FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

437 lines
18 KiB
OpenEdge ABL

/* -----------------------------------------------------------------------------
* See the LICENSE file for information on copyright, usage and redistribution
* of SWIG, and the README file for authors - http://www.swig.org/release.html.
*
* std_vector.i
*
* SWIG typemaps for std::vector
* ----------------------------------------------------------------------------- */
%include <std_common.i>
// ------------------------------------------------------------------------
// std::vector
//
// The aim of all that follows would be to integrate std::vector with
// MzScheme as much as possible, namely, to allow the user to pass and
// be returned MzScheme vectors or lists.
// const declarations are used to guess the intent of the function being
// exported; therefore, the following rationale is applied:
//
// -- f(std::vector<T>), f(const std::vector<T>&), f(const std::vector<T>*):
// the parameter being read-only, either a MzScheme sequence or a
// previously wrapped std::vector<T> can be passed.
// -- f(std::vector<T>&), f(std::vector<T>*):
// the parameter must be modified; therefore, only a wrapped std::vector
// can be passed.
// -- std::vector<T> f():
// the vector is returned by copy; therefore, a MzScheme vector of T:s
// is returned which is most easily used in other MzScheme functions
// -- std::vector<T>& f(), std::vector<T>* f(), const std::vector<T>& f(),
// const std::vector<T>* f():
// the vector is returned by reference; therefore, a wrapped std::vector
// is returned
// ------------------------------------------------------------------------
%{
#include <vector>
#include <algorithm>
#include <stdexcept>
%}
// exported class
namespace std {
template<class T> class vector {
%typemap(in) vector<T> {
if (SCHEME_VECTORP($input)) {
unsigned int size = SCHEME_VEC_SIZE($input);
$1 = std::vector<T >(size);
Scheme_Object** items = SCHEME_VEC_ELS($input);
for (unsigned int i=0; i<size; i++) {
(($1_type &)$1)[i] =
*((T*) SWIG_MustGetPtr(items[i],
$descriptor(T *),
$argnum, 0));
}
} else if (SCHEME_NULLP($input)) {
$1 = std::vector<T >();
} else if (SCHEME_PAIRP($input)) {
Scheme_Object *head, *tail;
$1 = std::vector<T >();
tail = $input;
while (!SCHEME_NULLP(tail)) {
head = scheme_car(tail);
tail = scheme_cdr(tail);
$1.push_back(*((T*)SWIG_MustGetPtr(head,
$descriptor(T *),
$argnum, 0)));
}
} else {
$1 = *(($&1_type)
SWIG_MustGetPtr($input,$&1_descriptor,$argnum, 0));
}
}
%typemap(in) const vector<T>& (std::vector<T> temp),
const vector<T>* (std::vector<T> temp) {
if (SCHEME_VECTORP($input)) {
unsigned int size = SCHEME_VEC_SIZE($input);
temp = std::vector<T >(size);
$1 = &temp;
Scheme_Object** items = SCHEME_VEC_ELS($input);
for (unsigned int i=0; i<size; i++) {
temp[i] = *((T*) SWIG_MustGetPtr(items[i],
$descriptor(T *),
$argnum, 0));
}
} else if (SCHEME_NULLP($input)) {
temp = std::vector<T >();
$1 = &temp;
} else if (SCHEME_PAIRP($input)) {
temp = std::vector<T >();
$1 = &temp;
Scheme_Object *head, *tail;
tail = $input;
while (!SCHEME_NULLP(tail)) {
head = scheme_car(tail);
tail = scheme_cdr(tail);
temp.push_back(*((T*) SWIG_MustGetPtr(head,
$descriptor(T *),
$argnum, 0)));
}
} else {
$1 = ($1_ltype) SWIG_MustGetPtr($input,$1_descriptor,$argnum, 0);
}
}
%typemap(out) vector<T> {
$result = scheme_make_vector($1.size(),scheme_undefined);
Scheme_Object** els = SCHEME_VEC_ELS($result);
for (unsigned int i=0; i<$1.size(); i++) {
T* x = new T((($1_type &)$1)[i]);
els[i] = SWIG_NewPointerObj(x,$descriptor(T *), 1);
}
}
%typecheck(SWIG_TYPECHECK_VECTOR) vector<T> {
/* native sequence? */
if (SCHEME_VECTORP($input)) {
unsigned int size = SCHEME_VEC_SIZE($input);
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
T* x;
Scheme_Object** items = SCHEME_VEC_ELS($input);
if (SWIG_ConvertPtr(items[0],(void**) &x,
$descriptor(T *), 0) != -1)
$1 = 1;
else
$1 = 0;
}
} else if (SCHEME_NULLP($input)) {
/* again, an empty sequence can be of any type */
$1 = 1;
} else if (SCHEME_PAIRP($input)) {
/* check the first element only */
T* x;
Scheme_Object *head = scheme_car($input);
if (SWIG_ConvertPtr(head,(void**) &x,
$descriptor(T *), 0) != -1)
$1 = 1;
else
$1 = 0;
} else {
/* wrapped vector? */
std::vector<T >* v;
if (SWIG_ConvertPtr($input,(void **) &v,
$&1_descriptor, 0) != -1)
$1 = 1;
else
$1 = 0;
}
}
%typecheck(SWIG_TYPECHECK_VECTOR) const vector<T>&,
const vector<T>* {
/* native sequence? */
if (SCHEME_VECTORP($input)) {
unsigned int size = SCHEME_VEC_SIZE($input);
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
T* x;
Scheme_Object** items = SCHEME_VEC_ELS($input);
if (SWIG_ConvertPtr(items[0],(void**) &x,
$descriptor(T *), 0) != -1)
$1 = 1;
else
$1 = 0;
}
} else if (SCHEME_NULLP($input)) {
/* again, an empty sequence can be of any type */
$1 = 1;
} else if (SCHEME_PAIRP($input)) {
/* check the first element only */
T* x;
Scheme_Object *head = scheme_car($input);
if (SWIG_ConvertPtr(head,(void**) &x,
$descriptor(T *), 0) != -1)
$1 = 1;
else
$1 = 0;
} else {
/* wrapped vector? */
std::vector<T >* v;
if (SWIG_ConvertPtr($input,(void **) &v,
$1_descriptor, 0) != -1)
$1 = 1;
else
$1 = 0;
}
}
public:
vector(unsigned int size = 0);
vector(unsigned int size, const T& value);
vector(const vector<T>&);
%rename(length) size;
unsigned int size() const;
%rename("empty?") empty;
bool empty() const;
%rename("clear!") clear;
void clear();
%rename("set!") set;
%rename("pop!") pop;
%rename("push!") push_back;
void push_back(const T& x);
%extend {
T pop() throw (std::out_of_range) {
if (self->size() == 0)
throw std::out_of_range("pop from empty vector");
T x = self->back();
self->pop_back();
return x;
}
T& ref(int i) throw (std::out_of_range) {
int size = int(self->size());
if (i>=0 && i<size)
return (*self)[i];
else
throw std::out_of_range("vector index out of range");
}
void set(int i, const T& x) throw (std::out_of_range) {
int size = int(self->size());
if (i>=0 && i<size)
(*self)[i] = x;
else
throw std::out_of_range("vector index out of range");
}
}
};
// specializations for built-ins
%define specialize_std_vector(T,CHECK,CONVERT_FROM,CONVERT_TO)
template<> class vector<T> {
%typemap(in) vector<T> {
if (SCHEME_VECTORP($input)) {
unsigned int size = SCHEME_VEC_SIZE($input);
$1 = std::vector<T >(size);
Scheme_Object** items = SCHEME_VEC_ELS($input);
for (unsigned int i=0; i<size; i++) {
Scheme_Object* o = items[i];
if (CHECK(o))
(($1_type &)$1)[i] = (T)(CONVERT_FROM(o));
else
scheme_wrong_type(FUNC_NAME, "vector<" #T ">",
$argnum - 1, argc, argv);
}
} else if (SCHEME_NULLP($input)) {
$1 = std::vector<T >();
} else if (SCHEME_PAIRP($input)) {
Scheme_Object *head, *tail;
$1 = std::vector<T >();
tail = $input;
while (!SCHEME_NULLP(tail)) {
head = scheme_car(tail);
tail = scheme_cdr(tail);
if (CHECK(head))
$1.push_back((T)(CONVERT_FROM(head)));
else
scheme_wrong_type(FUNC_NAME, "vector<" #T ">",
$argnum - 1, argc, argv);
}
} else {
$1 = *(($&1_type)
SWIG_MustGetPtr($input,$&1_descriptor,$argnum, 0));
}
}
%typemap(in) const vector<T>& (std::vector<T> temp),
const vector<T>* (std::vector<T> temp) {
if (SCHEME_VECTORP($input)) {
unsigned int size = SCHEME_VEC_SIZE($input);
temp = std::vector<T >(size);
$1 = &temp;
Scheme_Object** items = SCHEME_VEC_ELS($input);
for (unsigned int i=0; i<size; i++) {
Scheme_Object* o = items[i];
if (CHECK(o))
temp[i] = (T)(CONVERT_FROM(o));
else
scheme_wrong_type(FUNC_NAME, "vector<" #T ">",
$argnum - 1, argc, argv);
}
} else if (SCHEME_NULLP($input)) {
temp = std::vector<T >();
$1 = &temp;
} else if (SCHEME_PAIRP($input)) {
temp = std::vector<T >();
$1 = &temp;
Scheme_Object *head, *tail;
tail = $input;
while (!SCHEME_NULLP(tail)) {
head = scheme_car(tail);
tail = scheme_cdr(tail);
if (CHECK(head))
temp.push_back((T)(CONVERT_FROM(head)));
else
scheme_wrong_type(FUNC_NAME, "vector<" #T ">",
$argnum - 1, argc, argv);
}
} else {
$1 = ($1_ltype) SWIG_MustGetPtr($input,$1_descriptor,$argnum - 1, 0);
}
}
%typemap(out) vector<T> {
$result = scheme_make_vector($1.size(),scheme_undefined);
Scheme_Object** els = SCHEME_VEC_ELS($result);
for (unsigned int i=0; i<$1.size(); i++)
els[i] = CONVERT_TO((($1_type &)$1)[i]);
}
%typecheck(SWIG_TYPECHECK_VECTOR) vector<T> {
/* native sequence? */
if (SCHEME_VECTORP($input)) {
unsigned int size = SCHEME_VEC_SIZE($input);
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
T* x;
Scheme_Object** items = SCHEME_VEC_ELS($input);
$1 = CHECK(items[0]) ? 1 : 0;
}
} else if (SCHEME_NULLP($input)) {
/* again, an empty sequence can be of any type */
$1 = 1;
} else if (SCHEME_PAIRP($input)) {
/* check the first element only */
T* x;
Scheme_Object *head = scheme_car($input);
$1 = CHECK(head) ? 1 : 0;
} else {
/* wrapped vector? */
std::vector<T >* v;
$1 = (SWIG_ConvertPtr($input,(void **) &v,
$&1_descriptor, 0) != -1) ? 1 : 0;
}
}
%typecheck(SWIG_TYPECHECK_VECTOR) const vector<T>&,
const vector<T>* {
/* native sequence? */
if (SCHEME_VECTORP($input)) {
unsigned int size = SCHEME_VEC_SIZE($input);
if (size == 0) {
/* an empty sequence can be of any type */
$1 = 1;
} else {
/* check the first element only */
T* x;
Scheme_Object** items = SCHEME_VEC_ELS($input);
$1 = CHECK(items[0]) ? 1 : 0;
}
} else if (SCHEME_NULLP($input)) {
/* again, an empty sequence can be of any type */
$1 = 1;
} else if (SCHEME_PAIRP($input)) {
/* check the first element only */
T* x;
Scheme_Object *head = scheme_car($input);
$1 = CHECK(head) ? 1 : 0;
} else {
/* wrapped vector? */
std::vector<T >* v;
$1 = (SWIG_ConvertPtr($input,(void **) &v,
$1_descriptor, 0) != -1) ? 1 : 0;
}
}
public:
vector(unsigned int size = 0);
vector(unsigned int size, const T& value);
vector(const vector<T>&);
%rename(length) size;
unsigned int size() const;
%rename("empty?") empty;
bool empty() const;
%rename("clear!") clear;
void clear();
%rename("set!") set;
%rename("pop!") pop;
%rename("push!") push_back;
void push_back(T x);
%extend {
T pop() throw (std::out_of_range) {
if (self->size() == 0)
throw std::out_of_range("pop from empty vector");
T x = self->back();
self->pop_back();
return x;
}
T ref(int i) throw (std::out_of_range) {
int size = int(self->size());
if (i>=0 && i<size)
return (*self)[i];
else
throw std::out_of_range("vector index out of range");
}
void set(int i, T x) throw (std::out_of_range) {
int size = int(self->size());
if (i>=0 && i<size)
(*self)[i] = x;
else
throw std::out_of_range("vector index out of range");
}
}
};
%enddef
specialize_std_vector(bool,SCHEME_BOOLP,SCHEME_TRUEP,\
swig_make_boolean);
specialize_std_vector(char,SCHEME_INTP,SCHEME_INT_VAL,\
scheme_make_integer_value);
specialize_std_vector(int,SCHEME_INTP,SCHEME_INT_VAL,\
scheme_make_integer_value);
specialize_std_vector(short,SCHEME_INTP,SCHEME_INT_VAL,\
scheme_make_integer_value);
specialize_std_vector(long,SCHEME_INTP,SCHEME_INT_VAL,\
scheme_make_integer_value);
specialize_std_vector(unsigned char,SCHEME_INTP,SCHEME_INT_VAL,\
scheme_make_integer_value);
specialize_std_vector(unsigned int,SCHEME_INTP,SCHEME_INT_VAL,\
scheme_make_integer_value);
specialize_std_vector(unsigned short,SCHEME_INTP,SCHEME_INT_VAL,\
scheme_make_integer_value);
specialize_std_vector(unsigned long,SCHEME_INTP,SCHEME_INT_VAL,\
scheme_make_integer_value);
specialize_std_vector(float,SCHEME_REALP,scheme_real_to_double,\
scheme_make_double);
specialize_std_vector(double,SCHEME_REALP,scheme_real_to_double,\
scheme_make_double);
specialize_std_vector(std::string,SCHEME_STRINGP,swig_scm_to_string,\
swig_make_string);
}