source-engine/utils/vrad/vraddetailprops.cpp

1037 lines
31 KiB
C++
Raw Normal View History

2020-04-22 12:56:21 -04:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Revision: $
// $NoKeywords: $
//
// This file contains code to allow us to associate client data with bsp leaves.
//
//=============================================================================//
#include "vrad.h"
#include "Bsplib.h"
#include "GameBSPFile.h"
#include "UtlBuffer.h"
#include "utlvector.h"
#include "CModel.h"
#include "studio.h"
#include "pacifier.h"
#include "vraddetailprops.h"
#include "mathlib/halton.h"
#include "messbuf.h"
#include "byteswap.h"
bool LoadStudioModel( char const* pModelName, CUtlBuffer& buf );
//-----------------------------------------------------------------------------
// Purpose: Writes a glview text file containing the collision surface in question
// Input : *pCollide -
// *pFilename -
//-----------------------------------------------------------------------------
void DumpRayToGlView( Ray_t const& ray, float dist, Vector* pColor, const char *pFilename )
{
Vector dir = ray.m_Delta;
float len = VectorNormalize(dir);
if (len < 1e-3)
return;
Vector up( 0, 0, 1 );
Vector crossDir;
if (fabs(DotProduct(up, dir)) - 1.0f < -1e-3 )
{
CrossProduct( dir, up, crossDir );
VectorNormalize(crossDir);
}
else
{
up.Init( 0, 1, 0 );
CrossProduct( dir, up, crossDir );
VectorNormalize(crossDir);
}
Vector end;
Vector start1, start2;
VectorMA( ray.m_Start, dist, ray.m_Delta, end );
VectorMA( ray.m_Start, -2, crossDir, start1 );
VectorMA( ray.m_Start, 2, crossDir, start2 );
FileHandle_t fp = g_pFileSystem->Open( pFilename, "a" );
int vert = 0;
CmdLib_FPrintf( fp, "3\n" );
CmdLib_FPrintf( fp, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", start1.x, start1.y, start1.z,
pColor->x, pColor->y, pColor->z );
vert++;
CmdLib_FPrintf( fp, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", start2.x, start2.y, start2.z,
pColor->x, pColor->y, pColor->z );
vert++;
CmdLib_FPrintf( fp, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", end.x, end.y, end.z,
pColor->x, pColor->y, pColor->z );
vert++;
g_pFileSystem->Close( fp );
}
//-----------------------------------------------------------------------------
// This puppy is used to construct the game lumps
//-----------------------------------------------------------------------------
static CUtlVector<DetailPropLightstylesLump_t> s_DetailPropLightStyleLumpLDR;
static CUtlVector<DetailPropLightstylesLump_t> s_DetailPropLightStyleLumpHDR;
static CUtlVector<DetailPropLightstylesLump_t> *s_pDetailPropLightStyleLump = &s_DetailPropLightStyleLumpLDR;
//-----------------------------------------------------------------------------
// An amount to add to each model to get to the model center
//-----------------------------------------------------------------------------
CUtlVector<Vector> g_ModelCenterOffset;
CUtlVector<Vector> g_SpriteCenterOffset;
void VRadDetailProps_SetHDRMode( bool bHDR )
{
if( bHDR )
{
s_pDetailPropLightStyleLump = &s_DetailPropLightStyleLumpHDR;
}
else
{
s_pDetailPropLightStyleLump = &s_DetailPropLightStyleLumpLDR;
}
}
//-----------------------------------------------------------------------------
// Finds ambient sky lights
//-----------------------------------------------------------------------------
static directlight_t* FindAmbientSkyLight()
{
static directlight_t *s_pCachedSkylight = NULL;
// Don't keep searching for the same light.
if ( !s_pCachedSkylight )
{
// find any ambient lights
directlight_t* dl;
for (dl = activelights; dl != 0; dl = dl->next)
{
if (dl->light.type == emit_skyambient)
{
s_pCachedSkylight = dl;
break;
}
}
}
return s_pCachedSkylight;
}
//-----------------------------------------------------------------------------
// Compute world center of a prop
//-----------------------------------------------------------------------------
static void ComputeWorldCenter( DetailObjectLump_t& prop, Vector& center, Vector& normal )
{
// Transform the offset into world space
Vector forward, right;
AngleVectors( prop.m_Angles, &forward, &right, &normal );
VectorCopy( prop.m_Origin, center );
// FIXME: Take orientation into account?
switch (prop.m_Type )
{
case DETAIL_PROP_TYPE_MODEL:
VectorMA( center, g_ModelCenterOffset[prop.m_DetailModel].x, forward, center );
VectorMA( center, -g_ModelCenterOffset[prop.m_DetailModel].y, right, center );
VectorMA( center, g_ModelCenterOffset[prop.m_DetailModel].z, normal, center );
break;
case DETAIL_PROP_TYPE_SPRITE:
Vector vecOffset;
VectorMultiply( g_SpriteCenterOffset[prop.m_DetailModel], prop.m_flScale, vecOffset );
VectorMA( center, vecOffset.x, forward, center );
VectorMA( center, -vecOffset.y, right, center );
VectorMA( center, vecOffset.z, normal, center );
break;
}
}
//-----------------------------------------------------------------------------
// Computes max direct lighting for a single detal prop
//-----------------------------------------------------------------------------
static void ComputeMaxDirectLighting( DetailObjectLump_t& prop, Vector* maxcolor, int iThread )
{
// The max direct lighting must be along the direction to one
// of the static lights....
Vector origin, normal;
ComputeWorldCenter( prop, origin, normal );
if ( !origin.IsValid() || !normal.IsValid() )
{
static bool s_Warned = false;
if ( !s_Warned )
{
Warning("WARNING: Bogus detail props encountered!\n" );
s_Warned = true;
}
// fill with debug color
for ( int i = 0; i < MAX_LIGHTSTYLES; ++i)
{
maxcolor[i].Init(1,0,0);
}
return;
}
int cluster = ClusterFromPoint(origin);
Vector delta;
CUtlVector< directlight_t* > lights;
CUtlVector< Vector > directions;
directlight_t* dl;
for (dl = activelights; dl != 0; dl = dl->next)
{
// skyambient doesn't affect dlights..
if (dl->light.type == emit_skyambient)
continue;
// is this lights cluster visible?
if ( PVSCheck( dl->pvs, cluster ) )
{
lights.AddToTail(dl);
VectorSubtract( dl->light.origin, origin, delta );
VectorNormalize( delta );
directions.AddToTail( delta );
}
}
// Find the max illumination
int i;
for ( i = 0; i < MAX_LIGHTSTYLES; ++i)
{
maxcolor[i].Init(0,0,0);
}
// NOTE: See version 10 for a method where we choose a normal based on whichever
// one produces the maximum possible illumination. This appeared to work better on
// e3_town, so I'm trying it now; hopefully it'll be good for all cases.
int j;
for ( j = 0; j < lights.Count(); ++j)
{
dl = lights[j];
SSE_sampleLightOutput_t out;
FourVectors origin4;
FourVectors normal4;
origin4.DuplicateVector( origin );
normal4.DuplicateVector( normal );
GatherSampleLightSSE ( out, dl, -1, origin4, &normal4, 1, iThread );
VectorMA( maxcolor[dl->light.style], out.m_flFalloff.m128_f32[0] * out.m_flDot[0].m128_f32[0], dl->light.intensity, maxcolor[dl->light.style] );
}
}
//-----------------------------------------------------------------------------
// Computes the ambient term from a particular surface
//-----------------------------------------------------------------------------
static void ComputeAmbientFromSurface( dface_t* pFace, directlight_t* pSkylight,
Vector& radcolor )
{
texinfo_t* pTex = &texinfo[pFace->texinfo];
if (pTex)
{
// If we hit the sky, use the sky ambient
if (pTex->flags & SURF_SKY)
{
if (pSkylight)
{
// add in sky ambient
VectorDivide( pSkylight->light.intensity, 255.0f, radcolor );
}
}
else
{
VectorMultiply( radcolor, dtexdata[pTex->texdata].reflectivity, radcolor );
}
}
}
//-----------------------------------------------------------------------------
// Computes the lightmap color at a particular point
//-----------------------------------------------------------------------------
static void ComputeLightmapColorFromAverage( dface_t* pFace, directlight_t* pSkylight, float scale, Vector pColor[MAX_LIGHTSTYLES] )
{
texinfo_t* pTex = &texinfo[pFace->texinfo];
if (pTex->flags & SURF_SKY)
{
if (pSkylight)
{
// add in sky ambient
Vector amb = pSkylight->light.intensity / 255.0f;
pColor[0] += amb * scale;
}
return;
}
for (int maps = 0 ; maps < MAXLIGHTMAPS && pFace->styles[maps] != 255 ; ++maps)
{
ColorRGBExp32* pAvgColor = dface_AvgLightColor( pFace, maps );
// this code expects values from [0..1] not [0..255]
Vector color;
color[0] = TexLightToLinear( pAvgColor->r, pAvgColor->exponent );
color[1] = TexLightToLinear( pAvgColor->g, pAvgColor->exponent );
color[2] = TexLightToLinear( pAvgColor->b, pAvgColor->exponent );
ComputeAmbientFromSurface( pFace, pSkylight, color );
int style = pFace->styles[maps];
pColor[style] += color * scale;
}
}
//-----------------------------------------------------------------------------
// Returns true if the surface has bumped lightmaps
//-----------------------------------------------------------------------------
static bool SurfHasBumpedLightmaps( dface_t *pSurf )
{
bool hasBumpmap = false;
if( ( texinfo[pSurf->texinfo].flags & SURF_BUMPLIGHT ) &&
( !( texinfo[pSurf->texinfo].flags & SURF_NOLIGHT ) ) )
{
hasBumpmap = true;
}
return hasBumpmap;
}
//-----------------------------------------------------------------------------
// Computes the lightmap color at a particular point
//-----------------------------------------------------------------------------
static void ComputeLightmapColorPointSample( dface_t* pFace, directlight_t* pSkylight, Vector2D const& luv, float scale, Vector pColor[MAX_LIGHTSTYLES] )
{
// face unaffected by light
if (pFace->lightofs == -1 )
return;
int smax = ( pFace->m_LightmapTextureSizeInLuxels[0] ) + 1;
int tmax = ( pFace->m_LightmapTextureSizeInLuxels[1] ) + 1;
// luv is in the space of the accumulated lightmap page; we need to convert
// it to be in the space of the surface
int ds = clamp( (int)luv.x, 0, smax-1 );
int dt = clamp( (int)luv.y, 0, tmax-1 );
int offset = smax * tmax;
if ( SurfHasBumpedLightmaps( pFace ) )
offset *= ( NUM_BUMP_VECTS + 1 );
ColorRGBExp32* pLightmap = (ColorRGBExp32*)&pdlightdata->Base()[pFace->lightofs];
pLightmap += dt * smax + ds;
for (int maps = 0 ; maps < MAXLIGHTMAPS && pFace->styles[maps] != 255 ; ++maps)
{
int style = pFace->styles[maps];
Vector color;
color[0] = TexLightToLinear( pLightmap->r, pLightmap->exponent );
color[1] = TexLightToLinear( pLightmap->g, pLightmap->exponent );
color[2] = TexLightToLinear( pLightmap->b, pLightmap->exponent );
ComputeAmbientFromSurface( pFace, pSkylight, color );
pColor[style] += color * scale;
pLightmap += offset;
}
}
//-----------------------------------------------------------------------------
// Tests a particular node
//-----------------------------------------------------------------------------
class CLightSurface : public IBSPNodeEnumerator
{
public:
CLightSurface(int iThread) : m_pSurface(0), m_HitFrac(1.0f), m_bHasLuxel(false), m_iThread(iThread) {}
// call back with a node and a context
2022-02-23 19:50:30 +08:00
bool EnumerateNode( int node, Ray_t const& ray, float f, intp context )
2020-04-22 12:56:21 -04:00
{
dface_t* pSkySurface = 0;
// Compute the actual point
Vector pt;
VectorMA( ray.m_Start, f, ray.m_Delta, pt );
dnode_t* pNode = &dnodes[node];
dface_t* pFace = &g_pFaces[pNode->firstface];
for (int i=0 ; i < pNode->numfaces ; ++i, ++pFace)
{
// Don't take into account faces that are int a leaf
if ( !pFace->onNode )
continue;
// Don't test displacement faces
if ( pFace->dispinfo != -1 )
continue;
texinfo_t* pTex = &texinfo[pFace->texinfo];
// Don't immediately return when we hit sky;
// we may actually hit another surface
if (pTex->flags & SURF_SKY)
{
if (TestPointAgainstSkySurface( pt, pFace ))
{
pSkySurface = pFace;
}
continue;
}
if (TestPointAgainstSurface( pt, pFace, pTex ))
{
m_HitFrac = f;
m_pSurface = pFace;
m_bHasLuxel = true;
return false;
}
}
// if we hit a sky surface, return it
m_pSurface = pSkySurface;
return (m_pSurface == 0);
}
// call back with a leaf and a context
2022-02-23 19:50:30 +08:00
virtual bool EnumerateLeaf( int leaf, Ray_t const& ray, float start, float end, intp context )
2020-04-22 12:56:21 -04:00
{
bool hit = false;
dleaf_t* pLeaf = &dleafs[leaf];
for (int i=0 ; i < pLeaf->numleaffaces ; ++i)
{
Assert( pLeaf->firstleafface + i < numleaffaces );
Assert( dleaffaces[pLeaf->firstleafface + i] < numfaces );
dface_t* pFace = &g_pFaces[dleaffaces[pLeaf->firstleafface + i]];
// Don't test displacement faces; we need to check another list
if ( pFace->dispinfo != -1 )
continue;
// Don't take into account faces that are on a node
if ( pFace->onNode )
continue;
// Find intersection point against detail brushes
texinfo_t* pTex = &texinfo[pFace->texinfo];
dplane_t* pPlane = &dplanes[pFace->planenum];
// Backface cull...
if (DotProduct( pPlane->normal, ray.m_Delta ) > 0)
continue;
float startDotN = DotProduct( ray.m_Start, pPlane->normal );
float deltaDotN = DotProduct( ray.m_Delta, pPlane->normal );
float front = startDotN + start * deltaDotN - pPlane->dist;
float back = startDotN + end * deltaDotN - pPlane->dist;
int side = front < 0;
// Blow it off if it doesn't split the plane...
if ( (back < 0) == side )
continue;
// Don't test a surface that is farther away from the closest found intersection
float f = front / (front-back);
float mid = start * (1.0f - f) + end * f;
if (mid >= m_HitFrac)
continue;
Vector pt;
VectorMA( ray.m_Start, mid, ray.m_Delta, pt );
if (TestPointAgainstSurface( pt, pFace, pTex ))
{
m_HitFrac = mid;
m_pSurface = pFace;
hit = true;
m_bHasLuxel = true;
}
}
// Now try to clip against all displacements in the leaf
float dist;
Vector2D luxelCoord;
dface_t *pDispFace;
StaticDispMgr()->ClipRayToDispInLeaf( s_DispTested[m_iThread], ray, leaf, dist, pDispFace, luxelCoord );
if (dist < m_HitFrac)
{
m_HitFrac = dist;
m_pSurface = pDispFace;
Vector2DCopy( luxelCoord, m_LuxelCoord );
hit = true;
m_bHasLuxel = true;
}
return !hit;
}
bool FindIntersection( Ray_t const& ray )
{
StaticDispMgr()->StartRayTest( s_DispTested[m_iThread] );
return !EnumerateNodesAlongRay( ray, this, 0 );
}
private:
bool TestPointAgainstSurface( Vector const& pt, dface_t* pFace, texinfo_t* pTex )
{
// no lightmaps on this surface? punt...
// FIXME: should be water surface?
if (pTex->flags & SURF_NOLIGHT)
return false;
// See where in lightmap space our intersection point is
float s, t;
s = DotProduct (pt.Base(), pTex->lightmapVecsLuxelsPerWorldUnits[0]) +
pTex->lightmapVecsLuxelsPerWorldUnits[0][3];
t = DotProduct (pt.Base(), pTex->lightmapVecsLuxelsPerWorldUnits[1]) +
pTex->lightmapVecsLuxelsPerWorldUnits[1][3];
// Not in the bounds of our lightmap? punt...
if( s < pFace->m_LightmapTextureMinsInLuxels[0] || t < pFace->m_LightmapTextureMinsInLuxels[1] )
return false;
// assuming a square lightmap (FIXME: which ain't always the case),
// lets see if it lies in that rectangle. If not, punt...
float ds = s - pFace->m_LightmapTextureMinsInLuxels[0];
float dt = t - pFace->m_LightmapTextureMinsInLuxels[1];
if( ds > pFace->m_LightmapTextureSizeInLuxels[0] || dt > pFace->m_LightmapTextureSizeInLuxels[1] )
return false;
m_LuxelCoord.x = ds;
m_LuxelCoord.y = dt;
return true;
}
bool TestPointAgainstSkySurface( Vector const &pt, dface_t *pFace )
{
// Create sky face winding.
winding_t *pWinding = WindingFromFace( pFace, Vector( 0.0f, 0.0f, 0.0f ) );
// Test point in winding. (Since it is at the node, it is in the plane.)
bool bRet = PointInWinding( pt, pWinding );
FreeWinding( pWinding );
return bRet;
}
public:
int m_iThread;
dface_t* m_pSurface;
float m_HitFrac;
Vector2D m_LuxelCoord;
bool m_bHasLuxel;
};
bool CastRayInLeaf( int iThread, const Vector &start, const Vector &end, int leafIndex, float *pFraction, Vector *pNormal )
{
pFraction[0] = 1.0f;
Ray_t ray;
ray.Init( start, end, vec3_origin, vec3_origin );
CBaseTrace trace;
if ( TraceLeafBrushes( leafIndex, start, end, trace ) != 1.0f )
{
pFraction[0] = trace.fraction;
*pNormal = trace.plane.normal;
}
else
{
Assert(!trace.startsolid && !trace.allsolid);
}
StaticDispMgr()->StartRayTest( s_DispTested[iThread] );
// Now try to clip against all displacements in the leaf
float dist;
Vector normal;
StaticDispMgr()->ClipRayToDispInLeaf( s_DispTested[iThread], ray, leafIndex, dist, &normal );
if ( dist < pFraction[0] )
{
pFraction[0] = dist;
*pNormal = normal;
}
return pFraction[0] != 1.0f ? true : false;
}
//-----------------------------------------------------------------------------
// Computes ambient lighting along a specified ray.
// Ray represents a cone, tanTheta is the tan of the inner cone angle
//-----------------------------------------------------------------------------
void CalcRayAmbientLighting( int iThread, const Vector &vStart, const Vector &vEnd, float tanTheta, Vector color[MAX_LIGHTSTYLES] )
{
Ray_t ray;
ray.Init( vStart, vEnd, vec3_origin, vec3_origin );
directlight_t *pSkyLight = FindAmbientSkyLight();
CLightSurface surfEnum(iThread);
if (!surfEnum.FindIntersection( ray ))
return;
// compute the approximate radius of a circle centered around the intersection point
float dist = ray.m_Delta.Length() * tanTheta * surfEnum.m_HitFrac;
// until 20" we use the point sample, then blend in the average until we're covering 40"
// This is attempting to model the ray as a cone - in the ideal case we'd simply sample all
// luxels in the intersection of the cone with the surface. Since we don't have surface
// neighbor information computed we'll just approximate that sampling with a blend between
// a point sample and the face average.
// This yields results that are similar in that aliasing is reduced at distance while
// point samples provide accuracy for intersections with near geometry
float scaleAvg = RemapValClamped( dist, 20, 40, 0.0f, 1.0f );
if ( !surfEnum.m_bHasLuxel )
{
// don't have luxel UV, so just use average sample
scaleAvg = 1.0;
}
float scaleSample = 1.0f - scaleAvg;
if (scaleAvg != 0)
{
ComputeLightmapColorFromAverage( surfEnum.m_pSurface, pSkyLight, scaleAvg, color );
}
if (scaleSample != 0)
{
ComputeLightmapColorPointSample( surfEnum.m_pSurface, pSkyLight, surfEnum.m_LuxelCoord, scaleSample, color );
}
}
//-----------------------------------------------------------------------------
// Compute ambient lighting component at specified position.
//-----------------------------------------------------------------------------
static void ComputeAmbientLightingAtPoint( int iThread, const Vector &origin, Vector radcolor[NUMVERTEXNORMALS], Vector color[MAX_LIGHTSTYLES] )
{
// NOTE: I'm not dealing with shadow-casting static props here
// This is for speed, although we can add it if it turns out to
// be important
// sample world by casting N rays distributed across a sphere
Vector upend;
int j;
for ( j = 0; j < MAX_LIGHTSTYLES; ++j)
{
color[j].Init( 0,0,0 );
}
float tanTheta = tan(VERTEXNORMAL_CONE_INNER_ANGLE);
for (int i = 0; i < NUMVERTEXNORMALS; i++)
{
VectorMA( origin, COORD_EXTENT * 1.74, g_anorms[i], upend );
// Now that we've got a ray, see what surface we've hit
CalcRayAmbientLighting( iThread, origin, upend, tanTheta, color );
// DumpRayToGlView( ray, surfEnum.m_HitFrac, &color[0], "test.out" );
}
for ( j = 0; j < MAX_LIGHTSTYLES; ++j)
{
VectorMultiply( color[j], 255.0f / (float)NUMVERTEXNORMALS, color[j] );
}
}
//-----------------------------------------------------------------------------
// Trace hemispherical rays from a vertex, accumulating indirect
// sources at each ray termination.
//-----------------------------------------------------------------------------
void ComputeIndirectLightingAtPoint( Vector &position, Vector &normal, Vector &outColor,
int iThread, bool force_fast, bool bIgnoreNormals )
{
Ray_t ray;
CLightSurface surfEnum(iThread);
outColor.Init();
int nSamples = NUMVERTEXNORMALS;
if ( do_fast || force_fast )
nSamples /= 4;
else
nSamples *= g_flSkySampleScale;
float totalDot = 0;
DirectionalSampler_t sampler;
for (int j = 0; j < nSamples; j++)
{
Vector samplingNormal = sampler.NextValue();
float dot;
if ( bIgnoreNormals )
dot = (0.7071/2);
else
dot = DotProduct( normal, samplingNormal );
if ( dot <= EQUAL_EPSILON )
{
// reject angles behind our plane
continue;
}
totalDot += dot;
// trace to determine surface
Vector vEnd;
VectorScale( samplingNormal, MAX_TRACE_LENGTH, vEnd );
VectorAdd( position, vEnd, vEnd );
ray.Init( position, vEnd, vec3_origin, vec3_origin );
if ( !surfEnum.FindIntersection( ray ) )
continue;
// get color from surface lightmap
texinfo_t* pTex = &texinfo[surfEnum.m_pSurface->texinfo];
if ( !pTex || pTex->flags & SURF_SKY )
{
// ignore contribution from sky
// sky ambient already accounted for during direct pass
continue;
}
if ( surfEnum.m_pSurface->styles[0] == 255 || surfEnum.m_pSurface->lightofs < 0 )
{
// no light affects this face
continue;
}
Vector lightmapColor;
if ( !surfEnum.m_bHasLuxel )
{
ColorRGBExp32* pAvgLightmapColor = dface_AvgLightColor( surfEnum.m_pSurface, 0 );
ColorRGBExp32ToVector( *pAvgLightmapColor, lightmapColor );
}
else
{
// get color from displacement
int smax = ( surfEnum.m_pSurface->m_LightmapTextureSizeInLuxels[0] ) + 1;
int tmax = ( surfEnum.m_pSurface->m_LightmapTextureSizeInLuxels[1] ) + 1;
// luxelcoord is in the space of the accumulated lightmap page; we need to convert
// it to be in the space of the surface
int ds = clamp( (int)surfEnum.m_LuxelCoord.x, 0, smax-1 );
int dt = clamp( (int)surfEnum.m_LuxelCoord.y, 0, tmax-1 );
ColorRGBExp32* pLightmap = (ColorRGBExp32*)&(*pdlightdata)[surfEnum.m_pSurface->lightofs];
pLightmap += dt * smax + ds;
ColorRGBExp32ToVector( *pLightmap, lightmapColor );
}
float invLengthSqr = 1.0f / (1.0f + ((vEnd - position) * surfEnum.m_HitFrac / 128.0).LengthSqr());
// Include falloff using invsqrlaw.
VectorMultiply( lightmapColor, invLengthSqr * dtexdata[pTex->texdata].reflectivity, lightmapColor );
VectorAdd( outColor, lightmapColor, outColor );
}
if ( totalDot )
{
VectorScale( outColor, 1.0f/totalDot, outColor );
}
}
static void ComputeAmbientLighting( int iThread, DetailObjectLump_t& prop, Vector color[MAX_LIGHTSTYLES] )
{
Vector origin, normal;
ComputeWorldCenter( prop, origin, normal );
if ( !origin.IsValid() || !normal.IsValid() )
{
static bool s_Warned = false;
if ( !s_Warned )
{
Warning("WARNING: Bogus detail props encountered!\n" );
s_Warned = true;
}
// fill with debug color
for ( int i = 0; i < MAX_LIGHTSTYLES; ++i)
{
color[i].Init(1,0,0);
}
return;
}
Vector radcolor[NUMVERTEXNORMALS];
ComputeAmbientLightingAtPoint( iThread, origin, radcolor, color );
}
//-----------------------------------------------------------------------------
// Computes lighting for a single detal prop
//-----------------------------------------------------------------------------
static void ComputeLighting( DetailObjectLump_t& prop, int iThread )
{
// We're going to take the maximum of the ambient lighting and
// the strongest directional light. This works because we're assuming
// the props will have built-in faked lighting.
Vector directColor[MAX_LIGHTSTYLES];
Vector ambColor[MAX_LIGHTSTYLES];
// Get the max influence of all direct lights
ComputeMaxDirectLighting( prop, directColor, iThread );
// Get the ambient lighting + lightstyles
ComputeAmbientLighting( iThread, prop, ambColor );
// Base lighting
Vector totalColor;
VectorAdd( directColor[0], ambColor[0], totalColor );
VectorToColorRGBExp32( totalColor, prop.m_Lighting );
bool hasLightstyles = false;
prop.m_LightStyleCount = 0;
// lightstyles
for (int i = 1; i < MAX_LIGHTSTYLES; ++i )
{
VectorAdd( directColor[i], ambColor[i], totalColor );
totalColor *= 0.5f;
if ((totalColor[0] != 0.0f) || (totalColor[1] != 0.0f) ||
(totalColor[2] != 0.0f) )
{
if (!hasLightstyles)
{
prop.m_LightStyles = s_pDetailPropLightStyleLump->Size();
hasLightstyles = true;
}
int j = s_pDetailPropLightStyleLump->AddToTail();
VectorToColorRGBExp32( totalColor, (*s_pDetailPropLightStyleLump)[j].m_Lighting );
(*s_pDetailPropLightStyleLump)[j].m_Style = i;
++prop.m_LightStyleCount;
}
}
}
//-----------------------------------------------------------------------------
// Unserialization
//-----------------------------------------------------------------------------
static void UnserializeModelDict( CUtlBuffer& buf )
{
// Get origin offset for each model...
int count = buf.GetInt();
while ( --count >= 0 )
{
DetailObjectDictLump_t lump;
buf.Get( &lump, sizeof(DetailObjectDictLump_t) );
int i = g_ModelCenterOffset.AddToTail();
CUtlBuffer mdlbuf;
if (LoadStudioModel( lump.m_Name, mdlbuf ))
{
studiohdr_t* pHdr = (studiohdr_t*)mdlbuf.Base();
VectorAdd( pHdr->hull_min, pHdr->hull_max, g_ModelCenterOffset[i] );
g_ModelCenterOffset[i] *= 0.5f;
}
else
{
g_ModelCenterOffset[i].Init(0,0,0);
}
}
}
static void UnserializeSpriteDict( CUtlBuffer& buf )
{
// Get origin offset for each model...
int count = buf.GetInt();
while ( --count >= 0 )
{
DetailSpriteDictLump_t lump;
buf.Get( &lump, sizeof(DetailSpriteDictLump_t) );
// For these sprites, x goes out the front, y right, z up
int i = g_SpriteCenterOffset.AddToTail();
g_SpriteCenterOffset[i].x = 0.0f;
g_SpriteCenterOffset[i].y = lump.m_LR.x + lump.m_UL.x;
g_SpriteCenterOffset[i].z = lump.m_LR.y + lump.m_UL.y;
g_SpriteCenterOffset[i] *= 0.5f;
}
}
//-----------------------------------------------------------------------------
// Unserializes the detail props
//-----------------------------------------------------------------------------
static int UnserializeDetailProps( DetailObjectLump_t*& pProps )
{
GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROPS );
if (g_GameLumps.GetGameLumpVersion(handle) != GAMELUMP_DETAIL_PROPS_VERSION)
return 0;
// Unserialize
CUtlBuffer buf( g_GameLumps.GetGameLump(handle), g_GameLumps.GameLumpSize( handle ), CUtlBuffer::READ_ONLY );
UnserializeModelDict( buf );
UnserializeSpriteDict( buf );
// Now we're pointing to the detail prop data
// This actually works because the scope of the game lump data
// is global and the buf was just pointing to it.
int count = buf.GetInt();
if (count)
{
pProps = (DetailObjectLump_t*)buf.PeekGet();
}
else
{
pProps = 0;
}
return count;
}
//-----------------------------------------------------------------------------
// Writes the detail lighting lump
//-----------------------------------------------------------------------------
static void WriteDetailLightingLump( int lumpID, int lumpVersion, CUtlVector<DetailPropLightstylesLump_t> &lumpData )
{
GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle(lumpID);
if (handle != g_GameLumps.InvalidGameLump())
g_GameLumps.DestroyGameLump(handle);
int lightsize = lumpData.Size() * sizeof(DetailPropLightstylesLump_t);
int lumpsize = lightsize + sizeof(int);
handle = g_GameLumps.CreateGameLump( lumpID, lumpsize, 0, lumpVersion );
// Serialize the data
CUtlBuffer buf( g_GameLumps.GetGameLump(handle), lumpsize );
buf.PutInt( lumpData.Size() );
if (lightsize)
buf.Put( lumpData.Base(), lightsize );
}
static void WriteDetailLightingLumps( void )
{
WriteDetailLightingLump( GAMELUMP_DETAIL_PROP_LIGHTING, GAMELUMP_DETAIL_PROP_LIGHTING_VERSION, s_DetailPropLightStyleLumpLDR );
WriteDetailLightingLump( GAMELUMP_DETAIL_PROP_LIGHTING_HDR, GAMELUMP_DETAIL_PROP_LIGHTING_HDR_VERSION, s_DetailPropLightStyleLumpHDR );
}
// need to do this so that if we are building HDR data, the LDR data is intact, and vice versa.s
void UnserializeDetailPropLighting( int lumpID, int lumpVersion, CUtlVector<DetailPropLightstylesLump_t> &lumpData )
{
GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle( lumpID );
if( handle == g_GameLumps.InvalidGameLump() )
{
return;
}
if (g_GameLumps.GetGameLumpVersion(handle) != lumpVersion)
return;
// Unserialize
CUtlBuffer buf( g_GameLumps.GetGameLump(handle), g_GameLumps.GameLumpSize( handle ), CUtlBuffer::READ_ONLY );
int count = buf.GetInt();
if( !count )
{
return;
}
lumpData.SetCount( count );
int lightsize = lumpData.Size() * sizeof(DetailPropLightstylesLump_t);
buf.Get( lumpData.Base(), lightsize );
}
DetailObjectLump_t *g_pMPIDetailProps = NULL;
void VMPI_ProcessDetailPropWU( int iThread, int iWorkUnit, MessageBuffer *pBuf )
{
CUtlVector<DetailPropLightstylesLump_t> *pDetailPropLump = s_pDetailPropLightStyleLump;
DetailObjectLump_t& prop = g_pMPIDetailProps[iWorkUnit];
ComputeLighting( prop, iThread );
// Send the results back...
pBuf->write( &prop.m_Lighting, sizeof( prop.m_Lighting ) );
pBuf->write( &prop.m_LightStyleCount, sizeof( prop.m_LightStyleCount ) );
pBuf->write( &prop.m_LightStyles, sizeof( prop.m_LightStyles ) );
for ( int i=0; i < prop.m_LightStyleCount; i++ )
{
DetailPropLightstylesLump_t *l = &pDetailPropLump->Element( i + prop.m_LightStyles );
pBuf->write( &l->m_Lighting, sizeof( l->m_Lighting ) );
pBuf->write( &l->m_Style, sizeof( l->m_Style ) );
}
}
void VMPI_ReceiveDetailPropWU( int iWorkUnit, MessageBuffer *pBuf, int iWorker )
{
CUtlVector<DetailPropLightstylesLump_t> *pDetailPropLump = s_pDetailPropLightStyleLump;
DetailObjectLump_t& prop = g_pMPIDetailProps[iWorkUnit];
pBuf->read( &prop.m_Lighting, sizeof( prop.m_Lighting ) );
pBuf->read( &prop.m_LightStyleCount, sizeof( prop.m_LightStyleCount ) );
pBuf->read( &prop.m_LightStyles, sizeof( prop.m_LightStyles ) );
pDetailPropLump->EnsureCount( prop.m_LightStyles + prop.m_LightStyleCount );
for ( int i=0; i < prop.m_LightStyleCount; i++ )
{
DetailPropLightstylesLump_t *l = &pDetailPropLump->Element( i + prop.m_LightStyles );
pBuf->read( &l->m_Lighting, sizeof( l->m_Lighting ) );
pBuf->read( &l->m_Style, sizeof( l->m_Style ) );
}
}
//-----------------------------------------------------------------------------
// Computes lighting for the detail props
//-----------------------------------------------------------------------------
void ComputeDetailPropLighting( int iThread )
{
// illuminate them all
DetailObjectLump_t* pProps;
int count = UnserializeDetailProps( pProps );
if (!count)
return;
// unserialize the lump that we aren't computing.
if( g_bHDR )
{
UnserializeDetailPropLighting( GAMELUMP_DETAIL_PROP_LIGHTING, GAMELUMP_DETAIL_PROP_LIGHTING_VERSION, s_DetailPropLightStyleLumpLDR );
}
else
{
UnserializeDetailPropLighting( GAMELUMP_DETAIL_PROP_LIGHTING_HDR, GAMELUMP_DETAIL_PROP_LIGHTING_HDR_VERSION, s_DetailPropLightStyleLumpHDR );
}
StartPacifier("Computing detail prop lighting : ");
for (int i = 0; i < count; ++i)
{
UpdatePacifier( (float)i / (float)count );
ComputeLighting( pProps[i], iThread );
}
// Write detail prop lightstyle lump...
WriteDetailLightingLumps();
EndPacifier( true );
}