911 lines
24 KiB
C++
911 lines
24 KiB
C++
// vmac.cpp - written and placed in the public domain by Wei Dai
|
|
// based on Ted Krovetz's public domain vmac.c and draft-krovetz-vmac-01.txt
|
|
|
|
#include "pch.h"
|
|
#include "config.h"
|
|
|
|
#include "vmac.h"
|
|
#include "cpu.h"
|
|
#include "argnames.h"
|
|
#include "secblock.h"
|
|
|
|
#if CRYPTOPP_MSC_VERSION
|
|
# pragma warning(disable: 4731)
|
|
#endif
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
#if defined(_MSC_VER) && !CRYPTOPP_BOOL_SLOW_WORD64
|
|
#include <intrin.h>
|
|
#endif
|
|
|
|
#define VMAC_BOOL_WORD128 (defined(CRYPTOPP_WORD128_AVAILABLE) && !defined(CRYPTOPP_X64_ASM_AVAILABLE))
|
|
#ifdef __BORLANDC__
|
|
#define const // Turbo C++ 2006 workaround
|
|
#endif
|
|
static const word64 p64 = W64LIT(0xfffffffffffffeff); /* 2^64 - 257 prime */
|
|
static const word64 m62 = W64LIT(0x3fffffffffffffff); /* 62-bit mask */
|
|
static const word64 m63 = W64LIT(0x7fffffffffffffff); /* 63-bit mask */
|
|
static const word64 m64 = W64LIT(0xffffffffffffffff); /* 64-bit mask */
|
|
static const word64 mpoly = W64LIT(0x1fffffff1fffffff); /* Poly key mask */
|
|
#ifdef __BORLANDC__
|
|
#undef const
|
|
#endif
|
|
#if VMAC_BOOL_WORD128
|
|
#ifdef __powerpc__
|
|
// workaround GCC Bug 31690: ICE with const __uint128_t and C++ front-end
|
|
#define m126 ((word128(m62)<<64)|m64)
|
|
#else
|
|
static const word128 m126 = (word128(m62)<<64)|m64; /* 126-bit mask */
|
|
#endif
|
|
#endif
|
|
|
|
void VMAC_Base::UncheckedSetKey(const byte *userKey, unsigned int keylength, const NameValuePairs ¶ms)
|
|
{
|
|
int digestLength = params.GetIntValueWithDefault(Name::DigestSize(), DefaultDigestSize());
|
|
if (digestLength != 8 && digestLength != 16)
|
|
throw InvalidArgument("VMAC: DigestSize must be 8 or 16");
|
|
m_is128 = digestLength == 16;
|
|
|
|
m_L1KeyLength = params.GetIntValueWithDefault(Name::L1KeyLength(), 128);
|
|
if (m_L1KeyLength <= 0 || m_L1KeyLength % 128 != 0)
|
|
throw InvalidArgument("VMAC: L1KeyLength must be a positive multiple of 128");
|
|
|
|
AllocateBlocks();
|
|
|
|
BlockCipher &cipher = AccessCipher();
|
|
cipher.SetKey(userKey, keylength, params);
|
|
const unsigned int blockSize = cipher.BlockSize();
|
|
const unsigned int blockSizeInWords = blockSize / sizeof(word64);
|
|
SecBlock<word64> out(blockSizeInWords);
|
|
SecByteBlock in;
|
|
in.CleanNew(blockSize);
|
|
size_t i;
|
|
|
|
/* Fill nh key */
|
|
in[0] = 0x80;
|
|
cipher.AdvancedProcessBlocks(in, NULL, (byte *)m_nhKey(), m_nhKeySize()*sizeof(word64), cipher.BT_InBlockIsCounter);
|
|
ConditionalByteReverse<word64>(BIG_ENDIAN_ORDER, m_nhKey(), m_nhKey(), m_nhKeySize()*sizeof(word64));
|
|
|
|
/* Fill poly key */
|
|
in[0] = 0xC0;
|
|
in[15] = 0;
|
|
for (i = 0; i <= (size_t)m_is128; i++)
|
|
{
|
|
cipher.ProcessBlock(in, out.BytePtr());
|
|
m_polyState()[i*4+2] = GetWord<word64>(true, BIG_ENDIAN_ORDER, out.BytePtr()) & mpoly;
|
|
m_polyState()[i*4+3] = GetWord<word64>(true, BIG_ENDIAN_ORDER, out.BytePtr()+8) & mpoly;
|
|
in[15]++;
|
|
}
|
|
|
|
/* Fill ip key */
|
|
in[0] = 0xE0;
|
|
in[15] = 0;
|
|
word64 *l3Key = m_l3Key();
|
|
for (i = 0; i <= (size_t)m_is128; i++)
|
|
do
|
|
{
|
|
cipher.ProcessBlock(in, out.BytePtr());
|
|
l3Key[i*2+0] = GetWord<word64>(true, BIG_ENDIAN_ORDER, out.BytePtr());
|
|
l3Key[i*2+1] = GetWord<word64>(true, BIG_ENDIAN_ORDER, out.BytePtr()+8);
|
|
in[15]++;
|
|
} while ((l3Key[i*2+0] >= p64) || (l3Key[i*2+1] >= p64));
|
|
|
|
m_padCached = false;
|
|
size_t nonceLength;
|
|
const byte *nonce = GetIVAndThrowIfInvalid(params, nonceLength);
|
|
Resynchronize(nonce, (int)nonceLength);
|
|
}
|
|
|
|
void VMAC_Base::GetNextIV(RandomNumberGenerator &rng, byte *IV)
|
|
{
|
|
SimpleKeyingInterface::GetNextIV(rng, IV);
|
|
IV[0] &= 0x7f;
|
|
}
|
|
|
|
void VMAC_Base::Resynchronize(const byte *nonce, int len)
|
|
{
|
|
size_t length = ThrowIfInvalidIVLength(len);
|
|
size_t s = IVSize();
|
|
byte *storedNonce = m_nonce();
|
|
|
|
if (m_is128)
|
|
{
|
|
memset(storedNonce, 0, s-length);
|
|
memcpy(storedNonce+s-length, nonce, length);
|
|
AccessCipher().ProcessBlock(storedNonce, m_pad());
|
|
}
|
|
else
|
|
{
|
|
if (m_padCached && (storedNonce[s-1] | 1) == (nonce[length-1] | 1))
|
|
{
|
|
m_padCached = VerifyBufsEqual(storedNonce+s-length, nonce, length-1);
|
|
for (size_t i=0; m_padCached && i<s-length; i++)
|
|
m_padCached = (storedNonce[i] == 0);
|
|
}
|
|
if (!m_padCached)
|
|
{
|
|
memset(storedNonce, 0, s-length);
|
|
memcpy(storedNonce+s-length, nonce, length-1);
|
|
storedNonce[s-1] = nonce[length-1] & 0xfe;
|
|
AccessCipher().ProcessBlock(storedNonce, m_pad());
|
|
m_padCached = true;
|
|
}
|
|
storedNonce[s-1] = nonce[length-1];
|
|
}
|
|
m_isFirstBlock = true;
|
|
Restart();
|
|
}
|
|
|
|
void VMAC_Base::HashEndianCorrectedBlock(const word64 *data)
|
|
{
|
|
CRYPTOPP_UNUSED(data);
|
|
assert(false);
|
|
throw NotImplemented("VMAC: HashEndianCorrectedBlock is not implemented");
|
|
}
|
|
|
|
unsigned int VMAC_Base::OptimalDataAlignment() const
|
|
{
|
|
return
|
|
#if (CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)) && !defined(CRYPTOPP_DISABLE_VMAC_ASM)
|
|
HasSSE2() ? 16 :
|
|
#endif
|
|
GetCipher().OptimalDataAlignment();
|
|
}
|
|
|
|
#if (CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || (CRYPTOPP_BOOL_X32 && !defined(CRYPTOPP_DISABLE_VMAC_ASM))))
|
|
#if CRYPTOPP_MSC_VERSION
|
|
# pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code
|
|
#endif
|
|
void
|
|
#ifdef __GNUC__
|
|
__attribute__ ((noinline)) // Intel Compiler 9.1 workaround
|
|
#endif
|
|
VMAC_Base::VHASH_Update_SSE2(const word64 *data, size_t blocksRemainingInWord64, int tagPart)
|
|
{
|
|
const word64 *nhK = m_nhKey();
|
|
word64 *polyS = m_polyState();
|
|
word32 L1KeyLength = m_L1KeyLength;
|
|
|
|
CRYPTOPP_UNUSED(data); CRYPTOPP_UNUSED(tagPart); CRYPTOPP_UNUSED(L1KeyLength);
|
|
CRYPTOPP_UNUSED(blocksRemainingInWord64);
|
|
|
|
#ifdef __GNUC__
|
|
word32 temp;
|
|
__asm__ __volatile__
|
|
(
|
|
AS2( mov %%ebx, %0)
|
|
AS2( mov %1, %%ebx)
|
|
INTEL_NOPREFIX
|
|
#else
|
|
#if _MSC_VER < 1300 || defined(__INTEL_COMPILER)
|
|
char isFirstBlock = m_isFirstBlock;
|
|
AS2( mov ebx, [L1KeyLength])
|
|
AS2( mov dl, [isFirstBlock])
|
|
#else
|
|
AS2( mov ecx, this)
|
|
AS2( mov ebx, [ecx+m_L1KeyLength])
|
|
AS2( mov dl, [ecx+m_isFirstBlock])
|
|
#endif
|
|
AS2( mov eax, tagPart)
|
|
AS2( shl eax, 4)
|
|
AS2( mov edi, nhK)
|
|
AS2( add edi, eax)
|
|
AS2( add eax, eax)
|
|
AS2( add eax, polyS)
|
|
|
|
AS2( mov esi, data)
|
|
AS2( mov ecx, blocksRemainingInWord64)
|
|
#endif
|
|
|
|
AS2( shr ebx, 3)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS_PUSH_IF86( bp)
|
|
AS2( sub esp, 24)
|
|
#else
|
|
AS_PUSH_IF86( bp)
|
|
AS2( sub esp, 12)
|
|
#endif
|
|
ASL(4)
|
|
AS2( mov ebp, ebx)
|
|
AS2( cmp ecx, ebx)
|
|
AS2( cmovl ebp, ecx)
|
|
AS2( sub ecx, ebp)
|
|
AS2( lea ebp, [edi+8*ebp]) // end of nhK
|
|
AS2( movq mm6, [esi])
|
|
AS2( paddq mm6, [edi])
|
|
AS2( movq mm5, [esi+8])
|
|
AS2( paddq mm5, [edi+8])
|
|
AS2( add esi, 16)
|
|
AS2( add edi, 16)
|
|
AS2( movq mm4, mm6)
|
|
ASS( pshufw mm2, mm6, 1, 0, 3, 2)
|
|
AS2( pmuludq mm6, mm5)
|
|
ASS( pshufw mm3, mm5, 1, 0, 3, 2)
|
|
AS2( pmuludq mm5, mm2)
|
|
AS2( pmuludq mm2, mm3)
|
|
AS2( pmuludq mm3, mm4)
|
|
AS2( pxor mm7, mm7)
|
|
AS2( movd [esp], mm6)
|
|
AS2( psrlq mm6, 32)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd [esp+8], mm5)
|
|
#else
|
|
AS2( movd [esp+4], mm5)
|
|
#endif
|
|
AS2( psrlq mm5, 32)
|
|
AS2( cmp edi, ebp)
|
|
ASJ( je, 1, f)
|
|
ASL(0)
|
|
AS2( movq mm0, [esi])
|
|
AS2( paddq mm0, [edi])
|
|
AS2( movq mm1, [esi+8])
|
|
AS2( paddq mm1, [edi+8])
|
|
AS2( add esi, 16)
|
|
AS2( add edi, 16)
|
|
AS2( movq mm4, mm0)
|
|
AS2( paddq mm5, mm2)
|
|
ASS( pshufw mm2, mm0, 1, 0, 3, 2)
|
|
AS2( pmuludq mm0, mm1)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd [esp+16], mm3)
|
|
#else
|
|
AS2( movd [esp+8], mm3)
|
|
#endif
|
|
AS2( psrlq mm3, 32)
|
|
AS2( paddq mm5, mm3)
|
|
ASS( pshufw mm3, mm1, 1, 0, 3, 2)
|
|
AS2( pmuludq mm1, mm2)
|
|
AS2( pmuludq mm2, mm3)
|
|
AS2( pmuludq mm3, mm4)
|
|
AS2( movd mm4, [esp])
|
|
AS2( paddq mm7, mm4)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd mm4, [esp+8])
|
|
AS2( paddq mm6, mm4)
|
|
AS2( movd mm4, [esp+16])
|
|
#else
|
|
AS2( movd mm4, [esp+4])
|
|
AS2( paddq mm6, mm4)
|
|
AS2( movd mm4, [esp+8])
|
|
#endif
|
|
AS2( paddq mm6, mm4)
|
|
AS2( movd [esp], mm0)
|
|
AS2( psrlq mm0, 32)
|
|
AS2( paddq mm6, mm0)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd [esp+8], mm1)
|
|
#else
|
|
AS2( movd [esp+4], mm1)
|
|
#endif
|
|
AS2( psrlq mm1, 32)
|
|
AS2( paddq mm5, mm1)
|
|
AS2( cmp edi, ebp)
|
|
ASJ( jne, 0, b)
|
|
ASL(1)
|
|
AS2( paddq mm5, mm2)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd [esp+16], mm3)
|
|
#else
|
|
AS2( movd [esp+8], mm3)
|
|
#endif
|
|
AS2( psrlq mm3, 32)
|
|
AS2( paddq mm5, mm3)
|
|
AS2( movd mm4, [esp])
|
|
AS2( paddq mm7, mm4)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd mm4, [esp+8])
|
|
AS2( paddq mm6, mm4)
|
|
AS2( movd mm4, [esp+16])
|
|
#else
|
|
AS2( movd mm4, [esp+4])
|
|
AS2( paddq mm6, mm4)
|
|
AS2( movd mm4, [esp+8])
|
|
#endif
|
|
AS2( paddq mm6, mm4)
|
|
AS2( lea ebp, [8*ebx])
|
|
AS2( sub edi, ebp) // reset edi to start of nhK
|
|
|
|
AS2( movd [esp], mm7)
|
|
AS2( psrlq mm7, 32)
|
|
AS2( paddq mm6, mm7)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd [esp+8], mm6)
|
|
#else
|
|
AS2( movd [esp+4], mm6)
|
|
#endif
|
|
AS2( psrlq mm6, 32)
|
|
AS2( paddq mm5, mm6)
|
|
AS2( psllq mm5, 2)
|
|
AS2( psrlq mm5, 2)
|
|
|
|
#define a0 [eax+2*4]
|
|
#define a1 [eax+3*4]
|
|
#define a2 [eax+0*4]
|
|
#define a3 [eax+1*4]
|
|
#define k0 [eax+2*8+2*4]
|
|
#define k1 [eax+2*8+3*4]
|
|
#define k2 [eax+2*8+0*4]
|
|
#define k3 [eax+2*8+1*4]
|
|
AS2( test dl, dl)
|
|
ASJ( jz, 2, f)
|
|
AS2( movd mm1, k0)
|
|
AS2( movd mm0, [esp])
|
|
AS2( paddq mm0, mm1)
|
|
AS2( movd a0, mm0)
|
|
AS2( psrlq mm0, 32)
|
|
AS2( movd mm1, k1)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd mm2, [esp+8])
|
|
#else
|
|
AS2( movd mm2, [esp+4])
|
|
#endif
|
|
AS2( paddq mm1, mm2)
|
|
AS2( paddq mm0, mm1)
|
|
AS2( movd a1, mm0)
|
|
AS2( psrlq mm0, 32)
|
|
AS2( paddq mm5, k2)
|
|
AS2( paddq mm0, mm5)
|
|
AS2( movq a2, mm0)
|
|
AS2( xor edx, edx)
|
|
ASJ( jmp, 3, f)
|
|
ASL(2)
|
|
AS2( movd mm0, a3)
|
|
AS2( movq mm4, mm0)
|
|
AS2( pmuludq mm0, k3) // a3*k3
|
|
AS2( movd mm1, a0)
|
|
AS2( pmuludq mm1, k2) // a0*k2
|
|
AS2( movd mm2, a1)
|
|
AS2( movd mm6, k1)
|
|
AS2( pmuludq mm2, mm6) // a1*k1
|
|
AS2( movd mm3, a2)
|
|
AS2( psllq mm0, 1)
|
|
AS2( paddq mm0, mm5)
|
|
AS2( movq mm5, mm3)
|
|
AS2( movd mm7, k0)
|
|
AS2( pmuludq mm3, mm7) // a2*k0
|
|
AS2( pmuludq mm4, mm7) // a3*k0
|
|
AS2( pmuludq mm5, mm6) // a2*k1
|
|
AS2( paddq mm0, mm1)
|
|
AS2( movd mm1, a1)
|
|
AS2( paddq mm4, mm5)
|
|
AS2( movq mm5, mm1)
|
|
AS2( pmuludq mm1, k2) // a1*k2
|
|
AS2( paddq mm0, mm2)
|
|
AS2( movd mm2, a0)
|
|
AS2( paddq mm0, mm3)
|
|
AS2( movq mm3, mm2)
|
|
AS2( pmuludq mm2, k3) // a0*k3
|
|
AS2( pmuludq mm3, mm7) // a0*k0
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd [esp+16], mm0)
|
|
#else
|
|
AS2( movd [esp+8], mm0)
|
|
#endif
|
|
AS2( psrlq mm0, 32)
|
|
AS2( pmuludq mm7, mm5) // a1*k0
|
|
AS2( pmuludq mm5, k3) // a1*k3
|
|
AS2( paddq mm0, mm1)
|
|
AS2( movd mm1, a2)
|
|
AS2( pmuludq mm1, k2) // a2*k2
|
|
AS2( paddq mm0, mm2)
|
|
AS2( paddq mm0, mm4)
|
|
AS2( movq mm4, mm0)
|
|
AS2( movd mm2, a3)
|
|
AS2( pmuludq mm2, mm6) // a3*k1
|
|
AS2( pmuludq mm6, a0) // a0*k1
|
|
AS2( psrlq mm0, 31)
|
|
AS2( paddq mm0, mm3)
|
|
AS2( movd mm3, [esp])
|
|
AS2( paddq mm0, mm3)
|
|
AS2( movd mm3, a2)
|
|
AS2( pmuludq mm3, k3) // a2*k3
|
|
AS2( paddq mm5, mm1)
|
|
AS2( movd mm1, a3)
|
|
AS2( pmuludq mm1, k2) // a3*k2
|
|
AS2( paddq mm5, mm2)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd mm2, [esp+8])
|
|
#else
|
|
AS2( movd mm2, [esp+4])
|
|
#endif
|
|
AS2( psllq mm5, 1)
|
|
AS2( paddq mm0, mm5)
|
|
AS2( psllq mm4, 33)
|
|
AS2( movd a0, mm0)
|
|
AS2( psrlq mm0, 32)
|
|
AS2( paddq mm6, mm7)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( movd mm7, [esp+16])
|
|
#else
|
|
AS2( movd mm7, [esp+8])
|
|
#endif
|
|
AS2( paddq mm0, mm6)
|
|
AS2( paddq mm0, mm2)
|
|
AS2( paddq mm3, mm1)
|
|
AS2( psllq mm3, 1)
|
|
AS2( paddq mm0, mm3)
|
|
AS2( psrlq mm4, 1)
|
|
AS2( movd a1, mm0)
|
|
AS2( psrlq mm0, 32)
|
|
AS2( por mm4, mm7)
|
|
AS2( paddq mm0, mm4)
|
|
AS2( movq a2, mm0)
|
|
#undef a0
|
|
#undef a1
|
|
#undef a2
|
|
#undef a3
|
|
#undef k0
|
|
#undef k1
|
|
#undef k2
|
|
#undef k3
|
|
|
|
ASL(3)
|
|
AS2( test ecx, ecx)
|
|
ASJ( jnz, 4, b)
|
|
#if CRYPTOPP_BOOL_X32
|
|
AS2( add esp, 24)
|
|
#else
|
|
AS2( add esp, 12)
|
|
#endif
|
|
AS_POP_IF86( bp)
|
|
AS1( emms)
|
|
#ifdef __GNUC__
|
|
ATT_PREFIX
|
|
AS2( mov %0, %%ebx)
|
|
: "=m" (temp)
|
|
: "m" (L1KeyLength), "c" (blocksRemainingInWord64), "S" (data), "D" (nhK+tagPart*2), "d" (m_isFirstBlock), "a" (polyS+tagPart*4)
|
|
: "memory", "cc"
|
|
);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if VMAC_BOOL_WORD128
|
|
#define DeclareNH(a) word128 a=0
|
|
#define MUL64(rh,rl,i1,i2) {word128 p = word128(i1)*(i2); rh = word64(p>>64); rl = word64(p);}
|
|
#define AccumulateNH(a, b, c) a += word128(b)*(c)
|
|
#define Multiply128(r, i1, i2) r = word128(word64(i1)) * word64(i2)
|
|
#else
|
|
#if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER)
|
|
#define MUL32(a, b) __emulu(word32(a), word32(b))
|
|
#else
|
|
#define MUL32(a, b) ((word64)((word32)(a)) * (word32)(b))
|
|
#endif
|
|
#if defined(CRYPTOPP_X64_ASM_AVAILABLE)
|
|
#define DeclareNH(a) word64 a##0=0, a##1=0
|
|
#define MUL64(rh,rl,i1,i2) asm ("mulq %3" : "=a"(rl), "=d"(rh) : "a"(i1), "g"(i2) : "cc");
|
|
#define AccumulateNH(a, b, c) asm ("mulq %3; addq %%rax, %0; adcq %%rdx, %1" : "+r"(a##0), "+r"(a##1) : "a"(b), "g"(c) : "%rdx", "cc");
|
|
#define ADD128(rh,rl,ih,il) asm ("addq %3, %1; adcq %2, %0" : "+r"(rh),"+r"(rl) : "r"(ih),"r"(il) : "cc");
|
|
#elif defined(_MSC_VER) && !CRYPTOPP_BOOL_SLOW_WORD64
|
|
#define DeclareNH(a) word64 a##0=0, a##1=0
|
|
#define MUL64(rh,rl,i1,i2) (rl) = _umul128(i1,i2,&(rh));
|
|
#define AccumulateNH(a, b, c) {\
|
|
word64 ph, pl;\
|
|
pl = _umul128(b,c,&ph);\
|
|
a##0 += pl;\
|
|
a##1 += ph + (a##0 < pl);}
|
|
#else
|
|
#define VMAC_BOOL_32BIT 1
|
|
#define DeclareNH(a) word64 a##0=0, a##1=0, a##2=0
|
|
#define MUL64(rh,rl,i1,i2) \
|
|
{ word64 _i1 = (i1), _i2 = (i2); \
|
|
word64 m1= MUL32(_i1,_i2>>32); \
|
|
word64 m2= MUL32(_i1>>32,_i2); \
|
|
rh = MUL32(_i1>>32,_i2>>32); \
|
|
rl = MUL32(_i1,_i2); \
|
|
ADD128(rh,rl,(m1 >> 32),(m1 << 32)); \
|
|
ADD128(rh,rl,(m2 >> 32),(m2 << 32)); \
|
|
}
|
|
#define AccumulateNH(a, b, c) {\
|
|
word64 p = MUL32(b, c);\
|
|
a##1 += word32((p)>>32);\
|
|
a##0 += word32(p);\
|
|
p = MUL32((b)>>32, c);\
|
|
a##2 += word32((p)>>32);\
|
|
a##1 += word32(p);\
|
|
p = MUL32((b)>>32, (c)>>32);\
|
|
a##2 += p;\
|
|
p = MUL32(b, (c)>>32);\
|
|
a##1 += word32(p);\
|
|
a##2 += word32(p>>32);}
|
|
#endif
|
|
#endif
|
|
#ifndef VMAC_BOOL_32BIT
|
|
#define VMAC_BOOL_32BIT 0
|
|
#endif
|
|
#ifndef ADD128
|
|
#define ADD128(rh,rl,ih,il) \
|
|
{ word64 _il = (il); \
|
|
(rl) += (_il); \
|
|
(rh) += (ih) + ((rl) < (_il)); \
|
|
}
|
|
#endif
|
|
|
|
#if !(defined(_MSC_VER) && _MSC_VER < 1300)
|
|
template <bool T_128BitTag>
|
|
#endif
|
|
void VMAC_Base::VHASH_Update_Template(const word64 *data, size_t blocksRemainingInWord64)
|
|
{
|
|
#define INNER_LOOP_ITERATION(j) {\
|
|
word64 d0 = ConditionalByteReverse(LITTLE_ENDIAN_ORDER, data[i+2*j+0]);\
|
|
word64 d1 = ConditionalByteReverse(LITTLE_ENDIAN_ORDER, data[i+2*j+1]);\
|
|
AccumulateNH(nhA, d0+nhK[i+2*j+0], d1+nhK[i+2*j+1]);\
|
|
if (T_128BitTag)\
|
|
AccumulateNH(nhB, d0+nhK[i+2*j+2], d1+nhK[i+2*j+3]);\
|
|
}
|
|
|
|
#if (defined(_MSC_VER) && _MSC_VER < 1300)
|
|
bool T_128BitTag = m_is128;
|
|
#endif
|
|
size_t L1KeyLengthInWord64 = m_L1KeyLength / 8;
|
|
size_t innerLoopEnd = L1KeyLengthInWord64;
|
|
const word64 *nhK = m_nhKey();
|
|
word64 *polyS = m_polyState();
|
|
bool isFirstBlock = true;
|
|
size_t i;
|
|
|
|
#if !VMAC_BOOL_32BIT
|
|
#if VMAC_BOOL_WORD128
|
|
word128 a1=0, a2=0;
|
|
#else
|
|
word64 ah1=0, al1=0, ah2=0, al2=0;
|
|
#endif
|
|
word64 kh1, kl1, kh2, kl2;
|
|
kh1=(polyS+0*4+2)[0]; kl1=(polyS+0*4+2)[1];
|
|
if (T_128BitTag)
|
|
{
|
|
kh2=(polyS+1*4+2)[0]; kl2=(polyS+1*4+2)[1];
|
|
}
|
|
#endif
|
|
|
|
do
|
|
{
|
|
DeclareNH(nhA);
|
|
DeclareNH(nhB);
|
|
|
|
i = 0;
|
|
if (blocksRemainingInWord64 < L1KeyLengthInWord64)
|
|
{
|
|
if (blocksRemainingInWord64 % 8)
|
|
{
|
|
innerLoopEnd = blocksRemainingInWord64 % 8;
|
|
for (; i<innerLoopEnd; i+=2)
|
|
INNER_LOOP_ITERATION(0);
|
|
}
|
|
innerLoopEnd = blocksRemainingInWord64;
|
|
}
|
|
for (; i<innerLoopEnd; i+=8)
|
|
{
|
|
INNER_LOOP_ITERATION(0);
|
|
INNER_LOOP_ITERATION(1);
|
|
INNER_LOOP_ITERATION(2);
|
|
INNER_LOOP_ITERATION(3);
|
|
}
|
|
blocksRemainingInWord64 -= innerLoopEnd;
|
|
data += innerLoopEnd;
|
|
|
|
#if VMAC_BOOL_32BIT
|
|
word32 nh0[2], nh1[2];
|
|
word64 nh2[2];
|
|
|
|
nh0[0] = word32(nhA0);
|
|
nhA1 += (nhA0 >> 32);
|
|
nh1[0] = word32(nhA1);
|
|
nh2[0] = (nhA2 + (nhA1 >> 32)) & m62;
|
|
|
|
if (T_128BitTag)
|
|
{
|
|
nh0[1] = word32(nhB0);
|
|
nhB1 += (nhB0 >> 32);
|
|
nh1[1] = word32(nhB1);
|
|
nh2[1] = (nhB2 + (nhB1 >> 32)) & m62;
|
|
}
|
|
|
|
#define a0 (((word32 *)(polyS+i*4))[2+NativeByteOrder::ToEnum()])
|
|
#define a1 (*(((word32 *)(polyS+i*4))+3-NativeByteOrder::ToEnum())) // workaround for GCC 3.2
|
|
#define a2 (((word32 *)(polyS+i*4))[0+NativeByteOrder::ToEnum()])
|
|
#define a3 (*(((word32 *)(polyS+i*4))+1-NativeByteOrder::ToEnum()))
|
|
#define aHi ((polyS+i*4)[0])
|
|
#define k0 (((word32 *)(polyS+i*4+2))[2+NativeByteOrder::ToEnum()])
|
|
#define k1 (*(((word32 *)(polyS+i*4+2))+3-NativeByteOrder::ToEnum()))
|
|
#define k2 (((word32 *)(polyS+i*4+2))[0+NativeByteOrder::ToEnum()])
|
|
#define k3 (*(((word32 *)(polyS+i*4+2))+1-NativeByteOrder::ToEnum()))
|
|
#define kHi ((polyS+i*4+2)[0])
|
|
|
|
if (isFirstBlock)
|
|
{
|
|
isFirstBlock = false;
|
|
if (m_isFirstBlock)
|
|
{
|
|
m_isFirstBlock = false;
|
|
for (i=0; i<=(size_t)T_128BitTag; i++)
|
|
{
|
|
word64 t = (word64)nh0[i] + k0;
|
|
a0 = (word32)t;
|
|
t = (t >> 32) + nh1[i] + k1;
|
|
a1 = (word32)t;
|
|
aHi = (t >> 32) + nh2[i] + kHi;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
for (i=0; i<=(size_t)T_128BitTag; i++)
|
|
{
|
|
word64 p, t;
|
|
word32 t2;
|
|
|
|
p = MUL32(a3, 2*k3);
|
|
p += nh2[i];
|
|
p += MUL32(a0, k2);
|
|
p += MUL32(a1, k1);
|
|
p += MUL32(a2, k0);
|
|
t2 = (word32)p;
|
|
p >>= 32;
|
|
p += MUL32(a0, k3);
|
|
p += MUL32(a1, k2);
|
|
p += MUL32(a2, k1);
|
|
p += MUL32(a3, k0);
|
|
t = (word64(word32(p) & 0x7fffffff) << 32) | t2;
|
|
p >>= 31;
|
|
p += nh0[i];
|
|
p += MUL32(a0, k0);
|
|
p += MUL32(a1, 2*k3);
|
|
p += MUL32(a2, 2*k2);
|
|
p += MUL32(a3, 2*k1);
|
|
t2 = (word32)p;
|
|
p >>= 32;
|
|
p += nh1[i];
|
|
p += MUL32(a0, k1);
|
|
p += MUL32(a1, k0);
|
|
p += MUL32(a2, 2*k3);
|
|
p += MUL32(a3, 2*k2);
|
|
a0 = t2;
|
|
a1 = (word32)p;
|
|
aHi = (p >> 32) + t;
|
|
}
|
|
|
|
#undef a0
|
|
#undef a1
|
|
#undef a2
|
|
#undef a3
|
|
#undef aHi
|
|
#undef k0
|
|
#undef k1
|
|
#undef k2
|
|
#undef k3
|
|
#undef kHi
|
|
#else // #if VMAC_BOOL_32BIT
|
|
if (isFirstBlock)
|
|
{
|
|
isFirstBlock = false;
|
|
if (m_isFirstBlock)
|
|
{
|
|
m_isFirstBlock = false;
|
|
#if VMAC_BOOL_WORD128
|
|
#define first_poly_step(a, kh, kl, m) a = (m & m126) + ((word128(kh) << 64) | kl)
|
|
|
|
first_poly_step(a1, kh1, kl1, nhA);
|
|
if (T_128BitTag)
|
|
first_poly_step(a2, kh2, kl2, nhB);
|
|
#else
|
|
#define first_poly_step(ah, al, kh, kl, mh, ml) {\
|
|
mh &= m62;\
|
|
ADD128(mh, ml, kh, kl); \
|
|
ah = mh; al = ml;}
|
|
|
|
first_poly_step(ah1, al1, kh1, kl1, nhA1, nhA0);
|
|
if (T_128BitTag)
|
|
first_poly_step(ah2, al2, kh2, kl2, nhB1, nhB0);
|
|
#endif
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
#if VMAC_BOOL_WORD128
|
|
a1 = (word128((polyS+0*4)[0]) << 64) | (polyS+0*4)[1];
|
|
#else
|
|
ah1=(polyS+0*4)[0]; al1=(polyS+0*4)[1];
|
|
#endif
|
|
if (T_128BitTag)
|
|
{
|
|
#if VMAC_BOOL_WORD128
|
|
a2 = (word128((polyS+1*4)[0]) << 64) | (polyS+1*4)[1];
|
|
#else
|
|
ah2=(polyS+1*4)[0]; al2=(polyS+1*4)[1];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if VMAC_BOOL_WORD128
|
|
#define poly_step(a, kh, kl, m) \
|
|
{ word128 t1, t2, t3, t4;\
|
|
Multiply128(t2, a>>64, kl);\
|
|
Multiply128(t3, a, kh);\
|
|
Multiply128(t1, a, kl);\
|
|
Multiply128(t4, a>>64, 2*kh);\
|
|
t2 += t3;\
|
|
t4 += t1;\
|
|
t2 += t4>>64;\
|
|
a = (word128(word64(t2)&m63) << 64) | word64(t4);\
|
|
t2 *= 2;\
|
|
a += m & m126;\
|
|
a += t2>>64;}
|
|
|
|
poly_step(a1, kh1, kl1, nhA);
|
|
if (T_128BitTag)
|
|
poly_step(a2, kh2, kl2, nhB);
|
|
#else
|
|
#define poly_step(ah, al, kh, kl, mh, ml) \
|
|
{ word64 t1h, t1l, t2h, t2l, t3h, t3l, z=0; \
|
|
/* compute ab*cd, put bd into result registers */ \
|
|
MUL64(t2h,t2l,ah,kl); \
|
|
MUL64(t3h,t3l,al,kh); \
|
|
MUL64(t1h,t1l,ah,2*kh); \
|
|
MUL64(ah,al,al,kl); \
|
|
/* add together ad + bc */ \
|
|
ADD128(t2h,t2l,t3h,t3l); \
|
|
/* add 2 * ac to result */ \
|
|
ADD128(ah,al,t1h,t1l); \
|
|
/* now (ah,al), (t2l,2*t2h) need summing */ \
|
|
/* first add the high registers, carrying into t2h */ \
|
|
ADD128(t2h,ah,z,t2l); \
|
|
/* double t2h and add top bit of ah */ \
|
|
t2h += t2h + (ah >> 63); \
|
|
ah &= m63; \
|
|
/* now add the low registers */ \
|
|
mh &= m62; \
|
|
ADD128(ah,al,mh,ml); \
|
|
ADD128(ah,al,z,t2h); \
|
|
}
|
|
|
|
poly_step(ah1, al1, kh1, kl1, nhA1, nhA0);
|
|
if (T_128BitTag)
|
|
poly_step(ah2, al2, kh2, kl2, nhB1, nhB0);
|
|
#endif
|
|
#endif // #if VMAC_BOOL_32BIT
|
|
} while (blocksRemainingInWord64);
|
|
|
|
#if VMAC_BOOL_WORD128
|
|
(polyS+0*4)[0]=word64(a1>>64); (polyS+0*4)[1]=word64(a1);
|
|
if (T_128BitTag)
|
|
{
|
|
(polyS+1*4)[0]=word64(a2>>64); (polyS+1*4)[1]=word64(a2);
|
|
}
|
|
#elif !VMAC_BOOL_32BIT
|
|
(polyS+0*4)[0]=ah1; (polyS+0*4)[1]=al1;
|
|
if (T_128BitTag)
|
|
{
|
|
(polyS+1*4)[0]=ah2; (polyS+1*4)[1]=al2;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
inline void VMAC_Base::VHASH_Update(const word64 *data, size_t blocksRemainingInWord64)
|
|
{
|
|
#if (CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || (CRYPTOPP_BOOL_X32 && !defined(CRYPTOPP_DISABLE_VMAC_ASM))))
|
|
if (HasSSE2())
|
|
{
|
|
VHASH_Update_SSE2(data, blocksRemainingInWord64, 0);
|
|
if (m_is128)
|
|
VHASH_Update_SSE2(data, blocksRemainingInWord64, 1);
|
|
m_isFirstBlock = false;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#if defined(_MSC_VER) && _MSC_VER < 1300
|
|
VHASH_Update_Template(data, blocksRemainingInWord64);
|
|
#else
|
|
if (m_is128)
|
|
VHASH_Update_Template<true>(data, blocksRemainingInWord64);
|
|
else
|
|
VHASH_Update_Template<false>(data, blocksRemainingInWord64);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
size_t VMAC_Base::HashMultipleBlocks(const word64 *data, size_t length)
|
|
{
|
|
size_t remaining = ModPowerOf2(length, m_L1KeyLength);
|
|
VHASH_Update(data, (length-remaining)/8);
|
|
return remaining;
|
|
}
|
|
|
|
static word64 L3Hash(const word64 *input, const word64 *l3Key, size_t len)
|
|
{
|
|
word64 rh, rl, t, z=0;
|
|
word64 p1 = input[0], p2 = input[1];
|
|
word64 k1 = l3Key[0], k2 = l3Key[1];
|
|
|
|
/* fully reduce (p1,p2)+(len,0) mod p127 */
|
|
t = p1 >> 63;
|
|
p1 &= m63;
|
|
ADD128(p1, p2, len, t);
|
|
/* At this point, (p1,p2) is at most 2^127+(len<<64) */
|
|
t = (p1 > m63) + ((p1 == m63) & (p2 == m64));
|
|
ADD128(p1, p2, z, t);
|
|
p1 &= m63;
|
|
|
|
/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
|
|
t = p1 + (p2 >> 32);
|
|
t += (t >> 32);
|
|
t += (word32)t > 0xfffffffeU;
|
|
p1 += (t >> 32);
|
|
p2 += (p1 << 32);
|
|
|
|
/* compute (p1+k1)%p64 and (p2+k2)%p64 */
|
|
p1 += k1;
|
|
p1 += (0 - (p1 < k1)) & 257;
|
|
p2 += k2;
|
|
p2 += (0 - (p2 < k2)) & 257;
|
|
|
|
/* compute (p1+k1)*(p2+k2)%p64 */
|
|
MUL64(rh, rl, p1, p2);
|
|
t = rh >> 56;
|
|
ADD128(t, rl, z, rh);
|
|
rh <<= 8;
|
|
ADD128(t, rl, z, rh);
|
|
t += t << 8;
|
|
rl += t;
|
|
rl += (0 - (rl < t)) & 257;
|
|
rl += (0 - (rl > p64-1)) & 257;
|
|
return rl;
|
|
}
|
|
|
|
void VMAC_Base::TruncatedFinal(byte *mac, size_t size)
|
|
{
|
|
size_t len = ModPowerOf2(GetBitCountLo()/8, m_L1KeyLength);
|
|
|
|
if (len)
|
|
{
|
|
memset(m_data()+len, 0, (0-len)%16);
|
|
VHASH_Update(DataBuf(), ((len+15)/16)*2);
|
|
len *= 8; // convert to bits
|
|
}
|
|
else if (m_isFirstBlock)
|
|
{
|
|
// special case for empty string
|
|
m_polyState()[0] = m_polyState()[2];
|
|
m_polyState()[1] = m_polyState()[3];
|
|
if (m_is128)
|
|
{
|
|
m_polyState()[4] = m_polyState()[6];
|
|
m_polyState()[5] = m_polyState()[7];
|
|
}
|
|
}
|
|
|
|
if (m_is128)
|
|
{
|
|
word64 t[2];
|
|
t[0] = L3Hash(m_polyState(), m_l3Key(), len) + GetWord<word64>(true, BIG_ENDIAN_ORDER, m_pad());
|
|
t[1] = L3Hash(m_polyState()+4, m_l3Key()+2, len) + GetWord<word64>(true, BIG_ENDIAN_ORDER, m_pad()+8);
|
|
if (size == 16)
|
|
{
|
|
PutWord(false, BIG_ENDIAN_ORDER, mac, t[0]);
|
|
PutWord(false, BIG_ENDIAN_ORDER, mac+8, t[1]);
|
|
}
|
|
else
|
|
{
|
|
t[0] = ConditionalByteReverse(BIG_ENDIAN_ORDER, t[0]);
|
|
t[1] = ConditionalByteReverse(BIG_ENDIAN_ORDER, t[1]);
|
|
memcpy(mac, t, size);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
word64 t = L3Hash(m_polyState(), m_l3Key(), len);
|
|
t += GetWord<word64>(true, BIG_ENDIAN_ORDER, m_pad() + (m_nonce()[IVSize()-1]&1) * 8);
|
|
if (size == 8)
|
|
PutWord(false, BIG_ENDIAN_ORDER, mac, t);
|
|
else
|
|
{
|
|
t = ConditionalByteReverse(BIG_ENDIAN_ORDER, t);
|
|
memcpy(mac, &t, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
NAMESPACE_END
|