1248 lines
30 KiB
C++
Raw Normal View History

2020-04-22 12:56:21 -04:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// vis.c
#include <windows.h>
#include "vis.h"
#include "threads.h"
#include "stdlib.h"
#include "pacifier.h"
#include "vmpi.h"
#include "mpivis.h"
#include "tier1/strtools.h"
#include "collisionutils.h"
#include "tier0/icommandline.h"
#include "vmpi_tools_shared.h"
#include "ilaunchabledll.h"
#include "tools_minidump.h"
#include "loadcmdline.h"
#include "byteswap.h"
int g_numportals;
int portalclusters;
char inbase[32];
portal_t *portals;
leaf_t *leafs;
int c_portaltest, c_portalpass, c_portalcheck;
byte *uncompressedvis;
byte *vismap, *vismap_p, *vismap_end; // past visfile
int originalvismapsize;
int leafbytes; // (portalclusters+63)>>3
int leaflongs;
int portalbytes, portallongs;
bool fastvis;
bool nosort;
int totalvis;
portal_t *sorted_portals[MAX_MAP_PORTALS*2];
bool g_bUseRadius = false;
double g_VisRadius = 4096.0f * 4096.0f;
bool g_bLowPriority = false;
//=============================================================================
void PlaneFromWinding (winding_t *w, plane_t *plane)
{
Vector v1, v2;
// calc plane
VectorSubtract (w->points[2], w->points[1], v1);
VectorSubtract (w->points[0], w->points[1], v2);
CrossProduct (v2, v1, plane->normal);
VectorNormalize (plane->normal);
plane->dist = DotProduct (w->points[0], plane->normal);
}
/*
==================
NewWinding
==================
*/
winding_t *NewWinding (int points)
{
winding_t *w;
int size;
if (points > MAX_POINTS_ON_WINDING)
Error ("NewWinding: %i points, max %d", points, MAX_POINTS_ON_WINDING);
size = (int)(&((winding_t *)0)->points[points]);
w = (winding_t*)malloc (size);
memset (w, 0, size);
return w;
}
void pw(winding_t *w)
{
int i;
for (i=0 ; i<w->numpoints ; i++)
Msg ("(%5.1f, %5.1f, %5.1f)\n",w->points[i][0], w->points[i][1],w->points[i][2]);
}
void prl(leaf_t *l)
{
int i;
portal_t *p;
plane_t pl;
int count = l->portals.Count();
for (i=0 ; i<count ; i++)
{
p = l->portals[i];
pl = p->plane;
Msg ("portal %4i to leaf %4i : %7.1f : (%4.1f, %4.1f, %4.1f)\n",(int)(p-portals),p->leaf,pl.dist, pl.normal[0], pl.normal[1], pl.normal[2]);
}
}
//=============================================================================
/*
=============
SortPortals
Sorts the portals from the least complex, so the later ones can reuse
the earlier information.
=============
*/
int PComp (const void *a, const void *b)
{
if ( (*(portal_t **)a)->nummightsee == (*(portal_t **)b)->nummightsee)
return 0;
if ( (*(portal_t **)a)->nummightsee < (*(portal_t **)b)->nummightsee)
return -1;
return 1;
}
void BuildTracePortals( int clusterStart )
{
leaf_t *leaf = &leafs[g_TraceClusterStart];
g_numportals = leaf->portals.Count();
for ( int i = 0; i < g_numportals; i++ )
{
sorted_portals[i] = leaf->portals[i];
}
}
void SortPortals (void)
{
int i;
for (i=0 ; i<g_numportals*2 ; i++)
sorted_portals[i] = &portals[i];
if (nosort)
return;
qsort (sorted_portals, g_numportals*2, sizeof(sorted_portals[0]), PComp);
}
/*
==============
LeafVectorFromPortalVector
==============
*/
int LeafVectorFromPortalVector (byte *portalbits, byte *leafbits)
{
int i;
portal_t *p;
int c_leafs;
memset (leafbits, 0, leafbytes);
for (i=0 ; i<g_numportals*2 ; i++)
{
if ( CheckBit( portalbits, i ) )
{
p = portals+i;
SetBit( leafbits, p->leaf );
}
}
c_leafs = CountBits (leafbits, portalclusters);
return c_leafs;
}
/*
===============
ClusterMerge
Merges the portal visibility for a leaf
===============
*/
void ClusterMerge (int clusternum)
{
leaf_t *leaf;
// byte portalvector[MAX_PORTALS/8];
byte portalvector[MAX_PORTALS/4]; // 4 because portal bytes is * 2
byte uncompressed[MAX_MAP_LEAFS/8];
int i, j;
int numvis;
portal_t *p;
int pnum;
// OR together all the portalvis bits
memset (portalvector, 0, portalbytes);
leaf = &leafs[clusternum];
for (i=0 ; i < leaf->portals.Count(); i++)
{
p = leaf->portals[i];
if (p->status != stat_done)
Error ("portal not done %d %p %p\n", i, p, portals);
for (j=0 ; j<portallongs ; j++)
((long *)portalvector)[j] |= ((long *)p->portalvis)[j];
pnum = p - portals;
SetBit( portalvector, pnum );
}
// convert portal bits to leaf bits
numvis = LeafVectorFromPortalVector (portalvector, uncompressed);
#if 0
// func_viscluster makes this happen all the time because it allows a non-convex set of portals
// My analysis says this is ok, but it does make this check for errors in vis kind of useless
if ( CheckBit( uncompressed, clusternum ) )
Warning("WARNING: Cluster portals saw into cluster\n");
#endif
SetBit( uncompressed, clusternum );
numvis++; // count the leaf itself
// save uncompressed for PHS calculation
memcpy (uncompressedvis + clusternum*leafbytes, uncompressed, leafbytes);
qprintf ("cluster %4i : %4i visible\n", clusternum, numvis);
totalvis += numvis;
}
static int CompressAndCrosscheckClusterVis( int clusternum )
{
int optimized = 0;
byte compressed[MAX_MAP_LEAFS/8];
//
// compress the bit string
//
byte *uncompressed = uncompressedvis + clusternum*leafbytes;
for ( int i = 0; i < portalclusters; i++ )
{
if ( i == clusternum )
continue;
if ( CheckBit( uncompressed, i ) )
{
byte *other = uncompressedvis + i*leafbytes;
if ( !CheckBit( other, clusternum ) )
{
ClearBit( uncompressed, i );
optimized++;
}
}
}
int numbytes = CompressVis( uncompressed, compressed );
byte *dest = vismap_p;
vismap_p += numbytes;
if (vismap_p > vismap_end)
Error ("Vismap expansion overflow");
dvis->bitofs[clusternum][DVIS_PVS] = dest-vismap;
memcpy( dest, compressed, numbytes );
// check vis data
DecompressVis( vismap + dvis->bitofs[clusternum][DVIS_PVS], compressed );
return optimized;
}
/*
==================
CalcPortalVis
==================
*/
void CalcPortalVis (void)
{
int i;
// fastvis just uses mightsee for a very loose bound
if( fastvis )
{
for (i=0 ; i<g_numportals*2 ; i++)
{
portals[i].portalvis = portals[i].portalflood;
portals[i].status = stat_done;
}
return;
}
if (g_bUseMPI)
{
RunMPIPortalFlow();
}
else
{
RunThreadsOnIndividual (g_numportals*2, true, PortalFlow);
}
}
void CalcVisTrace (void)
{
RunThreadsOnIndividual (g_numportals*2, true, BasePortalVis);
BuildTracePortals( g_TraceClusterStart );
// NOTE: We only schedule the one-way portals out of the start cluster here
// so don't run g_numportals*2 in this case
RunThreadsOnIndividual (g_numportals, true, PortalFlow);
}
/*
==================
CalcVis
==================
*/
void CalcVis (void)
{
int i;
if (g_bUseMPI)
{
RunMPIBasePortalVis();
}
else
{
RunThreadsOnIndividual (g_numportals*2, true, BasePortalVis);
}
SortPortals ();
CalcPortalVis ();
//
// assemble the leaf vis lists by oring the portal lists
//
for ( i = 0; i < portalclusters; i++ )
{
ClusterMerge( i );
}
int count = 0;
// Now crosscheck each leaf's vis and compress
for ( i = 0; i < portalclusters; i++ )
{
count += CompressAndCrosscheckClusterVis( i );
}
Msg ("Optimized: %d visible clusters (%.2f%%)\n", count, count*100.0/totalvis);
Msg ("Total clusters visible: %i\n", totalvis);
Msg ("Average clusters visible: %i\n", totalvis / portalclusters);
}
void SetPortalSphere (portal_t *p)
{
int i;
Vector total, dist;
winding_t *w;
float r, bestr;
w = p->winding;
VectorCopy (vec3_origin, total);
for (i=0 ; i<w->numpoints ; i++)
{
VectorAdd (total, w->points[i], total);
}
for (i=0 ; i<3 ; i++)
total[i] /= w->numpoints;
bestr = 0;
for (i=0 ; i<w->numpoints ; i++)
{
VectorSubtract (w->points[i], total, dist);
r = VectorLength (dist);
if (r > bestr)
bestr = r;
}
VectorCopy (total, p->origin);
p->radius = bestr;
}
/*
============
LoadPortals
============
*/
void LoadPortals (char *name)
{
int i, j;
portal_t *p;
leaf_t *l;
char magic[80];
int numpoints;
winding_t *w;
int leafnums[2];
plane_t plane;
FILE *f;
// Open the portal file.
if ( g_bUseMPI )
{
// If we're using MPI, copy off the file to a temporary first. This will download the file
// from the MPI master, then we get to use nice functions like fscanf on it.
char tempPath[MAX_PATH], tempFile[MAX_PATH];
if ( GetTempPath( sizeof( tempPath ), tempPath ) == 0 )
{
Error( "LoadPortals: GetTempPath failed.\n" );
}
if ( GetTempFileName( tempPath, "vvis_portal_", 0, tempFile ) == 0 )
{
Error( "LoadPortals: GetTempFileName failed.\n" );
}
// Read all the data from the network file into memory.
FileHandle_t hFile = g_pFileSystem->Open(name, "r");
if ( hFile == FILESYSTEM_INVALID_HANDLE )
Error( "LoadPortals( %s ): couldn't get file from master.\n", name );
CUtlVector<char> data;
data.SetSize( g_pFileSystem->Size( hFile ) );
g_pFileSystem->Read( data.Base(), data.Count(), hFile );
g_pFileSystem->Close( hFile );
// Dump it into a temp file.
f = fopen( tempFile, "wt" );
fwrite( data.Base(), 1, data.Count(), f );
fclose( f );
// Open the temp file up.
f = fopen( tempFile, "rSTD" ); // read only, sequential, temporary, delete on close
}
else
{
f = fopen( name, "r" );
}
if ( !f )
Error ("LoadPortals: couldn't read %s\n",name);
if (fscanf (f,"%79s\n%i\n%i\n",magic, &portalclusters, &g_numportals) != 3)
Error ("LoadPortals %s: failed to read header", name);
if (stricmp(magic,PORTALFILE))
Error ("LoadPortals %s: not a portal file", name);
Msg ("%4i portalclusters\n", portalclusters);
Msg ("%4i numportals\n", g_numportals);
if (g_numportals * 2 >= MAX_PORTALS)
{
Error("The map overflows the max portal count (%d of max %d)!\n", g_numportals, MAX_PORTALS / 2 );
}
// these counts should take advantage of 64 bit systems automatically
leafbytes = ((portalclusters+63)&~63)>>3;
leaflongs = leafbytes/sizeof(long);
portalbytes = ((g_numportals*2+63)&~63)>>3;
portallongs = portalbytes/sizeof(long);
// each file portal is split into two memory portals
portals = (portal_t*)malloc(2*g_numportals*sizeof(portal_t));
memset (portals, 0, 2*g_numportals*sizeof(portal_t));
leafs = (leaf_t*)malloc(portalclusters*sizeof(leaf_t));
memset (leafs, 0, portalclusters*sizeof(leaf_t));
originalvismapsize = portalclusters*leafbytes;
uncompressedvis = (byte*)malloc(originalvismapsize);
vismap = vismap_p = dvisdata;
dvis->numclusters = portalclusters;
vismap_p = (byte *)&dvis->bitofs[portalclusters];
vismap_end = vismap + MAX_MAP_VISIBILITY;
for (i=0, p=portals ; i<g_numportals ; i++)
{
if (fscanf (f, "%i %i %i ", &numpoints, &leafnums[0], &leafnums[1])
!= 3)
Error ("LoadPortals: reading portal %i", i);
if (numpoints > MAX_POINTS_ON_WINDING)
Error ("LoadPortals: portal %i has too many points", i);
if ( (unsigned)leafnums[0] > portalclusters
|| (unsigned)leafnums[1] > portalclusters)
Error ("LoadPortals: reading portal %i", i);
w = p->winding = NewWinding (numpoints);
w->original = true;
w->numpoints = numpoints;
for (j=0 ; j<numpoints ; j++)
{
double v[3];
int k;
// scanf into double, then assign to vec_t
// so we don't care what size vec_t is
if (fscanf (f, "(%lf %lf %lf ) "
, &v[0], &v[1], &v[2]) != 3)
Error ("LoadPortals: reading portal %i", i);
for (k=0 ; k<3 ; k++)
w->points[j][k] = v[k];
}
fscanf (f, "\n");
// calc plane
PlaneFromWinding (w, &plane);
// create forward portal
l = &leafs[leafnums[0]];
l->portals.AddToTail(p);
p->winding = w;
VectorSubtract (vec3_origin, plane.normal, p->plane.normal);
p->plane.dist = -plane.dist;
p->leaf = leafnums[1];
SetPortalSphere (p);
p++;
// create backwards portal
l = &leafs[leafnums[1]];
l->portals.AddToTail(p);
p->winding = NewWinding(w->numpoints);
p->winding->numpoints = w->numpoints;
for (j=0 ; j<w->numpoints ; j++)
{
VectorCopy (w->points[w->numpoints-1-j], p->winding->points[j]);
}
p->plane = plane;
p->leaf = leafnums[0];
SetPortalSphere (p);
p++;
}
fclose (f);
}
/*
================
CalcPAS
Calculate the PAS (Potentially Audible Set)
by ORing together all the PVS visible from a leaf
================
*/
void CalcPAS (void)
{
int i, j, k, l, index;
int bitbyte;
long *dest, *src;
byte *scan;
int count;
byte uncompressed[MAX_MAP_LEAFS/8];
byte compressed[MAX_MAP_LEAFS/8];
Msg ("Building PAS...\n");
count = 0;
for (i=0 ; i<portalclusters ; i++)
{
scan = uncompressedvis + i*leafbytes;
memcpy (uncompressed, scan, leafbytes);
for (j=0 ; j<leafbytes ; j++)
{
bitbyte = scan[j];
if (!bitbyte)
continue;
for (k=0 ; k<8 ; k++)
{
if (! (bitbyte & (1<<k)) )
continue;
// OR this pvs row into the phs
index = ((j<<3)+k);
if (index >= portalclusters)
Error ("Bad bit in PVS"); // pad bits should be 0
src = (long *)(uncompressedvis + index*leafbytes);
dest = (long *)uncompressed;
for (l=0 ; l<leaflongs ; l++)
((long *)uncompressed)[l] |= src[l];
}
}
for (j=0 ; j<portalclusters ; j++)
{
if ( CheckBit( uncompressed, j ) )
{
count++;
}
}
//
// compress the bit string
//
j = CompressVis (uncompressed, compressed);
dest = (long *)vismap_p;
vismap_p += j;
if (vismap_p > vismap_end)
Error ("Vismap expansion overflow");
dvis->bitofs[i][DVIS_PAS] = (byte *)dest-vismap;
memcpy (dest, compressed, j);
}
Msg ("Average clusters audible: %i\n", count/portalclusters);
}
static void GetBoundsForFace( int faceID, Vector &faceMin, Vector &faceMax )
{
ClearBounds( faceMin, faceMax );
dface_t *pFace = &dfaces[faceID];
int i;
for( i = pFace->firstedge; i < pFace->firstedge + pFace->numedges; i++ )
{
int edgeID = dsurfedges[i];
if( edgeID < 0 )
{
edgeID = -edgeID;
}
dedge_t *pEdge = &dedges[edgeID];
dvertex_t *pVert0 = &dvertexes[pEdge->v[0]];
dvertex_t *pVert1 = &dvertexes[pEdge->v[1]];
AddPointToBounds( pVert0->point, faceMin, faceMax );
AddPointToBounds( pVert1->point, faceMin, faceMax );
}
}
// FIXME: should stick this in mathlib
static float GetMinDistanceBetweenBoundingBoxes( const Vector &min1, const Vector &max1,
const Vector &min2, const Vector &max2 )
{
if( IsBoxIntersectingBox( min1, max1, min2, max2 ) )
{
return 0.0f;
}
Vector axisDist;
int i;
for( i = 0; i < 3; i++ )
{
if( min1[i] <= max2[i] && max1[i] >= min2[i] )
{
// the intersection in this dimension.
axisDist[i] = 0.0f;
}
else
{
float dist1, dist2;
dist1 = min1[i] - max2[i];
dist2 = min2[i] - max1[i];
axisDist[i] = dist1 > dist2 ? dist1 : dist2;
Assert( axisDist[i] > 0.0f );
}
}
float mag = axisDist.Length();
Assert( mag > 0.0f );
return mag;
}
static float CalcDistanceFromLeafToWater( int leafNum )
{
byte uncompressed[MAX_MAP_LEAFS/8];
int j, k;
// If we know that this one doesn't see a water surface then don't bother doing anything.
if( ((dleafs[leafNum].contents & CONTENTS_TESTFOGVOLUME) == 0) && ( dleafs[leafNum].leafWaterDataID == -1 ) )
return 65535; // FIXME: make a define for this.
// First get the vis data..
int cluster = dleafs[leafNum].cluster;
if (cluster < 0)
return 65535; // FIXME: make a define for this.
DecompressVis( &dvisdata[dvis->bitofs[cluster][DVIS_PVS]], uncompressed );
float minDist = 65535.0f; // FIXME: make a define for this.
Vector leafMin, leafMax;
leafMin[0] = ( float )dleafs[leafNum].mins[0];
leafMin[1] = ( float )dleafs[leafNum].mins[1];
leafMin[2] = ( float )dleafs[leafNum].mins[2];
leafMax[0] = ( float )dleafs[leafNum].maxs[0];
leafMax[1] = ( float )dleafs[leafNum].maxs[1];
leafMax[2] = ( float )dleafs[leafNum].maxs[2];
/*
CUtlVector<listplane_t> temp;
// build a convex solid out of the planes so that we can get at the triangles.
for( j = dleafs[i].firstleafbrush; j < dleafs[i].firstleafbrush + dleafs[i].numleafbrushes; j++ )
{
dbrush_t *pBrush = &dbrushes[j];
for( k = pBrush->firstside; k < pBrush->firstside + pBrush->numsides; k++ )
{
dbrushside_t *pside = dbrushsides + k;
dplane_t *pplane = dplanes + pside->planenum;
AddListPlane( &temp, pplane->normal[0], pplane->normal[1], pplane->normal[2], pplane->dist );
}
CPhysConvex *pConvex = physcollision->ConvexFromPlanes( (float *)temp.Base(), temp.Count(), VPHYSICS_MERGE );
ConvertConvexToCollide( &pConvex,
temp.RemoveAll();
}
*/
// Iterate over all potentially visible clusters from this leaf
for (j = 0; j < dvis->numclusters; ++j)
{
// Don't need to bother if this is the same as the current cluster
if (j == cluster)
continue;
// If the cluster isn't in our current pvs, then get out of here.
if ( !CheckBit( uncompressed, j ) )
continue;
// Found a visible cluster, now iterate over all leaves
// inside that cluster
for (k = 0; k < g_ClusterLeaves[j].leafCount; ++k)
{
int nClusterLeaf = g_ClusterLeaves[j].leafs[k];
// Don't bother testing the ones that don't see a water boundary.
if( ((dleafs[nClusterLeaf].contents & CONTENTS_TESTFOGVOLUME) == 0) && ( dleafs[nClusterLeaf].leafWaterDataID == -1 ) )
continue;
// Find the minimum distance between each surface on the boundary of the leaf
// that we have the pvs for and each water surface in the leaf that we are testing.
int nFirstFaceID = dleafs[nClusterLeaf].firstleafface;
for( int leafFaceID = 0; leafFaceID < dleafs[nClusterLeaf].numleaffaces; ++leafFaceID )
{
int faceID = dleaffaces[nFirstFaceID + leafFaceID];
dface_t *pFace = &dfaces[faceID];
if( pFace->texinfo == -1 )
continue;
texinfo_t *pTexInfo = &texinfo[pFace->texinfo];
if( pTexInfo->flags & SURF_WARP )
{
// Woo hoo!!! We found a water face.
// compare the bounding box of the face with the bounding
// box of the leaf that we are looking from and see
// what the closest distance is.
// FIXME: this could be a face/face distance between the water
// face and the bounding volume of the leaf.
// Get the bounding box of the face
Vector faceMin, faceMax;
GetBoundsForFace( faceID, faceMin, faceMax );
float dist = GetMinDistanceBetweenBoundingBoxes( leafMin, leafMax, faceMin, faceMax );
if( dist < minDist )
{
minDist = dist;
}
}
}
}
}
return minDist;
}
static void CalcDistanceFromLeavesToWater( void )
{
int i;
for( i = 0; i < numleafs; i++ )
{
g_LeafMinDistToWater[i] = ( unsigned short )CalcDistanceFromLeafToWater( i );
}
}
//-----------------------------------------------------------------------------
// Using the PVS, compute the visible fog volumes from each leaf
//-----------------------------------------------------------------------------
static void CalcVisibleFogVolumes()
{
byte uncompressed[MAX_MAP_LEAFS/8];
int i, j, k;
// Clear the contents flags for water testing
for (i = 0; i < numleafs; ++i)
{
dleafs[i].contents &= ~CONTENTS_TESTFOGVOLUME;
g_LeafMinDistToWater[i] = 65535;
}
for (i = 0; i < numleafs; ++i)
{
// If we've already discovered that this leaf needs testing,
// no need to go through the work again...
if (dleafs[i].contents & CONTENTS_TESTFOGVOLUME)
{
Assert((dleafs[i].contents & (CONTENTS_SLIME | CONTENTS_WATER)) == 0);
continue;
}
// Don't bother checking fog volumes from solid leaves
if (dleafs[i].contents & CONTENTS_SOLID)
continue;
// Look only for leaves which are visible from leaves that have fluid in them.
if ( dleafs[i].leafWaterDataID == -1 )
continue;
// Don't bother about looking from CONTENTS_SLIME; we're not going to treat that as interesting.
// because slime is opaque
if ( dleafs[i].contents & CONTENTS_SLIME )
continue;
// First get the vis data..
int cluster = dleafs[i].cluster;
if (cluster < 0)
continue;
DecompressVis( &dvisdata[dvis->bitofs[cluster][DVIS_PVS]], uncompressed );
// Iterate over all potentially visible clusters from this leaf
for (j = 0; j < dvis->numclusters; ++j)
{
// Don't need to bother if this is the same as the current cluster
if (j == cluster)
continue;
if ( !CheckBit( uncompressed, j ) )
continue;
// Found a visible cluster, now iterate over all leaves
// inside that cluster
for (k = 0; k < g_ClusterLeaves[j].leafCount; ++k)
{
int nClusterLeaf = g_ClusterLeaves[j].leafs[k];
// Don't bother checking fog volumes from solid leaves
if ( dleafs[nClusterLeaf].contents & CONTENTS_SOLID )
continue;
// Don't bother checking from any leaf that's got fluid in it
if ( dleafs[nClusterLeaf].leafWaterDataID != -1 )
continue;
// Here, we've found a case where a non-liquid leaf is visible from a liquid leaf
// So, in this case, we have to do the expensive test during rendering.
dleafs[nClusterLeaf].contents |= CONTENTS_TESTFOGVOLUME;
}
}
}
}
//-----------------------------------------------------------------------------
// Compute the bounding box, excluding 3D skybox + skybox, add it to keyvalues
//-----------------------------------------------------------------------------
float DetermineVisRadius( )
{
float flRadius = -1;
// Check the max vis range to determine the vis radius
for (int i = 0; i < num_entities; ++i)
{
char* pEntity = ValueForKey(&entities[i], "classname");
if (!stricmp(pEntity, "env_fog_controller"))
{
flRadius = FloatForKey (&entities[i], "farz");
if (flRadius == 0.0f)
flRadius = -1.0f;
break;
}
}
return flRadius;
}
void MarkLeavesAsRadial()
{
for ( int i = 0; i < numleafs; i++ )
{
dleafs[i].flags |= LEAF_FLAGS_RADIAL;
}
}
int ParseCommandLine( int argc, char **argv )
{
int i;
for (i=1 ; i<argc ; i++)
{
if (!Q_stricmp(argv[i],"-threads"))
{
numthreads = atoi (argv[i+1]);
i++;
}
else if (!Q_stricmp(argv[i], "-fast"))
{
Msg ("fastvis = true\n");
fastvis = true;
}
else if (!Q_stricmp(argv[i], "-v") || !Q_stricmp(argv[i], "-verbose"))
{
Msg ("verbose = true\n");
verbose = true;
}
else if( !Q_stricmp( argv[i], "-radius_override" ) )
{
g_bUseRadius = true;
g_VisRadius = atof( argv[i+1] );
i++;
Msg( "Vis Radius = %4.2f\n", g_VisRadius );
g_VisRadius = g_VisRadius * g_VisRadius; // so distance check can be squared
}
else if( !Q_stricmp( argv[i], "-trace" ) )
{
g_TraceClusterStart = atoi( argv[i+1] );
i++;
g_TraceClusterStop = atoi( argv[i+1] );
i++;
Msg( "Tracing vis from cluster %d to %d\n", g_TraceClusterStart, g_TraceClusterStop );
}
else if (!Q_stricmp (argv[i],"-nosort"))
{
Msg ("nosort = true\n");
nosort = true;
}
else if (!Q_stricmp (argv[i],"-tmpin"))
strcpy (inbase, "/tmp");
else if( !Q_stricmp( argv[i], "-low" ) )
{
g_bLowPriority = true;
}
else if ( !Q_stricmp( argv[i], "-FullMinidumps" ) )
{
EnableFullMinidumps( true );
}
else if ( !Q_stricmp( argv[i], CMDLINEOPTION_NOVCONFIG ) )
{
}
else if ( !Q_stricmp( argv[i], "-vproject" ) || !Q_stricmp( argv[i], "-game" ) )
{
++i;
}
else if ( !Q_stricmp( argv[i], "-allowdebug" ) || !Q_stricmp( argv[i], "-steam" ) )
{
// nothing to do here, but don't bail on this option
}
// NOTE: the -mpi checks must come last here because they allow the previous argument
// to be -mpi as well. If it game before something else like -game, then if the previous
// argument was -mpi and the current argument was something valid like -game, it would skip it.
else if ( !Q_strncasecmp( argv[i], "-mpi", 4 ) || !Q_strncasecmp( argv[i-1], "-mpi", 4 ) )
{
if ( stricmp( argv[i], "-mpi" ) == 0 )
g_bUseMPI = true;
// Any other args that start with -mpi are ok too.
if ( i == argc - 1 )
break;
}
else if (argv[i][0] == '-')
{
Warning("VBSP: Unknown option \"%s\"\n\n", argv[i]);
i = 100000; // force it to print the usage
break;
}
else
break;
}
return i;
}
void PrintCommandLine( int argc, char **argv )
{
Warning( "Command line: " );
for ( int z=0; z < argc; z++ )
{
Warning( "\"%s\" ", argv[z] );
}
Warning( "\n\n" );
}
void PrintUsage( int argc, char **argv )
{
PrintCommandLine( argc, argv );
Warning(
"usage : vvis [options...] bspfile\n"
"example: vvis -fast c:\\hl2\\hl2\\maps\\test\n"
"\n"
"Common options:\n"
"\n"
" -v (or -verbose): Turn on verbose output (also shows more command\n"
" -fast : Only do first quick pass on vis calculations.\n"
" -mpi : Use VMPI to distribute computations.\n"
" -low : Run as an idle-priority process.\n"
" env_fog_controller specifies one.\n"
"\n"
" -vproject <directory> : Override the VPROJECT environment variable.\n"
" -game <directory> : Same as -vproject.\n"
"\n"
"Other options:\n"
" -novconfig : Don't bring up graphical UI on vproject errors.\n"
" -radius_override: Force a vis radius, regardless of whether an\n"
" -mpi_pw <pw> : Use a password to choose a specific set of VMPI workers.\n"
" -threads : Control the number of threads vbsp uses (defaults to the #\n"
" or processors on your machine).\n"
" -nosort : Don't sort portals (sorting is an optimization).\n"
" -tmpin : Make portals come from \\tmp\\<mapname>.\n"
" -tmpout : Make portals come from \\tmp\\<mapname>.\n"
" -trace <start cluster> <end cluster> : Writes a linefile that traces the vis from one cluster to another for debugging map vis.\n"
" -FullMinidumps : Write large minidumps on crash.\n"
" -x360 : Generate Xbox360 version of vsp\n"
" -nox360 : Disable generation Xbox360 version of vsp (default)\n"
"\n"
#if 1 // Disabled for the initial SDK release with VMPI so we can get feedback from selected users.
);
#else
" -mpi_ListParams : Show a list of VMPI parameters.\n"
"\n"
);
// Show VMPI parameters?
for ( int i=1; i < argc; i++ )
{
if ( V_stricmp( argv[i], "-mpi_ListParams" ) == 0 )
{
Warning( "VMPI-specific options:\n\n" );
bool bIsSDKMode = VMPI_IsSDKMode();
for ( int i=k_eVMPICmdLineParam_FirstParam+1; i < k_eVMPICmdLineParam_LastParam; i++ )
{
if ( (VMPI_GetParamFlags( (EVMPICmdLineParam)i ) & VMPI_PARAM_SDK_HIDDEN) && bIsSDKMode )
continue;
Warning( "[%s]\n", VMPI_GetParamString( (EVMPICmdLineParam)i ) );
Warning( VMPI_GetParamHelpString( (EVMPICmdLineParam)i ) );
Warning( "\n\n" );
}
break;
}
}
#endif
}
int RunVVis( int argc, char **argv )
{
char portalfile[1024];
char source[1024];
char mapFile[1024];
double start, end;
Msg( "Valve Software - vvis.exe (%s)\n", __DATE__ );
verbose = false;
LoadCmdLineFromFile( argc, argv, source, "vvis" );
int i = ParseCommandLine( argc, argv );
CmdLib_InitFileSystem( argv[ argc - 1 ] );
// The ExpandPath is just for VMPI. VMPI's file system needs the basedir in front of all filenames,
// so we prepend qdir here.
// XXX(johns): Somewhat preserving legacy behavior here to avoid changing tool behavior, there's no specific rhyme
// or reason to this. We get just the base name we were passed, discarding any directory or extension
// information. We then ExpandPath() it (see VMPI comment above), and tack on .bsp for the file access
// parts.
V_FileBase( argv[ argc - 1 ], mapFile, sizeof( mapFile ) );
V_strncpy( mapFile, ExpandPath( mapFile ), sizeof( mapFile ) );
V_strncat( mapFile, ".bsp", sizeof( mapFile ) );
// Source is just the mapfile without an extension at this point...
V_strncpy( source, mapFile, sizeof( mapFile ) );
V_StripExtension( source, source, sizeof( source ) );
if (i != argc - 1)
{
PrintUsage( argc, argv );
DeleteCmdLine( argc, argv );
CmdLib_Exit( 1 );
}
start = Plat_FloatTime();
if (!g_bUseMPI)
{
// Setup the logfile.
char logFile[512];
_snprintf( logFile, sizeof(logFile), "%s.log", source );
SetSpewFunctionLogFile( logFile );
}
// Run in the background?
if( g_bLowPriority )
{
SetLowPriority();
}
ThreadSetDefault ();
Msg ("reading %s\n", mapFile);
LoadBSPFile (mapFile);
if (numnodes == 0 || numfaces == 0)
Error ("Empty map");
ParseEntities ();
// Check the VMF for a vis radius
if (!g_bUseRadius)
{
float flRadius = DetermineVisRadius( );
if (flRadius > 0.0f)
{
g_bUseRadius = true;
g_VisRadius = flRadius * flRadius;
}
}
if ( g_bUseRadius )
{
MarkLeavesAsRadial();
}
if ( inbase[0] == 0 )
{
strcpy( portalfile, source );
}
else
{
sprintf ( portalfile, "%s%s", inbase, argv[i] );
Q_StripExtension( portalfile, portalfile, sizeof( portalfile ) );
}
strcat (portalfile, ".prt");
Msg ("reading %s\n", portalfile);
LoadPortals (portalfile);
// don't write out results when simply doing a trace
if ( g_TraceClusterStart < 0 )
{
CalcVis ();
CalcPAS ();
// We need a mapping from cluster to leaves, since the PVS
// deals with clusters for both CalcVisibleFogVolumes and
BuildClusterTable();
CalcVisibleFogVolumes();
CalcDistanceFromLeavesToWater();
visdatasize = vismap_p - dvisdata;
Msg ("visdatasize:%i compressed from %i\n", visdatasize, originalvismapsize*2);
Msg ("writing %s\n", mapFile);
WriteBSPFile (mapFile);
}
else
{
if ( g_TraceClusterStart < 0 || g_TraceClusterStart >= portalclusters || g_TraceClusterStop < 0 || g_TraceClusterStop >= portalclusters )
{
Error("Invalid cluster trace: %d to %d, valid range is 0 to %d\n", g_TraceClusterStart, g_TraceClusterStop, portalclusters-1 );
}
if ( g_bUseMPI )
{
Warning("Can't compile trace in MPI mode\n");
}
CalcVisTrace ();
WritePortalTrace(source);
}
end = Plat_FloatTime();
char str[512];
GetHourMinuteSecondsString( (int)( end - start ), str, sizeof( str ) );
Msg( "%s elapsed\n", str );
ReleasePakFileLumps();
DeleteCmdLine( argc, argv );
CmdLib_Cleanup();
return 0;
}
/*
===========
main
===========
*/
int main (int argc, char **argv)
{
CommandLine()->CreateCmdLine( argc, argv );
MathLib_Init( 2.2f, 2.2f, 0.0f, 1.0f, false, false, false, false );
InstallAllocationFunctions();
InstallSpewFunction();
VVIS_SetupMPI( argc, argv );
// Install an exception handler.
if ( g_bUseMPI && !g_bMPIMaster )
SetupToolsMinidumpHandler( VMPI_ExceptionFilter );
else
SetupDefaultToolsMinidumpHandler();
return RunVVis( argc, argv );
}
// When VVIS is used as a DLL (makes debugging vmpi vvis a lot easier), this is used to
// get it going.
class CVVisDLL : public ILaunchableDLL
{
public:
virtual int main( int argc, char **argv )
{
return ::main( argc, argv );
}
};
EXPOSE_SINGLE_INTERFACE( CVVisDLL, ILaunchableDLL, LAUNCHABLE_DLL_INTERFACE_VERSION );