1394 lines
35 KiB
V Shell
Raw Normal View History

2020-04-22 12:56:21 -04:00
;------------------------------------
; RULES FOR AUTHORING VERTEX SHADERS:
;------------------------------------
; - never use "def" . . .set constants in code instead. . our constant shadowing will break otherwise.
; (same goes for pixel shaders)
; - use cN notation instead of c[N] notation. .makes grepping for registers easier.
; The only exception is c[a0.x+blah] where you have no choice.
$g_NumRegisters = 12;
; NOTE: These must match the same values in vsh_prep.pl!
$vPos = "v0";
$vBoneWeights = "v1";
$vBoneIndices = "v2";
$vNormal = "v3";
$vColor = "v5";
$vSpecular = "v6";
$vTexCoord0 = "v7";
$vTexCoord1 = "v8";
$vTexCoord2 = "v9";
$vTexCoord3 = "v10";
$vTangentS = "v11";
$vTangentT = "v12";
$vUserData = "v14";
if( $g_dx9 )
{
if( $g_usesPos )
{
dcl_position $vPos;
}
if( $g_usesBoneWeights )
{
dcl_blendweight $vBoneWeights;
}
if( $g_usesBoneIndices )
{
dcl_blendindices $vBoneIndices;
}
if( $g_usesNormal )
{
dcl_normal $vNormal;
}
if( $g_usesColor )
{
dcl_color0 $vColor;
}
if( $g_usesSpecular )
{
dcl_color1 $vSpecular;
}
if( $g_usesTexCoord0 )
{
dcl_texcoord0 $vTexCoord0;
}
if( $g_usesTexCoord1 )
{
dcl_texcoord1 $vTexCoord1;
}
if( $g_usesTexCoord2 )
{
dcl_texcoord2 $vTexCoord2;
}
if( $g_usesTexCoord3 )
{
dcl_texcoord3 $vTexCoord3;
}
if( $g_usesTangentS )
{
dcl_tangent $vTangentS;
}
if( $g_usesTangentT )
{
dcl_binormal0 $vTangentT;
}
if( $g_usesUserData )
{
dcl_tangent $vUserData;
}
}
# NOTE: These should match g_LightCombinations in vertexshaderdx8.cpp!
# NOTE: Leave this on single lines or shit might blow up.
@g_staticLightTypeArray = ( "none", "static", "none", "none", "none", "none", "none", "none", "none", "none", "none", "none", "static", "static", "static", "static", "static", "static", "static", "static", "static", "static" );
@g_ambientLightTypeArray = ( "none", "none", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient", "ambient" );
@g_localLightType1Array = ( "none", "none", "none", "spot", "point", "directional", "spot", "spot", "spot", "point", "point", "directional", "none", "spot", "point", "directional", "spot", "spot", "spot", "point", "point", "directional" );
@g_localLightType2Array = ( "none", "none", "none", "none", "none", "none", "spot", "point", "directional", "point", "directional", "directional", "none", "none", "none", "none", "spot", "point", "directional", "point", "directional", "directional" );
$cConstants0 = "c0";
$cZero = "c0.x";
$cOne = "c0.y";
$cTwo = "c0.z";
$cHalf = "c0.w";
$cConstants1 = "c1";
$cOOGamma = "c1.x"; # 1/2.2
$cOtherOverbrightFactor = "c1.y"; # overbright
$cOneThird = "c1.z"; # 1/3
$cOverbrightFactor = "c1.w"; # 1/overbright
$cEyePos = "c2";
$cWaterZ = "c2.w";
$cEyePosWaterZ = "c2";
$cLightIndex = "c3";
$cLight0Offset = "c3.x"; # 27
$cLight1Offset = "c3.y"; # 32
$cColorToIntScale = "c3.z"; # matrix array offset = 3.0f * 255.0f + 0.01 (epsilon ensures floor yields desired result)
$cModel0Index = "c3.w"; # base for start of skinning matrices
; NOTE: These must match the same values in vsh_prep.pl!
$cModelViewProj0 = "c4";
$cModelViewProj1 = "c5";
$cModelViewProj2 = "c6";
$cModelViewProj3 = "c7";
$cViewProj0 = "c8";
$cViewProj1 = "c9";
$cViewProj2 = "c10";
$cViewProj3 = "c11";
; currently unused
; c12, c13
$SHADER_SPECIFIC_CONST_10 = "c14";
$SHADER_SPECIFIC_CONST_11 = "c15";
$cFogParams = "c16";
$cFogEndOverFogRange = "c16.x";
$cFogOne = "c16.y";
$cFogMaxDensity = "c16.z";
$cOOFogRange = "c16.w"; # (1/(fogEnd-fogStart))
$cViewModel0 = "c17";
$cViewModel1 = "c18";
$cViewModel2 = "c19";
$cViewModel3 = "c20";
$cAmbientColorPosX = "c21";
$cAmbientColorNegX = "c22";
$cAmbientColorPosY = "c23";
$cAmbientColorNegY = "c24";
$cAmbientColorPosZ = "c25";
$cAmbientColorNegZ = "c26";
$cAmbientColorPosXOffset = "21";
$cAmbientColorPosYOffset = "23";
$cAmbientColorPosZOffset = "25";
$cLight0DiffColor = "c27";
$cLight0Dir = "c28";
$cLight0Pos = "c29";
$cLight0SpotParams = "c30"; # [ exponent, stopdot, stopdot2, 1 / (stopdot - stopdot2)
$cLight0Atten = "c31"; # [ constant, linear, quadratic, 0.0f ]
$cLight1DiffColor = "c32";
$cLight1Dir = "c33";
$cLight1Pos = "c34";
$cLight1SpotParams = "c35"; # [ exponent, stopdot, stopdot2, 1 / (stopdot - stopdot2)
$cLight1Atten = "c36"; # [ constant, linear, quadratic, 0.0f ]
$cModulationColor = "c37";
$SHADER_SPECIFIC_CONST_0 = "c38";
$SHADER_SPECIFIC_CONST_1 = "c39";
$SHADER_SPECIFIC_CONST_2 = "c40";
$SHADER_SPECIFIC_CONST_3 = "c41";
$SHADER_SPECIFIC_CONST_4 = "c42";
$SHADER_SPECIFIC_CONST_5 = "c43";
$SHADER_SPECIFIC_CONST_6 = "c44";
$SHADER_SPECIFIC_CONST_7 = "c45";
$SHADER_SPECIFIC_CONST_8 = "c46";
$SHADER_SPECIFIC_CONST_9 = "c47";
; $SHADER_SPECIFIC_CONST_10 is c14
; $SHADER_SPECIFIC_CONST_11 is c15
; There are 16 model matrices for skinning
; NOTE: These must match the same values in vsh_prep.pl!
$cModel0 = "c48";
$cModel1 = "c49";
$cModel2 = "c50";
sub OutputUsedRegisters
{
local( $i );
; USED REGISTERS
for( $i = 0; $i < $g_NumRegisters; $i++ )
{
if( $g_allocated[$i] )
{
; $g_allocatedname[$i] = r$i
}
}
;
}
sub AllocateRegister
{
local( *reg ) = shift;
local( $regname ) = shift;
local( $i );
for( $i = 0; $i < $g_NumRegisters; $i++ )
{
if( !$g_allocated[$i] )
{
$g_allocated[$i] = 1;
$g_allocatedname[$i] = $regname;
; AllocateRegister $regname = r$i
$reg = "r$i";
&OutputUsedRegisters();
return;
}
}
; Out of registers allocating $regname!
$reg = "rERROR_OUT_OF_REGISTERS";
&OutputUsedRegisters();
}
; pass in a reference to a var that contains a register. . ie \$var where var will constain "r1", etc
sub FreeRegister
{
local( *reg ) = shift;
local( $regname ) = shift;
; FreeRegister $regname = $reg
if( $reg =~ m/rERROR_DEALLOCATED/ )
{
; $regname already deallocated
; $reg = "rALREADY_DEALLOCATED";
&OutputUsedRegisters();
return;
}
; if( $regname ne g_allocatedname[$reg] )
; {
; ; Error freeing $reg
; mov compileerror, freed unallocated register $regname
; }
if( ( $reg =~ m/r(.*)/ ) )
{
$g_allocated[$1] = 0;
}
$reg = "rERROR_DEALLOCATED";
&OutputUsedRegisters();
}
sub CheckUnfreedRegisters()
{
local( $i );
for( $i = 0; $i < $g_NumRegisters; $i++ )
{
if( $g_allocated[$i] )
{
print "ERROR: r$i allocated to $g_allocatedname[$i] at end of program\n";
$g_allocated[$i] = 0;
}
}
}
sub Normalize
{
local( $r ) = shift;
dp3 $r.w, $r, $r
rsq $r.w, $r.w
mul $r, $r, $r.w
}
sub Cross
{
local( $result ) = shift;
local( $a ) = shift;
local( $b ) = shift;
mul $result.xyz, $a.yzx, $b.zxy
mad $result.xyz, -$b.yzx, $a.zxy, $result
}
sub RangeFog
{
local( $projPos ) = shift;
;------------------------------
; Regular range fog
;------------------------------
; oFog.x = 1.0f = no fog
; oFog.x = 0.0f = full fog
; compute fog factor f = (fog_end - dist)*(1/(fog_end-fog_start))
; this is == to: (fog_end/(fog_end-fog_start) - dist/(fog_end-fog_start)
; which can be expressed with a single mad instruction!
; Compute |projPos|
local( $tmp );
&AllocateRegister( \$tmp );
dp3 $tmp.x, $projPos.xyw, $projPos.xyw
rsq $tmp.x, $tmp.x
rcp $tmp.x, $tmp.x
if( $g_dx9 )
{
mad $tmp, -$tmp.x, $cOOFogRange, $cFogEndOverFogRange
min $tmp, $tmp, $cOne
max oFog, $tmp.x, $cFogMaxDensity
}
else
{
mad $tmp, -$tmp.x, $cOOFogRange, $cFogEndOverFogRange
min $tmp, $tmp, $cOne
max oFog.x, $tmp.x, $cFogMaxDensity
}
&FreeRegister( \$tmp );
}
sub DepthFog
{
local( $projPos ) = shift;
local( $dest ) = shift;
if ( $dest eq "" )
{
$dest = "oFog";
}
;------------------------------
; Regular range fog
;------------------------------
; oFog.x = 1.0f = no fog
; oFog.x = 0.0f = full fog
; compute fog factor f = (fog_end - dist)*(1/(fog_end-fog_start))
; this is == to: (fog_end/(fog_end-fog_start) - dist/(fog_end-fog_start)
; which can be expressed with a single mad instruction!
; Compute |projPos|
local( $tmp );
&AllocateRegister( \$tmp );
if( $g_dx9 )
{
mad $tmp, -$projPos.w, $cOOFogRange, $cFogEndOverFogRange
min $tmp, $tmp, $cOne
max $dest, $tmp.x, $cFogMaxDensity
}
else
{
mad $tmp, -$projPos.w, $cOOFogRange, $cFogEndOverFogRange
min $tmp, $tmp, $cOne
max $dest.x, $tmp.x, $cFogMaxDensity
}
&FreeRegister( \$tmp );
}
sub WaterRangeFog
{
; oFog.x = 1.0f = no fog
; oFog.x = 0.0f = full fog
; only $worldPos.z is used out of worldPos
local( $worldPos ) = shift;
local( $projPos ) = shift;
local( $tmp );
&AllocateRegister( \$tmp );
; This is simple similar triangles. Imagine a line passing from the point directly vertically
; and another line passing from the point to the eye position.
; Let d = total distance from point to the eye
; Let h = vertical distance from the point to the eye
; Let hw = vertical distance from the point to the water surface
; Let dw = distance from the point to a point on the water surface that lies along the ray from point to eye
; Therefore d/h = dw/hw by similar triangles, or dw = d * hw / h.
; d = |projPos|, h = eyepos.z - worldPos.z, hw = waterheight.z - worldPos.z, dw = what we solve for
; Now, tmp.x = hw, and tmp.y = h
add $tmp.xy, $cEyePosWaterZ.wz, -$worldPos.z
; if $tmp.x < 0, then set it to 0
; This is the equivalent of moving the vert to the water surface if it's above the water surface
max $tmp.x, $tmp.x, $cZero
; Compute 1 / |projPos| = 1/d
dp3 $tmp.z, $projPos.xyw, $projPos.xyw
rsq $tmp.z, $tmp.z
; Now we have h/d
mul $tmp.z, $tmp.z, $tmp.y
; Now we have d/h
rcp $tmp.w, $tmp.z
; We finally have d * hw / h
; $tmp.w is now the distance that we see through water.
mul $tmp.w, $tmp.x, $tmp.w
if( $g_dx9 )
{
mad $tmp, -$tmp.w, $cOOFogRange, $cFogOne
min $tmp, $tmp, $cOne
max oFog, $tmp.x, $cFogMaxDensity
}
else
{
mad $tmp, -$tmp.w, $cOOFogRange, $cFogOne
min $tmp, $tmp, $cOne
max oFog.x, $tmp.x, $cFogMaxDensity
}
&FreeRegister( \$tmp );
}
sub WaterDepthFog
{
; oFog.x = 1.0f = no fog
; oFog.x = 0.0f = full fog
; only $worldPos.z is used out of worldPos
local( $worldPos ) = shift;
local( $projPos ) = shift;
local( $dest ) = shift;
if ( $dest eq "" )
{
$dest = "oFog";
}
local( $tmp );
&AllocateRegister( \$tmp );
; This is simple similar triangles. Imagine a line passing from the point directly vertically
; and another line passing from the point to the eye position.
; Let d = total distance from point to the eye
; Let h = vertical distance from the point to the eye
; Let hw = vertical distance from the point to the water surface
; Let dw = distance from the point to a point on the water surface that lies along the ray from point to eye
; Therefore d/h = dw/hw by similar triangles, or dw = d * hw / h.
; d = projPos.w, h = eyepos.z - worldPos.z, hw = waterheight.z - worldPos.z, dw = what we solve for
; Now, tmp.x = hw, and tmp.y = h
add $tmp.xy, $cEyePosWaterZ.wz, -$worldPos.z
; if $tmp.x < 0, then set it to 0
; This is the equivalent of moving the vert to the water surface if it's above the water surface
max $tmp.x, $tmp.x, $cZero
; Now we have 1/h
rcp $tmp.z, $tmp.y
; Now we have d/h
mul $tmp.w, $projPos.w, $tmp.z
; We finally have d * hw / h
; $tmp.w is now the distance that we see through water.
mul $tmp.w, $tmp.x, $tmp.w
if( $g_dx9 )
{
mad $tmp, -$tmp.w, $cOOFogRange, $cFogOne
min $tmp, $tmp, $cOne
max $dest, $tmp.x, $cZero
}
else
{
mad $tmp, -$tmp.w, $cOOFogRange, $cFogOne
min $tmp, $tmp, $cOne
max $dest.x, $tmp.x, $cZero
}
&FreeRegister( \$tmp );
}
;------------------------------------------------------------------------------
; Main fogging routine
;------------------------------------------------------------------------------
sub CalcFog
{
if( !defined $DOWATERFOG )
{
die "CalcFog called without using \$DOWATERFOG\n";
}
my $fogType;
if( $DOWATERFOG == 0 )
{
$fogType = "rangefog";
}
else
{
$fogType = "heightfog";
}
# print "\$fogType = $fogType\n";
; CalcFog
local( $worldPos ) = shift;
local( $projPos ) = shift;
local( $dest ) = shift;
if ( $dest eq "" )
{
$dest = "oFog";
}
if( $fogType eq "rangefog" )
{
&DepthFog( $projPos, $dest );
}
elsif( $fogType eq "heightfog" )
{
&WaterDepthFog( $worldPos, $projPos, $dest );
}
else
{
die;
}
}
sub CalcRangeFog
{
; CalcFog
local( $worldPos ) = shift;
local( $projPos ) = shift;
if( $DOWATERFOG == 0 )
{
&RangeFog( $projPos );
}
elsif( $DOWATERFOG == 1 )
{
&WaterRangeFog( $worldPos, $projPos );
}
else
{
die;
}
}
sub GammaToLinear
{
local( $gamma ) = shift;
local( $linear ) = shift;
local( $tmp );
&AllocateRegister( \$tmp );
; Is rcp more expensive than just storing 2.2 somewhere and doing a mov?
rcp $gamma.w, $cOOGamma ; $gamma.w = 2.2
lit $linear.z, $gamma.zzzw ; r0.z = linear blue
lit $tmp.z, $gamma.yyyw ; r2.z = linear green
mov $linear.y, $tmp.z ; r0.y = linear green
lit $tmp.z, $gamma.xxxw ; r2.z = linear red
mov $linear.x, $tmp.z ; r0.x = linear red
&FreeRegister( \$tmp );
}
sub LinearToGamma
{
local( $linear ) = shift;
local( $gamma ) = shift;
local( $tmp );
&AllocateRegister( \$tmp );
mov $linear.w, $cOOGamma ; $linear.w = 1.0/2.2
lit $gamma.z, $linear.zzzw ; r0.z = gamma blue
lit $tmp.z, $linear.yyyw ; r2.z = gamma green
mov $gamma.y, $tmp.z ; r0.y = gamma green
lit $tmp.z, $linear.xxxw ; r2.z = gamma red
mov $gamma.x, $tmp.z ; r0.x = gamma red
&FreeRegister( \$tmp );
}
sub ComputeReflectionVector
{
local( $worldPos ) = shift;
local( $worldNormal ) = shift;
local( $reflectionVector ) = shift;
local( $vertToEye ); &AllocateRegister( \$vertToEye );
local( $tmp ); &AllocateRegister( \$tmp );
; compute reflection vector r = 2 * (n dot v) n - v
sub $vertToEye.xyz, $cEyePos.xyz, $worldPos ; $tmp1 = v = c - p
dp3 $tmp, $worldNormal, $vertToEye ; $tmp = n dot v
mul $tmp.xyz, $tmp.xyz, $worldNormal ; $tmp = (n dot v ) n
mad $reflectionVector.xyz, $tmp, $cTwo, -$vertToEye
&FreeRegister( \$vertToEye );
&FreeRegister( \$tmp );
}
sub ComputeSphereMapTexCoords
{
local( $reflectionVector ) = shift;
local( $sphereMapTexCoords ) = shift;
local( $tmp ); &AllocateRegister( \$tmp );
; transform reflection vector into view space
dp3 $tmp.x, $reflectionVector, $cViewModel0
dp3 $tmp.y, $reflectionVector, $cViewModel1
dp3 $tmp.z, $reflectionVector, $cViewModel2
; generate <rx ry rz+1>
add $tmp.z, $tmp.z, $cOne
; find 1 / the length of r2
dp3 $tmp.w, $tmp, $tmp
rsq $tmp.w, $tmp.w
; r1 = r2/|r2| + 1
mad $tmp.xy, $tmp.w, $tmp, $cOne
mul $sphereMapTexCoords.xy, $tmp.xy, $cHalf
&FreeRegister( \$tmp );
}
sub SkinPosition
{
# print "\$SKINNING = $SKINNING\n";
local( $worldPos ) = shift;
if( !defined $SKINNING )
{
die "using \$SKINNING without defining.\n";
}
if( $SKINNING == 0 )
{
;
; 0 bone skinning (4 instructions)
;
; Transform position into world space
; position
dp4 $worldPos.x, $vPos, $cModel0
dp4 $worldPos.y, $vPos, $cModel1
dp4 $worldPos.z, $vPos, $cModel2
mov $worldPos.w, $cOne
}
else
{
;
; 3 bone skinning (19 instructions)
;
local( $boneIndices );
local( $blendedMatrix0 );
local( $blendedMatrix1 );
local( $blendedMatrix2 );
local( $localPos );
&AllocateRegister( \$boneIndices );
&AllocateRegister( \$blendedMatrix0 );
&AllocateRegister( \$blendedMatrix1 );
&AllocateRegister( \$blendedMatrix2 );
; Transform position into world space using all bones
; denormalize d3dcolor to matrix index
mad $boneIndices, $vBoneIndices, $cColorToIntScale, $cModel0Index
if ( $g_x360 )
{
mov $boneIndices, $boneIndices.zyxw
}
; r11 = boneindices at this point
; first matrix
mov a0.x, $boneIndices.z
mul $blendedMatrix0, $vBoneWeights.x, c[a0.x]
mul $blendedMatrix1, $vBoneWeights.x, c[a0.x+1]
mul $blendedMatrix2, $vBoneWeights.x, c[a0.x+2]
; second matrix
mov a0.x, $boneIndices.y
mad $blendedMatrix0, $vBoneWeights.y, c[a0.x], $blendedMatrix0
mad $blendedMatrix1, $vBoneWeights.y, c[a0.x+1], $blendedMatrix1
mad $blendedMatrix2, $vBoneWeights.y, c[a0.x+2], $blendedMatrix2
; Calculate third weight
; compute 1-(weight1+weight2) to calculate weight2
; Use $boneIndices.w as a temp since we aren't using it for anything.
add $boneIndices.w, $vBoneWeights.x, $vBoneWeights.y
sub $boneIndices.w, $cOne, $boneIndices.w
; third matrix
mov a0.x, $boneIndices.x
mad $blendedMatrix0, $boneIndices.w, c[a0.x], $blendedMatrix0
mad $blendedMatrix1, $boneIndices.w, c[a0.x+1], $blendedMatrix1
mad $blendedMatrix2, $boneIndices.w, c[a0.x+2], $blendedMatrix2
dp4 $worldPos.x, $vPos, $blendedMatrix0
dp4 $worldPos.y, $vPos, $blendedMatrix1
dp4 $worldPos.z, $vPos, $blendedMatrix2
mov $worldPos.w, $cOne
&FreeRegister( \$boneIndices );
&FreeRegister( \$blendedMatrix0 );
&FreeRegister( \$blendedMatrix1 );
&FreeRegister( \$blendedMatrix2 );
}
}
sub SkinPositionAndNormal
{
# print "\$SKINNING = $SKINNING\n";
local( $worldPos ) = shift;
local( $worldNormal ) = shift;
if( !defined $SKINNING )
{
die "using \$SKINNING without defining.\n";
}
if( $SKINNING == 0 )
{
;
; 0 bone skinning (13 instructions)
;
; Transform position + normal + tangentS + tangentT into world space
; position
dp4 $worldPos.x, $vPos, $cModel0
dp4 $worldPos.y, $vPos, $cModel1
dp4 $worldPos.z, $vPos, $cModel2
mov $worldPos.w, $cOne
; normal
dp3 $worldNormal.x, $vNormal, $cModel0
dp3 $worldNormal.y, $vNormal, $cModel1
dp3 $worldNormal.z, $vNormal, $cModel2
}
else
{
local( $boneIndices );
local( $blendedMatrix0 );
local( $blendedMatrix1 );
local( $blendedMatrix2 );
local( $localPos );
local( $localNormal );
local( $normalLength );
local( $ooNormalLength );
&AllocateRegister( \$boneIndices );
&AllocateRegister( \$blendedMatrix0 );
&AllocateRegister( \$blendedMatrix1 );
&AllocateRegister( \$blendedMatrix2 );
; Transform position into world space using all bones
; denormalize d3dcolor to matrix index
mad $boneIndices, $vBoneIndices, $cColorToIntScale, $cModel0Index
if ( $g_x360 )
{
mov $boneIndices, $boneIndices.zyxw
}
; r11 = boneindices at this point
; first matrix
mov a0.x, $boneIndices.z
mul $blendedMatrix0, $vBoneWeights.x, c[a0.x]
mul $blendedMatrix1, $vBoneWeights.x, c[a0.x+1]
mul $blendedMatrix2, $vBoneWeights.x, c[a0.x+2]
; second matrix
mov a0.x, $boneIndices.y
mad $blendedMatrix0, $vBoneWeights.y, c[a0.x], $blendedMatrix0
mad $blendedMatrix1, $vBoneWeights.y, c[a0.x+1], $blendedMatrix1
mad $blendedMatrix2, $vBoneWeights.y, c[a0.x+2], $blendedMatrix2
; Calculate third weight
; compute 1-(weight1+weight2) to calculate weight2
; Use $boneIndices.w as a temp since we aren't using it for anything.
add $boneIndices.w, $vBoneWeights.x, $vBoneWeights.y
sub $boneIndices.w, $cOne, $boneIndices.w
; third matrix
mov a0.x, $boneIndices.x
mad $blendedMatrix0, $boneIndices.w, c[a0.x], $blendedMatrix0
mad $blendedMatrix1, $boneIndices.w, c[a0.x+1], $blendedMatrix1
mad $blendedMatrix2, $boneIndices.w, c[a0.x+2], $blendedMatrix2
dp4 $worldPos.x, $vPos, $blendedMatrix0
dp4 $worldPos.y, $vPos, $blendedMatrix1
dp4 $worldPos.z, $vPos, $blendedMatrix2
mov $worldPos.w, $cOne
; normal
dp3 $worldNormal.x, $vNormal, $blendedMatrix0
dp3 $worldNormal.y, $vNormal, $blendedMatrix1
dp3 $worldNormal.z, $vNormal, $blendedMatrix2
&FreeRegister( \$boneIndices );
&FreeRegister( \$blendedMatrix0 );
&FreeRegister( \$blendedMatrix1 );
&FreeRegister( \$blendedMatrix2 );
}
}
sub SkinPositionNormalAndTangentSpace
{
# print "\$SKINNING = $SKINNING\n";
local( $worldPos ) = shift;
local( $worldNormal ) = shift;
local( $worldTangentS ) = shift;
local( $worldTangentT ) = shift;
local( $userData );
local( $localPos );
local( $localNormal );
local( $normalLength );
local( $ooNormalLength );
if( !defined $SKINNING )
{
die "using \$SKINNING without defining.\n";
}
# X360TBD: needed for compressed vertex format
# if ( $g_x360 )
# {
# &AllocateRegister( \$userData );
# ; remap compressed range [0..1] to [-1..1]
# mad $userData, $vUserData, $cTwo, -$cOne
# }
if( $SKINNING == 0 )
{
;
; 0 bone skinning (13 instructions)
;
; Transform position + normal + tangentS + tangentT into world space
dp4 $worldPos.x, $vPos, $cModel0
dp4 $worldPos.y, $vPos, $cModel1
dp4 $worldPos.z, $vPos, $cModel2
mov $worldPos.w, $cOne
; normal
dp3 $worldNormal.x, $vNormal, $cModel0
dp3 $worldNormal.y, $vNormal, $cModel1
dp3 $worldNormal.z, $vNormal, $cModel2
# X360TBD: needed for compressed vertex format
# if ( $g_x360 )
# {
# ; tangents
# dp3 $worldTangentS.x, $userData, $cModel0
# dp3 $worldTangentS.y, $userData, $cModel1
# dp3 $worldTangentS.z, $userData, $cModel2
#
# ; calculate tangent t via cross( N, S ) * S[3]
# &Cross( $worldTangentT, $worldNormal, $worldTangentS );
# mul $worldTangentT.xyz, $userData.w, $worldTangentT.xyz
# }
# else
{
; tangents
dp3 $worldTangentS.x, $vUserData, $cModel0
dp3 $worldTangentS.y, $vUserData, $cModel1
dp3 $worldTangentS.z, $vUserData, $cModel2
; calculate tangent t via cross( N, S ) * S[3]
&Cross( $worldTangentT, $worldNormal, $worldTangentS );
mul $worldTangentT.xyz, $vUserData.w, $worldTangentT.xyz
}
}
else
{
local( $boneIndices );
local( $blendedMatrix0 );
local( $blendedMatrix1 );
local( $blendedMatrix2 );
&AllocateRegister( \$boneIndices );
&AllocateRegister( \$blendedMatrix0 );
&AllocateRegister( \$blendedMatrix1 );
&AllocateRegister( \$blendedMatrix2 );
; Transform position into world space using all bones
; denormalize d3dcolor to matrix index
mad $boneIndices, $vBoneIndices, $cColorToIntScale, $cModel0Index
if ( $g_x360 )
{
mov $boneIndices, $boneIndices.zyxw
}
; r11 = boneindices at this point
; first matrix
mov a0.x, $boneIndices.z
mul $blendedMatrix0, $vBoneWeights.x, c[a0.x]
mul $blendedMatrix1, $vBoneWeights.x, c[a0.x+1]
mul $blendedMatrix2, $vBoneWeights.x, c[a0.x+2]
; second matrix
mov a0.x, $boneIndices.y
mad $blendedMatrix0, $vBoneWeights.y, c[a0.x], $blendedMatrix0
mad $blendedMatrix1, $vBoneWeights.y, c[a0.x+1], $blendedMatrix1
mad $blendedMatrix2, $vBoneWeights.y, c[a0.x+2], $blendedMatrix2
; Calculate third weight
; compute 1-(weight1+weight2) to calculate weight2
; Use $boneIndices.w as a temp since we aren't using it for anything.
add $boneIndices.w, $vBoneWeights.x, $vBoneWeights.y
sub $boneIndices.w, $cOne, $boneIndices.w
; third matrix
mov a0.x, $boneIndices.x
mad $blendedMatrix0, $boneIndices.w, c[a0.x], $blendedMatrix0
mad $blendedMatrix1, $boneIndices.w, c[a0.x+1], $blendedMatrix1
mad $blendedMatrix2, $boneIndices.w, c[a0.x+2], $blendedMatrix2
; position
dp4 $worldPos.x, $vPos, $blendedMatrix0
dp4 $worldPos.y, $vPos, $blendedMatrix1
dp4 $worldPos.z, $vPos, $blendedMatrix2
mov $worldPos.w, $cOne
; normal
dp3 $worldNormal.x, $vNormal, $blendedMatrix0
dp3 $worldNormal.y, $vNormal, $blendedMatrix1
dp3 $worldNormal.z, $vNormal, $blendedMatrix2
# X360TBD: needed for compressed vertex format
# if ( $g_x360 )
# {
# ; tangents
# dp3 $worldTangentS.x, $userData, $blendedMatrix0
# dp3 $worldTangentS.y, $userData, $blendedMatrix1
# dp3 $worldTangentS.z, $userData, $blendedMatrix2
#
# ; calculate tangent t via cross( N, S ) * S[3]
# &Cross( $worldTangentT, $worldNormal, $worldTangentS );
# mul $worldTangentT.xyz, $userData.w, $worldTangentT.xyz
# }
# else
{
; tangents
dp3 $worldTangentS.x, $vUserData, $blendedMatrix0
dp3 $worldTangentS.y, $vUserData, $blendedMatrix1
dp3 $worldTangentS.z, $vUserData, $blendedMatrix2
; calculate tangent t via cross( N, S ) * S[3]
&Cross( $worldTangentT, $worldNormal, $worldTangentS );
mul $worldTangentT.xyz, $vUserData.w, $worldTangentT.xyz
}
&FreeRegister( \$boneIndices );
&FreeRegister( \$blendedMatrix0 );
&FreeRegister( \$blendedMatrix1 );
&FreeRegister( \$blendedMatrix2 );
}
# X360TBD: needed for compressed vertex format
# if ( $g_x360 )
# {
# &FreeRegister( \$userData );
# }
}
sub ColorClamp
{
; ColorClamp; stomps $color.w
local( $color ) = shift;
local( $dst ) = shift;
; Get the max of RGB and stick it in W
max $color.w, $color.x, $color.y
max $color.w, $color.w, $color.z
; get the greater of one and the max color.
max $color.w, $color.w, $cOne
rcp $color.w, $color.w
mul $dst.xyz, $color.w, $color.xyz
}
sub AmbientLight
{
local( $worldNormal ) = shift;
local( $linearColor ) = shift;
local( $add ) = shift;
; Ambient lighting
&AllocateRegister( \$nSquared );
&AllocateRegister( \$isNegative );
mul $nSquared.xyz, $worldNormal.xyz, $worldNormal.xyz ; compute n times n
slt $isNegative.xyz, $worldNormal.xyz, $cZero ; Figure out whether each component is >0
mov a0.x, $isNegative.x
if( $add )
{
mad $linearColor.xyz, $nSquared.x, c[a0.x + $cAmbientColorPosXOffset], $linearColor ; $linearColor = normal[0]*normal[0] * box color of appropriate x side
}
else
{
mul $linearColor.xyz, $nSquared.x, c[a0.x + $cAmbientColorPosXOffset] ; $linearColor = normal[0]*normal[0] * box color of appropriate x side
}
mov a0.x, $isNegative.y
mad $linearColor.xyz, $nSquared.y, c[a0.x + $cAmbientColorPosYOffset], $linearColor
mov a0.x, $isNegative.z
mad $linearColor.xyz, $nSquared.z, c[a0.x + $cAmbientColorPosZOffset], $linearColor
&FreeRegister( \$isNegative );
&FreeRegister( \$nSquared );
}
sub DirectionalLight
{
local( $worldNormal ) = shift;
local( $linearColor ) = shift;
local( $add ) = shift;
&AllocateRegister( \$nDotL ); # FIXME: This only needs to be a scalar
; NOTE: Gotta use -l here, since light direction = -l
; DIRECTIONAL LIGHT
; compute n dot l
dp3 $nDotL.x, -c[a0.x + 1], $worldNormal
if ( $HALF_LAMBERT == 0 )
{
; lambert
max $nDotL.x, $nDotL.x, c0.x ; Clamp to zero
}
elsif ( $HALF_LAMBERT == 1 )
{
; half-lambert
mad $nDotL.x, $nDotL.x, $cHalf, $cHalf ; dot = (dot * 0.5 + 0.5)^2
mul $nDotL.x, $nDotL.x, $nDotL.x
}
else
{
die "\$HALF_LAMBERT is hosed\n";
}
if( $add )
{
mad $linearColor.xyz, c[a0.x], $nDotL.x, $linearColor
}
else
{
mul $linearColor.xyz, c[a0.x], $nDotL.x
}
&FreeRegister( \$nDotL );
}
sub PointLight
{
local( $worldPos ) = shift;
local( $worldNormal ) = shift;
local( $linearColor ) = shift;
local( $add ) = shift;
local( $lightDir );
&AllocateRegister( \$lightDir );
; POINT LIGHT
; compute light direction
sub $lightDir, c[a0.x+2], $worldPos
local( $lightDistSquared );
local( $ooLightDist );
&AllocateRegister( \$lightDistSquared );
&AllocateRegister( \$ooLightDist );
; normalize light direction, maintain temporaries for attenuation
dp3 $lightDistSquared, $lightDir, $lightDir
rsq $ooLightDist, $lightDistSquared.x
mul $lightDir, $lightDir, $ooLightDist.x
local( $attenuationFactors );
&AllocateRegister( \$attenuationFactors );
; compute attenuation amount (r2 = 'd*d d*d d*d d*d', r3 = '1/d 1/d 1/d 1/d')
dst $attenuationFactors, $lightDistSquared, $ooLightDist ; r4 = ( 1, d, d*d, 1/d )
&FreeRegister( \$lightDistSquared );
&FreeRegister( \$ooLightDist );
local( $attenuation );
&AllocateRegister( \$attenuation );
dp3 $attenuation, $attenuationFactors, c[a0.x+4] ; r3 = atten0 + d * atten1 + d*d * atten2
rcp $lightDir.w, $attenuation ; $lightDir.w = 1 / (atten0 + d * atten1 + d*d * atten2)
&FreeRegister( \$attenuationFactors );
&FreeRegister( \$attenuation );
local( $tmp );
&AllocateRegister( \$tmp ); # FIXME : really only needs to be a scalar
; compute n dot l, fold in distance attenutation
dp3 $tmp.x, $lightDir, $worldNormal
if ( $HALF_LAMBERT == 0 )
{
; lambert
max $tmp.x, $tmp.x, c0.x ; Clamp to zero
}
elsif ( $HALF_LAMBERT == 1 )
{
; half-lambert
mad $tmp.x, $tmp.x, $cHalf, $cHalf ; dot = (dot * 0.5 + 0.5)^2
mul $tmp.x, $tmp.x, $tmp.x
}
else
{
die "\$HALF_LAMBERT is hosed\n";
}
mul $tmp.x, $tmp.x, $lightDir.w
if( $add )
{
mad $linearColor.xyz, c[a0.x], $tmp.x, $linearColor
}
else
{
mul $linearColor.xyz, c[a0.x], $tmp.x
}
&FreeRegister( \$lightDir );
&FreeRegister( \$tmp ); # FIXME : really only needs to be a scalar
}
sub SpotLight
{
local( $worldPos ) = shift;
local( $worldNormal ) = shift;
local( $linearColor ) = shift;
local( $add ) = shift;
local( $lightDir );
&AllocateRegister( \$lightDir );
; SPOTLIGHT
; compute light direction
sub $lightDir, c[a0.x+2], $worldPos
local( $lightDistSquared );
local( $ooLightDist );
&AllocateRegister( \$lightDistSquared );
&AllocateRegister( \$ooLightDist );
; normalize light direction, maintain temporaries for attenuation
dp3 $lightDistSquared, $lightDir, $lightDir
rsq $ooLightDist, $lightDistSquared.x
mul $lightDir, $lightDir, $ooLightDist.x
local( $attenuationFactors );
&AllocateRegister( \$attenuationFactors );
; compute attenuation amount (r2 = 'd*d d*d d*d d*d', r3 = '1/d 1/d 1/d 1/d')
dst $attenuationFactors, $lightDistSquared, $ooLightDist ; r4 = ( 1, d, d*d, 1/d )
&FreeRegister( \$lightDistSquared );
&FreeRegister( \$ooLightDist );
local( $attenuation ); &AllocateRegister( \$attenuation );
dp3 $attenuation, $attenuationFactors, c[a0.x+4] ; r3 = atten0 + d * atten1 + d*d * atten2
rcp $lightDir.w, $attenuation ; r1.w = 1 / (atten0 + d * atten1 + d*d * atten2)
&FreeRegister( \$attenuationFactors );
&FreeRegister( \$attenuation );
local( $litSrc ); &AllocateRegister( \$litSrc );
local( $tmp ); &AllocateRegister( \$tmp ); # FIXME - only needs to be scalar
; compute n dot l
dp3 $litSrc.x, $worldNormal, $lightDir
if ( $HALF_LAMBERT == 0 )
{
; lambert
max $litSrc.x, $litSrc.x, c0.x ; Clamp to zero
}
elsif ( $HALF_LAMBERT == 1 )
{
; half-lambert
mad $litSrc.x, $litSrc.x, $cHalf, $cHalf ; dot = (dot * 0.5 + 0.5) ^ 2
mul $litSrc.x, $litSrc.x, $litSrc.x
}
else
{
die "\$HALF_LAMBERT is hosed\n";
}
; compute angular attenuation
dp3 $tmp.x, c[a0.x+1], -$lightDir ; dot = -delta * spot direction
sub $litSrc.y, $tmp.x, c[a0.x+3].z ; r2.y = dot - stopdot2
&FreeRegister( \$tmp );
mul $litSrc.y, $litSrc.y, c[a0.x+3].w ; r2.y = (dot - stopdot2) / (stopdot - stopdot2)
mov $litSrc.w, c[a0.x+3].x ; r2.w = exponent
local( $litDst ); &AllocateRegister( \$litDst );
lit $litDst, $litSrc ; r3.y = N dot L or 0, whichever is bigger
&FreeRegister( \$litSrc );
; r3.z = pow((dot - stopdot2) / (stopdot - stopdot2), exponent)
min $litDst.z, $litDst.z, $cOne ; clamp pow() to 1
local( $tmp1 ); &AllocateRegister( \$tmp1 );
local( $tmp2 ); &AllocateRegister( \$tmp2 ); # FIXME - could be scalar
; fold in distance attenutation with other factors
mul $tmp1, c[a0.x], $lightDir.w
mul $tmp2.x, $litDst.y, $litDst.z
if( $add )
{
mad $linearColor.xyz, $tmp1, $tmp2.x, $linearColor
}
else
{
mul $linearColor.xyz, $tmp1, $tmp2.x
}
&FreeRegister( \$lightDir );
&FreeRegister( \$litDst );
&FreeRegister( \$tmp1 );
&FreeRegister( \$tmp2 );
}
sub DoLight
{
local( $lightType ) = shift;
local( $worldPos ) = shift;
local( $worldNormal ) = shift;
local( $linearColor ) = shift;
local( $add ) = shift;
if( $lightType eq "spot" )
{
&SpotLight( $worldPos, $worldNormal, $linearColor, $add );
}
elsif( $lightType eq "point" )
{
&PointLight( $worldPos, $worldNormal, $linearColor, $add );
}
elsif( $lightType eq "directional" )
{
&DirectionalLight( $worldNormal, $linearColor, $add );
}
else
{
die "don't know about light type \"$lightType\"\n";
}
}
sub DoLighting
{
if( !defined $LIGHT_COMBO )
{
die "DoLighting called without using \$LIGHT_COMBO\n";
}
if ( !defined $HALF_LAMBERT )
{
die "DoLighting called without using \$HALF_LAMBERT\n";
}
my $staticLightType = $g_staticLightTypeArray[$LIGHT_COMBO];
my $ambientLightType = $g_ambientLightTypeArray[$LIGHT_COMBO];
my $localLightType1 = $g_localLightType1Array[$LIGHT_COMBO];
my $localLightType2 = $g_localLightType2Array[$LIGHT_COMBO];
# print "\$staticLightType = $staticLightType\n";
# print "\$ambientLightType = $ambientLightType\n";
# print "\$localLightType1 = $localLightType1\n";
# print "\$localLightType2 = $localLightType2\n";
local( $worldPos ) = shift;
local( $worldNormal ) = shift;
; special case for no lighting
if( $staticLightType eq "none" && $ambientLightType eq "none" &&
$localLightType1 eq "none" && $localLightType2 eq "none" )
{
; Have to write something here since debug d3d runtime will barf otherwise.
mov oD0, $cOne
return;
}
; special case for static lighting only
; Don't need to bother converting to linear space in this case.
if( $staticLightType eq "static" && $ambientLightType eq "none" &&
$localLightType1 eq "none" && $localLightType2 eq "none" )
{
mov oD0, $vSpecular
return;
}
alloc $linearColor
alloc $gammaColor
local( $add ) = 0;
if( $staticLightType eq "static" )
{
; The static lighting comes in in gamma space and has also been premultiplied by $cOverbrightFactor
; need to get it into
; linear space so that we can do adds.
rcp $gammaColor.w, $cOverbrightFactor
mul $gammaColor.xyz, $vSpecular, $gammaColor.w
&GammaToLinear( $gammaColor, $linearColor );
$add = 1;
}
if( $ambientLightType eq "ambient" )
{
&AmbientLight( $worldNormal, $linearColor, $add );
$add = 1;
}
if( $localLightType1 ne "none" )
{
mov a0.x, $cLight0Offset
&DoLight( $localLightType1, $worldPos, $worldNormal, $linearColor, $add );
$add = 1;
}
if( $localLightType2 ne "none" )
{
mov a0.x, $cLight1Offset
&DoLight( $localLightType2, $worldPos, $worldNormal, $linearColor, $add );
$add = 1;
}
;------------------------------------------------------------------------------
; Output color (gamma correction)
;------------------------------------------------------------------------------
&LinearToGamma( $linearColor, $gammaColor );
if( 0 )
{
mul oD0.xyz, $gammaColor.xyz, $cOverbrightFactor
}
else
{
mul $gammaColor.xyz, $gammaColor.xyz, $cOverbrightFactor
&ColorClamp( $gammaColor, "oD0" );
}
; mov oD0.xyz, $linearColor
mov oD0.w, $cOne ; make sure all components are defined
free $linearColor
free $gammaColor
}
sub DoDynamicLightingToLinear
{
local( $worldPos ) = shift;
local( $worldNormal ) = shift;
local( $linearColor ) = shift;
if( !defined $LIGHT_COMBO )
{
die "DoLighting called without using \$LIGHT_COMBO\n";
}
if ( !defined $HALF_LAMBERT )
{
die "DoLighting called without using \$HALF_LAMBERT\n";
}
my $staticLightType = $g_staticLightTypeArray[$LIGHT_COMBO];
my $ambientLightType = $g_ambientLightTypeArray[$LIGHT_COMBO];
my $localLightType1 = $g_localLightType1Array[$LIGHT_COMBO];
my $localLightType2 = $g_localLightType2Array[$LIGHT_COMBO];
# No lights at all. . note that we don't even consider static lighting here.
if( $ambientLightType eq "none" &&
$localLightType1 eq "none" && $localLightType2 eq "none" )
{
mov $linearColor, $cZero
return;
}
local( $add ) = 0;
if( $ambientLightType eq "ambient" )
{
&AmbientLight( $worldNormal, $linearColor, $add );
$add = 1;
}
if( $localLightType1 ne "none" )
{
mov a0.x, $cLight0Offset
&DoLight( $localLightType1, $worldPos, $worldNormal, $linearColor, $add );
$add = 1;
}
if( $localLightType2 ne "none" )
{
mov a0.x, $cLight1Offset
&DoLight( $localLightType2, $worldPos, $worldNormal, $linearColor, $add );
$add = 1;
}
}
sub NotImplementedYet
{
&AllocateRegister( \$projPos );
dp4 $projPos.x, $worldPos, $cViewProj0
dp4 $projPos.y, $worldPos, $cViewProj1
dp4 $projPos.z, $worldPos, $cViewProj2
dp4 $projPos.w, $worldPos, $cViewProj3
mov oPos, $projPos
&FreeRegister( \$projPos );
exit;
}