FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

6210 lines
173 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "movieobjects/dmelog.h"
#include "datamodel/dmelementfactoryhelper.h"
#include "datamodel/dmehandle.h"
#include "vstdlib/random.h"
#include "tier0/dbg.h"
#include <limits.h>
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
LayerSelectionData_t::DataLayer_t::DataLayer_t( float frac, CDmeLogLayer *layer ) :
m_flStartFraction( frac )
{
m_hData = layer;
}
LayerSelectionData_t::LayerSelectionData_t() :
m_DataType( AT_UNKNOWN ),
m_nDuration( 0 ),
m_tStartOffset( DMETIME_ZERO )
{
m_nHoldTimes[ 0 ] = m_nHoldTimes[ 1 ] = 0;
}
void LayerSelectionData_t::Release()
{
for ( int i = 0; i < m_vecData.Count(); ++i )
{
DataLayer_t *dl = &m_vecData[ i ];
if ( dl->m_hData.Get() )
{
g_pDataModel->DestroyElement( dl->m_hData->GetHandle() );
}
}
m_vecData.Purge();
}
//-----------------------------------------------------------------------------
// Interpolatable types
//-----------------------------------------------------------------------------
inline bool IsInterpolableType( DmAttributeType_t type )
{
return ( type == AT_FLOAT ) ||
( type == AT_COLOR ) ||
( type == AT_VECTOR2 ) ||
( type == AT_VECTOR3 ) ||
( type == AT_QANGLE ) ||
( type == AT_QUATERNION );
}
static Vector s_pInterolationPoints[ 4 ] =
{
Vector( 0.0f, 0.0f, 0.0f ),
Vector( 0.0f, 0.0f, 0.0f ),
Vector( 1.0f, 1.0f, 0.0f ),
Vector( 1.0f, 1.0f, 0.0f )
};
static inline float ComputeInterpolationFactor( float flFactor, int nInterpolatorType )
{
Vector out;
Interpolator_CurveInterpolate
(
nInterpolatorType,
s_pInterolationPoints[ 0 ], // unused
s_pInterolationPoints[ 1 ],
s_pInterolationPoints[ 2 ],
s_pInterolationPoints[ 3 ], // unused
flFactor,
out
);
return out.y; // clamp( out.y, 0.0f, 1.0f );
}
float DmeLog_TimeSelection_t::AdjustFactorForInterpolatorType( float flFactor, int nSide ) const
{
return ComputeInterpolationFactor( flFactor, m_nFalloffInterpolatorTypes[ nSide ] );
}
//-----------------------------------------------------------------------------
// NOTE: See DmeTimeSelectionTimes_t for return values, -1 means before, TS_TIME_COUNT means after
//-----------------------------------------------------------------------------
static inline int ComputeRegionForTime( DmeTime_t t, const DmeTime_t *pRegionTimes )
{
if ( t >= pRegionTimes[TS_LEFT_HOLD] )
{
if ( t <= pRegionTimes[TS_RIGHT_HOLD] )
return 2;
return ( t <= pRegionTimes[TS_RIGHT_FALLOFF] ) ? 3 : 4;
}
return ( t >= pRegionTimes[TS_LEFT_FALLOFF] ) ? 1 : 0;
}
//-----------------------------------------------------------------------------
// NOTE: See DmeTimeSelectionTimes_t for return values, -1 means before, TS_TIME_COUNT means after
//-----------------------------------------------------------------------------
int DmeLog_TimeSelection_t::ComputeRegionForTime( DmeTime_t curtime ) const
{
return ::ComputeRegionForTime( curtime, m_nTimes );
}
//-----------------------------------------------------------------------------
// per-type averaging methods
//-----------------------------------------------------------------------------
float DmeLog_TimeSelection_t::GetAmountForTime( DmeTime_t dmetime ) const
{
float minfrac = 0.0f;
float t = dmetime.GetSeconds();
// FIXME, this is slow, we should cache this maybe?
COMPILE_TIME_ASSERT( TS_TIME_COUNT == 4 );
float times[ TS_TIME_COUNT ];
times[ 0 ] = m_nTimes[ 0 ].GetSeconds();
times[ 1 ] = m_nTimes[ 1 ].GetSeconds();
times[ 2 ] = m_nTimes[ 2 ].GetSeconds();
times[ 3 ] = m_nTimes[ 3 ].GetSeconds();
float dt1, dt2;
dt1 = times[ 1 ] - times[ 0 ];
dt2 = times[ 3 ] - times[ 2 ];
if ( dt1 > 0.0f && t >= times[ 0 ] && t < times[ 1 ] )
{
float f = ( t - times[ 0 ] ) / dt1;
Vector out;
Interpolator_CurveInterpolate
(
m_nFalloffInterpolatorTypes[ 0 ],
s_pInterolationPoints[ 0 ], // unused
s_pInterolationPoints[ 1 ],
s_pInterolationPoints[ 2 ],
s_pInterolationPoints[ 3 ], // unused
f,
out
);
return clamp( out.y, minfrac, 1.0f );
}
if ( t >= times[ 1 ] && t <= times[ 2 ] )
return 1.0f;
if ( dt2 > 0.0f && t > times[ 2 ] && t <= times[ 3 ] )
{
float f = ( times[ 3 ] - t ) / dt2;
Vector out;
Interpolator_CurveInterpolate
(
m_nFalloffInterpolatorTypes[ 1 ],
s_pInterolationPoints[ 0 ], // unused
s_pInterolationPoints[ 1 ],
s_pInterolationPoints[ 2 ],
s_pInterolationPoints[ 3 ], // unused
f,
out
);
return clamp( out.y, minfrac, 1.0f );
}
return minfrac;
}
// catch-all for non-interpolable types - just holds first value
template < class T >
T Average( const T *pValues, int nValues)
{
if ( IsInterpolableType( CDmAttributeInfo< T >::AttributeType() ) )
{
static bool first = true;
if ( first )
{
first = false;
Warning( "CDmeLog: interpolable type %s doesn't have an averaging function!", CDmAttributeInfo< T >::AttributeTypeName() );
}
}
Assert( nValues > 0 );
if ( nValues <= 0 )
return T(); // uninitialized for most value classes!!!
return pValues[ 0 ];
}
// float version
template <>
float Average( const float *pValues, int nValues )
{
Assert( nValues > 0 );
if ( nValues <= 0 )
return 0.0f;
float sum = 0.0f;
for ( int i = 0; i < nValues; ++i )
{
sum += pValues[ i ];
}
return sum / nValues;
}
// Color version
template <>
Color Average( const Color *pValues, int nValues )
{
Assert( nValues > 0 );
if ( nValues <= 0 )
return Color( 0, 0, 0, 0 );
float r = 0.0f, g = 0.0f, b = 0.0f, a = 0.0f;
for ( int i = 0; i < nValues; ++i )
{
r += pValues[ i ].r();
g += pValues[ i ].g();
b += pValues[ i ].b();
a += pValues[ i ].a();
}
float inv = nValues;
return Color( r * inv, g * inv, b * inv, a * inv );
}
// Vector2 version
template <>
Vector2D Average( const Vector2D *pValues, int nValues )
{
Assert( nValues > 0 );
if ( nValues <= 0 )
return Vector2D( 0.0f, 0.0f );
Vector2D sum( 0.0f, 0.0f );
for ( int i = 0; i < nValues; ++i )
{
sum += pValues[ i ];
}
return sum / nValues;
}
// Vector3 version
template <>
Vector Average( const Vector *pValues, int nValues )
{
Assert( nValues > 0 );
if ( nValues <= 0 )
return Vector( 0.0f, 0.0f, 0.0f );
Vector sum( 0.0f, 0.0f, 0.0f );
for ( int i = 0; i < nValues; ++i )
{
sum += pValues[ i ];
}
return sum / nValues;
}
// QAngle version
template <>
QAngle Average( const QAngle *pValues, int nValues )
{
Assert( nValues > 0 );
if ( nValues <= 0 )
return QAngle( 0.0f, 0.0f, 0.0f );
Quaternion ave;
AngleQuaternion( pValues[ 0 ], ave );
// this is calculating the average by slerping with decreasing weights
// for example: ave = 1/3 * q2 + 2/3 ( 1/2 * q1 + 1/2 * q0 )
for ( int i = 1; i < nValues; ++i )
{
Quaternion quat;
AngleQuaternion( pValues[ i ], quat );
QuaternionSlerp( ave, quat, 1 / float( i + 1 ), ave );
}
QAngle qangle;
QuaternionAngles( ave, qangle );
return qangle;
}
// Quaternion version
template <>
Quaternion Average( const Quaternion *pValues, int nValues )
{
Assert( nValues > 0 );
if ( nValues <= 0 )
return Quaternion( 0.0f, 0.0f, 0.0f, 1.0f );
Quaternion ave = pValues[ 0 ];
// this is calculating the average by slerping with decreasing weights
// for example: ave = 1/3 * q2 + 2/3 ( 1/2 * q1 + 1/2 * q0 )
for ( int i = 1; i < nValues; ++i )
{
QuaternionSlerp( ave, pValues[ i ], 1 / float( i + 1 ), ave );
}
return ave;
}
//-----------------------------------------------------------------------------
// per-type interpolation methods
//-----------------------------------------------------------------------------
// catch-all for non-interpolable types - just holds first value
template < class T >
T Interpolate( float t, const T& ti, const T& tj )
{
if ( IsInterpolableType( CDmAttributeInfo< T >::AttributeType() ) )
{
static bool first = true;
if ( first )
{
first = false;
Warning( "CDmeLog: interpolable type %s doesn't have an interpolation function!", CDmAttributeInfo< T >::AttributeTypeName() );
}
}
return ti;
}
// float version
template <>
float Interpolate( float t, const float& ti, const float& tj )
{
return t * tj + (1.0f - t) * ti;
}
// Color version
template <>
Color Interpolate( float t, const Color& ti, const Color& tj )
{
int ri, gi, bi, ai;
int rj, gj, bj, aj;
ti.GetColor( ri, gi, bi, ai );
tj.GetColor( rj, gj, bj, aj );
return Color( t * rj + (1.0f - t) * ri,
t * gj + (1.0f - t) * gi,
t * bj + (1.0f - t) * bi,
t * aj + (1.0f - t) * ai);
}
// Vector2 version
template <>
Vector2D Interpolate( float t, const Vector2D& ti, const Vector2D& tj )
{
return t * tj + (1.0f - t) * ti;
}
// Vector3 version
template <>
Vector Interpolate( float t, const Vector& ti, const Vector& tj )
{
return t * tj + (1.0f - t) * ti;
}
// QAngle version
template <>
QAngle Interpolate( float t, const QAngle& ti, const QAngle& tj )
{
QAngle qaResult;
Quaternion q, qi, qj; // Some Quaternion temps for doing the slerp
AngleQuaternion( ti, qi ); // Convert QAngles to Quaternions
AngleQuaternion( tj, qj );
QuaternionSlerp( qi, qj, t, q ); // Do a slerp as Quaternions
QuaternionAngles( q, qaResult ); // Convert back to QAngles
return qaResult;
}
// Quaternion version
template <>
Quaternion Interpolate( float t, const Quaternion& ti, const Quaternion& tj )
{
static Quaternion s_value;
QuaternionSlerp( ti, tj, t, s_value );
return s_value;
}
// catch-all for non-interpolable types - just holds first value
template < class T >
T Curve_Interpolate( float t, DmeTime_t times[ 4 ], const T values[ 4 ], int curveTypes[ 4 ], float fmin, float fmax )
{
if ( IsInterpolableType( CDmAttributeInfo< T >::AttributeType() ) )
{
static bool first = true;
if ( first )
{
first = false;
Warning( "CDmeLog: interpolable type %s doesn't have an interpolation function!", CDmAttributeInfo< T >::AttributeTypeName() );
}
}
return t;
}
// float version
template <>
float Curve_Interpolate( float t, DmeTime_t times[ 4 ], const float values[ 4 ], int curveTypes[ 4 ], float fmin, float fmax )
{
Vector args[ 4 ];
for ( int i = 0; i < 4; ++i )
{
args[ i ].Init( times[ i ].GetSeconds(), values[ i ], 0.0f );
}
Vector vOut;
int dummy;
int earlypart, laterpart;
// Not holding out value of previous curve...
Interpolator_CurveInterpolatorsForType( curveTypes[ 1 ], dummy, earlypart );
Interpolator_CurveInterpolatorsForType( curveTypes[ 2 ], laterpart, dummy );
if ( earlypart == INTERPOLATE_HOLD )
{
// Hold "out" of previous sample (can cause a discontinuity)
VectorLerp( args[ 1 ], args[ 2 ], t, vOut );
vOut.y = args[ 1 ].y;
}
else if ( laterpart == INTERPOLATE_HOLD )
{
// Hold "out" of previous sample (can cause a discontinuity)
VectorLerp( args[ 1 ], args[ 2 ], t, vOut );
vOut.y = args[ 2 ].y;
}
else
{
bool sameCurveType = earlypart == laterpart ? true : false;
if ( sameCurveType )
{
Interpolator_CurveInterpolate( laterpart, args[ 0 ], args[ 1 ], args[ 2 ], args[ 3 ], t, vOut );
}
else // curves differ, sigh
{
Vector vOut1, vOut2;
Interpolator_CurveInterpolate( earlypart, args[ 0 ], args[ 1 ], args[ 2 ], args[ 3 ], t, vOut1 );
Interpolator_CurveInterpolate( laterpart, args[ 0 ], args[ 1 ], args[ 2 ], args[ 3 ], t, vOut2 );
VectorLerp( vOut1, vOut2, t, vOut );
}
}
// FIXME: This means we can only work with curves that range from 0.0 to 1.0f!!!
float retval = clamp( vOut.y, fmin, fmax );
return retval;
}
// Vector version
template <>
Vector Curve_Interpolate( float t, DmeTime_t times[ 4 ], const Vector values[ 4 ], int curveTypes[ 4 ], float fmin, float fmax )
{
Vector vOut;
int dummy;
int earlypart, laterpart;
// Not holding out value of previous curve...
Interpolator_CurveInterpolatorsForType( curveTypes[ 1 ], dummy, earlypart );
Interpolator_CurveInterpolatorsForType( curveTypes[ 2 ], laterpart, dummy );
if ( earlypart == INTERPOLATE_HOLD )
{
// Hold "out" of previous sample (can cause a discontinuity)
vOut = values[ 1 ];
}
else if ( laterpart == INTERPOLATE_HOLD )
{
// Hold "out" of previous sample (can cause a discontinuity)
vOut = values[ 2 ];
}
else
{
bool sameCurveType = earlypart == laterpart;
if ( sameCurveType )
{
Interpolator_CurveInterpolate_NonNormalized( laterpart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut );
}
else // curves differ, sigh
{
Vector vOut1, vOut2;
Interpolator_CurveInterpolate_NonNormalized( earlypart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut1 );
Interpolator_CurveInterpolate_NonNormalized( laterpart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut2 );
VectorLerp( vOut1, vOut2, t, vOut );
}
}
return vOut;
}
// Quaternion version
template <>
Quaternion Curve_Interpolate( float t, DmeTime_t times[ 4 ], const Quaternion values[ 4 ], int curveTypes[ 4 ], float fmin, float fmax )
{
Quaternion vOut;
int dummy;
int earlypart, laterpart;
// Not holding out value of previous curve...
Interpolator_CurveInterpolatorsForType( curveTypes[ 1 ], dummy, earlypart );
Interpolator_CurveInterpolatorsForType( curveTypes[ 2 ], laterpart, dummy );
if ( earlypart == INTERPOLATE_HOLD )
{
// Hold "out" of previous sample (can cause a discontinuity)
vOut = values[ 1 ];
}
else if ( laterpart == INTERPOLATE_HOLD )
{
// Hold "out" of previous sample (can cause a discontinuity)
vOut = values[ 2 ];
}
else
{
bool sameCurveType = ( earlypart == laterpart ) ? true : false;
if ( sameCurveType )
{
Interpolator_CurveInterpolate_NonNormalized( laterpart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut );
}
else // curves differ, sigh
{
Quaternion vOut1, vOut2;
Interpolator_CurveInterpolate_NonNormalized( earlypart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut1 );
Interpolator_CurveInterpolate_NonNormalized( laterpart, values[ 0 ], values[ 1 ], values[ 2 ], values[ 3 ], t, vOut2 );
QuaternionSlerp( vOut1, vOut2, t, vOut );
}
}
return vOut;
}
template< class T >
T ScaleValue( const T& value, float scale )
{
return value * scale;
}
template<>
bool ScaleValue( const bool& value, float scale )
{
Assert( 0 );
return value;
}
template<>
Color ScaleValue( const Color& value, float scale )
{
Assert( 0 );
return value;
}
template<>
Vector4D ScaleValue( const Vector4D& value, float scale )
{
return Vector4D( value.x * scale, value.y * scale, value.z * scale, value.w * scale );
}
template<>
Quaternion ScaleValue( const Quaternion& value, float scale )
{
return Quaternion( value.x * scale, value.y * scale, value.z * scale, value.w * scale );
}
template<>
VMatrix ScaleValue( const VMatrix& value, float scale )
{
Assert( 0 );
return value;
}
template<>
CUtlString ScaleValue( const CUtlString& value, float scale )
{
Assert( 0 );
return value;
}
template< class T >
float LengthOf( const T& value )
{
return value;
}
template<>
float LengthOf( const bool& value )
{
if ( value )
return 1.0f;
return 0.0f;
}
template<>
float LengthOf( const Color& value )
{
return (float)sqrt( (float)( value.r() * value.r() +
value.g() * value.g() +
value.b() * value.b() +
value.a() * value.a()) );
}
template<>
float LengthOf( const Vector4D& value )
{
return sqrt( value.x * value.x +
value.y * value.y +
value.z * value.z +
value.w * value.w );
}
template<>
float LengthOf( const Quaternion& value )
{
return sqrt( value.x * value.x +
value.y * value.y +
value.z * value.z +
value.w * value.w );
}
template<>
float LengthOf( const VMatrix& value )
{
return 0.0f;
}
template<>
float LengthOf( const CUtlString& value )
{
return 0.0f;
}
template<>
float LengthOf( const Vector2D& value )
{
return value.Length();
}
template<>
float LengthOf( const Vector& value )
{
return value.Length();
}
template<>
float LengthOf( const QAngle& value )
{
return value.Length();
}
template< class T >
T Subtract( const T& v1, const T& v2 )
{
return v1 - v2;
}
template<>
bool Subtract( const bool& v1, const bool& v2 )
{
return v1;
}
template<>
CUtlString Subtract( const CUtlString& v1, const CUtlString& v2 )
{
return v1;
}
template<>
Color Subtract( const Color& v1, const Color& v2 )
{
Color ret;
for ( int i = 0; i < 4; ++i )
{
ret[ i ] = clamp( v1[ i ] - v2[ i ], 0, 255 );
}
return ret;
}
template<>
Vector4D Subtract( const Vector4D& v1, const Vector4D& v2 )
{
Vector4D ret;
for ( int i = 0; i < 4; ++i )
{
ret[ i ] = v1[ i ] - v2[ i ];
}
return ret;
}
template<>
Quaternion Subtract( const Quaternion& v1, const Quaternion& v2 )
{
Quaternion ret;
for ( int i = 0; i < 4; ++i )
{
ret[ i ] = v1[ i ];
}
return ret;
}
template< class T >
T Add( const T& v1, const T& v2 )
{
return v1 + v2;
}
template<>
bool Add( const bool& v1, const bool& v2 )
{
return v1;
}
template<>
CUtlString Add( const CUtlString& v1, const CUtlString& v2 )
{
return v1;
}
template<>
Color Add( const Color& v1, const Color& v2 )
{
Color ret;
for ( int i = 0; i < 4; ++i )
{
ret[ i ] = clamp( v1[ i ] + v2[ i ], 0, 255 );
}
return ret;
}
template<>
Vector4D Add( const Vector4D& v1, const Vector4D& v2 )
{
Vector4D ret;
for ( int i = 0; i < 4; ++i )
{
ret[ i ] = v1[ i ] + v2[ i ];
}
return ret;
}
template<>
Quaternion Add( const Quaternion& v1, const Quaternion& v2 )
{
return v1;
}
IMPLEMENT_ABSTRACT_ELEMENT( DmeLogLayer, CDmeLogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeIntLogLayer, CDmeIntLogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeFloatLogLayer, CDmeFloatLogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeBoolLogLayer, CDmeBoolLogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeColorLogLayer, CDmeColorLogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeVector2LogLayer, CDmeVector2LogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeVector3LogLayer, CDmeVector3LogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeVector4LogLayer, CDmeVector4LogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeQAngleLogLayer, CDmeQAngleLogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeQuaternionLogLayer, CDmeQuaternionLogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeVMatrixLogLayer, CDmeVMatrixLogLayer );
IMPLEMENT_ELEMENT_FACTORY( DmeStringLogLayer, CDmeStringLogLayer );
//-----------------------------------------------------------------------------
// explicit template instantiation
//-----------------------------------------------------------------------------
template class CDmeTypedLogLayer<int>;
template class CDmeTypedLogLayer<float>;
template class CDmeTypedLogLayer<bool>;
template class CDmeTypedLogLayer<Color>;
template class CDmeTypedLogLayer<Vector2D>;
template class CDmeTypedLogLayer<Vector>;
template class CDmeTypedLogLayer<Vector4D>;
template class CDmeTypedLogLayer<QAngle>;
template class CDmeTypedLogLayer<Quaternion>;
template class CDmeTypedLogLayer<VMatrix>;
template class CDmeTypedLogLayer<CUtlString>;
IMPLEMENT_ABSTRACT_ELEMENT( DmeCurveInfo, CDmeCurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeIntCurveInfo, CDmeIntCurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeFloatCurveInfo, CDmeFloatCurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeBoolCurveInfo, CDmeBoolCurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeColorCurveInfo, CDmeColorCurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeVector2CurveInfo, CDmeVector2CurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeVector3CurveInfo, CDmeVector3CurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeVector4CurveInfo, CDmeVector4CurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeQAngleCurveInfo, CDmeQAngleCurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeQuaternionCurveInfo, CDmeQuaternionCurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeVMatrixCurveInfo, CDmeVMatrixCurveInfo );
IMPLEMENT_ELEMENT_FACTORY( DmeStringCurveInfo, CDmeStringCurveInfo );
//-----------------------------------------------------------------------------
// explicit template instantiation
//-----------------------------------------------------------------------------
template class CDmeTypedCurveInfo<int>;
template class CDmeTypedCurveInfo<float>;
template class CDmeTypedCurveInfo<bool>;
template class CDmeTypedCurveInfo<Color>;
template class CDmeTypedCurveInfo<Vector2D>;
template class CDmeTypedCurveInfo<Vector>;
template class CDmeTypedCurveInfo<Vector4D>;
template class CDmeTypedCurveInfo<QAngle>;
template class CDmeTypedCurveInfo<Quaternion>;
template class CDmeTypedCurveInfo<VMatrix>;
template class CDmeTypedCurveInfo<CUtlString>;
//-----------------------------------------------------------------------------
// Class factory
//-----------------------------------------------------------------------------
IMPLEMENT_ABSTRACT_ELEMENT( DmeLog, CDmeLog );
IMPLEMENT_ELEMENT_FACTORY( DmeIntLog, CDmeIntLog );
IMPLEMENT_ELEMENT_FACTORY( DmeFloatLog, CDmeFloatLog );
IMPLEMENT_ELEMENT_FACTORY( DmeBoolLog, CDmeBoolLog );
IMPLEMENT_ELEMENT_FACTORY( DmeColorLog, CDmeColorLog );
IMPLEMENT_ELEMENT_FACTORY( DmeVector2Log, CDmeVector2Log );
IMPLEMENT_ELEMENT_FACTORY( DmeVector3Log, CDmeVector3Log );
IMPLEMENT_ELEMENT_FACTORY( DmeVector4Log, CDmeVector4Log );
IMPLEMENT_ELEMENT_FACTORY( DmeQAngleLog, CDmeQAngleLog );
IMPLEMENT_ELEMENT_FACTORY( DmeQuaternionLog, CDmeQuaternionLog );
IMPLEMENT_ELEMENT_FACTORY( DmeVMatrixLog, CDmeVMatrixLog );
IMPLEMENT_ELEMENT_FACTORY( DmeStringLog, CDmeStringLog );
//-----------------------------------------------------------------------------
// explicit template instantiation
//-----------------------------------------------------------------------------
template class CDmeTypedLog<int>;
template class CDmeTypedLog<float>;
template class CDmeTypedLog<bool>;
template class CDmeTypedLog<Color>;
template class CDmeTypedLog<Vector2D>;
template class CDmeTypedLog<Vector>;
template class CDmeTypedLog<Vector4D>;
template class CDmeTypedLog<QAngle>;
template class CDmeTypedLog<Quaternion>;
template class CDmeTypedLog<VMatrix>;
template class CDmeTypedLog<CUtlString>;
//-----------------------------------------------------------------------------
// instantiate and initialize static vars
//-----------------------------------------------------------------------------
float CDmeIntLog::s_defaultThreshold = 0.0f;
float CDmeFloatLog::s_defaultThreshold = 0.0f;
float CDmeBoolLog::s_defaultThreshold = 0.0f;
float CDmeColorLog::s_defaultThreshold = 0.0f;
float CDmeVector2Log::s_defaultThreshold = 0.0f;
float CDmeVector3Log::s_defaultThreshold = 0.0f;
float CDmeVector4Log::s_defaultThreshold = 0.0f;
float CDmeQAngleLog::s_defaultThreshold = 0.0f;
float CDmeQuaternionLog::s_defaultThreshold = 0.0f;
float CDmeVMatrixLog::s_defaultThreshold = 0.0f;
float CDmeStringLog::s_defaultThreshold = 0.0f;
void CDmeLogLayer::OnConstruction()
{
m_pOwnerLog = NULL;
m_lastKey = 0;
m_times.Init( this, "times" );
m_CurveTypes.Init( this, "curvetypes" );
}
void CDmeLogLayer::OnDestruction()
{
}
CDmeLog *CDmeLogLayer::GetOwnerLog()
{
return m_pOwnerLog;
}
const CDmeLog *CDmeLogLayer::GetOwnerLog() const
{
return m_pOwnerLog;
}
DmeTime_t CDmeLogLayer::GetBeginTime() const
{
if ( m_times.Count() == 0 )
return DmeTime_t::MinTime();
return DmeTime_t( m_times[ 0 ] );
}
DmeTime_t CDmeLogLayer::GetEndTime() const
{
uint tn = m_times.Count();
if ( tn == 0 )
return DmeTime_t::MaxTime();
return DmeTime_t( m_times[ tn - 1 ] );
}
// Validates that all keys are correctly sorted in time
bool CDmeLogLayer::ValidateKeys() const
{
int nCount = m_times.Count();
for ( int i = 1; i < nCount; ++i )
{
if ( m_times[i] <= m_times[i-1] )
{
Warning( "Error in log %s! Key times are out of order [keys %d->%d: %d->%d]!\n",
GetName(), i-1, i, m_times[i-1], m_times[i] );
return false;
}
}
return true;
}
int CDmeLogLayer::FindKey( DmeTime_t time ) const
{
int tn = m_times.Count();
if ( m_lastKey >= 0 && m_lastKey < tn )
{
if ( time >= DmeTime_t( m_times[ m_lastKey ] ) )
{
// common case - playing forward
for ( ; m_lastKey < tn - 1; ++m_lastKey )
{
if ( time < DmeTime_t( m_times[ m_lastKey + 1 ] ) )
return m_lastKey;
}
// if time past the end, return the last key
return m_lastKey;
}
else
{
tn = m_lastKey;
}
}
for ( int ti = tn - 1; ti >= 0; --ti )
{
if ( time >= DmeTime_t( m_times[ ti ] ) )
{
m_lastKey = ti;
return ti;
}
}
return -1;
}
//-----------------------------------------------------------------------------
// Returns the number of keys
//-----------------------------------------------------------------------------
int CDmeLogLayer::GetKeyCount() const
{
return m_times.Count();
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : nKeyIndex -
// keyTime -
//-----------------------------------------------------------------------------
void CDmeLogLayer::SetKeyTime( int nKeyIndex, DmeTime_t keyTime )
{
m_times.Set( nKeyIndex, keyTime.GetTenthsOfMS() );
}
//-----------------------------------------------------------------------------
// Returns a specific key's value
//-----------------------------------------------------------------------------
DmeTime_t CDmeLogLayer::GetKeyTime( int nKeyIndex ) const
{
return DmeTime_t( m_times[ nKeyIndex ] );
}
//-----------------------------------------------------------------------------
// Scale + bias key times
//-----------------------------------------------------------------------------
void CDmeLogLayer::ScaleBiasKeyTimes( double flScale, DmeTime_t nBias )
{
// Don't waste time on the identity transform
if ( ( nBias == DMETIME_ZERO ) && ( fabs( flScale - 1.0 ) < 1e-5 ) )
return;
int nCount = GetKeyCount();
for ( int i = 0; i < nCount; ++i )
{
DmeTime_t t = GetKeyTime( i );
t.SetSeconds( t.GetSeconds() * flScale );
t += nBias;
SetKeyTime( i, t );
}
}
//-----------------------------------------------------------------------------
// Returns the index of a particular key
//-----------------------------------------------------------------------------
int CDmeLogLayer::FindKeyWithinTolerance( DmeTime_t nTime, DmeTime_t nTolerance )
{
int nClosest = -1;
DmeTime_t nClosestTolerance = DmeTime_t::MaxTime();
DmeTime_t nCurrTolerance;
int start = 0, end = GetKeyCount() - 1;
while ( start <= end )
{
int mid = (start + end) >> 1;
DmeTime_t nDelta = nTime - DmeTime_t( m_times[mid] );
if ( nDelta > DmeTime_t( 0 ) )
{
nCurrTolerance = nDelta;
start = mid + 1;
}
else if ( nDelta < DmeTime_t( 0 ) )
{
nCurrTolerance = -nDelta;
end = mid - 1;
}
else
{
return mid;
}
if ( nCurrTolerance < nClosestTolerance )
{
nClosest = mid;
nClosestTolerance = nCurrTolerance;
}
}
if ( nClosestTolerance > nTolerance )
return -1;
return nClosest;
}
void CDmeLogLayer::OnUsingCurveTypesChanged()
{
if ( g_pDataModel->IsUnserializing() )
return;
if ( !IsUsingCurveTypes() )
{
m_CurveTypes.RemoveAll();
}
else
{
m_CurveTypes.RemoveAll();
// Fill in an array with the default curve type for
int c = m_times.Count();
for ( int i = 0; i < c; ++i )
{
m_CurveTypes.AddToTail( GetDefaultCurveType() );
}
}
}
bool CDmeLogLayer::IsUsingCurveTypes() const
{
return GetOwnerLog() ? GetOwnerLog()->IsUsingCurveTypes() : false;
}
int CDmeLogLayer::GetDefaultCurveType() const
{
return GetOwnerLog()->GetDefaultCurveType();
}
void CDmeLogLayer::SetKeyCurveType( int nKeyIndex, int curveType )
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
return;
Assert( GetOwnerLog()->IsUsingCurveTypes() );
Assert( m_CurveTypes.IsValidIndex( nKeyIndex ) );
if ( !m_CurveTypes.IsValidIndex( nKeyIndex ) )
return;
m_CurveTypes.Set( nKeyIndex, curveType );
}
int CDmeLogLayer::GetKeyCurveType( int nKeyIndex ) const
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
return CURVE_DEFAULT;
Assert( GetOwnerLog()->IsUsingCurveTypes() );
Assert( m_CurveTypes.IsValidIndex( nKeyIndex ) );
if ( !m_CurveTypes.IsValidIndex( nKeyIndex ) )
return GetOwnerLog()->GetDefaultCurveType();
return m_CurveTypes[ nKeyIndex ];
}
//-----------------------------------------------------------------------------
// Removes all keys outside the specified time range
//-----------------------------------------------------------------------------
void CDmeLogLayer::RemoveKeysOutsideRange( DmeTime_t tStart, DmeTime_t tEnd )
{
int i;
int nKeysToRemove = 0;
int nKeyCount = m_times.Count();
for ( i = 0; i < nKeyCount; ++i, ++nKeysToRemove )
{
if ( m_times[i] >= tStart.GetTenthsOfMS() )
break;
}
if ( nKeysToRemove )
{
RemoveKey( 0, nKeysToRemove );
}
nKeyCount = m_times.Count();
for ( i = 0; i < nKeyCount; ++i )
{
if ( m_times[i] > tEnd.GetTenthsOfMS() )
break;
}
nKeysToRemove = nKeyCount - i;
if ( nKeysToRemove )
{
RemoveKey( i, nKeysToRemove );
}
}
template < class T >
class CUndoLayerAdded : public CUndoElement
{
typedef CUndoElement BaseClass;
public:
CUndoLayerAdded( const char *desc, CDmeLog *pLog ) :
BaseClass( desc ),
m_bNeedsCleanup( false ),
m_hLog( pLog )
{
Assert( pLog && pLog->GetFileId() != DMFILEID_INVALID );
}
virtual ~CUndoLayerAdded()
{
if ( m_bNeedsCleanup )
{
g_pDataModel->DestroyElement( m_hLayer );
}
}
virtual void Undo()
{
m_bNeedsCleanup = true;
m_hLayer = m_hLog->RemoveLayerFromTail()->GetHandle();
g_pDataModel->MarkHandleInvalid( m_hLayer );
}
virtual void Redo()
{
m_bNeedsCleanup = false;
g_pDataModel->MarkHandleValid( m_hLayer );
m_hLog->AddLayerToTail( GetElement< CDmeTypedLogLayer< T > >( m_hLayer ) );
}
virtual const char *GetDesc()
{
static char sz[ 512 ];
int iLayer = m_hLog->GetTopmostLayer();
if ( iLayer >= 0 )
{
CDmeLogLayer *layer = m_hLog->GetLayer( iLayer );
Q_snprintf( sz, sizeof( sz ), "addlayer: log %p lc[%d], layer %p",
m_hLog.Get(), m_hLog->GetNumLayers(), layer );
}
else
{
Q_snprintf( sz, sizeof( sz ), "addlayer: log %p lc[%d], layer NULL",
m_hLog.Get(), m_hLog->GetNumLayers() );
}
return sz;
}
private:
CDmeHandle< CDmeLog > m_hLog;
bool m_bNeedsCleanup;
CDmeCountedHandle m_hLayer;
};
template < class T >
class CUndoFlattenLayers : public CUndoElement
{
typedef CUndoElement BaseClass;
public:
CUndoFlattenLayers( const char *desc, CDmeTypedLog< T > *pLog, float threshold, int flags ) :
BaseClass( desc ),
m_bNeedsCleanup( true ),
m_hLog( pLog ),
m_nFlags( flags ),
m_flThreshold( threshold )
{
Assert( pLog && pLog->GetFileId() != DMFILEID_INVALID );
LatchCurrentLayers();
}
virtual ~CUndoFlattenLayers()
{
if ( m_bNeedsCleanup )
{
for ( int i = 0; i < m_hLayers.Count(); ++i )
{
m_hLayers[ i ] = DMELEMENT_HANDLE_INVALID;
#ifdef _DEBUG
CDmElement *pElement = g_pDataModel->GetElement( m_hLayers[ i ] );
Assert( !pElement || pElement->IsStronglyReferenced() );
#endif
}
}
}
virtual void Undo()
{
m_bNeedsCleanup = false;
for ( int i = 0; i < m_hLayers.Count(); ++i )
{
if ( i == 0 )
{
// Copy base layer in place so handles to the base layer remain valid
CDmeTypedLogLayer< T > *base = m_hLog->GetLayer( i );
base->CopyLayer( GetElement< CDmeTypedLogLayer< T > >( m_hLayers[ i ] ) );
// Release it since we didn't txfer it over
g_pDataModel->DestroyElement( m_hLayers[ i ] );
}
else
{
// This transfers ownership, so no Release needed
m_hLog->AddLayerToTail( GetElement< CDmeTypedLogLayer< T > >( m_hLayers[ i ] ) );
}
}
m_hLayers.RemoveAll();
}
virtual void Redo()
{
m_bNeedsCleanup = true;
Assert( m_hLayers.Count() == 0 );
LatchCurrentLayers();
// Flatten them again (won't create undo records since we're in undo already)
m_hLog->FlattenLayers( m_flThreshold, m_nFlags );
}
virtual const char *GetDesc()
{
static char sz[ 512 ];
Q_snprintf( sz, sizeof( sz ), "flatten log %p lc[%d]",
m_hLog.Get(), m_hLayers.Count() );
return sz;
}
private:
void LatchCurrentLayers()
{
CDisableUndoScopeGuard guard;
Assert( m_hLayers.Count() == 0 );
Assert( m_hLog->GetNumLayers() >= 1 );
// Entry 0 is the original "base" layer
for ( int i = 0; i < m_hLog->GetNumLayers(); ++i )
{
CDmeTypedLogLayer< T > *pLayer = CastElement< CDmeTypedLogLayer< T > >( CreateLayer< T >( m_hLog ) );
pLayer->CopyLayer( m_hLog->GetLayer( i ) );
m_hLayers.AddToTail( pLayer->GetHandle() );
}
}
CDmeHandle< CDmeTypedLog< T > > m_hLog;
bool m_bNeedsCleanup;
CUtlVector< CDmeCountedHandle > m_hLayers;
int m_nFlags;
float m_flThreshold;
};
//-----------------------------------------------------------------------------
// CDmeTypedLogLayer - a generic typed layer used by a log
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLogLayer< T >::OnConstruction()
{
// m_times.Init( this, "times" );
// m_CurveTypes.Init( this, "curvetypes" );
m_values.Init( this, "values" );
}
template< class T >
void CDmeTypedLogLayer< T >::SetOwnerLog( CDmeLog *owner )
{
Assert( owner );
Assert( assert_cast< CDmeTypedLog< T > * >( owner ) );
m_pOwnerLog = owner;
}
template< class T >
CDmeTypedLog< T > *CDmeTypedLogLayer< T >::GetTypedOwnerLog()
{
return assert_cast< CDmeTypedLog< T > * >( m_pOwnerLog );
}
template< class T >
const CDmeTypedLog< T > *CDmeTypedLogLayer< T >::GetTypedOwnerLog() const
{
return assert_cast< CDmeTypedLog< T > * >( m_pOwnerLog );
}
template< class T >
void CDmeTypedLogLayer< T >::OnDestruction()
{
}
template< class T >
void CDmeTypedLogLayer< T >::RemoveKeys( DmeTime_t starttime )
{
int ti = FindKey( starttime );
if ( ti < 0 )
return;
if ( starttime > DmeTime_t( m_times[ ti ] ) )
++ti;
int nKeys = m_times.Count() - ti;
if ( nKeys == 0 )
return;
m_times.RemoveMultiple( ti, nKeys );
m_values.RemoveMultiple( ti, nKeys );
if ( IsUsingCurveTypes() )
{
m_CurveTypes.RemoveMultiple( ti, nKeys );
}
if ( m_lastKey >= ti && m_lastKey < ti + nKeys )
{
m_lastKey = ( ti > 0 ) ? ti - 1 : 0;
}
}
template< class T >
void CDmeTypedLogLayer< T >::ClearKeys()
{
m_times.RemoveAll();
m_values.RemoveAll();
m_CurveTypes.RemoveAll();
m_lastKey = 0;
}
template< class T >
void CDmeTypedLogLayer< T >::RemoveKey( int nKeyIndex, int nNumKeysToRemove /*= 1*/ )
{
m_times.RemoveMultiple( nKeyIndex, nNumKeysToRemove );
m_values.RemoveMultiple( nKeyIndex, nNumKeysToRemove );
if ( IsUsingCurveTypes() )
{
m_CurveTypes.RemoveMultiple( nKeyIndex, nNumKeysToRemove );
}
}
//-----------------------------------------------------------------------------
// Sets a key, removes all keys after this time
// FIXME: This needs to account for interpolation!!!
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLogLayer< T >::SetKey( DmeTime_t time, const T& value, int curveType /*=CURVE_DEFAULT*/)
{
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
// Remove all keys after this time
RemoveKeys( time );
// Add the key and then check to see if the penultimate key is still necessary
m_times.AddToTail( time.GetTenthsOfMS() );
m_values.AddToTail( value );
if ( IsUsingCurveTypes() )
{
m_CurveTypes.AddToTail( curveType );
}
int nKeys = m_values.Count();
if ( ( nKeys < 3 ) ||
( IsUsingCurveTypes() && ( curveType != m_CurveTypes[ nKeys -1 ] || ( curveType != m_CurveTypes[ nKeys - 2 ] ) ) )
)
{
return;
}
// If adding the new means that the penultimate key's value was unneeded, then we will remove the penultimate key value
T check = GetValueSkippingKey( nKeys - 2 );
T oldPenultimateValue = m_values[ nKeys - 2 ];
if ( GetTypedOwnerLog()->ValuesDiffer( oldPenultimateValue, check ) )
{
return;
}
// Remove penultimate, it's not needed
m_times.Remove( nKeys - 2 );
m_values.Remove( nKeys - 2 );
if ( IsUsingCurveTypes() )
{
m_CurveTypes.Remove( nKeys - 2 );
}
}
//-----------------------------------------------------------------------------
// Finds a key within tolerance, or adds one
//-----------------------------------------------------------------------------
template< class T >
int CDmeTypedLogLayer< T >::FindOrAddKey( DmeTime_t nTime, DmeTime_t nTolerance, const T& value, int curveType /*=CURVE_DEFAULT*/ )
{
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
// NOTE: This math must occur in 64bits because the max delta nDelta
// can be 33 bits large. Bleah.
int nClosest = -1;
int64 nClosestTolerance = DmeTime_t::MinTime().GetTenthsOfMS();
int64 nCurrTolerance;
int start = 0, end = GetKeyCount() - 1;
while ( start <= end )
{
int mid = (start + end) >> 1;
int64 nDelta = (int64)nTime.GetTenthsOfMS() - (int64)m_times[mid];
if ( nDelta > 0 )
{
nCurrTolerance = nDelta;
start = mid + 1;
}
else if ( nDelta < 0 )
{
nCurrTolerance = -nDelta;
end = mid - 1;
}
else
{
nClosest = end = mid;
nClosestTolerance = 0;
break;
}
if ( nCurrTolerance < nClosestTolerance )
{
nClosest = mid;
nClosestTolerance = nCurrTolerance;
}
}
// At this point, end is the entry less than or equal to the entry
if ( nClosest == -1 || nTolerance.GetTenthsOfMS() < nClosestTolerance )
{
++end;
nClosest = m_times.InsertBefore( end, nTime.GetTenthsOfMS() );
m_values.InsertBefore( end, value );
if ( IsUsingCurveTypes() )
{
m_CurveTypes.InsertBefore( end, curveType );
}
}
return nClosest;
}
//-----------------------------------------------------------------------------
// This inserts a key. Unlike SetKey, this will *not* delete keys after the specified time
//-----------------------------------------------------------------------------
template < class T >
int CDmeTypedLogLayer< T >::InsertKey( DmeTime_t nTime, const T& value, int curveType /*=CURVE_DEFAULT*/ )
{
int idx = FindOrAddKey( nTime, DmeTime_t( 0 ), value );
m_times .Set( idx, nTime.GetTenthsOfMS() );
m_values.Set( idx, value );
if ( IsUsingCurveTypes() )
{
m_CurveTypes.Set( idx, curveType );
}
return idx;
}
template< class T >
int CDmeTypedLogLayer< T >::InsertKeyAtTime( DmeTime_t nTime, int curveType /*=CURVE_DEFAULT*/ )
{
T curVal = GetValue( nTime );
return InsertKey( nTime, curVal, curveType );
}
static bool CanInterpolateType( DmAttributeType_t attType )
{
switch ( attType )
{
default:
return false;
case AT_FLOAT:
case AT_VECTOR3:
case AT_QUATERNION:
break;
}
return true;
}
template< class T >
const T& CDmeTypedLogLayer< T >::GetValue( DmeTime_t time ) const
{
// Curve Interpolation only for 1-D float data right now!!!
if ( IsUsingCurveTypes() &&
CanInterpolateType( GetDataType() ) )
{
static T out;
GetValueUsingCurveInfo( time, out );
return out;
}
int tc = m_times.Count();
Assert( m_values.Count() == tc );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == tc ) );
int ti = FindKey( time );
if ( ti < 0 )
{
if ( tc > 0 )
return m_values[ 0 ];
const CDmeTypedLog< T > *pOwner = GetTypedOwnerLog();
if ( pOwner->HasDefaultValue() )
return pOwner->GetDefaultValue();
static T s_value;
CDmAttributeInfo< T >::SetDefaultValue( s_value ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return s_value;
}
// Early out if we're at the end
if ( ti >= tc - 1 )
return m_values[ ti ];
if ( !IsInterpolableType( GetDataType() ) )
return m_values[ ti ];
// Figure out the lerp factor
float t = GetFractionOfTimeBetween( time, DmeTime_t( m_times[ti] ), DmeTime_t( m_times[ti+1] ) );
static T s_value;
s_value = Interpolate( t, m_values[ti], m_values[ti+1] ); // Compute the lerp between ti and ti+1
return s_value;
}
template< class T >
void CDmeTypedLogLayer< T >::SetKey( DmeTime_t time, const CDmAttribute *pAttr, uint index, int curveType /*= CURVE_DEFAULT*/ )
{
DmAttributeType_t type = pAttr->GetType();
if ( IsValueType( type ) )
{
Assert( pAttr->GetType() == GetDataType() );
SetKey( time, pAttr->GetValue< T >(), curveType );
}
else if ( IsArrayType( type ) )
{
Assert( ArrayTypeToValueType( type ) == GetDataType() );
CDmrArrayConst<T> array( pAttr );
SetKey( time, array[ index ], curveType );
}
else
{
Assert( 0 );
}
}
template< class T >
bool CDmeTypedLogLayer< T >::SetDuplicateKeyAtTime( DmeTime_t time )
{
int nKeys = m_times.Count();
if ( nKeys == 0 || DmeTime_t( m_times[ nKeys - 1 ] ) == time )
return false;
T value = GetValue( time );
// these two calls need to be separated (and we need to make an extra copy here) because
// CUtlVector has an assert to try to safeguard against inserting an existing value
// therefore, m_values.AddToTail( m_values[ i ] ) is illegal (or at least, triggers the assert)
SetKey( time, value );
return true;
}
//-----------------------------------------------------------------------------
// Returns a specific key's value
//-----------------------------------------------------------------------------
template< class T >
const T& CDmeTypedLogLayer< T >::GetKeyValue( int nKeyIndex ) const
{
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
return m_values[ nKeyIndex ];
}
template< class T >
void CDmeTypedLogLayer< T >::GetValue( DmeTime_t time, CDmAttribute *pAttr, uint index ) const
{
DmAttributeType_t attrtype = pAttr->GetType();
if ( IsValueType( attrtype ) )
{
Assert( attrtype == GetDataType() );
pAttr->SetValue( GetValue( time ) );
}
else if ( IsArrayType( attrtype ) )
{
Assert( ArrayTypeToValueType( attrtype ) == GetDataType() );
CDmrArray<T> array( pAttr );
array.Set( index, GetValue( time ) );
}
else
{
Assert( 0 );
}
}
template< class T >
float CDmeTypedLogLayer< T >::GetComponent( DmeTime_t time, int componentIndex ) const
{
return ::GetComponent( GetValue( time ), componentIndex );
}
template< class T >
void CDmeTypedLogLayer< T >::SetKeyValue( int nKey, const T& value )
{
Assert( nKey >= 0 );
Assert( nKey < m_values.Count() );
m_values.Set( nKey, value );
}
//-----------------------------------------------------------------------------
// resampling and filtering
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLogLayer< T >::Resample( DmeFramerate_t samplerate )
{
// FIXME: Might have to revisit how to determine "curve types" for "resampled points...
Assert( !IsUsingCurveTypes() );
// make sure we resample to include _at_least_ the existing time range
DmeTime_t begin = GetBeginTime();
DmeTime_t end = GetEndTime();
int nSamples = 2 + FrameForTime( end - begin, samplerate );
CUtlVector< int > resampledTimes;
CUtlVector< T > resampledValues;
CUtlVector< int > resampledCurveTypes;
resampledValues.EnsureCapacity( nSamples );
resampledTimes.EnsureCapacity( nSamples );
DmeTime_t time( begin );
for ( int i = 0; i < nSamples; ++i )
{
resampledTimes.AddToTail( time.GetTenthsOfMS() );
resampledValues.AddToTail( GetValue( time ) );
if ( IsUsingCurveTypes() )
{
resampledCurveTypes.AddToTail( CURVE_DEFAULT );
}
time = time.TimeAtNextFrame( samplerate );
}
m_times.SwapArray( resampledTimes );
m_values.SwapArray( resampledValues );
if ( IsUsingCurveTypes() )
{
m_CurveTypes.SwapArray( resampledCurveTypes );
}
}
template< class T >
void CDmeTypedLogLayer< T >::Filter( int nSampleRadius )
{
// Doesn't mess with curvetypes!!!
const CUtlVector< T > &values = m_values.Get();
CUtlVector< T > filteredValues;
int nValues = values.Count();
filteredValues.EnsureCapacity( nValues );
for ( int i = 0; i < nValues; ++i )
{
int nSamples = min( nSampleRadius, min( i, nValues - i - 1 ) );
filteredValues.AddToTail( Average( values.Base() + i - nSamples, 2 * nSamples + 1 ) );
}
m_values.SwapArray( filteredValues );
}
template< class T >
void CDmeTypedLogLayer< T >::Filter2( DmeTime_t sampleRadius )
{
// Doesn't mess with curvetypes!!!
const CUtlVector< T > &values = m_values.Get();
CUtlVector< T > filteredValues;
int nValues = values.Count();
filteredValues.EnsureCapacity( nValues );
DmeTime_t earliest = DMETIME_ZERO;
if ( nValues > 0 )
{
earliest = DmeTime_t( m_times[ 0 ] );
}
for ( int i = 0; i < nValues; ++i )
{
T vals[ 3 ];
DmeTime_t t = GetKeyTime( i );
DmeTime_t t0 = t - sampleRadius;
DmeTime_t t1 = t + sampleRadius;
if ( t0 >= earliest )
{
vals[ 0 ] = GetValue( t0 );
}
else
{
vals[ 0 ] = m_values[ 0 ];
}
vals[ 1 ] = GetValue( t );
vals[ 2 ] = GetValue( t1 );
if ( i == 0 || i == nValues - 1 )
{
filteredValues.AddToTail( values[ i ] );
}
else
{
filteredValues.AddToTail( Average( vals, 3 ) );
}
}
m_values.SwapArray( filteredValues );
}
template< class T >
const T& CDmeTypedLogLayer< T >::GetValueSkippingKey( int nKeyToSkip ) const
{
// Curve Interpolation only for 1-D float data right now!!!
if ( IsUsingCurveTypes() && CanInterpolateType( GetDataType() ) )
{
static T out;
GetValueUsingCurveInfoSkippingKey( nKeyToSkip, out );
return out;
}
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
DmeTime_t time = GetKeyTime( nKeyToSkip );
int prevKey = nKeyToSkip - 1;
int nextKey = nKeyToSkip + 1;
DmeTime_t prevTime;
T prevValue;
int prevCurveType;
DmeTime_t nextTime;
T nextValue;
int nextCurveType;
GetBoundedSample( prevKey, prevTime, prevValue, prevCurveType );
GetBoundedSample( nextKey, nextTime, nextValue, nextCurveType );
// Figure out the lerp factor
float t = GetFractionOfTimeBetween( time, prevTime, nextTime );
static T s_value;
s_value = Interpolate( t, prevValue, nextValue );
return s_value;
}
template< class T >
void CDmeTypedLog<T>::RemoveRedundantKeys( float threshold )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return;
GetLayer( bestLayer )->RemoveRedundantKeys( threshold );
}
template< class T >
void CDmeTypedLogLayer<T>::RemoveRedundantKeys( float threshold )
{
Assert( GetTypedOwnerLog() );
if ( !GetTypedOwnerLog() )
return;
float saveThreshold;
{
CDisableUndoScopeGuard sg;
saveThreshold = GetTypedOwnerLog()->GetValueThreshold();
GetTypedOwnerLog()->SetValueThreshold( threshold );
}
RemoveRedundantKeys();
{
CDisableUndoScopeGuard sg;
GetTypedOwnerLog()->SetValueThreshold( saveThreshold );
}
}
// Implementation of Douglas-Peucker curve simplification routine (hacked to only care about error against original curve (sort of 1D)
template< class T >
void CDmeTypedLogLayer< T >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< T > *output )
{
if ( endPoint <= startPoint + 1 )
{
return;
}
int maxPoint = startPoint;
float maxDistanceSqr = 0.0f;
for ( int i = startPoint + 1 ; i < endPoint; ++i )
{
DmeTime_t keyTime = GetKeyTime( i );
T check = GetKeyValue( i );
T check2 = output->GetValue( keyTime );
T dist = Subtract( check, check2 );
float distSqr = LengthOf( dist ) * LengthOf( dist );
if ( distSqr < maxDistanceSqr )
continue;
maxPoint = i;
maxDistanceSqr = distSqr;
}
if ( maxDistanceSqr > thresholdSqr )
{
output->InsertKey( GetKeyTime( maxPoint ), GetKeyValue( maxPoint ) );
CurveSimplify_R( thresholdSqr, startPoint, maxPoint, output );
CurveSimplify_R( thresholdSqr, maxPoint, endPoint, output );
}
}
template<> void CDmeTypedLogLayer< bool >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< bool > *output ) {};
template<> void CDmeTypedLogLayer< int >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< int > *output ) {};
template<> void CDmeTypedLogLayer< Color >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< Color > *output ) {};
template<> void CDmeTypedLogLayer< Quaternion >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< Quaternion > *output ) {};
template<> void CDmeTypedLogLayer< VMatrix >::CurveSimplify_R( float thresholdSqr, int startPoint, int endPoint, CDmeTypedLogLayer< VMatrix > *output ) {};
// We can't just walk the keys linearly since it'll accumulate too much error and give us a bad curve after simplification. We do a recursive subdivide which has a worst case of O(n^2) but
// probably is better than that in most cases.
template< class T >
void CDmeTypedLogLayer<T>::RemoveRedundantKeys()
{
CDmeTypedLog< T > *pOwner = GetTypedOwnerLog();
if ( !pOwner )
return;
int nKeys = GetKeyCount();
if ( nKeys <= 2 )
return;
float thresh = pOwner->GetValueThreshold();
if ( thresh < 0.0f )
return;
CDmeTypedLogLayer< T > *save = 0;
{
CDisableUndoScopeGuard guard;
save = CastElement< CDmeTypedLogLayer< T > >( CreateLayer< T >( pOwner ) );
Assert( save );
save->m_times.EnsureCapacity( nKeys );
save->m_values.EnsureCapacity( nKeys );
// Insert start and end points as first "guess" at simplified curve
// Skip preceeding and ending keys that have the same value
int nFirstKey, nLastKey;
for ( nFirstKey = 1; nFirstKey < nKeys; ++nFirstKey )
{
// FIXME: Should we use a tolerance check here?
if ( GetKeyValue( nFirstKey ) != GetKeyValue( nFirstKey - 1 ) )
break;
}
--nFirstKey;
for ( nLastKey = nKeys; --nLastKey >= 1; )
{
// FIXME: Should we use a tolerance check here?
if ( GetKeyValue( nLastKey ) != GetKeyValue( nLastKey - 1 ) )
break;
}
if ( nLastKey <= nFirstKey )
{
save->InsertKey( GetKeyTime( 0 ), GetKeyValue( 0 ) );
}
else
{
if ( GetDataType() == AT_FLOAT )
{
save->InsertKey( GetKeyTime( nFirstKey ), GetKeyValue( nFirstKey ) );
save->InsertKey( GetKeyTime( nLastKey ), GetKeyValue( nLastKey ) );
// Recursively finds the point with the largest error from the "simplified curve" and subdivides the problem on both sides until the largest delta from the simplified
// curve is less than the tolerance (squared)
CurveSimplify_R( thresh * thresh, nFirstKey, nLastKey, save );
}
else
{
save->InsertKey( GetKeyTime( nFirstKey ), GetKeyValue( nFirstKey ) );
// copy over keys that differ from their prior or next keys - this keeps the first and last key of a run of same-valued keys
for ( int i = nFirstKey + 1; i < nLastKey; ++i )
{
// prev is from the saved log to allow deleting runs of same-valued keys
const T &prev = save->GetKeyValue( save->GetKeyCount() - 1 );
const T &curr = GetKeyValue( i );
const T &next = GetKeyValue( i + 1 );
if ( pOwner->ValuesDiffer( prev, curr ) || pOwner->ValuesDiffer( curr, next ) )
{
save->InsertKey( GetKeyTime( i ), curr );
}
}
save->InsertKey( GetKeyTime( nLastKey ), GetKeyValue( nLastKey ) );
}
}
}
// This operation is undoable
CopyLayer( save );
{
CDisableUndoScopeGuard guard;
g_pDataModel->DestroyElement( save->GetHandle() );
}
}
// curve info helpers
template< class T >
const CDmeTypedCurveInfo< T > *CDmeTypedLogLayer<T>::GetTypedCurveInfo() const
{
Assert( GetTypedOwnerLog() );
return GetTypedOwnerLog()->GetTypedCurveInfo();
}
template< class T >
CDmeTypedCurveInfo< T > *CDmeTypedLogLayer<T>::GetTypedCurveInfo()
{
Assert( GetTypedOwnerLog() );
return GetTypedOwnerLog()->GetTypedCurveInfo();
}
template< class T >
bool CDmeTypedLogLayer< T >::IsUsingEdgeInfo() const
{
return GetTypedOwnerLog()->IsUsingEdgeInfo();
}
template< class T >
const T& CDmeTypedLogLayer< T >::GetDefaultEdgeZeroValue() const
{
return GetTypedOwnerLog()->GetDefaultEdgeZeroValue();
}
template< class T >
DmeTime_t CDmeTypedLogLayer< T >::GetRightEdgeTime() const
{
return GetTypedOwnerLog()->GetRightEdgeTime();
}
template< class T >
void CDmeTypedLogLayer< T >::GetEdgeInfo( int edge, bool& active, T& val, int& curveType ) const
{
GetTypedOwnerLog()->GetEdgeInfo( edge, active, val, curveType );
}
template< class T >
int CDmeTypedLogLayer< T >::GetEdgeCurveType( int edge ) const
{
return GetTypedOwnerLog()->GetEdgeCurveType( edge );
}
template< class T >
void CDmeTypedLogLayer< T >::GetZeroValue( int side, T& val ) const
{
return GetTypedOwnerLog()->GetZeroValue( side, val );
}
template< class T >
void CDmeTypedLogLayer< T >::GetBoundedSample( int keyindex, DmeTime_t& time, T& val, int& curveType ) const
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
{
time = DmeTime_t( 0 );
CDmAttributeInfo< T >::SetDefaultValue( val );
curveType = CURVE_DEFAULT;
return;
}
if ( keyindex < 0 )
{
time = DmeTime_t( 0 );
GetZeroValue( 0, val );
curveType = GetEdgeCurveType( 0 );
return;
}
else if ( keyindex >= m_times.Count() )
{
time = GetTypedOwnerLog()->GetRightEdgeTime();
if ( time == DmeTime_t( 0 ) && m_times.Count() > 0 )
{
// Push it one msec past the final end time
time = DmeTime_t( m_times[ m_times.Count() - 1 ] ) + DmeTime_t( 1 );
}
GetTypedOwnerLog()->GetZeroValue( 1, val );
curveType = GetTypedOwnerLog()->GetEdgeCurveType( 1 );
return;
}
time = DmeTime_t( m_times[ keyindex ] );
val = m_values[ keyindex ];
if ( IsUsingCurveTypes() )
{
curveType = m_CurveTypes[ keyindex ];
if ( curveType == CURVE_DEFAULT )
{
curveType = GetTypedOwnerLog()->GetDefaultCurveType();
}
}
}
template<>
void CDmeTypedLogLayer< float >::GetValueUsingCurveInfoSkippingKey( int nKeyToSkip, float& out ) const
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
{
out = 0.0f;
return;
}
Assert( CanInterpolateType( GetDataType() ) );
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
Assert( IsInterpolableType( GetDataType() ) );
float v[ 4 ];
DmeTime_t t[ 4 ];
int curvetypes[ 4 ];
int ti = nKeyToSkip;
DmeTime_t time = GetKeyTime( nKeyToSkip );
if ( !IsUsingCurveTypes() )
{
if ( ti < 0 )
{
CDmAttributeInfo< float >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return;
}
else if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti + 1 ];
return;
}
}
DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime();
if ( finalTime != DmeTime_t( 0 ) )
{
if ( time > finalTime )
{
GetZeroValue( 1, out );
return;
}
}
else
{
if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti + 1 ];
return;
}
}
GetBoundedSample( ti - 2, t[ 0 ], v[ 0 ], curvetypes[ 0 ] );
GetBoundedSample( ti - 1, t[ 1 ], v[ 1 ], curvetypes[ 1 ] );
GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] );
GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] );
float frac = 0.0f;
if ( t[2] > t[ 1 ] )
{
frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() );
}
// Compute the lerp between ti and ti+1
out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() );
}
template<>
void CDmeTypedLogLayer< Vector >::GetValueUsingCurveInfoSkippingKey( int nKeyToSkip, Vector& out ) const
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
{
CDmAttributeInfo< Vector >::SetDefaultValue( out );
return;
}
Assert( CanInterpolateType( GetDataType() ) );
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
Assert( IsInterpolableType( GetDataType() ) );
Vector v[ 4 ];
DmeTime_t t[ 4 ];
int curvetypes[ 4 ];
int ti = nKeyToSkip;
DmeTime_t time = GetKeyTime( nKeyToSkip );
if ( !IsUsingCurveTypes() )
{
if ( ti < 0 )
{
CDmAttributeInfo< Vector >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return;
}
else if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti + 1 ];
return;
}
}
DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime();
if ( finalTime != DmeTime_t( 0 ) )
{
if ( time > finalTime )
{
CDmAttributeInfo< Vector >::SetDefaultValue( out );
return;
}
}
else
{
if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti + 1 ];
return;
}
}
GetBoundedSample( ti - 2, t[ 0 ], v[ 0 ], curvetypes[ 0 ] );
GetBoundedSample( ti - 1, t[ 1 ], v[ 1 ], curvetypes[ 1 ] );
GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] );
GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] );
float frac = 0.0f;
if ( t[2] > t[ 1 ] )
{
frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() );
}
// Compute the lerp between ti and ti+1
out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() );
}
template<>
void CDmeTypedLogLayer< Quaternion >::GetValueUsingCurveInfoSkippingKey( int nKeyToSkip, Quaternion& out ) const
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
{
CDmAttributeInfo< Quaternion >::SetDefaultValue( out );
return;
}
Assert( CanInterpolateType( GetDataType() ) );
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
Assert( IsInterpolableType( GetDataType() ) );
Quaternion v[ 4 ];
DmeTime_t t[ 4 ];
int curvetypes[ 4 ];
int ti = nKeyToSkip;
DmeTime_t time = GetKeyTime( nKeyToSkip );
if ( !IsUsingCurveTypes() )
{
if ( ti < 0 )
{
CDmAttributeInfo< Quaternion >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return;
}
else if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti + 1 ];
return;
}
}
DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime();
if ( finalTime != DmeTime_t( 0 ) )
{
if ( time > finalTime )
{
CDmAttributeInfo< Quaternion >::SetDefaultValue( out );
return;
}
}
else
{
if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti + 1 ];
return;
}
}
GetBoundedSample( ti - 2, t[ 0 ], v[ 0 ], curvetypes[ 0 ] );
GetBoundedSample( ti - 1, t[ 1 ], v[ 1 ], curvetypes[ 1 ] );
GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] );
GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] );
float frac = 0.0f;
if ( t[2] > t[ 1 ] )
{
frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() );
}
// Compute the lerp between ti and ti+1
out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() );
}
template<>
void CDmeTypedLogLayer< float >::GetValueUsingCurveInfo( DmeTime_t time, float& out ) const
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
{
out = 0.0f;
return;
}
Assert( CanInterpolateType( GetDataType() ) );
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
Assert( IsInterpolableType( GetDataType() ) );
float v[ 4 ];
DmeTime_t t[ 4 ];
int curvetypes[ 4 ];
int ti = FindKey( time );
if ( !IsUsingCurveTypes() )
{
if ( ti < 0 )
{
CDmAttributeInfo< float >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return;
}
else if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti ];
return;
}
}
DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime();
if ( finalTime != DmeTime_t( 0 ) )
{
if ( time > finalTime )
{
GetZeroValue( 1, out );
return;
}
}
else
{
if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti ];
return;
}
}
GetBoundedSample( ti - 1, t[ 0 ], v[ 0 ], curvetypes[ 0 ] );
GetBoundedSample( ti + 0, t[ 1 ], v[ 1 ], curvetypes[ 1 ] );
GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] );
GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] );
float frac = 0.0f;
if ( t[2] > t[ 1 ] )
{
frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() );
}
// Compute the lerp between ti and ti+1
out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() );
}
template<>
void CDmeTypedLogLayer< Vector >::GetValueUsingCurveInfo( DmeTime_t time, Vector& out ) const
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
{
CDmAttributeInfo< Vector >::SetDefaultValue( out );
return;
}
Assert( CanInterpolateType( GetDataType() ) );
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
Assert( IsInterpolableType( GetDataType() ) );
Vector v[ 4 ];
DmeTime_t t[ 4 ];
int curvetypes[ 4 ];
int ti = FindKey( time );
if ( !IsUsingCurveTypes() )
{
if ( ti < 0 )
{
CDmAttributeInfo< Vector >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return;
}
else if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti ];
return;
}
}
DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime();
if ( finalTime != DmeTime_t( 0 ) )
{
if ( time > finalTime )
{
CDmAttributeInfo< Vector >::SetDefaultValue( out );
return;
}
}
else
{
if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti ];
return;
}
}
GetBoundedSample( ti - 1, t[ 0 ], v[ 0 ], curvetypes[ 0 ] );
GetBoundedSample( ti + 0, t[ 1 ], v[ 1 ], curvetypes[ 1 ] );
GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] );
GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] );
float frac = 0.0f;
if ( t[2] > t[ 1 ] )
{
frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() );
}
// Compute the lerp between ti and ti+1
out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() );
}
template<>
void CDmeTypedLogLayer< Quaternion >::GetValueUsingCurveInfo( DmeTime_t time, Quaternion& out ) const
{
Assert( GetOwnerLog() );
if ( !GetOwnerLog() )
{
CDmAttributeInfo< Quaternion >::SetDefaultValue( out );
return;
}
Assert( CanInterpolateType( GetDataType() ) );
Assert( m_values.Count() == m_times.Count() );
Assert( !IsUsingCurveTypes() || ( m_CurveTypes.Count() == m_times.Count() ) );
Assert( IsInterpolableType( GetDataType() ) );
Quaternion v[ 4 ];
DmeTime_t t[ 4 ];
int curvetypes[ 4 ];
int ti = FindKey( time );
if ( !IsUsingCurveTypes() )
{
if ( ti < 0 )
{
CDmAttributeInfo< Quaternion >::SetDefaultValue( out ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return;
}
else if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti ];
return;
}
}
DmeTime_t finalTime = GetTypedOwnerLog()->GetRightEdgeTime();
if ( finalTime != DmeTime_t( 0 ) )
{
if ( time > finalTime )
{
CDmAttributeInfo< Quaternion >::SetDefaultValue( out );
return;
}
}
else
{
if ( ti >= m_times.Count() - 1 )
{
out = m_values[ ti ];
return;
}
}
GetBoundedSample( ti - 1, t[ 0 ], v[ 0 ], curvetypes[ 0 ] );
GetBoundedSample( ti + 0, t[ 1 ], v[ 1 ], curvetypes[ 1 ] );
GetBoundedSample( ti + 1, t[ 2 ], v[ 2 ], curvetypes[ 2 ] );
GetBoundedSample( ti + 2, t[ 3 ], v[ 3 ], curvetypes[ 3 ] );
float frac = 0.0f;
if ( t[2] > t[ 1 ] )
{
frac = (time.GetSeconds() - t[1].GetSeconds()) / (float) ( t[2].GetSeconds() - t[ 1 ].GetSeconds() );
}
// Compute the lerp between ti and ti+1
out = Curve_Interpolate( frac, t, v, curvetypes, GetOwnerLog()->GetMinValue(), GetOwnerLog()->GetMaxValue() );
}
template< class T >
void CDmeTypedLogLayer< T >::CopyLayer( const CDmeLogLayer *src )
{
const CDmeTypedLogLayer< T > *pSrc = static_cast< const CDmeTypedLogLayer< T > * >( src );
m_times = pSrc->m_times;
m_lastKey = pSrc->m_lastKey;
m_values = pSrc->m_values;
m_CurveTypes = pSrc->m_CurveTypes;
}
template< class T >
void CDmeTypedLogLayer< T >::InsertKeyFromLayer( DmeTime_t keyTime, const CDmeLogLayer *src, DmeTime_t srcKeyTime )
{
const CDmeTypedLogLayer< T > *pSrc = static_cast< const CDmeTypedLogLayer< T > * >( src );
Assert( pSrc );
// NOTE: This copy is necessary if src == this
T value = pSrc->GetValue( srcKeyTime );
InsertKey( keyTime, value );
}
template< class T >
void CDmeTypedLogLayer< T >::ExplodeLayer( const CDmeLogLayer *src, DmeTime_t startTime, DmeTime_t endTime, bool bRebaseTimestamps, DmeTime_t tResampleInterval )
{
const CDmeTypedLogLayer< T > *pSrc = static_cast< const CDmeTypedLogLayer< T > * >( src );
Assert( pSrc );
DmeTime_t tTimeOffset = DMETIME_ZERO;
if ( bRebaseTimestamps )
{
tTimeOffset = -startTime;
}
m_times.RemoveAll();
m_values.RemoveAll();
m_CurveTypes.RemoveAll();
bool usecurvetypes = pSrc->IsUsingCurveTypes();
// Now copy the data for the later
for ( DmeTime_t t = startTime ; t + tResampleInterval < endTime; t += tResampleInterval )
{
DmeTime_t keyTime = DmeTime_t( t );
if ( keyTime > endTime )
{
keyTime = endTime;
}
T val = pSrc->GetValue( keyTime );
keyTime += tTimeOffset;
InsertKey( keyTime, val, usecurvetypes ? GetDefaultCurveType() : CURVE_DEFAULT );
}
m_lastKey = m_times.Count() - 1;
}
template< class T >
void CDmeTypedLogLayer< T >::CopyPartialLayer( const CDmeLogLayer *src, DmeTime_t startTime, DmeTime_t endTime, bool bRebaseTimestamps )
{
const CDmeTypedLogLayer< T > *pSrc = static_cast< const CDmeTypedLogLayer< T > * >( src );
Assert( pSrc );
int nTimeOffset = 0;
if ( bRebaseTimestamps )
{
nTimeOffset = -startTime.GetTenthsOfMS();
}
m_times.RemoveAll();
m_values.RemoveAll();
m_CurveTypes.RemoveAll();
bool usecurvetypes = pSrc->IsUsingCurveTypes();
// Now copy the data for the later
int c = pSrc->m_times.Count();
for ( int i = 0; i < c; ++i )
{
DmeTime_t keyTime = DmeTime_t( pSrc->m_times[ i ] );
if ( keyTime < startTime || keyTime > endTime )
continue;
m_times.AddToTail( pSrc->m_times[ i ] + nTimeOffset );
m_values.AddToTail( pSrc->m_values[ i ] );
if ( usecurvetypes )
{
m_CurveTypes.AddToTail( pSrc->m_CurveTypes[ i ] );
}
}
m_lastKey = m_times.Count() - 1;
}
//-----------------------------------------------------------------------------
// Creates a log of a specific type
//-----------------------------------------------------------------------------
template< class T >
CDmeLogLayer *CreateLayer< T >( CDmeTypedLog< T > *pOwnerLog )
{
DmFileId_t fileid = pOwnerLog ? pOwnerLog->GetFileId() : DMFILEID_INVALID;
CDmeLogLayer *layer = NULL;
switch ( CDmAttributeInfo<T>::AttributeType() )
{
case AT_INT:
case AT_INT_ARRAY:
layer = CreateElement< CDmeIntLogLayer >( "int log", fileid );
break;
case AT_FLOAT:
case AT_FLOAT_ARRAY:
layer = CreateElement< CDmeFloatLogLayer >( "float log", fileid );
break;
case AT_BOOL:
case AT_BOOL_ARRAY:
layer = CreateElement< CDmeBoolLogLayer >( "bool log", fileid );
break;
case AT_COLOR:
case AT_COLOR_ARRAY:
layer = CreateElement< CDmeColorLogLayer >( "color log", fileid );
break;
case AT_VECTOR2:
case AT_VECTOR2_ARRAY:
layer = CreateElement< CDmeVector2LogLayer >( "vector2 log", fileid );
break;
case AT_VECTOR3:
case AT_VECTOR3_ARRAY:
layer = CreateElement< CDmeVector3LogLayer >( "vector3 log", fileid );
break;
case AT_VECTOR4:
case AT_VECTOR4_ARRAY:
layer = CreateElement< CDmeVector4LogLayer >( "vector4 log", fileid );
break;
case AT_QANGLE:
case AT_QANGLE_ARRAY:
layer = CreateElement< CDmeQAngleLogLayer >( "qangle log", fileid );
break;
case AT_QUATERNION:
case AT_QUATERNION_ARRAY:
layer = CreateElement< CDmeQuaternionLogLayer >( "quaternion log", fileid );
break;
case AT_VMATRIX:
case AT_VMATRIX_ARRAY:
layer = CreateElement< CDmeVMatrixLogLayer >( "vmatrix log", fileid );
break;
case AT_STRING:
case AT_STRING_ARRAY:
layer = CreateElement< CDmeStringLogLayer >( "string log", fileid );
break;
}
if ( layer )
{
layer->SetOwnerLog( pOwnerLog );
}
return layer;
}
//-----------------------------------------------------------------------------
//
// CDmeCurveInfo - abstract base class
//
//-----------------------------------------------------------------------------
void CDmeCurveInfo::OnConstruction()
{
m_DefaultCurveType.Init( this, "defaultCurveType" );
m_MinValue.InitAndSet( this, "minvalue", 0.0f );
m_MaxValue.InitAndSet( this, "maxvalue", 1.0f );
}
void CDmeCurveInfo::OnDestruction()
{
}
// Global override for all keys unless overriden by specific key
void CDmeCurveInfo::SetDefaultCurveType( int curveType )
{
m_DefaultCurveType = curveType;
}
int CDmeCurveInfo::GetDefaultCurveType() const
{
return m_DefaultCurveType.Get();
}
void CDmeCurveInfo::SetMinValue( float val )
{
m_MinValue = val;
}
float CDmeCurveInfo::GetMinValue() const
{
return m_MinValue;
}
void CDmeCurveInfo::SetMaxValue( float val )
{
m_MaxValue = val;
}
float CDmeCurveInfo::GetMaxValue() const
{
return m_MaxValue;
}
//-----------------------------------------------------------------------------
//
// CDmeTypedCurveInfo - implementation class for all logs
//
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedCurveInfo< T >::OnConstruction()
{
m_bUseEdgeInfo.Init( this, "useEdgeInfo" );
m_DefaultEdgeValue.Init( this, "defaultEdgeZeroValue" );
m_RightEdgeTime.Init( this, "rightEdgeTime" );
for ( int i = 0; i < 2; ++i )
{
char edgename[ 32 ];
Q_snprintf( edgename, sizeof( edgename ), "%s", i == 0 ? "left" : "right" );
char name[ 32 ];
Q_snprintf( name, sizeof( name ), "%sEdgeActive", edgename );
m_bEdgeActive[ i ].Init( this, name );
Q_snprintf( name, sizeof( name ), "%sEdgeValue", edgename );
m_EdgeValue[ i ].Init( this, name );
Q_snprintf( name, sizeof( name ), "%sEdgeCurveType", edgename );
m_EdgeCurveType[ i ].Init( this, name );
}
}
template< class T >
void CDmeTypedCurveInfo< T >::OnDestruction()
{
}
template< class T >
void CDmeTypedCurveInfo< T >::SetUseEdgeInfo( bool state )
{
m_bUseEdgeInfo = state;
}
template< class T >
bool CDmeTypedCurveInfo< T >::IsUsingEdgeInfo() const
{
return m_bUseEdgeInfo;
}
template< class T >
void CDmeTypedCurveInfo< T >::SetEdgeInfo( int edge, bool active, const T& val, int curveType )
{
SetUseEdgeInfo( true );
Assert( edge == 0 || edge == 1 );
m_bEdgeActive[ edge ] = active;
m_EdgeValue[ edge ] = val;
m_EdgeCurveType[ edge ] = curveType;
}
template< class T >
void CDmeTypedCurveInfo< T >::SetDefaultEdgeZeroValue( const T& val )
{
m_DefaultEdgeValue = val;
}
template< class T >
const T& CDmeTypedCurveInfo< T >::GetDefaultEdgeZeroValue() const
{
return m_DefaultEdgeValue;
}
template< class T >
void CDmeTypedCurveInfo< T >::SetRightEdgeTime( DmeTime_t time )
{
m_RightEdgeTime = time.GetTenthsOfMS();
}
template< class T >
DmeTime_t CDmeTypedCurveInfo< T >::GetRightEdgeTime() const
{
return DmeTime_t( m_RightEdgeTime );
}
template< class T >
void CDmeTypedCurveInfo< T >::GetEdgeInfo( int edge, bool& active, T& val, int& curveType ) const
{
Assert( IsUsingEdgeInfo() );
Assert( edge == 0 || edge == 1 );
active = m_bEdgeActive[ edge ];
val = m_EdgeValue[ edge ];
curveType = m_EdgeCurveType[ edge ];
}
template< class T >
int CDmeTypedCurveInfo< T >::GetEdgeCurveType( int edge ) const
{
Assert( edge == 0 || edge == 1 );
if ( !m_bEdgeActive[ edge ] )
{
return m_DefaultCurveType;
}
if ( m_EdgeCurveType[ edge ] == CURVE_DEFAULT )
{
return m_DefaultCurveType;
}
return m_EdgeCurveType[ edge ];
}
template<>
void CDmeTypedCurveInfo<float>::GetZeroValue( int side, float& val ) const
{
if ( !m_bUseEdgeInfo )
{
val = 0.0f;
return;
}
if ( m_bEdgeActive[ side ] )
{
val = m_EdgeValue[ side ];
return;
}
val = m_DefaultEdgeValue;
}
template<>
bool CDmeTypedCurveInfo<float>::IsEdgeActive( int edge ) const
{
return m_bEdgeActive[ edge ];
}
template<>
void CDmeTypedCurveInfo<float>::GetEdgeValue( int edge, float& value ) const
{
value = m_EdgeValue[ edge ];
}
template<>
void CDmeTypedCurveInfo<Vector>::GetZeroValue( int side, Vector& val ) const
{
if ( !m_bUseEdgeInfo )
{
val = vec3_origin;
return;
}
if ( m_bEdgeActive[ side ] )
{
val = m_EdgeValue[ side ];
return;
}
val = m_DefaultEdgeValue;
}
template<>
void CDmeTypedCurveInfo<Quaternion>::GetZeroValue( int side, Quaternion& val ) const
{
if ( !m_bUseEdgeInfo )
{
val.Init();
return;
}
if ( m_bEdgeActive[ side ] )
{
val = m_EdgeValue[ side ];
return;
}
val = m_DefaultEdgeValue;
}
//-----------------------------------------------------------------------------
//
// CDmeLog - abstract base class
//
//-----------------------------------------------------------------------------
void CDmeLog::OnConstruction()
{
m_Layers.Init( this, "layers", FATTRIB_MUSTCOPY | FATTRIB_HAS_ARRAY_CALLBACK );
m_CurveInfo.Init( this, "curveinfo", FATTRIB_MUSTCOPY | FATTRIB_HAS_CALLBACK );
}
void CDmeLog::OnDestruction()
{
}
int CDmeLog::GetTopmostLayer() const
{
return m_Layers.Count() - 1;
}
int CDmeLog::GetNumLayers() const
{
return m_Layers.Count();
}
CDmeLogLayer *CDmeLog::GetLayer( int index )
{
return m_Layers[ index ];
}
const CDmeLogLayer *CDmeLog::GetLayer( int index ) const
{
return m_Layers[ index ];
}
bool CDmeLog::IsEmpty() const
{
int c = m_Layers.Count();
for ( int i = 0; i < c; ++i )
{
CDmeLogLayer* layer = m_Layers[ i ];
if ( layer->GetKeyCount() > 0 )
return false;
}
return true;
}
void CDmeLog::FindLayersForTime( DmeTime_t time, CUtlVector< int >& list ) const
{
list.RemoveAll();
int c = m_Layers.Count();
// The base layer is always available!!!
if ( c > 0 )
{
list.AddToTail( 0 );
}
for ( int i = 1; i < c; ++i )
{
CDmeLogLayer* layer = m_Layers[ i ];
DmeTime_t layerStart = layer->GetBeginTime();
if ( layerStart == DmeTime_t::MinTime() )
continue;
DmeTime_t layerEnd = layer->GetEndTime();
if ( layerEnd == DmeTime_t::MaxTime() )
continue;
if ( time >= layerStart && time <= layerEnd )
{
list.AddToTail( i );
}
}
}
int CDmeLog::FindLayerForTimeSkippingTopmost( DmeTime_t time ) const
{
int c = m_Layers.Count() - 1; // This makes it never consider the topmost layer!!!
for ( int i = c - 1; i >= 0; --i )
{
CDmeLogLayer* layer = m_Layers[ i ];
DmeTime_t layerStart = layer->GetBeginTime();
if ( layerStart == DmeTime_t::MinTime() )
continue;
DmeTime_t layerEnd = layer->GetEndTime();
if ( layerEnd == DmeTime_t::MaxTime() )
continue;
if ( time >= layerStart && time <= layerEnd )
return i;
}
return ( c > 0 ) ? 0 : -1;
}
int CDmeLog::FindLayerForTime( DmeTime_t time ) const
{
int c = m_Layers.Count();
for ( int i = c - 1; i >= 0; --i )
{
CDmeLogLayer* layer = m_Layers[ i ];
DmeTime_t layerStart = layer->GetBeginTime();
if ( layerStart == DmeTime_t::MinTime() )
continue;
DmeTime_t layerEnd = layer->GetEndTime();
if ( layerEnd == DmeTime_t::MaxTime() )
continue;
if ( time >= layerStart && time <= layerEnd )
return i;
}
return ( c > 0 ) ? 0 : -1;
}
DmeTime_t CDmeLog::GetBeginTime() const
{
int c = m_Layers.Count();
if ( c == 0 )
return DmeTime_t::MinTime();
DmeTime_t bestMin = DmeTime_t::MinTime();
for ( int i = 0; i < c; ++i )
{
CDmeLogLayer* layer = m_Layers[ i ];
DmeTime_t layerStart = layer->GetBeginTime();
if ( layerStart == DmeTime_t::MinTime() )
continue;
if ( bestMin == DmeTime_t::MinTime() )
{
bestMin = layerStart;
}
else if ( layerStart < bestMin )
{
bestMin = layerStart;
}
}
return bestMin;
}
DmeTime_t CDmeLog::GetEndTime() const
{
int c = m_Layers.Count();
if ( c == 0 )
return DmeTime_t::MaxTime();
DmeTime_t bestMax = DmeTime_t::MaxTime();
for ( int i = 0; i < c; ++i )
{
CDmeLogLayer *layer = m_Layers[ i ];
DmeTime_t layerEnd = layer->GetEndTime();
if ( layerEnd == DmeTime_t::MaxTime() )
continue;
if ( bestMax == DmeTime_t::MaxTime() )
{
bestMax = layerEnd;
}
else if ( layerEnd > bestMax )
{
bestMax = layerEnd;
}
}
return bestMax;
}
//-----------------------------------------------------------------------------
// Returns the number of keys
//-----------------------------------------------------------------------------
int CDmeLog::GetKeyCount() const
{
int count = 0;
int c = m_Layers.Count();
for ( int i = 0; i < c; ++i )
{
CDmeLogLayer* layer = m_Layers[ i ];
int timecount = layer->GetKeyCount();
count += timecount;
}
return count;
}
//-----------------------------------------------------------------------------
// Scale + bias key times
//-----------------------------------------------------------------------------
void CDmeLog::ScaleBiasKeyTimes( double flScale, DmeTime_t nBias )
{
// Don't waste time on the identity transform
if ( ( nBias == DMETIME_ZERO ) && ( fabs( flScale - 1.0 ) < 1e-5 ) )
return;
int nCount = GetNumLayers();
for ( int i = 0; i < nCount; ++i )
{
CDmeLogLayer *pLayer = GetLayer( i );
pLayer->ScaleBiasKeyTimes( flScale, nBias );
}
}
//-----------------------------------------------------------------------------
// Resolve - keeps non-attribute data in sync with attribute data
//-----------------------------------------------------------------------------
void CDmeLog::Resolve()
{
int c = m_Layers.Count();
for ( int i = 0; i < c; ++i )
{
CDmeLogLayer* layer = m_Layers[ i ];
layer->SetOwnerLog( this );
}
}
void CDmeLog::OnAttributeChanged( CDmAttribute *pAttribute )
{
if ( pAttribute == m_CurveInfo.GetAttribute() )
{
OnUsingCurveTypesChanged();
}
}
void CDmeLog::OnUsingCurveTypesChanged()
{
int c = m_Layers.Count();
for ( int i = 0; i < c; ++i )
{
GetLayer( i )->OnUsingCurveTypesChanged();
}
}
// curve info helpers
bool CDmeLog::IsUsingCurveTypes() const
{
return m_CurveInfo.GetElement() != NULL;
}
const CDmeCurveInfo *CDmeLog::GetCurveInfo() const
{
return m_CurveInfo.GetElement();
}
CDmeCurveInfo *CDmeLog::GetCurveInfo()
{
return m_CurveInfo.GetElement();
}
// accessors for CurveInfo data
int CDmeLog::GetDefaultCurveType() const
{
Assert( IsUsingCurveTypes() );
return m_CurveInfo->GetDefaultCurveType();
}
// min/max accessors
float CDmeLog::GetMinValue() const
{
Assert( IsUsingCurveTypes() );
return m_CurveInfo->GetMinValue();
}
void CDmeLog::SetMinValue( float val )
{
Assert( IsUsingCurveTypes() );
m_CurveInfo->SetMinValue( val );
}
float CDmeLog::GetMaxValue() const
{
Assert( IsUsingCurveTypes() );
return m_CurveInfo->GetMaxValue();
}
void CDmeLog::SetMaxValue( float val )
{
Assert( IsUsingCurveTypes() );
m_CurveInfo->SetMaxValue( val );
}
void CDmeLog::SetKeyCurveType( int nKeyIndex, int curveType )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return;
GetLayer( bestLayer )->SetKeyCurveType( nKeyIndex, curveType );
}
int CDmeLog::GetKeyCurveType( int nKeyIndex ) const
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return CURVE_DEFAULT;
return GetLayer( bestLayer )->GetKeyCurveType( nKeyIndex );
}
//-----------------------------------------------------------------------------
// Removes all keys in a certain time interval
//-----------------------------------------------------------------------------
bool CDmeLog::RemoveKeys( DmeTime_t tStartTime, DmeTime_t tEndTime )
{
CDmeLogLayer *pLayer = GetLayer( GetTopmostLayer() );
int nKeyCount = pLayer->GetKeyCount();
int nFirstRemove = -1;
int nLastRemove = -1;
for ( int nKey = 0; nKey < nKeyCount; ++nKey )
{
DmeTime_t tKeyTime = pLayer->GetKeyTime( nKey );
if ( tKeyTime < tStartTime )
continue;
if ( tKeyTime > tEndTime )
break;
if ( nFirstRemove == -1 )
{
nFirstRemove = nKey;
}
nLastRemove = nKey;
}
if ( nFirstRemove != -1 )
{
int nRemoveCount = nLastRemove - nFirstRemove + 1;
pLayer->RemoveKey( nFirstRemove, nRemoveCount );
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// CDmeTypedLog - implementation class for all logs
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLog< T >::OnConstruction()
{
if ( !g_pDataModel->IsUnserializing() )
{
// Add the default layer!!!
AddNewLayer();
Assert( m_Layers.Count() == 1 );
}
m_threshold = s_defaultThreshold;
m_UseDefaultValue.InitAndSet( this, "usedefaultvalue", false );
m_DefaultValue.Init( this, "defaultvalue" );
}
template< class T >
void CDmeTypedLog< T >::OnDestruction()
{
}
template< class T >
void CDmeTypedLog< T >::SetDefaultValue( const T& value )
{
m_UseDefaultValue = true;
m_DefaultValue.Set( value );
}
template< class T >
const T& CDmeTypedLog< T >::GetDefaultValue() const
{
Assert( (bool)m_UseDefaultValue );
return m_DefaultValue;
}
template< class T >
bool CDmeTypedLog< T >::HasDefaultValue() const
{
return m_UseDefaultValue;
}
template< class T >
void CDmeTypedLog< T >::ClearDefaultValue()
{
m_UseDefaultValue = false;
T out;
CDmAttributeInfo< T >::SetDefaultValue( out );
m_DefaultValue.Set( out );
}
// Only used by undo system!!!
template< class T >
void CDmeTypedLog< T >::AddLayerToTail( CDmeLogLayer *layer )
{
Assert( layer );
Assert( (static_cast< CDmeTypedLogLayer< T > * >( layer ))->GetTypedOwnerLog() == this );
m_Layers.AddToTail( layer );
}
template< class T >
CDmeLogLayer *CDmeTypedLog< T >::RemoveLayerFromTail()
{
Assert( m_Layers.Count() >= 1 );
CDmeLogLayer *layer = m_Layers[ m_Layers.Count() -1 ];
m_Layers.Remove( m_Layers.Count() - 1 );
return layer;
}
template< class T >
CDmeLogLayer *CDmeTypedLog< T >::RemoveLayer( int iLayer )
{
Assert( m_Layers.IsValidIndex( iLayer ) );
CDmeLogLayer *layer = m_Layers[ iLayer ];
m_Layers.Remove( iLayer );
return layer;
}
template< class T >
CDmeLogLayer *CDmeTypedLog< T >::AddNewLayer()
{
if ( g_pDataModel->UndoEnabledForElement( this ) )
{
CUndoLayerAdded<T> *pUndo = new CUndoLayerAdded<T>( "AddNewLayer", this );
g_pDataModel->AddUndoElement( pUndo );
}
CDisableUndoScopeGuard guard;
// Now add the layer to the stack!!!
CDmeTypedLogLayer< T > *layer = static_cast< CDmeTypedLogLayer< T > * >( CreateLayer<T>( this ) );
if ( layer )
{
layer->SetOwnerLog( this );
m_Layers.AddToTail( layer );
}
return layer;
}
// curve info helpers
template< class T >
const CDmeTypedCurveInfo< T > *CDmeTypedLog<T>::GetTypedCurveInfo() const
{
Assert( !m_CurveInfo.GetElement() || dynamic_cast< const CDmeTypedCurveInfo< T > * >( m_CurveInfo.GetElement() ) );
return static_cast< const CDmeTypedCurveInfo< T > * >( m_CurveInfo.GetElement() );
}
template< class T >
CDmeTypedCurveInfo< T > *CDmeTypedLog<T>::GetTypedCurveInfo()
{
Assert( !m_CurveInfo.GetElement() || dynamic_cast< CDmeTypedCurveInfo< T > * >( m_CurveInfo.GetElement() ) );
return static_cast< CDmeTypedCurveInfo< T > * >( m_CurveInfo.GetElement() );
}
template< class T >
void CDmeTypedLog<T>::SetCurveInfo( CDmeCurveInfo *pCurveInfo )
{
Assert( !pCurveInfo || dynamic_cast< CDmeTypedCurveInfo< T > * >( pCurveInfo ) );
m_CurveInfo = pCurveInfo;
OnUsingCurveTypesChanged(); // FIXME: Is this really necessary? OnAttributeChanged should have already called this!
}
template< class T >
CDmeCurveInfo *CDmeTypedLog<T>::GetOrCreateCurveInfo()
{
CDmeCurveInfo *pCurveInfo = m_CurveInfo.GetElement();
if ( pCurveInfo )
return pCurveInfo;
SetCurveInfo( CreateElement< CDmeTypedCurveInfo< T > >( "curveinfo", GetFileId() ) );
return m_CurveInfo.GetElement();
}
template < class T >
struct ActiveLayer_t
{
ActiveLayer_t() :
bValid( false ),
priority( 0 ),
firstTime( 0 ),
lastTime( 0 ),
layer( NULL )
{
}
static bool PriorityLessFunc( ActiveLayer_t< T > * const & lhs, ActiveLayer_t< T > * const & rhs )
{
return lhs->priority < rhs->priority;
}
int priority; // higher wins
bool bValid;
DmeTime_t firstTime;
DmeTime_t lastTime;
CDmeTypedLogLayer< T > *layer;
};
template < class T >
struct LayerEvent_t
{
enum EventType_t
{
LE_START = 0,
LE_END
};
LayerEvent_t() : m_pList( NULL ), m_Type( LE_START ), m_nLayer( 0 ), m_Time( 0 )
{
}
static bool LessFunc( const LayerEvent_t& lhs, const LayerEvent_t& rhs )
{
return lhs.m_Time < rhs.m_Time;
}
CUtlVector< ActiveLayer_t< T > > *m_pList;
EventType_t m_Type;
int m_nLayer;
DmeTime_t m_Time;
T m_NeighborValue;
};
template< class T >
static const T& GetActiveLayerValue( CUtlVector< ActiveLayer_t< T > > &layerlist, DmeTime_t t, int nTopmostLayer )
{
int nCount = layerlist.Count();
#ifdef _DEBUG
Assert( nCount >= nTopmostLayer );
#endif
for ( int i = nTopmostLayer; i >= 0; --i )
{
ActiveLayer_t< T > &layer = layerlist[i];
if ( layer.firstTime > t || layer.lastTime < t )
continue;
return layer.layer->GetValue( t );
}
if ( nCount != 0 )
{
const CDmeTypedLog< T > *pOwner = layerlist[0].layer->GetTypedOwnerLog();
if ( pOwner->HasDefaultValue() )
return pOwner->GetDefaultValue();
}
static T defaultVal;
CDmAttributeInfo<T>::SetDefaultValue( defaultVal );
return defaultVal;
}
template< class T >
static void SpewEvents( CUtlRBTree< LayerEvent_t< T > > &events )
{
for ( unsigned short idx = events.FirstInorder(); idx != events.InvalidIndex(); idx = events.NextInorder( idx ) )
{
LayerEvent_t< T > *pEvent = &events[ idx ];
Msg( "Event %u layer %i at time %i type %s\n",
(unsigned)idx, pEvent->m_nLayer, pEvent->m_Time.GetTenthsOfMS(), pEvent->m_Type == LayerEvent_t< T >::LE_START ? "start" : "end" );
}
}
template< class T >
inline void SpewKey( const T& )
{
Msg( "GenericType" );
}
template<>
inline void SpewKey<float>( const float& val )
{
Msg( "%f", val );
}
template<>
inline void SpewKey<int>( const int& val )
{
Msg( "%d", val );
}
template<>
inline void SpewKey<Vector2D>( const Vector2D& val )
{
Msg( "%f,%f", val.x, val.y );
}
template<>
inline void SpewKey<Vector4D>( const Vector4D& val )
{
Msg( "%f,%f,%f,%f", val.x, val.y, val.z, val.w );
}
template<>
inline void SpewKey<DmeTime_t>( const DmeTime_t& val )
{
Msg( "%d", val.GetTenthsOfMS() );
}
template<>
inline void SpewKey<bool>( const bool& val )
{
Msg( "%s", val ? "true" : "false" );
}
template<>
inline void SpewKey<Color>( const Color& val )
{
Msg( "%08x", val.GetRawColor() );
}
template< >
inline void SpewKey( const Vector& val )
{
Msg( "[%f %f %f]", val.x, val.y, val.z );
}
template< >
inline void SpewKey( const Quaternion& val )
{
Msg( "[%f %f %f %f]", val.x, val.y, val.z, val.w );
}
template< class T >
static void SpewFlattenedKey( CDmeTypedLogLayer< T > *pLogLayer, ActiveLayer_t< T > *pActiveLayer, DmeTime_t t, const T& val )
{
Msg( "Layer %d: adding key at time %f [%d -> %d], value ",
pActiveLayer->priority, t.GetSeconds(), pActiveLayer->firstTime.GetTenthsOfMS(), pActiveLayer->lastTime.GetTenthsOfMS() );
SpewKey( val );
Msg( "\n" );
}
template< class T >
static void ComputeLayerEvents( CDmeTypedLog< T >* pLog,
CUtlVector< ActiveLayer_t< T > > &layerlist,
CUtlRBTree< LayerEvent_t< T > > &events )
{
// Build a list of all known layers and a sorted list of layer "transitions"
for ( int i = 0; i < pLog->GetNumLayers(); ++i )
{
ActiveLayer_t< T > layer;
layer.priority = i;
layer.layer = static_cast< CDmeTypedLogLayer< T > * >( pLog->GetLayer( i ) );
layer.firstTime = layer.layer->GetBeginTime();
layer.lastTime = layer.layer->GetEndTime();
layer.bValid = true;
if ( ( layer.firstTime == DMETIME_MINTIME || layer.lastTime == DMETIME_MAXTIME ) && ( i > 0 ) ) // Base layer is always valid
{
layer.bValid = false;
}
// Skip invalid layers
if ( !layer.bValid )
continue;
// Layer zero can capture everything from above...
if ( i == 0 )
{
layer.firstTime = DmeTime_t::MinTime();
layer.lastTime = DmeTime_t::MaxTime();
}
// Add layer to global list
int nIndex = layerlist.AddToTail( layer );
// Add layer start/end events
DmeTime_t tNeighbor = ( layer.firstTime != DMETIME_MINTIME ) ? ( layer.firstTime - DMETIME_MINDELTA ) : DMETIME_MINTIME;
LayerEvent_t< T > start;
start.m_pList = &layerlist;
start.m_nLayer = nIndex;
start.m_Type = LayerEvent_t< T >::LE_START;
start.m_Time = layer.firstTime;
start.m_NeighborValue = GetActiveLayerValue( layerlist, tNeighbor, nIndex - 1 );
events.Insert( start );
tNeighbor = ( layer.lastTime != DMETIME_MAXTIME ) ? ( layer.lastTime + DMETIME_MINDELTA ) : DMETIME_MAXTIME;
LayerEvent_t< T > end;
end.m_pList = &layerlist;
end.m_nLayer = nIndex;
end.m_Type = LayerEvent_t< T >::LE_END;
end.m_Time = layer.lastTime;
end.m_NeighborValue = GetActiveLayerValue( layerlist, tNeighbor, nIndex - 1 );
events.Insert( end );
}
}
template< class T >
static void AddDiscontinitySample( CDmeTypedLogLayer< T > *pTargetLayer, CDmeTypedLog< T > *pLog, DmeTime_t tKeyTime, const T& val, const char *pSpewLabel )
{
// Finally, add a helper key
if ( pLog->IsUsingCurveTypes() )
{
if ( pSpewLabel )
{
Msg( "Adding %s helper key at %d value ", pSpewLabel, tKeyTime.GetTenthsOfMS() );
SpewKey( val );
Msg( " [curvetype %s]\n", Interpolator_NameForCurveType( pLog->GetDefaultCurveType(), false ) );
}
pTargetLayer->SetKey( tKeyTime, val, pLog->GetDefaultCurveType() );
}
else
{
if ( pSpewLabel )
{
Msg( "Adding %s helper key at %d value ", pSpewLabel, tKeyTime.GetTenthsOfMS() );
SpewKey( val );
Msg( "\n" );
}
pTargetLayer->SetKey( tKeyTime, val );
}
}
template< class T >
static DmeTime_t ProcessStartLayerStartEvent(
bool bSpew,
bool bFixupDiscontinuities,
CDmeTypedLog< T > *pLog,
LayerEvent_t< T > *pEvent,
CUtlVector< ActiveLayer_t< T > > &layerlist,
CUtlRBTree< ActiveLayer_t< T > * > &active,
CDmeTypedLogLayer< T > *flattenedlayer )
{
Assert( pEvent->m_Type == LayerEvent_t< T >::LE_START );
// Push it onto the active stack if it's not already on the stack
if ( active.Find( &layerlist[ pEvent->m_nLayer ] ) != active.InvalidIndex() )
return pEvent->m_Time;
if ( bSpew )
{
Msg( "adding layer %d to stack\n", layerlist[ pEvent->m_nLayer ].priority );
}
active.Insert( &layerlist[ pEvent->m_nLayer ] );
if ( !bFixupDiscontinuities || ( pEvent->m_Time == DMETIME_MINTIME ) )
return pEvent->m_Time;
// We'll need to add 2 new "discontinuity" fixup samples.
// 1) A sample from the base layer @ start time - .1 msec
// 2) A sample from the new layer @ start time
int nActiveCount = active.Count();
if ( nActiveCount >= 2 )
{
DmeTime_t tKeyTime = pEvent->m_Time - DmeTime_t( 1 );
AddDiscontinitySample( flattenedlayer, pLog, tKeyTime, pEvent->m_NeighborValue, bSpew ? "start" : NULL );
}
AddDiscontinitySample( flattenedlayer, pLog, pEvent->m_Time, GetActiveLayerValue( layerlist, pEvent->m_Time, pEvent->m_nLayer ), bSpew ? "start" : NULL );
return pEvent->m_Time;
}
template< class T >
static DmeTime_t ProcessStartLayerEndEvent(
bool bSpew,
bool bFixupDiscontinuities,
CDmeTypedLog< T > *pLog,
LayerEvent_t< T > *pEvent,
CUtlVector< ActiveLayer_t< T > > &layerlist,
CUtlRBTree< ActiveLayer_t< T > * > &active,
CDmeTypedLogLayer< T > *pBaseLayer )
{
Assert( pEvent->m_Type == LayerEvent_t< T >::LE_END );
// Push it onto the active stack if it's not already on the stack
if ( bSpew )
{
Msg( "removing layer %d from stack\n", layerlist[ pEvent->m_nLayer ].priority );
}
// We'll need to add a "discontinuity" fixup sample from the
// 1) A sample from the ending layer @ start time
// 2) A sample from the new layer @ start time + .1 msec
// NOTE: This will cause problems if there are non-default value keys at max time
Assert( active.Count() >= 1 );
if ( bFixupDiscontinuities && ( pEvent->m_Time != DMETIME_MAXTIME ) )
{
AddDiscontinitySample( pBaseLayer, pLog, pEvent->m_Time, GetActiveLayerValue( layerlist, pEvent->m_Time, pEvent->m_nLayer ), bSpew ? "end" : NULL );
if ( active.Count() >= 2 )
{
DmeTime_t keyTime = pEvent->m_Time + DmeTime_t( 1 );
AddDiscontinitySample( pBaseLayer, pLog, keyTime, pEvent->m_NeighborValue, bSpew ? "end" : NULL );
}
}
active.Remove( &layerlist[ pEvent->m_nLayer ] );
return ( active.Count() >= 2 ) ? pEvent->m_Time + DmeTime_t( 1 ) : pEvent->m_Time;
}
template< class T >
void CDmeTypedLog< T >::FlattenLayers( float threshold, int flags )
{
// Already flattened
if ( m_Layers.Count() <= 1 )
return;
if ( g_pDataModel->UndoEnabledForElement( this ) )
{
CUndoFlattenLayers<T> *pUndo = new CUndoFlattenLayers<T>( "FlattenLayers", this, threshold, flags );
g_pDataModel->AddUndoElement( pUndo );
}
bool bSpew = ( flags & FLATTEN_SPEW ) != 0;
bool bFixupDiscontinuities = true; //( flags & FLATTEN_NODISCONTINUITY_FIXUP ) == 0;
// NOTE: UNDO IS DISABLED FOR THE REST OF THIS OPERATION (the above function does what we need to preserve the layers)
CDisableUndoScopeGuard guard;
CDmeTypedLogLayer< T > *flattenedlayer = static_cast< CDmeTypedLogLayer< T > * >( CreateLayer< T >( this ) );
flattenedlayer->SetOwnerLog( this );
// Global list of layers
CUtlVector< ActiveLayer_t< T > > layerlist;
// List of all start/end layer events, sorted by the time at which the event occurs ( we walk this list in order )
CUtlRBTree< LayerEvent_t< T > > events( 0, 0, LayerEvent_t< T >::LessFunc );
// Stack of active events, sorted by event "priority", which means last item is the one writing data into the new base layer
CUtlRBTree< ActiveLayer_t< T > * > active( 0, 0, ActiveLayer_t< T >::PriorityLessFunc );
// Build layer list and list of start/end events and times
ComputeLayerEvents( this, layerlist, events );
// Debuggins
if ( bSpew )
{
SpewEvents( events );
}
// Now walk from the earliest time in any layer until the latest time, going key by key and checking if the active layer should change as we go
DmeTime_t iCurrentKeyTime = DmeTime_t::MinTime();
unsigned short idx = events.FirstInorder();
while ( 1 )
{
if ( idx == events.InvalidIndex() )
break;
LayerEvent_t< T > *pEvent = &events[ idx ];
switch ( pEvent->m_Type )
{
default:
iCurrentKeyTime = pEvent->m_Time;
Assert( 0 );
break;
case LayerEvent_t< T >::LE_START:
iCurrentKeyTime = ProcessStartLayerStartEvent( bSpew, bFixupDiscontinuities, this, pEvent, layerlist, active, flattenedlayer );
break;
case LayerEvent_t< T >::LE_END:
iCurrentKeyTime = ProcessStartLayerEndEvent( bSpew, bFixupDiscontinuities, this, pEvent, layerlist, active, flattenedlayer );
break;
}
int nNextIndex = events.NextInorder( idx );
// We popped the last item off the stack
if ( nNextIndex == events.InvalidIndex() )
{
Assert( active.Count() == 0 );
break;
}
// Walk from current time up to the time of the next relevant event
LayerEvent_t< T > *nextevent = &events[ nNextIndex ];
DmeTime_t layerFinishTime = nextevent->m_Time;
// The topmost layer is the active layer
int layernum = active.LastInorder();
if ( layernum == active.InvalidIndex() )
break;
ActiveLayer_t< T > *activeLayer = active[ layernum ];
CDmeTypedLogLayer< T > *loglayer = activeLayer->layer;
// Splat all keys betweeen the current head position and the next event time (layerFinishTime) into the flattened layer
int keyCount = loglayer->GetKeyCount();
for ( int j = 0; j < keyCount; ++j )
{
DmeTime_t keyTime = loglayer->GetKeyTime( j );
// Key is too early, skip
if ( keyTime < iCurrentKeyTime )
continue;
// Done with this layer, set time exactly equal to end time so next layer can take over
// at the correct spot
if ( keyTime >= layerFinishTime )
{
iCurrentKeyTime = layerFinishTime;
break;
}
// Advance the head position
iCurrentKeyTime = keyTime;
// Because it's a key, the interpolated value should == the actual value (not true for certain 4 point curve types, but we shouldn't support them
// for this type of operation anyway)
const T& val = loglayer->GetKeyValue( j );
// Debugging spew
if ( bSpew )
{
SpewFlattenedKey( loglayer, activeLayer, iCurrentKeyTime, val );
}
// Now set the key into the flattened layer
flattenedlayer->SetKey( iCurrentKeyTime, val, loglayer->IsUsingCurveTypes() ? loglayer->GetKeyCurveType( j ) : CURVE_DEFAULT );
}
idx = nNextIndex;
}
// Blow away all of the existing layers except the original base layer
while ( GetNumLayers() > 1 )
{
CDmeTypedLogLayer< T > *layer = static_cast< CDmeTypedLogLayer< T > * >( RemoveLayerFromTail() );
g_pDataModel->DestroyElement( layer->GetHandle() );
}
// Compress the flattened layer
flattenedlayer->RemoveRedundantKeys( threshold );
// Copy the flattened layer over the existing base layer
GetLayer( 0 )->CopyLayer( flattenedlayer );
g_pDataModel->DestroyElement( flattenedlayer->GetHandle() );
}
template< class T >
void CDmeTypedLog< T >::StampKeyAtHead( DmeTime_t tHeadPosition, DmeTime_t tPreviousHeadPosition, const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ )
{
DmAttributeType_t type = pAttr->GetType();
if ( IsValueType( type ) )
{
Assert( pAttr->GetType() == GetDataType() );
StampKeyAtHead( tHeadPosition, tPreviousHeadPosition, params, pAttr->GetValue< T >() );
}
else if ( IsArrayType( type ) )
{
Assert( ArrayTypeToValueType( type ) == GetDataType() );
CDmrArrayConst<T> array( pAttr );
StampKeyAtHead( tHeadPosition, tPreviousHeadPosition, params, array[ index ] );
}
else
{
Assert( 0 );
}
}
template< class T >
void CDmeTypedLog< T >::FinishTimeSelection( DmeTime_t tHeadPosition, DmeLog_TimeSelection_t& params )
{
bool bWasAdvancing = params.IsTimeAdvancing();
params.ResetTimeAdvancing();
if ( !params.m_bAttachedMode )
return;
if ( !bWasAdvancing )
return;
// Should be in "layer recording" mode!!!
Assert( GetNumLayers() >= 2 );
int nBestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer)
if ( nBestLayer < 1 )
return;
CDmeTypedLogLayer< T > *pWriteLayer = GetLayer( nBestLayer );
Assert( pWriteLayer );
if ( !pWriteLayer )
return;
int nKeyCount = pWriteLayer->GetKeyCount();
if ( nKeyCount <= 0 )
return;
// The head is considered to be at the "last" value
T headValue = pWriteLayer->GetKeyValue( nKeyCount - 1 );
_StampKeyAtHeadResample( tHeadPosition, params, headValue, true, false );
}
template< >
float CDmeTypedLog< float >::ClampValue( const float& value )
{
float retval;
if ( !IsUsingCurveTypes() )
{
retval = clamp( value, 0.0f, 1.0f );
}
else
{
retval = clamp( value, GetMinValue(), GetMaxValue() );
}
return retval;
}
template< class T >
void CDmeTypedLog< T >::StampKeyAtHead( DmeTime_t tHeadPosition, DmeTime_t tPreviousHeadPosition, const DmeLog_TimeSelection_t& params, const T& value )
{
//T useValue = ClampValue( value );
// This gets set if time ever starts moving (even if the user pauses time while still holding a slider)
if ( params.IsTimeAdvancing() )
{
// This uses the time selection as a "filter" to decide whether to stamp a new key at the current position
_StampKeyAtHeadFilteredByTimeSelection( tHeadPosition, tPreviousHeadPosition, params, value );
}
else
{
Assert( params.m_bResampleMode );
_StampKeyAtHeadResample( tHeadPosition, params, value, false, true );
}
}
/*
template<>
void CDmeTypedLog< float >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const float& value );
template<>
void CDmeTypedLog< bool >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const bool& value );
template<>
void CDmeTypedLog< Color >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Color& value );
template<>
void CDmeTypedLog< Vector4D >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector4D& value );
template<>
void CDmeTypedLog< Vector2D >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector2D& value );
template<>
void CDmeTypedLog< VMatrix >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const VMatrix& value );
template<>
void CDmeTypedLog< Quaternion >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Quaternion& value );
template<>
void CDmeTypedLog< QAngle >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const QAngle& value );
*/
//-----------------------------------------------------------------------------
// Helper class used to compute falloff blend factors
//-----------------------------------------------------------------------------
template< class T >
struct LogClampHelper_t
{
public:
LogClampHelper_t() : m_tLastTime( DMETIME_MINTIME ) {}
DmeTime_t m_tLastTime;
T m_LastUnclampedValue;
};
template< class T >
class CLogFalloffBlend
{
public:
void Init( CDmeTypedLog<T> *pLog, DmeTime_t tFalloff, DmeTime_t tHold, bool bLeftFalloff, int nInterpolatorType, const T& delta );
void Init( CDmeTypedLog<T> *pLog, const T& delta );
float ComputeBlendFactor( DmeTime_t tTime, const T& oldVal, bool bUsingInterpolation ) const;
const T& GetDelta() const;
void StampKey( CDmeTypedLogLayer<T>* pWriteLayer, DmeTime_t t, const CDmeTypedLogLayer<T>* pReadLayer, float flIntensity, LogClampHelper_t<T> &helper, bool bSpew, const T* pInterpTarget );
void UpdateClampHelper( DmeTime_t t, const CDmeTypedLogLayer<T>* pReadLayer, float flIntensity, LogClampHelper_t<T> &helper, const T* pInterpTarget );
private:
void ComputeDelta( CDmeTypedLog<T> *pLog, const T& delta, const T& holdValue );
void InsertClampTransitionPoints( CDmeTypedLogLayer<T>* pWriteLayer, DmeTime_t t, LogClampHelper_t<T> &clampHelper, const T& val, bool bSpew );
void ComputeBounds( CDmeTypedLog<T> *pLog );
T m_BaseValue;
T m_Delta;
DmeTime_t m_tBaseTime;
DmeTime_t m_tHoldTime;
float m_flOOTime;
int m_nTestSign;
int m_nInterpolatorType;
int m_nCurveType;
T m_MinValue;
T m_MaxValue;
bool m_bHold;
};
template< class T >
void CLogFalloffBlend< T >::Init( CDmeTypedLog<T> *pLog, DmeTime_t tFalloffTime, DmeTime_t tHoldTime, bool bLeftFalloff, int nInterpolatorType, const T& delta )
{
m_tBaseTime = tFalloffTime;
m_tHoldTime = tHoldTime;
m_BaseValue = pLog->GetValueSkippingTopmostLayer( tFalloffTime );
T holdValue = pLog->GetValueSkippingTopmostLayer( tHoldTime );
m_nTestSign = bLeftFalloff ? 1 : -1;
m_nInterpolatorType = nInterpolatorType;
m_bHold = false;
m_nCurveType = pLog->IsUsingCurveTypes() ? pLog->GetDefaultCurveType() : CURVE_DEFAULT;
float flDuration = tHoldTime.GetSeconds() - tFalloffTime.GetSeconds();
m_flOOTime = ( flDuration != 0.0f ) ? 1.0f / flDuration : 0.0f;
ComputeBounds( pLog );
ComputeDelta( pLog, delta, holdValue );
}
template< class T >
void CLogFalloffBlend< T >::Init( CDmeTypedLog<T> *pLog, const T& delta )
{
m_nTestSign = 0;
m_nInterpolatorType = INTERPOLATE_DEFAULT;
m_bHold = true;
m_nCurveType = pLog->IsUsingCurveTypes() ? pLog->GetDefaultCurveType() : CURVE_DEFAULT;
m_Delta = delta;
ComputeBounds( pLog );
}
template< class T >
void CLogFalloffBlend< T >::ComputeBounds( CDmeTypedLog<T> *pLog )
{
}
template<>
void CLogFalloffBlend< float >::ComputeBounds( CDmeTypedLog<float> *pLog )
{
m_MinValue = pLog->IsUsingCurveTypes() ? pLog->GetMinValue() : 0.0f;
m_MaxValue = pLog->IsUsingCurveTypes() ? pLog->GetMaxValue() : 1.0f;
}
template< class T >
void CLogFalloffBlend< T >::ComputeDelta( CDmeTypedLog<T> *pLog, const T& delta, const T& holdValue )
{
// By default, no clamping
m_Delta = delta;
}
template<>
void CLogFalloffBlend< float >::ComputeDelta( CDmeTypedLog<float> *pLog, const float& delta, const float& holdValue )
{
if ( LengthOf( delta ) > 0.0f )
{
m_Delta = min( delta, m_MaxValue - holdValue ); // Max amount we can move up...
}
else
{
m_Delta = max( delta, m_MinValue - holdValue ); // Amount we can move down...
}
}
template< class T >
float CLogFalloffBlend< T >::ComputeBlendFactor( DmeTime_t tTime, const T& oldVal, bool bUsingInterpolation ) const
{
if ( m_bHold )
return 1.0f;
// Clamp inside region; hold time beats base time (for zero width regions)
if ( ( tTime - m_tHoldTime ) * m_nTestSign >= DMETIME_ZERO )
return 1.0f;
if ( ( tTime - m_tBaseTime ) * m_nTestSign <= DMETIME_ZERO )
return 0.0f;
float flFactor = ( tTime.GetSeconds() - m_tBaseTime.GetSeconds() ) * m_flOOTime;
return ComputeInterpolationFactor( flFactor, m_nInterpolatorType );
}
template< class T >
const T& CLogFalloffBlend< T >::GetDelta( ) const
{
return m_Delta;
}
//-----------------------------------------------------------------------------
// Insert points where clamping begins or ends
//-----------------------------------------------------------------------------
template< class T >
void CLogFalloffBlend< T >::InsertClampTransitionPoints( CDmeTypedLogLayer<T>* pWriteLayer,
DmeTime_t t, LogClampHelper_t<T> &clampHelper, const T& val, bool bSpew )
{
// NOTE: By default, nothing clamps, so no transition points are needed
}
template<>
void CLogFalloffBlend< float >::InsertClampTransitionPoints( CDmeTypedLogLayer<float>* pWriteLayer,
DmeTime_t t, LogClampHelper_t<float> &clampHelper, const float& val, bool bSpew )
{
bool bLastLess, bLastGreater, bCurrLess, bCurrGreater;
DmeTime_t tCrossing, tDuration;
double flOODv;
// First time through? cache last values.
if ( clampHelper.m_tLastTime == DMETIME_MINTIME )
goto cacheLastValues;
bLastLess = clampHelper.m_LastUnclampedValue < m_MinValue;
bLastGreater = clampHelper.m_LastUnclampedValue > m_MaxValue;
bCurrLess = val < m_MinValue;
bCurrGreater = val > m_MaxValue;
if ( bLastLess == bCurrLess && bLastGreater == bCurrGreater )
goto cacheLastValues;
// NOTE: The check above means val != m_LastUnclampedValue
flOODv = 1.0 / ( val - clampHelper.m_LastUnclampedValue );
tDuration = t - clampHelper.m_tLastTime;
// NOTE: Clamp semantics here favor keeping the non-clamped value
// That's why when we start outside + end inside, we never overwrite the dest
// and why when we start inside + end outside, we never overwrite the start
// These two checks deal with starting outside + heading inside
if ( bLastLess && !bCurrLess )
{
// Insert at min crossing
double flFactor = ( m_MinValue - clampHelper.m_LastUnclampedValue ) * flOODv;
tCrossing = clampHelper.m_tLastTime + tDuration * flFactor;
tCrossing.Clamp( clampHelper.m_tLastTime, t - DMETIME_MINDELTA );
pWriteLayer->InsertKey( tCrossing, m_MinValue, m_nCurveType );
if ( bSpew )
{
Msg(" Clamp Crossing Key: %d %f\n", tCrossing.GetTenthsOfMS(), m_MinValue );
}
}
else if ( bLastGreater && !bCurrGreater )
{
// Insert at max crossing
double flFactor = ( m_MaxValue - clampHelper.m_LastUnclampedValue ) * flOODv;
tCrossing = clampHelper.m_tLastTime + tDuration * flFactor;
tCrossing.Clamp( clampHelper.m_tLastTime, t - DMETIME_MINDELTA );
pWriteLayer->InsertKey( tCrossing, m_MaxValue, m_nCurveType );
if ( bSpew )
{
Msg(" Clamp Crossing Key: %d %f\n", tCrossing.GetTenthsOfMS(), m_MaxValue );
}
}
// These two checks deal with starting inside + heading outside
if ( !bLastLess && bCurrLess )
{
// Insert at min crossing
// NOTE: Clamp semantics here favor keeping the non-clamped value
double flFactor = ( m_MinValue - clampHelper.m_LastUnclampedValue ) * flOODv;
tCrossing = clampHelper.m_tLastTime + tDuration * flFactor;
tCrossing.Clamp( clampHelper.m_tLastTime + DMETIME_MINDELTA, t );
pWriteLayer->InsertKey( tCrossing, m_MinValue, m_nCurveType );
if ( bSpew )
{
Msg(" Clamp Crossing Key: %d %f\n", tCrossing.GetTenthsOfMS(), m_MinValue );
}
}
else if ( !bLastGreater && bCurrGreater )
{
// Insert at max crossing
double flFactor = ( m_MaxValue - clampHelper.m_LastUnclampedValue ) * flOODv;
tCrossing = clampHelper.m_tLastTime + tDuration * flFactor;
tCrossing.Clamp( clampHelper.m_tLastTime + DMETIME_MINDELTA, t );
pWriteLayer->InsertKey( tCrossing, m_MaxValue, m_nCurveType );
if ( bSpew )
{
Msg(" Clamp Crossing Key: %d %f\n", tCrossing.GetTenthsOfMS(), m_MaxValue );
}
}
// Cache off the last values
cacheLastValues:
clampHelper.m_tLastTime = t;
clampHelper.m_LastUnclampedValue = val;
}
//-----------------------------------------------------------------------------
// Stamp the key at the specified time
//-----------------------------------------------------------------------------
template< class T >
void CLogFalloffBlend< T >::StampKey( CDmeTypedLogLayer<T>* pWriteLayer, DmeTime_t t,
const CDmeTypedLogLayer<T>* pReadLayer, float flIntensity, LogClampHelper_t<T> &clampHelper, bool bSpew, const T* pInterpTarget )
{
// Stamp the key at the current time
T oldVal = pReadLayer->GetValue( t );
// In the falloff area
float flFactor = ComputeBlendFactor( t, oldVal, ( pInterpTarget != NULL ) );
flFactor *= flIntensity;
T newVal;
if ( !pInterpTarget )
{
newVal = ScaleValue( m_Delta, flFactor );
newVal = Add( oldVal, newVal );
}
else
{
newVal = Interpolate( flFactor, oldVal, *pInterpTarget );
}
InsertClampTransitionPoints( pWriteLayer, t, clampHelper, newVal, bSpew );
T clampedVal = pWriteLayer->GetTypedOwnerLog()->ClampValue( newVal );
// Add a key to the new "layer" at this time with this value
pWriteLayer->InsertKey( t, clampedVal, m_nCurveType );
if ( bSpew )
{
Msg(" Key: %d ", t.GetTenthsOfMS() );
SpewKey( clampedVal );
Msg(" [" );
SpewKey( newVal );
Msg( "]\n" );
}
}
//-----------------------------------------------------------------------------
// Stamp the key at the specified time
//-----------------------------------------------------------------------------
template< class T >
void CLogFalloffBlend< T >::UpdateClampHelper( DmeTime_t t, const CDmeTypedLogLayer<T>* pReadLayer,
float flIntensity, LogClampHelper_t<T> &clampHelper, const T* pInterpTarget )
{
// Stamp the key at the current time
T oldVal = pReadLayer->GetValue( t );
// In the falloff area
float flFactor = ComputeBlendFactor( t, oldVal, ( pInterpTarget != NULL ) );
flFactor *= flIntensity;
T val;
if ( !pInterpTarget )
{
val = ScaleValue( m_Delta, flFactor );
val = Add( oldVal, val );
}
else
{
val = Interpolate( flFactor, oldVal, *pInterpTarget );
}
clampHelper.m_tLastTime = t;
clampHelper.m_LastUnclampedValue = val;
}
//-----------------------------------------------------------------------------
// This is used to modify the entire portion of the curve under the time selection
//-----------------------------------------------------------------------------
static inline DmeTime_t ComputeResampleStartTime( const DmeLog_TimeSelection_t &params, int nSide )
{
// NOTE: This logic will place the resampled points centered in the falloff regions
DmeTimeSelectionTimes_t start = ( nSide == 0 ) ? TS_LEFT_FALLOFF : TS_RIGHT_HOLD;
DmeTimeSelectionTimes_t end = ( nSide == 0 ) ? TS_LEFT_HOLD : TS_RIGHT_FALLOFF;
if ( params.m_nFalloffInterpolatorTypes[nSide] != INTERPOLATE_LINEAR_INTERP )
{
DmeTime_t tDuration = params.m_nTimes[end] - params.m_nTimes[start];
if ( tDuration > params.m_nResampleInterval )
{
int nFactor = tDuration.GetTenthsOfMS() / params.m_nResampleInterval.GetTenthsOfMS();
tDuration -= params.m_nResampleInterval * nFactor;
tDuration /= 2;
return params.m_nTimes[start] + tDuration;
}
}
return DMETIME_MAXTIME;
}
//-----------------------------------------------------------------------------
// This is used to modify the entire portion of the curve under the time selection
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLog< T >::_StampKeyAtHeadResample( DmeTime_t tHeadPosition, const DmeLog_TimeSelection_t& params, const T& value, bool bSkipToHead, bool bClearPreviousKeys )
{
Assert( params.m_nResampleInterval > DmeTime_t( 0 ) );
if ( params.m_nResampleInterval < DmeTime_t( 0 ) )
return;
// Should be in "layer recording" mode!!!
Assert( GetNumLayers() >= 2 );
int nBestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer)
if ( nBestLayer < 1 )
return;
CDmeTypedLogLayer< T > *pWriteLayer = GetLayer( nBestLayer );
Assert( pWriteLayer );
if ( !pWriteLayer )
return;
if ( bClearPreviousKeys )
{
pWriteLayer->ClearKeys();
}
bool bSpew = false;
// NOTE: The headDelta is only used when not blending toward a preset
// When not blending toward a preset, just add the head delta onto everything.
// When blending toward a preset, lerp towards the preset.
T oldHeadValue = GetValueSkippingTopmostLayer( tHeadPosition );
T headDelta = Subtract( value, oldHeadValue );
// When dragging preset fader, eveything get's blended in by the amount of the preset being applied
bool bUsePresetRules = ( RECORD_PRESET == params.GetRecordingMode() );
bool bIsStampingQuaternions = ( CDmAttributeInfo<T>::ATTRIBUTE_TYPE == AT_QUATERNION );
bool bPerformInterpolation = bUsePresetRules || bIsStampingQuaternions;
// FIXME: Preset value should never be NULL. We need to grab it from the attribute
bool bUsePresetValue = bUsePresetRules && params.m_pPresetValue && params.m_pPresetValue->GetType() == CDmAttributeInfo<T>::ATTRIBUTE_TYPE;
const T& interpTarget = bUsePresetValue ? params.m_pPresetValue->GetValue<T>() : value;
// Compute falloff region blend factors
CLogFalloffBlend< T > blend[ 3 ];
blend[0].Init( this, params.m_nTimes[ TS_FALLOFF(0) ], params.m_nTimes[ TS_HOLD(0) ], true, params.m_nFalloffInterpolatorTypes[0], headDelta );
blend[1].Init( this, headDelta );
blend[2].Init( this, params.m_nTimes[ TS_FALLOFF(1) ], params.m_nTimes[ TS_HOLD(1) ], false, params.m_nFalloffInterpolatorTypes[1], headDelta );
// The algorithm we're going to use is to add samples in the following places:
// 1) At each time selection transition point (start, end of falloff regions)
// NOTE: If a falloff region has 0 size, we'll add points right outside the transition
// 2) At the resample point (we're going to base this so the resamples always occur at the same spots)
// 3) At any existing sample position
// 4) Any time we switch from clamped to not clamped
// By doing this, we will guarantee no bogus slope changes
// First, compute times for transition regions
DmeTime_t tTransitionTimes[TS_TIME_COUNT];
memcpy( &tTransitionTimes, &params.m_nTimes, sizeof(params.m_nTimes) );
if ( tTransitionTimes[TS_LEFT_FALLOFF] == tTransitionTimes[TS_LEFT_HOLD] )
{
tTransitionTimes[TS_LEFT_FALLOFF] -= DMETIME_MINDELTA;
}
if ( tTransitionTimes[TS_RIGHT_FALLOFF] == tTransitionTimes[TS_RIGHT_HOLD] )
{
tTransitionTimes[TS_RIGHT_FALLOFF] += DMETIME_MINDELTA;
}
DmeTime_t tStartTime = params.m_nTimes[ TS_LEFT_FALLOFF ];
// Next, compute the first resample time for each region
DmeTime_t tResampleStartTime[TS_TIME_COUNT];
tResampleStartTime[TS_LEFT_FALLOFF] = DMETIME_MAXTIME;
tResampleStartTime[TS_LEFT_HOLD] = ComputeResampleStartTime( params, 0 );
tResampleStartTime[TS_RIGHT_HOLD] = DMETIME_MAXTIME;
tResampleStartTime[TS_RIGHT_FALLOFF] = ComputeResampleStartTime( params, 1 );
// Finally, figure out which layer we're reading from,
// where the next key is, and when we must stop reading from it
int nReadLayer = FindLayerForTimeSkippingTopmost( tStartTime );
CDmeTypedLogLayer< T > *pReadLayer = GetLayer( nReadLayer );
int nLayerSampleIndex = pReadLayer->FindKey( tStartTime ) + 1;
DmeTime_t tLayerEndTime = pReadLayer->GetEndTime();
// NOTE: This can happen after reading off the end of layer 0
if ( tLayerEndTime <= tStartTime )
{
tLayerEndTime = DMETIME_MAXTIME;
}
DmeTime_t tNextSampleTime = nLayerSampleIndex >= pReadLayer->GetKeyCount() ? tLayerEndTime : pReadLayer->GetKeyTime( nLayerSampleIndex );
if ( tNextSampleTime > tLayerEndTime )
{
tNextSampleTime = tLayerEndTime;
}
// Now keep going until we've hit the end point
// NOTE: We use tTransitionTimes, *not* params.m_nTimes, so that we can get a single
// sample before zero-width left falloff regions
DmeTime_t tCurrent = tTransitionTimes[TS_LEFT_FALLOFF];
int nNextTransition = TS_LEFT_HOLD;
DmeTime_t tResampleTime = tResampleStartTime[nNextTransition];
const T* pInterpTarget = bPerformInterpolation ? &interpTarget : NULL;
if ( bSpew )
{
Msg( "Stamp key at head resample: %s\n", GetName() );
}
LogClampHelper_t<T> clampHelper;
while( nNextTransition < TS_TIME_COUNT )
{
// Stamp the key at the current time
if ( !bSkipToHead || ( tCurrent >= tHeadPosition ) )
{
blend[nNextTransition-1].StampKey( pWriteLayer, tCurrent, pReadLayer, params.m_flIntensity, clampHelper, bSpew, pInterpTarget );
}
// Update the read layer sample
if ( tCurrent == tNextSampleTime )
{
++nLayerSampleIndex;
tNextSampleTime = nLayerSampleIndex >= pReadLayer->GetKeyCount() ? tLayerEndTime : pReadLayer->GetKeyTime( nLayerSampleIndex );
}
// Update the read layer
if ( tCurrent == tLayerEndTime )
{
nReadLayer = FindLayerForTimeSkippingTopmost( tCurrent + DMETIME_MINDELTA );
pReadLayer = GetLayer( nReadLayer );
nLayerSampleIndex = pReadLayer->FindKey( tCurrent ) + 1;
tLayerEndTime = pReadLayer->GetEndTime();
// NOTE: This can happen after reading off the end of layer 0
if ( tLayerEndTime <= tCurrent )
{
tLayerEndTime = DMETIME_MAXTIME;
}
tNextSampleTime = nLayerSampleIndex >= pReadLayer->GetKeyCount() ? tLayerEndTime : pReadLayer->GetKeyTime( nLayerSampleIndex );
if ( tNextSampleTime > tLayerEndTime )
{
tNextSampleTime = tLayerEndTime;
}
}
// Update the transition time
if ( tCurrent == tTransitionTimes[nNextTransition] )
{
// NOTE: This is necessary because each blend region has different 'deltas'
// to avoid overdriving in the falloff regions. Therefore, the 'previous value'
// used in the clamping operation will be different
if ( nNextTransition < ARRAYSIZE(blend) )
{
blend[nNextTransition].UpdateClampHelper( tCurrent, pReadLayer, params.m_flIntensity, clampHelper, pInterpTarget );
}
// Also need to update the 'previous' value stored in the
++nNextTransition;
if ( nNextTransition >= ARRAYSIZE(tResampleStartTime) )
break;
// Update the first resample time
tResampleTime = tResampleStartTime[nNextTransition];
if ( bSpew )
{
Msg( " Entering region %d\n", nNextTransition-1 );
}
}
// Update the resample time
if ( tCurrent == tResampleTime )
{
tResampleTime += params.m_nResampleInterval;
}
// Now that the key is stamped, update current time.
tCurrent = tTransitionTimes[nNextTransition];
if ( tResampleTime < tCurrent )
{
tCurrent = tResampleTime;
}
if ( tNextSampleTime < tCurrent )
{
tCurrent = tNextSampleTime;
}
}
}
//-----------------------------------------------------------------------------
// In this case, we actually stamp a key right at the head position unlike the above method
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLog< T >::_StampKeyFilteredByTimeSelection( CDmeTypedLogLayer< T > *pWriteLayer, DmeTime_t t, const DmeLog_TimeSelection_t &params, const T& value, bool bForce )
{
// Found a key which needs to be modulated upward
float flFraction = params.GetAmountForTime( t ) * params.m_flIntensity;
if ( flFraction <= 0.0f && !bForce )
return;
// When dragging preset fader, eveything get's blended in by the amount of the preset being applied
bool bUsePresetRules = ( RECORD_PRESET == params.GetRecordingMode() );
// FIXME: Preset value should never be NULL. We need to grab it from the attribute
const T& interpTarget = ( bUsePresetRules && params.m_pPresetValue ) ? params.m_pPresetValue->GetValue<T>() : value;
T oldVal = GetValueSkippingTopmostLayer( t );
T newVal = Interpolate( flFraction, oldVal, interpTarget );
T writeVal = ClampValue( newVal );
pWriteLayer->InsertKey( t, writeVal, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
//-----------------------------------------------------------------------------
// In this case, we actually stamp a key right at the head position unlike the above method
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLog< T >::_StampKeyAtHeadFilteredByTimeSelection( DmeTime_t tHeadPosition, DmeTime_t tPreviousHeadPosition, const DmeLog_TimeSelection_t &params, const T& value )
{
// Should be in "layer recording" mode!!!
Assert( GetNumLayers() >= 2 );
int nBestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer)
if ( nBestLayer < 1 )
return;
CDmeTypedLogLayer< T > *pWriteLayer = GetLayer( nBestLayer );
Assert( pWriteLayer );
if ( !pWriteLayer )
return;
// NOTE: This little trickery is necessary to generate samples right outside the
// transition region in the case of zero length falloff regions
DmeLog_TimeSelection_t tempParams = params;
if ( tempParams.m_nTimes[TS_LEFT_FALLOFF] == tempParams.m_nTimes[TS_LEFT_HOLD] )
{
tempParams.m_nTimes[TS_LEFT_FALLOFF] -= DMETIME_MINDELTA;
}
if ( tempParams.m_nTimes[TS_RIGHT_FALLOFF] == tempParams.m_nTimes[TS_RIGHT_HOLD] )
{
tempParams.m_nTimes[TS_RIGHT_FALLOFF] += DMETIME_MINDELTA;
}
int nPrevRegion = tempParams.ComputeRegionForTime( tPreviousHeadPosition );
int nCurrRegion = tempParams.ComputeRegionForTime( tHeadPosition );
// Test for backward performance!
if ( nCurrRegion < nPrevRegion )
{
V_swap( nCurrRegion, nPrevRegion );
}
// Insert samples at each transition point we skipped over
for ( int i = nPrevRegion; i < nCurrRegion; ++i )
{
_StampKeyFilteredByTimeSelection( pWriteLayer, tempParams.m_nTimes[i], params, value, true );
}
_StampKeyFilteredByTimeSelection( pWriteLayer, tHeadPosition, params, value );
}
template< class T >
void CDmeTypedLog< T >::RemoveKeys( DmeTime_t starttime )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return;
GetLayer( bestLayer )->RemoveKeys( starttime );
}
template< class T >
void CDmeTypedLog< T >::RemoveKey( int nKeyIndex, int nNumKeysToRemove /*= 1*/ )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return;
GetLayer( bestLayer )->RemoveKey( nKeyIndex, nNumKeysToRemove );
}
template< class T >
void CDmeTypedLog< T >::ClearKeys()
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return;
GetLayer( bestLayer )->ClearKeys();
}
//-----------------------------------------------------------------------------
// Returns a specific key's value
//-----------------------------------------------------------------------------
template< class T >
DmeTime_t CDmeTypedLog< T >::GetKeyTime( int nKeyIndex ) const
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return DmeTime_t::MinTime();
return GetLayer( bestLayer )->GetKeyTime( nKeyIndex );
}
template< class T >
void CDmeTypedLog< T >::SetKeyTime( int nKeyIndex, DmeTime_t keyTime )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return;
return GetLayer( bestLayer )->SetKeyTime( nKeyIndex, keyTime );
}
//-----------------------------------------------------------------------------
// Returns the index of a particular key
//-----------------------------------------------------------------------------
template< class T >
int CDmeTypedLog< T >::FindKeyWithinTolerance( DmeTime_t nTime, DmeTime_t nTolerance )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return -1;
return GetLayer( bestLayer )->FindKeyWithinTolerance( nTime, nTolerance );
}
//-----------------------------------------------------------------------------
// tests whether two values differ by more than the threshold
//-----------------------------------------------------------------------------
template<>
bool CDmeTypedLog< Vector >::ValuesDiffer( const Vector& a, const Vector& b ) const
{
return a.DistToSqr( b ) > m_threshold * m_threshold;
}
template<>
bool CDmeTypedLog< QAngle >::ValuesDiffer( const QAngle& a, const QAngle& b ) const
{
return ( a - b ).LengthSqr() > m_threshold * m_threshold;
}
template<>
bool CDmeTypedLog< Quaternion >::ValuesDiffer( const Quaternion& a, const Quaternion& b ) const
{
return QuaternionAngleDiff( a, b ) > m_threshold;
}
template<>
bool CDmeTypedLog< float >::ValuesDiffer( const float& a, const float& b ) const
{
return fabs( a - b ) > m_threshold;
}
template< class T >
bool CDmeTypedLog< T >::ValuesDiffer( const T& a, const T& b ) const
{
return a != b;
}
//-----------------------------------------------------------------------------
// Sets a key, removes all keys after this time
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLog< T >::SetKey( DmeTime_t time, const T& value, int curveType /*=CURVE_DEFAULT*/)
{
int bestLayer = GetTopmostLayer();
if ( bestLayer < 0 )
return;
GetLayer( bestLayer )->SetKey( time, value, curveType );
}
template< class T >
CDmeTypedLogLayer< T > *CDmeTypedLog< T >::GetLayer( int index )
{
if ( index < 0 )
return NULL;
return static_cast< CDmeTypedLogLayer< T > * >( m_Layers[ index ] );
}
template< class T >
const CDmeTypedLogLayer< T > *CDmeTypedLog< T >::GetLayer( int index ) const
{
if ( index < 0 )
return NULL;
return static_cast< CDmeTypedLogLayer< T > * >( m_Layers[ index ] );
}
//-----------------------------------------------------------------------------
// Finds a key within tolerance, or adds one
//-----------------------------------------------------------------------------
template< class T >
int CDmeTypedLog< T >::FindOrAddKey( DmeTime_t nTime, DmeTime_t nTolerance, const T& value, int curveType /*=CURVE_DEFAULT*/ )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer == -1 )
return -1;
return GetLayer( bestLayer )->FindOrAddKey( nTime, nTolerance, value, curveType );
}
//-----------------------------------------------------------------------------
// This inserts a key. Unlike SetKey, this will *not* delete keys after the specified time
//-----------------------------------------------------------------------------
template < class T >
int CDmeTypedLog< T >::InsertKey( DmeTime_t nTime, const T& value, int curveType /*=CURVE_DEFAULT*/ )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer == -1 )
return -1;
return GetLayer( bestLayer )->InsertKey( nTime, value, curveType );
}
template < class T >
int CDmeTypedLog< T >::InsertKeyAtTime( DmeTime_t nTime, int curveType /*=CURVE_DEFAULT*/ )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer == -1 )
return -1;
return GetLayer( bestLayer )->InsertKeyAtTime( nTime, curveType );
}
template< class T >
const T& CDmeTypedLog< T >::GetValue( DmeTime_t time ) const
{
int bestLayer = FindLayerForTime( time );
if ( bestLayer < 0 )
{
static T s_value;
CDmAttributeInfo< T >::SetDefaultValue( s_value ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return s_value;
}
return GetLayer( bestLayer )->GetValue( time );
}
template< class T >
const T& CDmeTypedLog< T >::GetValueSkippingTopmostLayer( DmeTime_t time ) const
{
int nLayer = FindLayerForTimeSkippingTopmost( time );
if ( nLayer < 0 )
return GetValue( time );
return GetLayer( nLayer )->GetValue( time );
}
template< class T >
void CDmeTypedLog< T >::SetKey( DmeTime_t time, const CDmAttribute *pAttr, uint index, int curveType /*= CURVE_DEFAULT*/ )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer == -1 )
return;
GetLayer( bestLayer )->SetKey( time, pAttr, index, curveType );
}
template< class T >
bool CDmeTypedLog< T >::SetDuplicateKeyAtTime( DmeTime_t time )
{
int bestLayer = GetTopmostLayer();
if ( bestLayer == -1 )
return false;
return GetLayer( bestLayer )->SetDuplicateKeyAtTime( time );
}
//-----------------------------------------------------------------------------
// Returns a specific key's value
//-----------------------------------------------------------------------------
template< class T >
const T& CDmeTypedLog< T >::GetKeyValue( int nKeyIndex ) const
{
int bestLayer = GetTopmostLayer();
if ( bestLayer == -1 )
{
static T s_value;
CDmAttributeInfo< T >::SetDefaultValue( s_value ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
return s_value;
}
return GetLayer( bestLayer )->GetKeyValue( nKeyIndex );
}
template< class T >
void CDmeTypedLog< T >::GetValue( DmeTime_t time, CDmAttribute *pAttr, uint index ) const
{
int bestLayer = FindLayerForTime( time );
if ( bestLayer < 0 )
{
T value;
CDmAttributeInfo< T >::SetDefaultValue( value ); // TODO - create GetDefaultValue that returns a default T, to avoid rebuilding every time
pAttr->SetValue( CDmAttributeInfo< T >::AttributeType(), &value );
}
return GetLayer( bestLayer )->GetValue( time, pAttr, index );
}
template< class T >
void CDmeTypedLog< T >::GetValueSkippingTopmostLayer( DmeTime_t time, CDmAttribute *pAttr, uint index = 0 ) const
{
CUtlVector< int > layers;
FindLayersForTime( time, layers );
int layerCount = layers.Count();
if ( layerCount <= 1 )
{
return GetValue( time, pAttr, index );
}
int topMostLayer = GetTopmostLayer();
int useLayer = layers[ layerCount - 1 ];
if ( topMostLayer == useLayer )
{
useLayer = layers[ layerCount - 2 ];
}
Assert( useLayer >= 0 );
return GetLayer( useLayer )->GetValue( time, pAttr, index );
}
template< class T >
float CDmeTypedLog< T >::GetComponent( DmeTime_t time, int componentIndex ) const
{
return ::GetComponent( GetValue( time ), componentIndex );
}
//-----------------------------------------------------------------------------
// resampling and filtering
//-----------------------------------------------------------------------------
template< class T >
void CDmeTypedLog< T >::Resample( DmeFramerate_t samplerate )
{
int c = m_Layers.Count();
for ( int i = 0; i < c; ++i )
{
GetLayer( i )->Resample( samplerate );
}
}
template< class T >
void CDmeTypedLog< T >::Filter( int nSampleRadius )
{
int c = m_Layers.Count();
for ( int i = 0; i < c; ++i )
{
GetLayer( i )->Filter( nSampleRadius );
}
}
template< class T >
void CDmeTypedLog< T >::Filter2( DmeTime_t sampleRadius )
{
int c = m_Layers.Count();
for ( int i = 0; i < c; ++i )
{
GetLayer( i )->Filter2( sampleRadius );
}
}
template< class T >
void CDmeTypedLog< T >::OnAttributeArrayElementAdded( CDmAttribute *pAttribute, int nFirstElem, int nLastElem )
{
BaseClass::OnAttributeArrayElementAdded( pAttribute, nFirstElem, nLastElem );
if ( pAttribute == m_Layers.GetAttribute() )
{
for ( int i = nFirstElem; i <= nLastElem; ++i )
{
m_Layers[i]->SetOwnerLog( this );
}
return;
}
}
template< class T >
void CDmeTypedLog< T >::SetUseEdgeInfo( bool state )
{
Assert( IsUsingCurveTypes() );
GetTypedCurveInfo()->SetUseEdgeInfo( state );
}
template< class T >
bool CDmeTypedLog< T >::IsUsingEdgeInfo() const
{
Assert( IsUsingCurveTypes() );
return GetTypedCurveInfo()->IsUsingEdgeInfo();
}
template< class T >
void CDmeTypedLog< T >::SetEdgeInfo( int edge, bool active, const T& val, int curveType )
{
Assert( IsUsingCurveTypes() );
GetTypedCurveInfo()->SetEdgeInfo( edge, active, val, curveType );
}
template< class T >
void CDmeTypedLog< T >::SetDefaultEdgeZeroValue( const T& val )
{
Assert( IsUsingCurveTypes() );
GetTypedCurveInfo()->SetDefaultEdgeZeroValue( val );
}
template< class T >
const T& CDmeTypedLog< T >::GetDefaultEdgeZeroValue() const
{
Assert( IsUsingCurveTypes() );
return GetTypedCurveInfo()->GetDefaultEdgeZeroValue();
}
template< class T >
void CDmeTypedLog< T >::SetRightEdgeTime( DmeTime_t time )
{
Assert( IsUsingCurveTypes() );
GetTypedCurveInfo()->SetRightEdgeTime( time );
}
template< class T >
DmeTime_t CDmeTypedLog< T >::GetRightEdgeTime() const
{
Assert( IsUsingCurveTypes() );
return GetTypedCurveInfo()->GetRightEdgeTime();
}
template< class T >
void CDmeTypedLog< T >::GetEdgeInfo( int edge, bool& active, T& val, int& curveType ) const
{
Assert( IsUsingCurveTypes() );
GetTypedCurveInfo()->GetEdgeInfo( edge, active, val, curveType );
}
template< class T >
int CDmeTypedLog< T >::GetEdgeCurveType( int edge ) const
{
Assert( IsUsingCurveTypes() );
return GetTypedCurveInfo()->GetEdgeCurveType( edge );
}
template< class T >
void CDmeTypedLog< T >::GetZeroValue( int side, T& val ) const
{
Assert( IsUsingCurveTypes() );
GetTypedCurveInfo()->GetZeroValue( side, val );
}
template< class T >
bool CDmeTypedLog< T >::IsEdgeActive( int edge ) const
{
Assert( IsUsingCurveTypes() );
return GetTypedCurveInfo()->IsEdgeActive( edge );
}
template< class T >
void CDmeTypedLog< T >::GetEdgeValue( int edge, T& val ) const
{
Assert( IsUsingCurveTypes() );
GetTypedCurveInfo()->GetEdgeValue( edge, val );
}
template< class T >
void CDmeTypedLog< T >::BlendTimesUsingTimeSelection( const CDmeLogLayer *firstLayer, const CDmeLogLayer *secondLayer, CDmeLogLayer *outputLayer, const DmeLog_TimeSelection_t &params, DmeTime_t tStartOffset )
{
const CDmeTypedLogLayer< T > *topLayer = static_cast< const CDmeTypedLogLayer< T > * >( secondLayer );
if ( !topLayer )
return;
const CDmeTypedLogLayer< T > *baseLayer = static_cast< const CDmeTypedLogLayer< T > * >( firstLayer );
if ( !baseLayer )
return;
CDmeTypedLogLayer< T > *newLayer = static_cast< CDmeTypedLogLayer< T > * >( outputLayer );
if ( !newLayer )
return;
Assert( topLayer->GetKeyCount() == baseLayer->GetKeyCount() );
int i;
// Resample everything in the base layer first
int kc = baseLayer->GetKeyCount();
newLayer->ClearKeys();
for ( i = 0; i < kc; ++i )
{
DmeTime_t baseKeyTime = baseLayer->GetKeyTime( i );
DmeTime_t checkTime = baseKeyTime + tStartOffset;
if ( checkTime < params.m_nTimes[ TS_LEFT_FALLOFF ] )
continue;
if ( checkTime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
break;
float frac = params.GetAmountForTime( checkTime );
float frac2 = params.m_flIntensity;
float flInterp = frac2 * frac;
DmeTime_t targetKeyTime = topLayer->GetKeyTime( i );
DmeTime_t blendedKeyTime = Lerp( flInterp, baseKeyTime, targetKeyTime ) + tStartOffset;
T baseVal = baseLayer->GetKeyValue( i );
newLayer->InsertKey( blendedKeyTime, baseVal );
}
}
template< class T >
void CDmeTypedLog< T >::BlendLayersUsingTimeSelection( const CDmeLogLayer *firstLayer, const CDmeLogLayer *secondLayer, CDmeLogLayer *outputLayer, const DmeLog_TimeSelection_t &params, bool bUseBaseLayerSamples, DmeTime_t tStartOffset )
{
const CDmeTypedLogLayer< T > *topLayer = static_cast< const CDmeTypedLogLayer< T > * >( secondLayer );
if ( !topLayer )
return;
const CDmeTypedLogLayer< T > *baseLayer = static_cast< const CDmeTypedLogLayer< T > * >( firstLayer );
if ( !baseLayer )
return;
CDmeTypedLogLayer< T > *newLayer = static_cast< CDmeTypedLogLayer< T > * >( outputLayer );
if ( !newLayer )
return;
int i;
// Resample everything in the base layer first
int kc = baseLayer->GetKeyCount();
if ( bUseBaseLayerSamples )
{
for ( i = 0; i < kc; ++i )
{
DmeTime_t keyTime = baseLayer->GetKeyTime( i );
if ( keyTime < params.m_nTimes[ TS_LEFT_FALLOFF ] )
continue;
if ( keyTime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
break;
float frac = params.GetAmountForTime( keyTime );
float frac2 = params.m_flIntensity;
T baseVal = baseLayer->GetKeyValue( i );
T newVal = topLayer->GetValue( keyTime );
T blended = Interpolate( frac2 * frac, baseVal, newVal );
newLayer->SetKey( keyTime + tStartOffset, blended );
}
}
kc = topLayer->GetKeyCount();
for ( i = 0; i < kc; ++i )
{
DmeTime_t keyTime = topLayer->GetKeyTime( i );
DmeTime_t finalKeyTime = keyTime + tStartOffset;
if ( finalKeyTime < params.m_nTimes[ TS_LEFT_FALLOFF ] )
continue;
if ( finalKeyTime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
break;
float frac = params.GetAmountForTime( finalKeyTime );
float frac2 = params.m_flIntensity;
T baseVal = baseLayer->GetValue( keyTime );
T newVal = topLayer->GetKeyValue( i );
T blended = Interpolate( frac2 *frac, baseVal, newVal );
newLayer->InsertKey( finalKeyTime, blended );
}
if ( g_pDmElementFramework->GetPhase() == PH_EDIT )
{
newLayer->RemoveRedundantKeys( params.m_flThreshold );
}
}
template< class T >
void CDmeTypedLog< T >::BlendLayersUsingTimeSelection( const DmeLog_TimeSelection_t &params )
{
Assert( GetNumLayers() >= 2 );
int bestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer)
if ( bestLayer <= 0 )
return;
Assert( params.m_nResampleInterval > DmeTime_t( 0 ) );
if ( params.m_nResampleInterval < DmeTime_t( 0 ) )
return;
CDmeTypedLogLayer< T > *topLayer = GetLayer( bestLayer );
Assert( topLayer );
if ( !topLayer )
return;
CDmeTypedLogLayer< T > *baseLayer = GetLayer( 0 );
if ( !baseLayer )
return;
CDmeTypedLogLayer< T > *newLayer = static_cast< CDmeTypedLogLayer< T > * >( CreateLayer< T >( this ) );
if ( !newLayer )
return;
BlendLayersUsingTimeSelection( baseLayer, topLayer, newLayer, params, true, DMETIME_ZERO );
// Store it back into the new topmost layer
topLayer->CopyLayer( newLayer );
g_pDataModel->DestroyElement( newLayer->GetHandle() );
}
template< class T >
void CDmeTypedLog< T >::RevealUsingTimeSelection( const DmeLog_TimeSelection_t &params, CDmeLogLayer *savedLayer )
{
CDmeTypedLogLayer< T > *saved = static_cast< CDmeTypedLogLayer< T > * >( savedLayer );
if ( !saved )
return;
Assert( GetNumLayers() >= 2 );
int bestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer)
if ( bestLayer <= 0 )
return;
Assert( params.m_nResampleInterval > DmeTime_t( 0 ) );
if ( params.m_nResampleInterval < DmeTime_t( 0 ) )
return;
CDmeTypedLogLayer< T > *writeLayer = static_cast< CDmeTypedLogLayer< T > * >( GetLayer( bestLayer ) );
Assert( writeLayer );
if ( !writeLayer )
return;
CDmeLogLayer *baseLayer = GetLayer( 0 );
if ( !baseLayer )
return;
DmeTime_t resample = 0.5f * params.m_nResampleInterval;
// Do a second pass where we bis the keys in the falloff area back toward the original value
for ( int t = params.m_nTimes[ TS_LEFT_FALLOFF ].GetTenthsOfMS(); t < params.m_nTimes[ TS_RIGHT_FALLOFF ].GetTenthsOfMS() + resample.GetTenthsOfMS(); t += resample.GetTenthsOfMS() )
{
DmeTime_t curtime = DmeTime_t( t );
if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ];
float frac = params.GetAmountForTime( curtime );
frac *= params.m_flIntensity;
if ( frac <= 0.0f )
continue;
// Get current value in layer
T curValue = GetValueSkippingTopmostLayer( curtime );
T revealValue = saved->GetValue( curtime );
T newValue = Interpolate( frac, curValue, revealValue );
// Overwrite key
writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
if ( g_pDmElementFramework->GetPhase() == PH_EDIT )
{
writeLayer->RemoveRedundantKeys( params.m_flThreshold );
}
}
template< class T >
void RandomValue( const T& average, const T& oldValue, T& newValue )
{
newValue = oldValue;
}
template<> void RandomValue( const Vector& average, const Vector& oldValue, Vector& newValue )
{
newValue = oldValue;
for ( int i = 0; i < 3; ++i )
{
newValue[ i ] += RandomFloat( -fabs( average[ i ] ), fabs( average[ i ] ) );
}
}
template<> void RandomValue( const Quaternion& average, const Quaternion& oldValue, Quaternion& newValue )
{
newValue = oldValue;
for ( int i = 0; i < 4; ++i )
{
newValue[ i ] += RandomFloat( -fabs( average[ i ] ), fabs( average[ i ] ) );
}
}
template<> void RandomValue( const Vector4D& average, const Vector4D& oldValue, Vector4D& newValue )
{
newValue = oldValue;
for ( int i = 0; i < 4; ++i )
{
newValue[ i ] += RandomFloat( -fabs( average[ i ] ), fabs( average[ i ] ) );
}
}
template<> void RandomValue( const Vector2D& average, const Vector2D& oldValue, Vector2D& newValue )
{
newValue = oldValue;
for ( int i = 0; i < 2; ++i )
{
newValue[ i ] += RandomFloat( -fabs( average[ i ] ), fabs( average[ i ] ) );
}
}
template<> void RandomValue( const float& average, const float& oldValue, float& newValue )
{
newValue = oldValue + RandomFloat( -average, average );
}
template<> void RandomValue( const int& average, const int& oldValue, int& newValue )
{
newValue = oldValue + RandomInt( -average, average );
}
// Builds a layer with samples matching the times in reference layer, from the data in pDataLayer, putting the resulting keys into pOutputLayer
template< class T >
void CDmeTypedLog< T >::BuildCorrespondingLayer( const CDmeLogLayer *pReferenceLayer, const CDmeLogLayer *pDataLayer, CDmeLogLayer *pOutputLayer )
{
const CDmeTypedLogLayer< T > *ref = static_cast< const CDmeTypedLogLayer< T > * >( pReferenceLayer );
const CDmeTypedLogLayer< T > *data = static_cast< const CDmeTypedLogLayer< T > * >( pDataLayer );
CDmeTypedLogLayer< T > *out = static_cast< CDmeTypedLogLayer< T > * >( pOutputLayer );
if ( !ref || !data || !out )
{
Assert( 0 );
return;
}
bool usecurvetypes = ref->IsUsingCurveTypes();
out->ClearKeys();
int kc = ref->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t keyTime = ref->GetKeyTime( i );
T value = data->GetValue( keyTime );
out->InsertKey( keyTime, value, usecurvetypes ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
template< class T >
void CDmeTypedLog< T >::StaggerUsingTimeSelection( const DmeLog_TimeSelection_t& params, DmeTime_t tStaggerAmount, const CDmeLogLayer *pBaseLayer, CDmeLogLayer *pWriteLayer )
{
CDmeTypedLogLayer< T > *writeLayer = static_cast< CDmeTypedLogLayer< T > * >( pWriteLayer );
Assert( writeLayer );
if ( !writeLayer )
return;
const CDmeTypedLogLayer< T > *baseLayer = static_cast< const CDmeTypedLogLayer< T > * >( pBaseLayer );
if ( !baseLayer )
return;
writeLayer->ClearKeys();
DmeLog_TimeSelection_t newParams;
newParams = params;
// Move the hold area by the stagger amount
float flScaleFactor[ 2 ] = { 1.0f, 1.0f };
newParams.m_nTimes[ TS_LEFT_HOLD ] += tStaggerAmount;
newParams.m_nTimes[ TS_RIGHT_HOLD ] += tStaggerAmount;
for ( int i = 0; i < 2 ; ++i )
{
DmeTime_t dt = params.m_nTimes[ 2 * i + 1 ] - params.m_nTimes[ 2 * i ];
if ( dt > DMETIME_ZERO )
{
DmeTime_t newDt = newParams.m_nTimes[ 2 * i + 1 ] - newParams.m_nTimes[ 2 * i ];
flScaleFactor[ i ] = newDt / dt;
}
}
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t curtime = baseLayer->GetKeyTime( i );
T oldValue = baseLayer->GetKeyValue( i );
// Classify time
if ( curtime <= params.m_nTimes[ TS_LEFT_HOLD ] )
{
curtime = curtime * flScaleFactor[ 0 ];
}
else if ( curtime >= params.m_nTimes[ TS_RIGHT_HOLD ] )
{
curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ] - ( params.m_nTimes[ TS_RIGHT_FALLOFF ] - curtime ) * flScaleFactor[ 1 ];
}
else
{
curtime += tStaggerAmount;
}
writeLayer->InsertKey( curtime, oldValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
template< class T >
void CDmeTypedLog< T >::FilterUsingTimeSelection( IUniformRandomStream *random, const DmeLog_TimeSelection_t& params, int filterType, bool bResample, bool bApplyFalloff )
{
Assert( GetNumLayers() >= 2 );
int bestLayer = GetTopmostLayer(); // Topmost should be at least layer # 1 (0 is the base layer)
if ( bestLayer <= 0 )
return;
CDmeTypedLogLayer< T > *writeLayer = GetLayer( bestLayer );
Assert( writeLayer );
if ( !writeLayer )
return;
CDmeTypedLogLayer< T > *baseLayer = GetLayer( 0 );
if ( !baseLayer )
return;
FilterUsingTimeSelection( random, 1.0f, params, filterType, bResample, bApplyFalloff, baseLayer, writeLayer );
}
template< class T >
void CDmeTypedLog< T >::FilterUsingTimeSelection( IUniformRandomStream *random, float flScale, const DmeLog_TimeSelection_t& params, int filterType, bool bResample, bool bApplyFalloff, const CDmeLogLayer *pBaseLayer, CDmeLogLayer *pWriteLayer )
{
Assert( params.m_nResampleInterval > DmeTime_t( 0 ) );
if ( params.m_nResampleInterval < DmeTime_t( 0 ) )
return;
CDmeTypedLogLayer< T > *writeLayer = static_cast< CDmeTypedLogLayer< T > * >( pWriteLayer );
Assert( writeLayer );
if ( !writeLayer )
return;
const CDmeTypedLogLayer< T > *baseLayer = static_cast< const CDmeTypedLogLayer< T > * >( pBaseLayer );
if ( !baseLayer )
return;
writeLayer->ClearKeys();
DmeTime_t resample = 0.5f * params.m_nResampleInterval;
switch ( filterType )
{
default:
case FILTER_SMOOTH:
{
int t;
if ( bResample )
{
for ( t = params.m_nTimes[ TS_LEFT_FALLOFF ].GetTenthsOfMS(); t < params.m_nTimes[ TS_RIGHT_FALLOFF ].GetTenthsOfMS() + resample.GetTenthsOfMS(); t += resample.GetTenthsOfMS() )
{
DmeTime_t curtime = DmeTime_t( t );
if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ];
T curValue = baseLayer->GetValue( curtime );
writeLayer->SetKey( curtime, curValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
else
{
// Do a second pass where we bias the keys in the falloff area back toward the original value
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t curtime = baseLayer->GetKeyTime( i );
if ( curtime < params.m_nTimes[ TS_LEFT_FALLOFF ] )
continue;
if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
continue;
T oldValue = baseLayer->GetKeyValue( i );
writeLayer->InsertKey( curtime, oldValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
writeLayer->Filter2( params.m_nResampleInterval * 0.95f * flScale );
if ( bApplyFalloff )
{
if ( bResample )
{
// Do a second pass where we bias the keys in the falloff area back toward the original value
for ( t = params.m_nTimes[ TS_LEFT_FALLOFF ].GetTenthsOfMS(); t < params.m_nTimes[ TS_RIGHT_FALLOFF ].GetTenthsOfMS() + resample.GetTenthsOfMS(); t += resample.GetTenthsOfMS() )
{
DmeTime_t curtime = DmeTime_t( t );
if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ];
T oldValue = baseLayer->GetValue( curtime );
if ( curtime >= params.m_nTimes[ TS_LEFT_HOLD ] && curtime <= params.m_nTimes[ TS_RIGHT_HOLD ] )
continue;
// Modulate these keys back down toward the original value
T newValue = writeLayer->GetValue( curtime );
float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f;
newValue = Interpolate( frac, oldValue, newValue );
// Overwrite key
writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
else
{
// Do a second pass where we bias the keys in the falloff area back toward the original value
int kc = writeLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t curtime = writeLayer->GetKeyTime( i );
if ( curtime < params.m_nTimes[ TS_LEFT_FALLOFF ] )
continue;
if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
continue;
if ( curtime >= params.m_nTimes[ TS_LEFT_HOLD ] && curtime <= params.m_nTimes[ TS_RIGHT_HOLD ] )
continue;
T oldValue = baseLayer->GetValue( curtime );
// Modulate these keys back down toward the original value
T newValue = writeLayer->GetValue( curtime );
float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f;
newValue = Interpolate( frac, oldValue, newValue );
// Overwrite key
writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
}
if ( bResample )
{
writeLayer->RemoveRedundantKeys( params.m_flThreshold );
}
}
break;
case FILTER_JITTER:
{
// Compute average value in entire log
T average = Average( baseLayer->m_values.Base(), baseLayer->m_values.Count() );
average = ScaleValue( average, 0.05f * flScale );
if ( bResample )
{
int t;
for ( t = params.m_nTimes[ TS_LEFT_FALLOFF ].GetTenthsOfMS(); t < params.m_nTimes[ TS_RIGHT_FALLOFF ].GetTenthsOfMS() + resample.GetTenthsOfMS(); t += resample.GetTenthsOfMS() )
{
DmeTime_t curtime = DmeTime_t( t );
if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
curtime = params.m_nTimes[ TS_RIGHT_FALLOFF ];
float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f;
T oldValue = baseLayer->GetValue( curtime );
T newValue;
RandomValue( average, oldValue, newValue );
newValue = Interpolate( frac, oldValue, newValue );
writeLayer->SetKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
else
{
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t curtime = baseLayer->GetKeyTime( i );
if ( curtime < params.m_nTimes[ TS_LEFT_FALLOFF ] )
continue;
if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
continue;
float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f;
T oldValue = baseLayer->GetValue( curtime );
T newValue;
RandomValue( average, oldValue, newValue );
newValue = Interpolate( frac, oldValue, newValue );
writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
}
break;
case FILTER_SHARPEN:
case FILTER_SOFTEN:
{
writeLayer->ClearKeys();
bool bSharpen = filterType == FILTER_SHARPEN;
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t curtime = baseLayer->GetKeyTime( i );
if ( curtime < params.m_nTimes[ TS_LEFT_FALLOFF ] )
continue;
if ( curtime > params.m_nTimes[ TS_RIGHT_FALLOFF ] )
continue;
float frac = bApplyFalloff ? params.GetAmountForTime( curtime ) : 1.0f;
T oldValue = baseLayer->GetValue( curtime );
T newValue = oldValue;
if ( frac != 1.0f )
{
T crossingValue[ 2 ] = { oldValue, oldValue };
if ( curtime <= params.m_nTimes[ TS_LEFT_HOLD ] )
{
// Get the value at the crossing point (either green edge for sharpen, or left edge for soften...)
crossingValue[ 0 ] = baseLayer->GetValue( params.m_nTimes[ TS_LEFT_FALLOFF ] );
crossingValue[ 1 ] = baseLayer->GetValue( params.m_nTimes[ TS_LEFT_HOLD ] );
}
else if ( curtime >= params.m_nTimes[ TS_RIGHT_HOLD ] )
{
crossingValue[ 0 ] = baseLayer->GetValue( params.m_nTimes[ TS_RIGHT_FALLOFF ] );
crossingValue[ 1 ] = baseLayer->GetValue( params.m_nTimes[ TS_RIGHT_HOLD ] );
}
else
{
Assert( 0 );
}
T dynamicRange = Subtract( crossingValue[ 1 ], crossingValue[ 0 ] );
int iType = bSharpen ? INTERPOLATE_EASE_IN : INTERPOLATE_EASE_OUT;
Vector points[ 4 ];
points[ 0 ].Init();
points[ 1 ].Init( 0.0, 0.0, 0.0f );
points[ 2 ].Init( 1.0f, 1.0f, 0.0f );
points[ 3 ].Init();
Vector out;
Interpolator_CurveInterpolate
(
iType,
points[ 0 ], // unused
points[ 1 ],
points[ 2 ],
points[ 3 ], // unused
frac,
out
);
float flBias = clamp( out.y, 0.0f, 1.0f );
float dFrac = flScale * ( frac - flBias );
newValue = Add( oldValue, ScaleValue( dynamicRange, dFrac ) );
}
writeLayer->InsertKey( curtime, newValue, IsUsingCurveTypes() ? GetDefaultCurveType() : CURVE_DEFAULT );
}
}
break;
}
}
enum PasteState_t
{
PASTE_STATE_BEFORE = -1,
PASTE_STATE_RAMP_IN = 0,
PASTE_STATE_HOLD,
PASTE_STATE_RAMP_OUT,
PASTE_STATE_COUNT,
PASTE_STATE_AFTER = PASTE_STATE_COUNT,
};
template<class T >
static void CountClipboardSamples( int *pCount, CDmeTypedLogLayer< T > *pClipboard, const DmeLog_TimeSelection_t &params )
{
pCount[0] = pCount[1] = pCount[2] = 0;
int nKeyCount = pClipboard->GetKeyCount();
for ( int i = 0; i < nKeyCount; ++i )
{
DmeTime_t tKeyTime = pClipboard->GetKeyTime( i );
int nIndex = params.ComputeRegionForTime( tKeyTime ) - 1;
if ( nIndex < 0 || nIndex > 2 )
continue;
// Only count interstitial samples.. don't count ones that land exactly on boundaries
if ( tKeyTime != params.m_nTimes[nIndex] && tKeyTime != params.m_nTimes[nIndex+1] )
{
pCount[nIndex]++;
}
}
}
//-----------------------------------------------------------------------------
// Used by PasteAndRescaleSamples to determine if it should skip a transition or not
//-----------------------------------------------------------------------------
static inline bool ShouldSkipTransition( int nTransition, int nZeroField )
{
// NOTE: This is pretty tricky. The bits of the 'zero field' are set to true
// for each region whose source + dest region size is exactly 0 seconds.
// Here's the table this logic is reproducing:
// 0,1,2,3 are the time selection m_nTimes, and A,B,C are the regions
// 0 1 2 3
// | A | B | C |
//
// nZeroField bits
// C B A Skip transitions
// 0 0 0 none
// 0 0 1 2
// 0 1 0 2
// 0 1 1 1, 2
// 1 0 0 1
// 1 0 1 1, 2
// 1 1 0 1, 2
// 1 1 1 1, 2, 3
switch( nTransition )
{
default: case 0: return false;
case 1: return ( (( nZeroField & 0x1 ) != 0 ) || nZeroField >= 5 );
case 2: return ( nZeroField >= 2 );
case 3: return ( nZeroField == 7 );
}
}
template< class T >
void CDmeTypedLog< T >::PasteAndRescaleSamples(
const CDmeLogLayer *pBase,
const CDmeLogLayer *pDataLayer,
CDmeLogLayer *pOutputLayer,
const DmeLog_TimeSelection_t& srcParams,
const DmeLog_TimeSelection_t& destParams,
bool bBlendAreaInFalloffRegion )
{
Assert( GetNumLayers() >= 2 );
if ( GetNumLayers() < 2 )
return;
CDmeTypedLogLayer< T > *pClipboard = CastElement< CDmeTypedLogLayer< T > >( const_cast< CDmeLogLayer * >( pDataLayer ) );
// Could have passed in layer with wrong attribute type?!
Assert( pClipboard );
if ( !pClipboard )
return;
CDmeTypedLogLayer< T > *pBaseLayer = CastElement< CDmeTypedLogLayer< T > >( const_cast< CDmeLogLayer * >( pBase ) );
CDmeTypedLogLayer< T > *pWriteLayer = CastElement< CDmeTypedLogLayer< T > >( pOutputLayer );
Assert( pBaseLayer );
Assert( pWriteLayer );
// NOTE: Array index 0 is src (pClipboard), index 1 is dest (pWriteLayer)
DmeTime_t tStartTime[ PASTE_STATE_COUNT+1 ][ 2 ] =
{
{ DmeTime_t( srcParams.m_nTimes[ 0 ] ), DmeTime_t( destParams.m_nTimes[ 0 ] ) },
{ DmeTime_t( srcParams.m_nTimes[ 1 ] ), DmeTime_t( destParams.m_nTimes[ 1 ] ) },
{ DmeTime_t( srcParams.m_nTimes[ 2 ] ), DmeTime_t( destParams.m_nTimes[ 2 ] ) },
{ DmeTime_t( srcParams.m_nTimes[ 3 ] ), DmeTime_t( destParams.m_nTimes[ 3 ] ) },
};
// compute rescaling factors
int pDuration[ PASTE_STATE_COUNT ][ 2 ];
double pScaleFactor[ PASTE_STATE_COUNT ];
int nZeroField = 0;
for ( int i = 0; i < PASTE_STATE_COUNT; ++i )
{
for ( int s = 0; s < 2; ++s )
{
pDuration[ i ][ s ] = tStartTime[ i+1 ][ s ].GetTenthsOfMS() - tStartTime[ i ][ s ].GetTenthsOfMS();
}
// We're building up a bitfield to find which regions have src + dest durations of 0
// for use in determining which regions to completely skip processing
if ( pDuration[i][0] == 0 && pDuration[i][1] == 0 )
{
nZeroField |= ( 1 << i );
}
pScaleFactor[i] = 1.0;
if ( pDuration[ i ][ 0 ] > 0 )
{
pScaleFactor[i] = 1.0 / ( double )pDuration[ i ][ 0 ];
}
}
// Compute values used to paste into selection state transitions
T pStartValue[ PASTE_STATE_COUNT + 1 ] =
{
bBlendAreaInFalloffRegion ? pBaseLayer->GetValue( tStartTime[ PASTE_STATE_RAMP_IN ][ 1 ] ) : pClipboard->GetValue( tStartTime[ PASTE_STATE_RAMP_IN ][ 0 ] ),
pClipboard->GetValue( tStartTime[ PASTE_STATE_HOLD ][ 0 ] ),
pClipboard->GetValue( tStartTime[ PASTE_STATE_RAMP_OUT ][ 0 ] ),
bBlendAreaInFalloffRegion ? pBaseLayer->GetValue( tStartTime[ PASTE_STATE_AFTER ][ 1 ] ) : pClipboard->GetValue( tStartTime[ PASTE_STATE_AFTER ][ 0 ] )
};
// Compute state necessary to blend in the ramp in + ramp out regions
// NOTE: These computations are only used if bBlendAreaInFalloffRegion is true
T pBlendBase[ 2 ];
float pOOBlendLength[ 2 ];
DmeTime_t pBlendTime[ 2 ];
for ( int s = 0; s < 2; ++s )
{
pBlendTime[ s ] = destParams.m_nTimes[ TS_FALLOFF(s) ];
pBlendBase[ s ] = pBaseLayer->GetValue( pBlendTime[ s ] );
T holdValue = pBaseLayer->GetValue( destParams.m_nTimes[ TS_HOLD(s) ] );
Vector2D vec;
vec.x = destParams.m_nTimes[ TS_HOLD(s) ].GetSeconds() - pBlendTime[ s ].GetSeconds();
vec.y = LengthOf( Subtract( holdValue, pBlendBase[ s ] ) );
pOOBlendLength[ s ] = vec.Length();
if ( pOOBlendLength[ s ] != 0.0f )
{
pOOBlendLength[ s ] = 1.0f / pOOBlendLength[ s ];
}
}
// Count the number of samples on the clipboard in the various regions
int pKeyCount[PASTE_STATE_COUNT];
CountClipboardSamples( pKeyCount, pClipboard, srcParams );
// Walk the samples in the clipboard
int nKeyCount = pClipboard->GetKeyCount();
int nPrevState = PASTE_STATE_BEFORE;
DmeTime_t tLastWrittenTime = DMETIME_MINTIME;
DmeTime_t tMaxKeyTime = DMETIME_MAXTIME;
bool bCollapseSamples = false;
for ( int j = 0 ; j < nKeyCount; ++j )
{
DmeTime_t tKeyTime = pClipboard->GetKeyTime( j );
T val = pClipboard->GetKeyValue( j );
// Determine which state we're in
// NOTE: Don't use ComputeRegionForTime here because it includes
// the endpoint of the hold region into the hold region.
int nState;
for ( nState = nPrevState; nState < PASTE_STATE_COUNT; ++nState )
{
if ( tKeyTime < tStartTime[ nState + 1 ][ 0 ] )
break;
}
// This logic inserts a key if there is no sample in the clipboard at the transition time
bool bForceKey = false;
if ( nPrevState < nState )
{
nState = ++nPrevState;
// This logic will prevent samples at the hold start + end if
// the source + dest regions are 0 width and will only do the first and last
// if we're squeezing the entire time selection down to a single point.
bForceKey = true;
if ( nState != PASTE_STATE_AFTER )
{
bCollapseSamples = ( pKeyCount[nState] >= pDuration[nState][1] );
tMaxKeyTime = bCollapseSamples ? tStartTime[ nState ][ 1 ] : ( tStartTime[ nState+1 ][ 1 ] - DmeTime_t( pKeyCount[nState] + 1 ) );
}
else
{
bCollapseSamples = false;
tMaxKeyTime = DMETIME_MAXTIME;
}
// NOTE: This has to occur after collapse samples + max key time has been set
if ( ShouldSkipTransition( nState, nZeroField ) )
{
--j;
continue;
}
// Don't insert an extra key if the current one we're looking at is right at that point
if ( tKeyTime != tStartTime[ nPrevState ][ 0 ] )
{
tKeyTime = tStartTime[ nPrevState ][ 0 ];
val = pStartValue[nPrevState];
// We want to re-do this key, since we inserted a key beforehand
--j;
}
}
if ( nState == PASTE_STATE_BEFORE )
continue;
if ( nState == PASTE_STATE_AFTER && !bForceKey )
return;
// Compute destination time based on scale + offset
double flFactor = ( tKeyTime - tStartTime[ nState ][ 0 ] ).GetTenthsOfMS() * pScaleFactor[ nState ];
// FIXME: Fix the algorithm, then uncomment to get time-scaled falloff regions
// if ( nState == PASTE_STATE_RAMP_IN || nState == PASTE_STATE_RAMP_OUT )
// {
// int s = ( nState == PASTE_STATE_RAMP_IN ) ? 0 : 1;
// flFactor = ComputeInterpolationFactor( flFactor, destParams.m_nFalloffInterpolatorTypes[s] );
// }
double flTempTime = flFactor * pDuration[ nState ][ 1 ];
DmeTime_t tDestTime( (int)( flTempTime + 0.5 ) );
tDestTime += tStartTime[ nState ][ 1 ];
// Clamp necessary to not lose samples
// NOTE: The !bForceKey check here makes it so we don't clamp points
// in time corresponding to transitions of the time selection
if ( !bForceKey && ( tDestTime > tMaxKeyTime ) )
{
tDestTime = tMaxKeyTime;
}
if ( tMaxKeyTime != DMETIME_MAXTIME )
{
tMaxKeyTime += DMETIME_MINDELTA;
}
// This logic will cause *all* samples to appear if we have enough room for them
if ( !bCollapseSamples )
{
bForceKey = true;
}
// If we'd go outside our region and we're not forcing the key, then skip
if ( !bForceKey && tDestTime >= tStartTime[ nState+1 ][ 1 ] )
continue;
// Perform blending on ramp in + ramp out regions
if ( bBlendAreaInFalloffRegion && ( nState != PASTE_STATE_HOLD ) )
{
int nBlendIndex = ( nState < PASTE_STATE_HOLD ) ? 0 : 1;
T baseValue = pBaseLayer->GetValue( tDestTime );
Vector2D oldDist;
oldDist.x = tDestTime.GetSeconds() - pBlendTime[ nBlendIndex ].GetSeconds();
oldDist.y = LengthOf( Subtract( baseValue, pBlendBase[ nBlendIndex ] ) );
float flDistance = oldDist.Length();
float flFactorBlend = flDistance * pOOBlendLength[ nBlendIndex ];
flFactorBlend = destParams.AdjustFactorForInterpolatorType( flFactorBlend, nBlendIndex );
val = Interpolate( flFactorBlend, baseValue, val );
}
// Force key insertion when we transition between states
if ( bForceKey && ( tLastWrittenTime >= tDestTime ) )
{
tDestTime = tLastWrittenTime + DMETIME_MINDELTA;
}
// Insert the key into the log
if ( tLastWrittenTime < tDestTime )
{
pWriteLayer->InsertKey( tDestTime, val );
tLastWrittenTime = tDestTime;
}
}
}
template< class T >
void CDmeTypedLog< T >::PasteAndRescaleSamples(
const CDmeLogLayer *src, // clipboard data
const DmeLog_TimeSelection_t& srcParams, // clipboard time selection
const DmeLog_TimeSelection_t& destParams, // current time selection
bool bBlendAreaInFalloffRegion ) // blending behavior in falloff area of current time selection
{
CDmeLogLayer *pBaseLayer = GetLayer( 0 );
CDmeLogLayer *pWriteLayer = GetLayer( GetTopmostLayer() );
PasteAndRescaleSamples( pBaseLayer, src, pWriteLayer, srcParams, destParams, bBlendAreaInFalloffRegion );
}
template<>
void CDmeTypedLog< Vector >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target )
{
Assert( target );
Assert( GetDataType() != AT_FLOAT );
CDmeTypedLogLayer< Vector > *baseLayer = static_cast< CDmeTypedLogLayer< Vector > * >( GetLayer( 0 ) );
if ( !baseLayer )
return;
float flMin = FLT_MAX;
float flMax = FLT_MIN;
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t keyTime = baseLayer->GetKeyTime( i );
Vector keyValue = baseLayer->GetKeyValue( i );
float len = keyValue.Length();
if ( len < flMin )
{
flMin = len;
}
if ( len > flMax )
{
flMax = len;
}
target->InsertKey( keyTime, len );
}
for ( int i = 0; i < kc; ++i )
{
float keyValue = target->GetKeyValue( i );
float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f );
target->SetKeyValue( i, normalized );
}
if ( HasDefaultValue() )
{
target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue().Length(), flMin, flMax, 0.0f, 1.0f ) );
}
}
template<>
void CDmeTypedLog< Vector2D >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target )
{
Assert( target );
Assert( GetDataType() != AT_FLOAT );
CDmeTypedLogLayer< Vector2D > *baseLayer = static_cast< CDmeTypedLogLayer< Vector2D > * >( GetLayer( 0 ) );
if ( !baseLayer )
return;
float flMin = FLT_MAX;
float flMax = FLT_MIN;
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t keyTime = baseLayer->GetKeyTime( i );
Vector2D keyValue = baseLayer->GetKeyValue( i );
float len = keyValue.Length();
if ( len < flMin )
{
flMin = len;
}
if ( len > flMax )
{
flMax = len;
}
target->InsertKey( keyTime, len );
}
for ( int i = 0; i < kc; ++i )
{
float keyValue = target->GetKeyValue( i );
float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f );
target->SetKeyValue( i, normalized );
}
if ( HasDefaultValue() )
{
target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue().Length(), flMin, flMax, 0.0f, 1.0f ) );
}
}
template<>
void CDmeTypedLog< Vector4D >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target )
{
Assert( target );
Assert( GetDataType() != AT_FLOAT );
CDmeTypedLogLayer< Vector4D > *baseLayer = static_cast< CDmeTypedLogLayer< Vector4D > * >( GetLayer( 0 ) );
if ( !baseLayer )
return;
float flMin = FLT_MAX;
float flMax = FLT_MIN;
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t keyTime = baseLayer->GetKeyTime( i );
Vector4D keyValue = baseLayer->GetKeyValue( i );
float len = keyValue.Length();
if ( len < flMin )
{
flMin = len;
}
if ( len > flMax )
{
flMax = len;
}
target->InsertKey( keyTime, len );
}
for ( int i = 0; i < kc; ++i )
{
float keyValue = target->GetKeyValue( i );
float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f );
target->SetKeyValue( i, normalized );
}
if ( HasDefaultValue() )
{
target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue().Length(), flMin, flMax, 0.0f, 1.0f ) );
}
}
template<>
void CDmeTypedLog< int >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target )
{
Assert( target );
Assert( GetDataType() != AT_FLOAT );
CDmeTypedLogLayer< int > *baseLayer = static_cast< CDmeTypedLogLayer< int > * >( GetLayer( 0 ) );
if ( !baseLayer )
return;
float flMin = FLT_MAX;
float flMax = FLT_MIN;
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t keyTime = baseLayer->GetKeyTime( i );
int keyValue = baseLayer->GetKeyValue( i );
float len = (float)keyValue;
if ( len < flMin )
{
flMin = len;
}
if ( len > flMax )
{
flMax = len;
}
target->InsertKey( keyTime, len );
}
for ( int i = 0; i < kc; ++i )
{
float keyValue = target->GetKeyValue( i );
float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f );
target->SetKeyValue( i, normalized );
}
if ( HasDefaultValue() )
{
target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue(), flMin, flMax, 0.0f, 1.0f ) );
}
}
template<>
void CDmeTypedLog< float >::BuildNormalizedLayer( CDmeTypedLogLayer< float > *target )
{
Assert( target );
Assert( GetDataType() != AT_FLOAT );
CDmeTypedLogLayer< float > *baseLayer = static_cast< CDmeTypedLogLayer< float > * >( GetLayer( 0 ) );
if ( !baseLayer )
return;
float flMin = FLT_MAX;
float flMax = FLT_MIN;
int kc = baseLayer->GetKeyCount();
for ( int i = 0; i < kc; ++i )
{
DmeTime_t keyTime = baseLayer->GetKeyTime( i );
int keyValue = baseLayer->GetKeyValue( i );
float len = (float)keyValue;
if ( len < flMin )
{
flMin = len;
}
if ( len > flMax )
{
flMax = len;
}
target->InsertKey( keyTime, len );
}
for ( int i = 0; i < kc; ++i )
{
float keyValue = target->GetKeyValue( i );
float normalized = RemapVal( keyValue, flMin, flMax, 0.0f, 1.0f );
target->SetKeyValue( i, normalized );
}
if ( HasDefaultValue() )
{
target->GetTypedOwnerLog()->SetDefaultValue( RemapVal( GetDefaultValue(), flMin, flMax, 0.0f, 1.0f ) );
}
}
//-----------------------------------------------------------------------------
// Creates a log of a specific type
//-----------------------------------------------------------------------------
CDmeLog *CDmeLog::CreateLog( DmAttributeType_t type, DmFileId_t fileid )
{
switch ( type )
{
case AT_INT:
case AT_INT_ARRAY:
return CreateElement< CDmeIntLog >( "int log", fileid );
case AT_FLOAT:
case AT_FLOAT_ARRAY:
return CreateElement< CDmeFloatLog >( "float log", fileid );
case AT_BOOL:
case AT_BOOL_ARRAY:
return CreateElement< CDmeBoolLog >( "bool log", fileid );
case AT_COLOR:
case AT_COLOR_ARRAY:
return CreateElement< CDmeColorLog >( "color log", fileid );
case AT_VECTOR2:
case AT_VECTOR2_ARRAY:
return CreateElement< CDmeVector2Log >( "vector2 log", fileid );
case AT_VECTOR3:
case AT_VECTOR3_ARRAY:
return CreateElement< CDmeVector3Log >( "vector3 log", fileid );
case AT_VECTOR4:
case AT_VECTOR4_ARRAY:
return CreateElement< CDmeVector4Log >( "vector4 log", fileid );
case AT_QANGLE:
case AT_QANGLE_ARRAY:
return CreateElement< CDmeQAngleLog >( "qangle log", fileid );
case AT_QUATERNION:
case AT_QUATERNION_ARRAY:
return CreateElement< CDmeQuaternionLog >( "quaternion log", fileid );
case AT_VMATRIX:
case AT_VMATRIX_ARRAY:
return CreateElement< CDmeVMatrixLog >( "vmatrix log", fileid );
case AT_STRING:
case AT_STRING_ARRAY:
return CreateElement< CDmeStringLog >( "string log", fileid );
}
return NULL;
}
// Disallowed methods for types
//template<> void CDmeTypedLog< bool >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const bool& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< bool >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const bool& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< bool >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); }
//template<> void CDmeTypedLog< bool >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); }
//
//template<> void CDmeTypedLog< Color >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Color& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Color >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Color& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Color >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Color >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); }
//
//template<> void CDmeTypedLog< Vector4D >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Vector4D& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector4D >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector4D& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector4D >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector4D >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); }
//
//template<> void CDmeTypedLog< Vector2D >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Vector2D& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector2D >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector2D& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector2D >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector2D >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Vector& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Vector& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Vector >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); }
//template<> void CDmeTypedLog< VMatrix >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const VMatrix& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< VMatrix >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const VMatrix& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< VMatrix >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); }
//template<> void CDmeTypedLog< VMatrix >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); }
//
//template<> void CDmeTypedLog< Quaternion >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const Quaternion& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Quaternion >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const Quaternion& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Quaternion >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); }
//template<> void CDmeTypedLog< Quaternion >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); }
//
//template<> void CDmeTypedLog< QAngle >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const QAngle& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< QAngle >::_StampKeyAtHeadResample( const DmeLog_TimeSelection_t& params, const QAngle& value ) { Assert( 0 ); }
//template<> void CDmeTypedLog< QAngle >::StampKeyAtHead( const DmeLog_TimeSelection_t& params, const CDmAttribute *pAttr, uint index /*= 0*/ ) { Assert( 0 ); }
//template<> void CDmeTypedLog< QAngle >::FinishTimeSelection( DmeLog_TimeSelection_t& params ) { Assert( 0 ); }
//-----------------------------------------------------------------------------
// Helpers for particular types of log layers
//-----------------------------------------------------------------------------
void GenerateRotationLog( CDmeQuaternionLogLayer *pLayer, const Vector &vecAxis, DmeTime_t pTime[4], float pRevolutionsPerSec[4] )
{
for ( int i = 1; i < 4; ++i )
{
if ( pTime[i] < pTime[i-1] )
{
Warning( "Bogus times passed into GenerateRotationLog\n" );
return;
}
}
// Gets the initial value
matrix3x4_t initial;
Quaternion q = pLayer->GetValue( pTime[0] );
QuaternionMatrix( q, initial );
// Find the max rps, and compute the total rotation in degrees
// by the time we reach the transition points. The total rotation =
// integral from 0 to t of 360 * ( rate[i] - rate[i-1] ) t / tl + rate[i-1] )
// == 360 * ( ( rate[i] - rate[i-1] ) t^2 / 2 + rate[i-1] t )
float pTotalRotation[4];
float flMaxRPS = pRevolutionsPerSec[0];
pTotalRotation[0] = 0.0f;
for ( int i = 1; i < 4; ++i )
{
if ( pRevolutionsPerSec[i] > flMaxRPS )
{
flMaxRPS = pRevolutionsPerSec[i];
}
float dt = pTime[i].GetSeconds() - pTime[i-1].GetSeconds();
float dRot = pRevolutionsPerSec[i] - pRevolutionsPerSec[i-1];
pTotalRotation[i] = 360.0f * ( dRot * dt * 0.5 + pRevolutionsPerSec[i-1] * dt ) + pTotalRotation[i-1];
}
// We need to compute how long a single rotation takes, then create samples
// at 1/4 the frequency of that amount of time
VMatrix rot;
matrix3x4_t total;
QAngle angles;
float flMaxRotationTime = (flMaxRPS != 0.0f) ? ( 0.125f / flMaxRPS ) : ( pTime[3].GetSeconds() - pTime[0].GetSeconds() );
DmeTime_t dt( flMaxRotationTime );
for ( DmeTime_t t = pTime[0]; t <= pTime[3]; t += dt )
{
int i = ( t < pTime[1] ) ? 1 : ( ( t < pTime[2] ) ? 2 : 3 );
float flInterval = t.GetSeconds() - pTime[i-1].GetSeconds();
float flOOSegmentDur = pTime[i].GetSeconds() - pTime[i-1].GetSeconds();
if ( flOOSegmentDur == 0.0f )
{
Assert( flInterval == 0.0f );
flOOSegmentDur = 1.0f;
}
else
{
flOOSegmentDur = 1.0f / flOOSegmentDur;
}
float dRot = pRevolutionsPerSec[i] - pRevolutionsPerSec[i-1];
float flRotation = 360.0f * ( dRot * flInterval * flInterval * 0.5f * flOOSegmentDur + pRevolutionsPerSec[i-1] * flInterval ) + pTotalRotation[i-1];
MatrixBuildRotationAboutAxis( rot, vecAxis, flRotation );
ConcatTransforms( initial, rot.As3x4(), total );
MatrixToAngles( total, angles );
AngleQuaternion( angles, q );
pLayer->SetKey( t, q );
}
}
//-----------------------------------------------------------------------------
// Transforms a position log
//-----------------------------------------------------------------------------
void RotatePositionLog( CDmeVector3LogLayer *pPositionLog, const matrix3x4_t& matrix )
{
Assert( fabs( matrix[0][3] ) < 1e-3 && fabs( matrix[1][3] ) < 1e-3 && fabs( matrix[2][3] ) < 1e-3 );
Vector position;
int nCount = pPositionLog->GetKeyCount();
for ( int i = 0; i < nCount; ++i )
{
const Vector &srcPosition = pPositionLog->GetKeyValue( i );
VectorTransform( srcPosition, matrix, position );
pPositionLog->SetKeyValue( i, position );
}
}
//-----------------------------------------------------------------------------
// Transforms a orientation log
//-----------------------------------------------------------------------------
void RotateOrientationLog( CDmeQuaternionLogLayer *pOrientationLog, const matrix3x4_t& matrix, bool bPreMultiply = false )
{
Assert( fabs( matrix[0][3] ) < 1e-3 && fabs( matrix[1][3] ) < 1e-3 && fabs( matrix[2][3] ) < 1e-3 );
matrix3x4_t orientation, newOrientation;
Quaternion q;
int nCount = pOrientationLog->GetKeyCount();
for ( int i = 0; i < nCount; ++i )
{
const Quaternion &srcQuat = pOrientationLog->GetKeyValue( i );
QuaternionMatrix( srcQuat, orientation );
if ( bPreMultiply )
{
ConcatTransforms( matrix, orientation, newOrientation );
}
else
{
ConcatTransforms( orientation, matrix, newOrientation );
}
MatrixQuaternion( newOrientation, q );
pOrientationLog->SetKeyValue( i, q );
}
}