const char *pSeparator);
CSplitString(const char *pString, const char **pSeparators, int nSeparators);
~CSplitString();
//
// NOTE: If you want to make Construct() public and implement Purge() here, you'll have to free m_szBuffer there
//
private:
void Construct(const char *pString, const char **pSeparators, int nSeparators);
void PurgeAndDeleteElements();
private:
char *m_szBuffer; // a copy of original string, with '\0' instead of separators
};
#endif // CCVECTOR_H