source-engine/materialsystem/stdshaders/Engine_Post_ps2x.fxc

434 lines
17 KiB
Plaintext
Raw Normal View History

2020-04-22 12:56:21 -04:00
// STATIC: "CONVERT_TO_SRGB" "0..1" [ps20b][= g_pHardwareConfig->NeedsShaderSRGBConversion()] [PC]
// STATIC: "CONVERT_TO_SRGB" "0..0" [= 0] [XBOX]
// STATIC: "LINEAR_INPUT" "0..1" [ps20b]
// STATIC: "LINEAR_OUTPUT" "0..1" [ps20b]
// DYNAMIC: "AA_ENABLE" "0..1"
// rem DYNAMIC: "AA_DEBUG_MODE" "0..3"
#define AA_DEBUG_MODE 0
// DYNAMIC: "AA_QUALITY_MODE" "0..0" [ps20]
// DYNAMIC: "AA_QUALITY_MODE" "0..1" [ps20b]
// DYNAMIC: "AA_QUALITY_MODE" "0..1" [ps30]
// DYNAMIC: "AA_REDUCE_ONE_PIXEL_LINE_BLUR" "0..0" [ps20]
// DYNAMIC: "AA_REDUCE_ONE_PIXEL_LINE_BLUR" "0..1" [ps20b]
// DYNAMIC: "AA_REDUCE_ONE_PIXEL_LINE_BLUR" "0..1" [ps30]
// DYNAMIC: "COL_CORRECT_NUM_LOOKUPS" "0..4"
#define HDRTYPE HDR_TYPE_NONE
#include "common_ps_fxc.h"
#if !(defined(SHADER_MODEL_PS_2_B) || defined(SHADER_MODEL_PS_3_0))
// Only allow debug modes and high-quality mode if in ps2b or higher (not enough instruction slots in ps20)
#undef AA_DEBUG_MODE
#define AA_DEBUG_MODE 0
#endif
/*
* Engine_Post combines bloom (the final simple addition) with software anti-aliasing
* and colour-correction. Combining them has these benefits:
* (a) saves fillrate+bandwidth (big on PC)
* (b) saves calls to UpdateScreenEffectTexture (big on 360)
* (c) reduces quantization errors caused by multiple passes
* (d) improves AA quality (it works better on sRGB values than linear)
*
*
* Software AA Summary
* -------------------
*
* This AA process works by sampling neighbour pixels (4 or 8 of them):
*
* 5-tap filter: # 9-tap filter: ###
* (AA_QUALITY_MODE 0) ### (AA_QUALITY_MODE 1) ###
* # ###
*
* It then figures out which of these neighbours are 'unlike' the centre pixel.
* This is based on RGB distance, weighted by the maximum luminance of the samples
* (so the difference between 0.1 and 0.2 is the same as between 0.5 and 1.0).
* This detects high-contrast edges in both dark and bright scenes.
*
* It then counts how many 'unlike' samples there are. Some example cases for 5-tap:
*
* O # # # # #
* OOO OOO #OO OOO #O# #O#
* O O O # O #
* Zero One TwoA TwoB Three Four
*
* We then blend towards the average of the unlike neighbours, based on how many
* unlike neighbours there are. The key case is 'TwoA' - this detects stairstep pixels
* on non-axis-aligned edges. In that case, we blend the output colour towards the
* average of the unlike samples by 33%. This yields a 3-pixel transition (0->33->66->100)
* where before there was a 1-pixel transition (0->100).
*
* The 9-tap filter (which works the same as 5-tap, just with more samples and different
* weights) has two advantages over the 5-tap filter:
* - it can differentiate between stairsteps on 45-degree edges and near-horizontal edges
* (so the 5-tap version smudges 45-degree edges more than you want, e.g. chain-link fences)
* - it blurs less texture detail, by virtue of averaging out noise over more samples
*
* One problem case that both filters have to consider is one-pixel-thick lines (this is
* case 'TwoB' above). Sometimes you do want to soften these lines (for slivers of brightly-lit
* geometry in a dark area, e.g. a window frame), but sometimes you do NOT want to soften them
* (for thin geometry which is alternating between 1-pixel and 2-pixel thickness, e.g. cables,
* and also where 1-pixel lines appear in textures, e.g. roof tiles). So, blurring of 1-pixel
* lines is tunable (it defaults to half-blurred as a compromise between the want/don't cases),
* in the 'AA_REDUCE_ONE_PIXEL_LINE_BLUR' section below. Case TwoB is differentiated from TwoA by
* computing the centroid of the unlike samples (the centroid will be at zero for case TwoB,
* but not for TwoA).
*
*/
sampler BaseTextureSampler : register( s0 );
sampler FBTextureSampler : register( s1 );
sampler ColorCorrectionVolumeTexture0 : register( s2 );
sampler ColorCorrectionVolumeTexture1 : register( s3 );
sampler ColorCorrectionVolumeTexture2 : register( s4 );
sampler ColorCorrectionVolumeTexture3 : register( s5 );
float4 psTapOffs_Packed : register( c0 ); // psTapOffs_packed contains 1-pixel offsets: ( +dX, 0, +dY, -dX )
float4 tweakables : register( c1 ); // (x - AA strength/unused) (y - reduction of 1-pixel-line blur)
// (z - edge threshold multipler) (w - tap offset multiplier)
float4 uvTransform : register( c2 ); // Transform BaseTexture UVs for use with the FBTexture
float ColorCorrectionDefaultWeight : register( c3 );
float4 ColorCorrectionVolumeWeights : register( c4 );
float BloomFactor : register( c5 );
float4 GetBloomColor( float2 bloomUV )
{
#if ( LINEAR_INPUT == 1 )
{
// In this case, which is only used on OpenGL, we want sRGB data from this tex2D.
// Hence, we have to undo the sRGB conversion that we are forced to apply by OpenGL
return LinearToGamma( tex2D( BaseTextureSampler, bloomUV ) );
}
#else
{
return tex2D( BaseTextureSampler, bloomUV );
}
#endif
}
float4 PerformColorCorrection( float4 outColor, float2 fbTexCoord )
{
#if ( COL_CORRECT_NUM_LOOKUPS > 0 )
{
// NOTE: This code requires the color correction texture to be 32 units to be correct.
// This code will cause (0,0,0) to be read from 0.5f/32
// and (1,1,1) to be read from 31.5f/32
float4 offsetOutColor = outColor*(31.0f/32.0f) + (0.5f/32.0f);
outColor.rgb = outColor.rgb * ColorCorrectionDefaultWeight;
outColor.rgb += tex3D( ColorCorrectionVolumeTexture0, offsetOutColor.rgb ) * ColorCorrectionVolumeWeights.x;
#if ( COL_CORRECT_NUM_LOOKUPS > 1 )
{
outColor.rgb += tex3D( ColorCorrectionVolumeTexture1, offsetOutColor.rgb ) * ColorCorrectionVolumeWeights.y;
#if ( COL_CORRECT_NUM_LOOKUPS > 2 )
{
outColor.rgb += tex3D( ColorCorrectionVolumeTexture2, offsetOutColor.rgb ) * ColorCorrectionVolumeWeights.z;
#if ( COL_CORRECT_NUM_LOOKUPS > 3 )
{
outColor.rgb += tex3D( ColorCorrectionVolumeTexture3, offsetOutColor.rgb ) * ColorCorrectionVolumeWeights.w;
}
#endif
}
#endif
}
#endif
}
#endif
return outColor;
}
float3 PerformAA( float3 baseColor, float2 fbTexCoord, out float3 unlike, out float unlikeSum, out float lerpFactor )
{
float3 a, b, c, d, e, f, g, h;
float3 dA, dB, dC, dD, dE, dF, dG, dH;
float4 deltas, deltas2;
float4 weights, weights2;
float4 lumS;
float maxLumS;
// Set FAST_DELTAS to '1' to use Manhattan distance (in colour-space) rather than Euclidean distance:
const int FAST_DELTAS = 1;
#if AA_QUALITY_MODE == 0
const float COLOUR_DELTA_BASE = (FAST_DELTAS == 0) ? 0.11f : 0.5f;
const float COLOUR_DELTA_CONTRAST = 100;
// Scaling down colour deltas (DELTA_SCALE) reduces the over-blurring of 45-degree edges
// by the 5-tap filter. Conversely, increasing it smooths stairsteps more strongly.
const float DELTA_SCALE = 0.75f;
#else // AA_QUALITY_MODE == 0
const float COLOUR_DELTA_BASE = (FAST_DELTAS == 0) ? 0.24f : 0.65f;
const float COLOUR_DELTA_CONTRAST = 100;
const float DELTA_SCALE = 1.0f;
#endif // AA_QUALITY_MODE == 0
const float MAX_LERP_FACTOR = 0.66f;
const float SQRT3 = 1.73205080757f;
float onePixelLineBlurReduction = tweakables.y;
// psTapOffs_packed contains 1-pixel offsets: ( +dX, 0, +dY, -dX )
float4 texelDelta = psTapOffs_Packed*tweakables.w;
// Allowed ps20 swizzles:
// .xyzw on (+dX,0,+dY,-dX) gives: (+dX, 0) & (-dX, 0) (former with 'add', latter with 'sub')
// .yzxw on (+dX,0,+dY,-dX) gives: ( 0,+dY) & ( 0,-dY)
// .wzyx on (+dX,0,+dY,-dX) gives: (-dX,+dY) & (+dX,-dY)
// .zxyw on (not used)
// NOTE: These don't give us (+dX,+dY) and (-dX,-dY), we need to copy +dY: ( +dX, 0, +dY, -dX ) -> ( +dX, +dY, +dY, -dX )
// NOTE: tex2D() can't swizzle the source register in ps2x, so we have no
// choice but to add each float2 offset to fbTexCoord one at a time :o/
a = tex2D( FBTextureSampler, fbTexCoord + texelDelta.yz ).rgb; // ( 0,+1)
b = tex2D( FBTextureSampler, fbTexCoord + texelDelta.xy ).rgb; // (+1, 0)
c = tex2D( FBTextureSampler, fbTexCoord - texelDelta.yz ).rgb; // ( 0,-1)
d = tex2D( FBTextureSampler, fbTexCoord - texelDelta.xy ).rgb; // (-1, 0)
#if AA_QUALITY_MODE == 1
// 9-tap method (do diagonal neighbours too)
e = tex2D( FBTextureSampler, fbTexCoord + texelDelta.wz ).rgb; // (-1,+1)
f = tex2D( FBTextureSampler, fbTexCoord - texelDelta.wz ).rgb; // (+1,-1)
texelDelta.y = texelDelta.z; // Can't quite get all 8 sample offsets from a single float4 with the allowed swizzles! :o/
g = tex2D( FBTextureSampler, fbTexCoord + texelDelta.xy ).rgb; // (+1,+1)
h = tex2D( FBTextureSampler, fbTexCoord - texelDelta.xy ).rgb; // (-1,-1)
#endif // AA_QUALITY_MODE == 1
// Compute the like<-->unlike weights
dA = a - baseColor;
dB = b - baseColor;
dC = c - baseColor;
dD = d - baseColor;
#if AA_QUALITY_MODE == 1
dE = e - baseColor;
dF = f - baseColor;
dG = g - baseColor;
dH = h - baseColor;
#endif // AA_QUALITY_MODE == 1
#if ( FAST_DELTAS == 0 )
{
// Colour-space Euclidean distance
deltas = float4( dot(dA, dA), dot(dB, dB), dot(dC, dC), dot(dD, dD) );
deltas = DELTA_SCALE*DELTA_SCALE*(deltas / 3);
deltas = sqrt(deltas);
}
#else
{
// Colour-space Manhattan distance
// OPT: to avoid the 'abs', try dividing colours by maxLumS then dotprodding w/ baseColor
deltas.x = dot( abs( dA ), 1 );
deltas.y = dot( abs( dB ), 1 );
deltas.z = dot( abs( dC ), 1 );
deltas.w = dot( abs( dD ), 1 );
deltas *= DELTA_SCALE;
}
#endif
weights = deltas;
#if AA_QUALITY_MODE == 1
#if ( FAST_DELTAS == 0 )
{
deltas2 = float4( dot(dE, dE), dot(dF, dF), dot(dG, dG), dot(dH, dH) );
deltas2 = DELTA_SCALE*DELTA_SCALE*(deltas2 / 3);
deltas2 = sqrt(deltas2);
}
#else
{
deltas2.x = dot( abs( dE ), 1);
deltas2.y = dot( abs( dF ), 1);
deltas2.z = dot( abs( dG ), 1);
deltas2.w = dot( abs( dH ), 1);
deltas2 *= DELTA_SCALE;
}
#endif
weights2 = deltas2;
#endif // AA_QUALITY_MODE == 1
// Adjust weights relative to maximum sample luminance (local, relative contrast: 0.1 Vs 0.2 is the same as 0.5 Vs 1.0)
lumS = float4( dot(a, a), dot(b, b), dot(c, c), dot(d, d) );
lumS.xy = max( lumS.xy, lumS.wz );
lumS.x = max( lumS.x, lumS.y );
maxLumS = max( lumS.x, dot( baseColor, baseColor ) );
#if AA_QUALITY_MODE == 1
lumS = float4( dot(e, e), dot(f, f), dot(g, g), dot(h, h) );
lumS.xy = max( lumS.xy, lumS.wz );
lumS.x = max( lumS.x, lumS.y );
maxLumS = max( lumS.x, maxLumS );
#endif // AA_QUALITY_MODE == 1
float lumScale = 1.0f / sqrt( maxLumS );
weights *= lumScale;
#if AA_QUALITY_MODE == 1
weights2 *= lumScale;
#endif // AA_QUALITY_MODE == 1
// Contrast-adjust weights such that only large contrast differences are taken into account
// (pushes weights to 0.0 for 'like' neighbours and to 1.0 for 'unlike' neighbours)
float colourDeltaBase = tweakables.z*COLOUR_DELTA_BASE;
weights = saturate(colourDeltaBase + COLOUR_DELTA_CONTRAST*(weights - colourDeltaBase));
#if AA_QUALITY_MODE == 1
weights2 = saturate(colourDeltaBase + COLOUR_DELTA_CONTRAST*(weights2 - colourDeltaBase));
#endif // AA_QUALITY_MODE == 1
// Determine the average 'unlike' colour
unlikeSum = dot(weights, 1);
unlike = weights.x*a + weights.y*b + weights.z*c + weights.w*d;
#if AA_QUALITY_MODE == 1
unlikeSum += dot(weights2, 1);
unlike += weights2.x*e + weights2.y*f + weights2.z*g + weights2.w*h;
#endif // AA_QUALITY_MODE == 1
// NOTE: this can cause div-by-zero, but lerpFactor ends up at zero in that case so it doesn't matter
unlike = unlike / unlikeSum;
#if AA_REDUCE_ONE_PIXEL_LINE_BLUR
// Reduce lerpFactor for 1-pixel-thick lines - otherwise you lose texture detail, and it looks
// really weird where geometry (e.g. cables) alternates between being 1 and 2 pixels thick.
// [ The "*2" below is because the values here were tuned to reduce blurring one 1-pixel lines
// by about half (which is a good compromise between the bad cases at either end). So you
// want the controlling convar to default to 0.5 ]
const float ONE_PIXEL_LINE_BIAS_BASE = 0.4f;
const float ONE_PIXEL_LINE_BIAS_CONTRAST = 16.0f;
float2 unlikeCentroid = 0;
unlikeCentroid.x += dot( 1-weights, float4( 0, +1, 0, -1 ) ); // This 2x4 matrix is the transpose of
unlikeCentroid.y += dot( 1-weights, float4( +1, 0, -1, 0 ) ); // the neighbour sample texel offsets
#if AA_QUALITY_MODE == 0
unlikeCentroid /= 4 - unlikeSum;
#else // AA_QUALITY_MODE == 0
unlikeCentroid.x += dot( 1-weights2, float4( -1, +1, +1, -1 ) );
unlikeCentroid.y += dot( 1-weights2, float4( +1, -1, +1, -1 ) );
unlikeCentroid /= 8 - unlikeSum;
#endif // AA_QUALITY_MODE == 0
float onePixelLineBias = 1 - saturate( length(unlikeCentroid) ); // OPTIMIZE: try using distSquared, remove this sqrt
onePixelLineBias = onePixelLineBlurReduction*saturate(ONE_PIXEL_LINE_BIAS_BASE + ONE_PIXEL_LINE_BIAS_CONTRAST*(onePixelLineBias - ONE_PIXEL_LINE_BIAS_BASE));
#if AA_QUALITY_MODE == 0
unlikeSum -= 2*onePixelLineBias*0.4f*saturate( 3 - unlikeSum ); // The 'min' thing avoids this affecting lone/pair pixels
#else // AA_QUALITY_MODE == 0
unlikeSum -= 2*onePixelLineBias*1.9f*saturate( 7 - unlikeSum );
#endif // AA_QUALITY_MODE == 0
#endif // AA_REDUCE_ONE_PIXEL_LINE_BLUR
// Compute the lerp factor we use to blend between 'baseColor' and 'unlike'.
// We want to lerp 'stairstep' pixels (which have 2 unlike neighbours)
// 33% towards the 'unlike' colour, such that these hard, 1-pixel transitions
// (0% -> 100%) become soft, 3-pixel transitions (0% -> 33% -> 66% -> 100%).
float strengthMultiplier = tweakables.x;
#if ( AA_QUALITY_MODE == 0 )
{
lerpFactor = saturate( strengthMultiplier*DELTA_SCALE*( (unlikeSum - 1) / 3 ) );
// Uncomment the following to blend slightly across vertical/horizontal edges (better for 45-degree edges, worse for 90-degree edges)
//lerpFactor = saturate( strengthMultiplier*DELTA_SCALE*( unlikeSum / 6 ) );
}
#else // AA_QUALITY_MODE != 0
{
lerpFactor = saturate( strengthMultiplier*DELTA_SCALE*( (unlikeSum - 3) / 3 ) );
}
#endif
// Clamp the blend factor so that lone dot pixels aren't blurred into oblivion
lerpFactor = min( lerpFactor, MAX_LERP_FACTOR );
baseColor = lerp( baseColor, unlike, lerpFactor );
return baseColor;
}
float4 GenerateAADebugColor( float4 outColor, float3 unlike, float unlikeSum, float lerpFactor )
{
#if ( AA_DEBUG_MODE == 1 )
{
// Debug: Visualize the number of 'unlike' samples
outColor.rgb = 0;
if ( AA_QUALITY_MODE == 0 )
{
if (unlikeSum >= 0.95f) outColor.rgb = float3(1,0,0);
if (unlikeSum >= 1.95f) outColor.rgb = float3(0,1,0);
if (unlikeSum >= 2.95f) outColor.rgb = float3(0,0,1);
}
else
{
if (unlikeSum >= 2.95f) outColor.rgb = float3(1,0,0);
if (unlikeSum >= 3.95f) outColor.rgb = float3(0,1,0);
if (unlikeSum >= 4.95f) outColor.rgb = float3(0,0,1);
}
// Don't sRGB-write
}
#elif ( AA_DEBUG_MODE == 2 )
{
// Debug: Visualize the strength of lerpFactor
outColor.rgb = 0;
outColor.g = lerpFactor;
// Don't sRGB-write
}
#elif ( AA_DEBUG_MODE == 3 )
{
// Debug: Visualize the 'unlike' colour that we blend towards
outColor.rgb = lerp( 0, unlike, saturate(5*lerpFactor) );
// Do sRGB-write (if it's enabled)
outColor = FinalOutput( outColor, 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_NONE );
}
#endif
return outColor;
}
float2 PerformUVTransform( float2 bloomUVs )
{
// NOTE: 'wz' is used since 'zw' is not a valid swizzle for ps20 shaders
return bloomUVs*uvTransform.wz + uvTransform.xy;
}
struct PS_INPUT
{
float2 baseTexCoord : TEXCOORD0;
#if defined( _X360 ) //avoid a shader patch on 360 due to pixel shader inputs being fewer than vertex shader outputs
float2 ZeroTexCoord : TEXCOORD1;
float2 bloomTexCoord : TEXCOORD2;
#endif
};
float4 main( PS_INPUT i ) : COLOR
{
float2 fbTexCoord = PerformUVTransform( i.baseTexCoord );
float3 baseColor = tex2D( FBTextureSampler, fbTexCoord ).rgb;
#if ( LINEAR_INPUT == 1 )
{
// In this case, which is only used on OpenGL, we want sRGB data from this tex2D.
// Hence, we have to undo the sRGB conversion that we are forced to apply by OpenGL
baseColor = LinearToGamma( baseColor );
}
#endif
float4 outColor = float4( baseColor, 1 );
#if ( AA_ENABLE == 1 )
{
float unlikeSum, lerpFactor;
float3 unlike;
outColor.rgb = PerformAA( outColor.rgb, fbTexCoord, unlike, unlikeSum, lerpFactor );
#if ( AA_DEBUG_MODE > 0 )
{
return GenerateAADebugColor( outColor, unlike, unlikeSum, lerpFactor );
}
#endif
}
#endif
float4 bloomColor = BloomFactor * GetBloomColor( i.baseTexCoord );
outColor.rgb += bloomColor.rgb;
outColor = PerformColorCorrection( outColor, fbTexCoord );
outColor = FinalOutput( outColor, 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_NONE );
// Go to linear since we're forced to do an sRGB write on OpenGL in ps2b
#if ( LINEAR_OUTPUT == 1 )
{
outColor = GammaToLinear( outColor );
}
#endif
return outColor;
}