488 lines
14 KiB
C
Raw Normal View History

2020-04-22 12:56:21 -04:00
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_UTIL_H_
#define V8_UTIL_H_
#include "v8.h"
#include <map>
#include <vector>
/**
* Support for Persistent containers.
*
* C++11 embedders can use STL containers with UniquePersistent values,
* but pre-C++11 does not support the required move semantic and hence
* may want these container classes.
*/
namespace v8 {
typedef uintptr_t PersistentContainerValue;
static const uintptr_t kPersistentContainerNotFound = 0;
enum PersistentContainerCallbackType {
kNotWeak,
kWeak
};
/**
* A default trait implemenation for PersistentValueMap which uses std::map
* as a backing map.
*
* Users will have to implement their own weak callbacks & dispose traits.
*/
template<typename K, typename V>
class StdMapTraits {
public:
// STL map & related:
typedef std::map<K, PersistentContainerValue> Impl;
typedef typename Impl::iterator Iterator;
static bool Empty(Impl* impl) { return impl->empty(); }
static size_t Size(Impl* impl) { return impl->size(); }
static void Swap(Impl& a, Impl& b) { std::swap(a, b); } // NOLINT
static Iterator Begin(Impl* impl) { return impl->begin(); }
static Iterator End(Impl* impl) { return impl->end(); }
static K Key(Iterator it) { return it->first; }
static PersistentContainerValue Value(Iterator it) { return it->second; }
static PersistentContainerValue Set(Impl* impl, K key,
PersistentContainerValue value) {
std::pair<Iterator, bool> res = impl->insert(std::make_pair(key, value));
PersistentContainerValue old_value = kPersistentContainerNotFound;
if (!res.second) {
old_value = res.first->second;
res.first->second = value;
}
return old_value;
}
static PersistentContainerValue Get(Impl* impl, K key) {
Iterator it = impl->find(key);
if (it == impl->end()) return kPersistentContainerNotFound;
return it->second;
}
static PersistentContainerValue Remove(Impl* impl, K key) {
Iterator it = impl->find(key);
if (it == impl->end()) return kPersistentContainerNotFound;
PersistentContainerValue value = it->second;
impl->erase(it);
return value;
}
};
/**
* A default trait implementation for PersistentValueMap, which inherits
* a std:map backing map from StdMapTraits and holds non-weak persistent
* objects and has no special Dispose handling.
*
* You should not derive from this class, since MapType depends on the
* surrounding class, and hence a subclass cannot simply inherit the methods.
*/
template<typename K, typename V>
class DefaultPersistentValueMapTraits : public StdMapTraits<K, V> {
public:
// Weak callback & friends:
static const PersistentContainerCallbackType kCallbackType = kNotWeak;
typedef PersistentValueMap<K, V, DefaultPersistentValueMapTraits<K, V> >
MapType;
typedef void WeakCallbackDataType;
static WeakCallbackDataType* WeakCallbackParameter(
MapType* map, const K& key, Local<V> value) {
return NULL;
}
static MapType* MapFromWeakCallbackData(
const WeakCallbackData<V, WeakCallbackDataType>& data) {
return NULL;
}
static K KeyFromWeakCallbackData(
const WeakCallbackData<V, WeakCallbackDataType>& data) {
return K();
}
static void DisposeCallbackData(WeakCallbackDataType* data) { }
static void Dispose(Isolate* isolate, UniquePersistent<V> value, K key) { }
};
/**
* A map wrapper that allows using UniquePersistent as a mapped value.
* C++11 embedders don't need this class, as they can use UniquePersistent
* directly in std containers.
*
* The map relies on a backing map, whose type and accessors are described
* by the Traits class. The backing map will handle values of type
* PersistentContainerValue, with all conversion into and out of V8
* handles being transparently handled by this class.
*/
template<typename K, typename V, typename Traits>
class PersistentValueMap {
public:
explicit PersistentValueMap(Isolate* isolate) : isolate_(isolate) {}
~PersistentValueMap() { Clear(); }
Isolate* GetIsolate() { return isolate_; }
/**
* Return size of the map.
*/
size_t Size() { return Traits::Size(&impl_); }
/**
* Return whether the map holds weak persistents.
*/
bool IsWeak() { return Traits::kCallbackType != kNotWeak; }
/**
* Get value stored in map.
*/
Local<V> Get(const K& key) {
return Local<V>::New(isolate_, FromVal(Traits::Get(&impl_, key)));
}
/**
* Check whether a value is contained in the map.
*/
bool Contains(const K& key) {
return Traits::Get(&impl_, key) != kPersistentContainerNotFound;
}
/**
* Get value stored in map and set it in returnValue.
* Return true if a value was found.
*/
bool SetReturnValue(const K& key,
ReturnValue<Value> returnValue) {
return SetReturnValueFromVal(&returnValue, Traits::Get(&impl_, key));
}
/**
* Call Isolate::SetReference with the given parent and the map value.
*/
void SetReference(const K& key,
const Persistent<Object>& parent) {
GetIsolate()->SetReference(
reinterpret_cast<internal::Object**>(parent.val_),
reinterpret_cast<internal::Object**>(FromVal(Traits::Get(&impl_, key))));
}
/**
* Put value into map. Depending on Traits::kIsWeak, the value will be held
* by the map strongly or weakly.
* Returns old value as UniquePersistent.
*/
UniquePersistent<V> Set(const K& key, Local<V> value) {
UniquePersistent<V> persistent(isolate_, value);
return SetUnique(key, &persistent);
}
/**
* Put value into map, like Set(const K&, Local<V>).
*/
UniquePersistent<V> Set(const K& key, UniquePersistent<V> value) {
return SetUnique(key, &value);
}
/**
* Return value for key and remove it from the map.
*/
UniquePersistent<V> Remove(const K& key) {
return Release(Traits::Remove(&impl_, key)).Pass();
}
/**
* Traverses the map repeatedly,
* in case side effects of disposal cause insertions.
**/
void Clear() {
typedef typename Traits::Iterator It;
HandleScope handle_scope(isolate_);
// TODO(dcarney): figure out if this swap and loop is necessary.
while (!Traits::Empty(&impl_)) {
typename Traits::Impl impl;
Traits::Swap(impl_, impl);
for (It i = Traits::Begin(&impl); i != Traits::End(&impl); ++i) {
Traits::Dispose(isolate_, Release(Traits::Value(i)).Pass(),
Traits::Key(i));
}
}
}
/**
* Helper class for GetReference/SetWithReference. Do not use outside
* that context.
*/
class PersistentValueReference {
public:
PersistentValueReference() : value_(kPersistentContainerNotFound) { }
PersistentValueReference(const PersistentValueReference& other)
: value_(other.value_) { }
Local<V> NewLocal(Isolate* isolate) const {
return Local<V>::New(isolate, FromVal(value_));
}
bool IsEmpty() const {
return value_ == kPersistentContainerNotFound;
}
template<typename T>
bool SetReturnValue(ReturnValue<T> returnValue) {
return SetReturnValueFromVal(&returnValue, value_);
}
void Reset() {
value_ = kPersistentContainerNotFound;
}
void operator=(const PersistentValueReference& other) {
value_ = other.value_;
}
private:
friend class PersistentValueMap;
explicit PersistentValueReference(PersistentContainerValue value)
: value_(value) { }
void operator=(PersistentContainerValue value) {
value_ = value;
}
PersistentContainerValue value_;
};
/**
* Get a reference to a map value. This enables fast, repeated access
* to a value stored in the map while the map remains unchanged.
*
* Careful: This is potentially unsafe, so please use with care.
* The value will become invalid if the value for this key changes
* in the underlying map, as a result of Set or Remove for the same
* key; as a result of the weak callback for the same key; or as a
* result of calling Clear() or destruction of the map.
*/
PersistentValueReference GetReference(const K& key) {
return PersistentValueReference(Traits::Get(&impl_, key));
}
/**
* Put a value into the map and update the reference.
* Restrictions of GetReference apply here as well.
*/
UniquePersistent<V> Set(const K& key, UniquePersistent<V> value,
PersistentValueReference* reference) {
*reference = Leak(&value);
return SetUnique(key, &value);
}
private:
PersistentValueMap(PersistentValueMap&);
void operator=(PersistentValueMap&);
/**
* Put the value into the map, and set the 'weak' callback when demanded
* by the Traits class.
*/
UniquePersistent<V> SetUnique(const K& key, UniquePersistent<V>* persistent) {
if (Traits::kCallbackType != kNotWeak) {
Local<V> value(Local<V>::New(isolate_, *persistent));
persistent->template SetWeak<typename Traits::WeakCallbackDataType>(
Traits::WeakCallbackParameter(this, key, value), WeakCallback);
}
PersistentContainerValue old_value =
Traits::Set(&impl_, key, ClearAndLeak(persistent));
return Release(old_value).Pass();
}
static void WeakCallback(
const WeakCallbackData<V, typename Traits::WeakCallbackDataType>& data) {
if (Traits::kCallbackType != kNotWeak) {
PersistentValueMap<K, V, Traits>* persistentValueMap =
Traits::MapFromWeakCallbackData(data);
K key = Traits::KeyFromWeakCallbackData(data);
Traits::Dispose(data.GetIsolate(),
persistentValueMap->Remove(key).Pass(), key);
Traits::DisposeCallbackData(data.GetParameter());
}
}
static V* FromVal(PersistentContainerValue v) {
return reinterpret_cast<V*>(v);
}
static bool SetReturnValueFromVal(
ReturnValue<Value>* returnValue, PersistentContainerValue value) {
bool hasValue = value != kPersistentContainerNotFound;
if (hasValue) {
returnValue->SetInternal(
*reinterpret_cast<internal::Object**>(FromVal(value)));
}
return hasValue;
}
static PersistentContainerValue ClearAndLeak(
UniquePersistent<V>* persistent) {
V* v = persistent->val_;
persistent->val_ = 0;
return reinterpret_cast<PersistentContainerValue>(v);
}
static PersistentContainerValue Leak(
UniquePersistent<V>* persistent) {
return reinterpret_cast<PersistentContainerValue>(persistent->val_);
}
/**
* Return a container value as UniquePersistent and make sure the weak
* callback is properly disposed of. All remove functionality should go
* through this.
*/
static UniquePersistent<V> Release(PersistentContainerValue v) {
UniquePersistent<V> p;
p.val_ = FromVal(v);
if (Traits::kCallbackType != kNotWeak && p.IsWeak()) {
Traits::DisposeCallbackData(
p.template ClearWeak<typename Traits::WeakCallbackDataType>());
}
return p.Pass();
}
Isolate* isolate_;
typename Traits::Impl impl_;
};
/**
* A map that uses UniquePersistent as value and std::map as the backing
* implementation. Persistents are held non-weak.
*
* C++11 embedders don't need this class, as they can use
* UniquePersistent directly in std containers.
*/
template<typename K, typename V,
typename Traits = DefaultPersistentValueMapTraits<K, V> >
class StdPersistentValueMap : public PersistentValueMap<K, V, Traits> {
public:
explicit StdPersistentValueMap(Isolate* isolate)
: PersistentValueMap<K, V, Traits>(isolate) {}
};
class DefaultPersistentValueVectorTraits {
public:
typedef std::vector<PersistentContainerValue> Impl;
static void Append(Impl* impl, PersistentContainerValue value) {
impl->push_back(value);
}
static bool IsEmpty(const Impl* impl) {
return impl->empty();
}
static size_t Size(const Impl* impl) {
return impl->size();
}
static PersistentContainerValue Get(const Impl* impl, size_t i) {
return (i < impl->size()) ? impl->at(i) : kPersistentContainerNotFound;
}
static void ReserveCapacity(Impl* impl, size_t capacity) {
impl->reserve(capacity);
}
static void Clear(Impl* impl) {
impl->clear();
}
};
/**
* A vector wrapper that safely stores UniquePersistent values.
* C++11 embedders don't need this class, as they can use UniquePersistent
* directly in std containers.
*
* This class relies on a backing vector implementation, whose type and methods
* are described by the Traits class. The backing map will handle values of type
* PersistentContainerValue, with all conversion into and out of V8
* handles being transparently handled by this class.
*/
template<typename V, typename Traits = DefaultPersistentValueVectorTraits>
class PersistentValueVector {
public:
explicit PersistentValueVector(Isolate* isolate) : isolate_(isolate) { }
~PersistentValueVector() {
Clear();
}
/**
* Append a value to the vector.
*/
void Append(Local<V> value) {
UniquePersistent<V> persistent(isolate_, value);
Traits::Append(&impl_, ClearAndLeak(&persistent));
}
/**
* Append a persistent's value to the vector.
*/
void Append(UniquePersistent<V> persistent) {
Traits::Append(&impl_, ClearAndLeak(&persistent));
}
/**
* Are there any values in the vector?
*/
bool IsEmpty() const {
return Traits::IsEmpty(&impl_);
}
/**
* How many elements are in the vector?
*/
size_t Size() const {
return Traits::Size(&impl_);
}
/**
* Retrieve the i-th value in the vector.
*/
Local<V> Get(size_t index) const {
return Local<V>::New(isolate_, FromVal(Traits::Get(&impl_, index)));
}
/**
* Remove all elements from the vector.
*/
void Clear() {
size_t length = Traits::Size(&impl_);
for (size_t i = 0; i < length; i++) {
UniquePersistent<V> p;
p.val_ = FromVal(Traits::Get(&impl_, i));
}
Traits::Clear(&impl_);
}
/**
* Reserve capacity in the vector.
* (Efficiency gains depend on the backing implementation.)
*/
void ReserveCapacity(size_t capacity) {
Traits::ReserveCapacity(&impl_, capacity);
}
private:
static PersistentContainerValue ClearAndLeak(
UniquePersistent<V>* persistent) {
V* v = persistent->val_;
persistent->val_ = 0;
return reinterpret_cast<PersistentContainerValue>(v);
}
static V* FromVal(PersistentContainerValue v) {
return reinterpret_cast<V*>(v);
}
Isolate* isolate_;
typename Traits::Impl impl_;
};
} // namespace v8
#endif // V8_UTIL_H_