5017 lines
160 KiB
C++
Raw Normal View History

2020-04-22 12:56:21 -04:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
// Standard includes
#include <limits.h>
// Valve includes
#include "movieobjects/dmemesh.h"
#include "movieobjects/dmevertexdata.h"
#include "movieobjects/dmefaceset.h"
#include "movieobjects/dmematerial.h"
#include "movieobjects/dmetransform.h"
#include "movieobjects/dmemodel.h"
#include "movieobjects_interfaces.h"
#include "movieobjects/dmecombinationoperator.h"
#include "movieobjects/dmeselection.h"
#include "movieobjects/dmedrawsettings.h"
#include "movieobjects/dmmeshcomp.h"
#include "tier3/tier3.h"
#include "tier1/KeyValues.h"
#include "tier0/dbg.h"
#include "datamodel/dmelementfactoryhelper.h"
#include "materialsystem/imaterialsystem.h"
#include "materialsystem/imorph.h"
#include "materialsystem/imesh.h"
#include "materialsystem/imaterialvar.h"
#include "istudiorender.h"
#include "studio.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Normal rendering materials
//-----------------------------------------------------------------------------
bool CDmeMesh::s_bNormalMaterialInitialized;
CMaterialReference CDmeMesh::s_NormalMaterial;
CMaterialReference CDmeMesh::s_NormalErrorMaterial;
//-----------------------------------------------------------------------------
// Computes a skin matrix
//-----------------------------------------------------------------------------
static const matrix3x4_t *ComputeSkinMatrix( int nBoneCount, const float *pJointWeight, const int *pJointIndices, const matrix3x4_t *pPoseToWorld, matrix3x4_t &result )
{
float flWeight0, flWeight1, flWeight2, flWeight3;
switch( nBoneCount )
{
default:
case 1:
return &pPoseToWorld[pJointIndices[0]];
case 2:
{
const matrix3x4_t &boneMat0 = pPoseToWorld[pJointIndices[0]];
const matrix3x4_t &boneMat1 = pPoseToWorld[pJointIndices[1]];
flWeight0 = pJointWeight[0];
flWeight1 = pJointWeight[1];
// NOTE: Inlining here seems to make a fair amount of difference
result[0][0] = boneMat0[0][0] * flWeight0 + boneMat1[0][0] * flWeight1;
result[0][1] = boneMat0[0][1] * flWeight0 + boneMat1[0][1] * flWeight1;
result[0][2] = boneMat0[0][2] * flWeight0 + boneMat1[0][2] * flWeight1;
result[0][3] = boneMat0[0][3] * flWeight0 + boneMat1[0][3] * flWeight1;
result[1][0] = boneMat0[1][0] * flWeight0 + boneMat1[1][0] * flWeight1;
result[1][1] = boneMat0[1][1] * flWeight0 + boneMat1[1][1] * flWeight1;
result[1][2] = boneMat0[1][2] * flWeight0 + boneMat1[1][2] * flWeight1;
result[1][3] = boneMat0[1][3] * flWeight0 + boneMat1[1][3] * flWeight1;
result[2][0] = boneMat0[2][0] * flWeight0 + boneMat1[2][0] * flWeight1;
result[2][1] = boneMat0[2][1] * flWeight0 + boneMat1[2][1] * flWeight1;
result[2][2] = boneMat0[2][2] * flWeight0 + boneMat1[2][2] * flWeight1;
result[2][3] = boneMat0[2][3] * flWeight0 + boneMat1[2][3] * flWeight1;
}
return &result;
case 3:
{
const matrix3x4_t &boneMat0 = pPoseToWorld[pJointIndices[0]];
const matrix3x4_t &boneMat1 = pPoseToWorld[pJointIndices[1]];
const matrix3x4_t &boneMat2 = pPoseToWorld[pJointIndices[2]];
flWeight0 = pJointWeight[0];
flWeight1 = pJointWeight[1];
flWeight2 = pJointWeight[2];
result[0][0] = boneMat0[0][0] * flWeight0 + boneMat1[0][0] * flWeight1 + boneMat2[0][0] * flWeight2;
result[0][1] = boneMat0[0][1] * flWeight0 + boneMat1[0][1] * flWeight1 + boneMat2[0][1] * flWeight2;
result[0][2] = boneMat0[0][2] * flWeight0 + boneMat1[0][2] * flWeight1 + boneMat2[0][2] * flWeight2;
result[0][3] = boneMat0[0][3] * flWeight0 + boneMat1[0][3] * flWeight1 + boneMat2[0][3] * flWeight2;
result[1][0] = boneMat0[1][0] * flWeight0 + boneMat1[1][0] * flWeight1 + boneMat2[1][0] * flWeight2;
result[1][1] = boneMat0[1][1] * flWeight0 + boneMat1[1][1] * flWeight1 + boneMat2[1][1] * flWeight2;
result[1][2] = boneMat0[1][2] * flWeight0 + boneMat1[1][2] * flWeight1 + boneMat2[1][2] * flWeight2;
result[1][3] = boneMat0[1][3] * flWeight0 + boneMat1[1][3] * flWeight1 + boneMat2[1][3] * flWeight2;
result[2][0] = boneMat0[2][0] * flWeight0 + boneMat1[2][0] * flWeight1 + boneMat2[2][0] * flWeight2;
result[2][1] = boneMat0[2][1] * flWeight0 + boneMat1[2][1] * flWeight1 + boneMat2[2][1] * flWeight2;
result[2][2] = boneMat0[2][2] * flWeight0 + boneMat1[2][2] * flWeight1 + boneMat2[2][2] * flWeight2;
result[2][3] = boneMat0[2][3] * flWeight0 + boneMat1[2][3] * flWeight1 + boneMat2[2][3] * flWeight2;
}
return &result;
case 4:
{
const matrix3x4_t &boneMat0 = pPoseToWorld[pJointIndices[0]];
const matrix3x4_t &boneMat1 = pPoseToWorld[pJointIndices[1]];
const matrix3x4_t &boneMat2 = pPoseToWorld[pJointIndices[2]];
const matrix3x4_t &boneMat3 = pPoseToWorld[pJointIndices[3]];
flWeight0 = pJointWeight[0];
flWeight1 = pJointWeight[1];
flWeight2 = pJointWeight[2];
flWeight3 = pJointWeight[3];
result[0][0] = boneMat0[0][0] * flWeight0 + boneMat1[0][0] * flWeight1 + boneMat2[0][0] * flWeight2 + boneMat3[0][0] * flWeight3;
result[0][1] = boneMat0[0][1] * flWeight0 + boneMat1[0][1] * flWeight1 + boneMat2[0][1] * flWeight2 + boneMat3[0][1] * flWeight3;
result[0][2] = boneMat0[0][2] * flWeight0 + boneMat1[0][2] * flWeight1 + boneMat2[0][2] * flWeight2 + boneMat3[0][2] * flWeight3;
result[0][3] = boneMat0[0][3] * flWeight0 + boneMat1[0][3] * flWeight1 + boneMat2[0][3] * flWeight2 + boneMat3[0][3] * flWeight3;
result[1][0] = boneMat0[1][0] * flWeight0 + boneMat1[1][0] * flWeight1 + boneMat2[1][0] * flWeight2 + boneMat3[1][0] * flWeight3;
result[1][1] = boneMat0[1][1] * flWeight0 + boneMat1[1][1] * flWeight1 + boneMat2[1][1] * flWeight2 + boneMat3[1][1] * flWeight3;
result[1][2] = boneMat0[1][2] * flWeight0 + boneMat1[1][2] * flWeight1 + boneMat2[1][2] * flWeight2 + boneMat3[1][2] * flWeight3;
result[1][3] = boneMat0[1][3] * flWeight0 + boneMat1[1][3] * flWeight1 + boneMat2[1][3] * flWeight2 + boneMat3[1][3] * flWeight3;
result[2][0] = boneMat0[2][0] * flWeight0 + boneMat1[2][0] * flWeight1 + boneMat2[2][0] * flWeight2 + boneMat3[2][0] * flWeight3;
result[2][1] = boneMat0[2][1] * flWeight0 + boneMat1[2][1] * flWeight1 + boneMat2[2][1] * flWeight2 + boneMat3[2][1] * flWeight3;
result[2][2] = boneMat0[2][2] * flWeight0 + boneMat1[2][2] * flWeight1 + boneMat2[2][2] * flWeight2 + boneMat3[2][2] * flWeight3;
result[2][3] = boneMat0[2][3] * flWeight0 + boneMat1[2][3] * flWeight1 + boneMat2[2][3] * flWeight2 + boneMat3[2][3] * flWeight3;
}
return &result;
}
Assert(0);
return NULL;
}
//-----------------------------------------------------------------------------
// Helper class to deal with software skinning
//-----------------------------------------------------------------------------
class CRenderInfo
{
public:
CRenderInfo( const CDmeVertexData *pBaseState );
void ComputeVertex( int vi, const matrix3x4_t *pPoseToWorld, CDmeMesh::RenderVertexDelta_t *pDelta, Vector *pPosition, Vector *pNormal, Vector4D *pTangent );
void ComputeVertex( int vi, const matrix3x4_t *pPoseToWorld, Vector *pDeltaPosition, int nStride, Vector *pPosition );
void ComputePosition( int posIndex, const matrix3x4_t *pPoseToWorld, Vector *pDeltaPosition, Vector *pPosition );
inline bool HasPositionData() const { return m_bHasPositionData; }
inline bool HasNormalData() const { return m_bHasNormalData; }
inline bool HasTangentData() const { return m_bHasTangentData; }
private:
const CUtlVector<int>& m_PositionIndices;
const CUtlVector<Vector>& m_PositionData;
const CUtlVector<int>& m_NormalIndices;
const CUtlVector<Vector>& m_NormalData;
const CUtlVector<int>& m_TangentIndices;
const CUtlVector<Vector4D>& m_TangentData;
const CDmeVertexData *m_pBaseState;
int m_nJointCount;
bool m_bHasPositionData;
bool m_bHasNormalData;
bool m_bHasTangentData;
bool m_bHasSkinningData;
};
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CRenderInfo::CRenderInfo( const CDmeVertexData *pBaseState ) :
m_PositionIndices( pBaseState->GetVertexIndexData( CDmeVertexData::FIELD_POSITION ) ),
m_PositionData( pBaseState->GetPositionData() ),
m_NormalIndices( pBaseState->GetVertexIndexData( CDmeVertexData::FIELD_NORMAL ) ),
m_NormalData( pBaseState->GetNormalData() ),
m_TangentIndices( pBaseState->GetVertexIndexData( CDmeVertexData::FIELD_TANGENT ) ),
m_TangentData( pBaseState->GetTangentData() )
{
m_pBaseState = pBaseState;
m_bHasPositionData = m_PositionIndices.Count() > 0;
m_bHasNormalData = m_NormalIndices.Count() > 0;
m_bHasTangentData = m_TangentIndices.Count() > 0;
m_nJointCount = pBaseState->JointCount();
m_bHasSkinningData = pBaseState->HasSkinningData() && m_nJointCount > 0;
}
//-----------------------------------------------------------------------------
// Computes where a vertex is
//-----------------------------------------------------------------------------
void CRenderInfo::ComputeVertex( int vi, const matrix3x4_t *pPoseToWorld, Vector *pDeltaPosition, int nDeltaStride, Vector *pPosition )
{
matrix3x4_t result;
Vector vecMorphPosition, vecMorphNormal;
const matrix3x4_t *pSkinMatrix = pPoseToWorld;
if ( m_bHasSkinningData )
{
const float *pJointWeight = m_pBaseState->GetJointWeights( vi );
const int *pJointIndices = m_pBaseState->GetJointIndices( vi );
pSkinMatrix = ComputeSkinMatrix( m_nJointCount, pJointWeight, pJointIndices, pPoseToWorld, result );
}
int pi = m_PositionIndices[ vi ];
const Vector *pPositionData = &m_PositionData[ pi ];
if ( pDeltaPosition )
{
Vector *pDelta = (Vector*)( (unsigned char *)pDeltaPosition + nDeltaStride * pi );
VectorAdd( *pPositionData, *pDelta, vecMorphPosition );
pPositionData = &vecMorphPosition;
}
VectorTransform( *pPositionData, *pSkinMatrix, *pPosition );
}
//-----------------------------------------------------------------------------
// Computes where a vertex is
//-----------------------------------------------------------------------------
void CRenderInfo::ComputePosition( int posIndex, const matrix3x4_t *pPoseToWorld, Vector *pDeltaPosition, Vector *pPosition )
{
matrix3x4_t result;
Vector vecMorphPosition;
const matrix3x4_t *pSkinMatrix = pPoseToWorld;
if ( m_bHasSkinningData )
{
const float *pJointWeight = m_pBaseState->GetJointPositionWeights( posIndex );
const int *pJointIndices = m_pBaseState->GetJointPositionIndices( posIndex );
pSkinMatrix = ComputeSkinMatrix( m_nJointCount, pJointWeight, pJointIndices, pPoseToWorld, result );
}
const Vector *pPositionData = &m_PositionData[ posIndex ];
if ( pDeltaPosition )
{
VectorAdd( *pPositionData, *( pDeltaPosition + posIndex ), vecMorphPosition );
pPositionData = &vecMorphPosition;
}
VectorTransform( *pPositionData, *pSkinMatrix, *( pPosition + posIndex ) );
}
//-----------------------------------------------------------------------------
// Computes where a vertex is
//-----------------------------------------------------------------------------
void CRenderInfo::ComputeVertex( int vi, const matrix3x4_t *pPoseToWorld, CDmeMesh::RenderVertexDelta_t *pDelta, Vector *pPosition, Vector *pNormal, Vector4D *pTangent )
{
matrix3x4_t result;
Vector vecMorphPosition, vecMorphNormal;
const matrix3x4_t *pSkinMatrix = pPoseToWorld;
if ( m_bHasSkinningData )
{
const float *pJointWeight = m_pBaseState->GetJointWeights( vi );
const int *pJointIndices = m_pBaseState->GetJointIndices( vi );
pSkinMatrix = ComputeSkinMatrix( m_nJointCount, pJointWeight, pJointIndices, pPoseToWorld, result );
}
int pi = m_PositionIndices[ vi ];
const Vector *pPositionData = &m_PositionData[ pi ];
if ( pDelta )
{
VectorAdd( *pPositionData, pDelta[ pi ].m_vecDeltaPosition, vecMorphPosition );
pPositionData = &vecMorphPosition;
}
VectorTransform( *pPositionData, *pSkinMatrix, *pPosition );
if ( m_bHasNormalData )
{
int ni = m_NormalIndices[ vi ];
const Vector *pNormalData = &m_NormalData[ ni ];
if ( pDelta )
{
VectorAdd( *pNormalData, pDelta[ni].m_vecDeltaNormal, vecMorphNormal );
pNormalData = &vecMorphNormal;
}
VectorRotate( *pNormalData, *pSkinMatrix, *pNormal );
VectorNormalize( *pNormal );
}
else
{
pNormal->Init( 0.0f, 0.0f, 1.0f );
}
if ( m_bHasTangentData )
{
const Vector4D &tangentData = m_TangentData[ m_TangentIndices[ vi ] ];
VectorRotate( tangentData.AsVector3D(), *pSkinMatrix, pTangent->AsVector3D() );
VectorNormalize( pTangent->AsVector3D() );
pTangent->w = tangentData.w;
}
else
{
pTangent->Init( 1.0f, 0.0f, 0.0f, 1.0f );
}
}
//-----------------------------------------------------------------------------
// Expose this class to the scene database
//-----------------------------------------------------------------------------
IMPLEMENT_ELEMENT_FACTORY( DmeMesh, CDmeMesh );
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDmeMesh::OnConstruction()
{
m_BindBaseState.Init( this, "bindState" );
m_CurrentBaseState.Init( this, "currentState" );
m_BaseStates.Init( this, "baseStates", FATTRIB_MUSTCOPY );
m_DeltaStates.Init( this, "deltaStates", FATTRIB_MUSTCOPY | FATTRIB_HAS_CALLBACK );
m_FaceSets.Init( this, "faceSets", FATTRIB_MUSTCOPY );
m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Init( this, "deltaStateWeights" );
m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED].Init( this, "deltaStateWeightsLagged" );
}
void CDmeMesh::OnDestruction()
{
if ( g_pMaterialSystem )
{
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
int nCount = m_hwFaceSets.Count();
for ( int i = 0; i < nCount; ++i )
{
if ( !m_hwFaceSets[i].m_bBuilt )
continue;
if ( m_hwFaceSets[i].m_pMesh )
{
pRenderContext->DestroyStaticMesh( m_hwFaceSets[i].m_pMesh );
}
}
m_hwFaceSets.RemoveAll();
}
DeleteAttributeVarElementArray( m_BaseStates );
DeleteAttributeVarElementArray( m_DeltaStates );
DeleteAttributeVarElementArray( m_FaceSets );
}
//-----------------------------------------------------------------------------
// Initializes the normal material
//-----------------------------------------------------------------------------
void CDmeMesh::InitializeNormalMaterial()
{
if ( !s_bNormalMaterialInitialized )
{
s_bNormalMaterialInitialized = true;
KeyValues *pVMTKeyValues = new KeyValues( "wireframe" );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
pVMTKeyValues->SetInt( "$decal", 1 );
// pVMTKeyValues->SetInt( "$ignorez", 0 );
s_NormalMaterial.Init( "__DmeMeshNormalMaterial", pVMTKeyValues );
pVMTKeyValues = new KeyValues( "unlitgeneric" );
pVMTKeyValues->SetInt( "$vertexcolor", 1 );
s_NormalErrorMaterial.Init( "__DmeMeshNormalErrorMaterial", pVMTKeyValues );
}
}
//-----------------------------------------------------------------------------
// resolve internal data from changed attributes
//-----------------------------------------------------------------------------
void CDmeMesh::OnAttributeChanged( CDmAttribute *pAttribute )
{
BaseClass::OnAttributeChanged( pAttribute );
if ( pAttribute == m_DeltaStates.GetAttribute() )
{
int nDeltaStateCount = m_DeltaStates.Count();
for ( int i = 0; i < MESH_DELTA_WEIGHT_TYPE_COUNT; ++i )
{
// Make sure we have the correct number of weights
int nWeightCount = m_DeltaStateWeights[i].Count();
if ( nWeightCount < nDeltaStateCount )
{
for ( int j = nWeightCount; j < nDeltaStateCount; ++j )
{
m_DeltaStateWeights[i].AddToTail( Vector2D( 0.0f, 0.0f ) );
}
}
else if ( nDeltaStateCount > nWeightCount )
{
m_DeltaStateWeights[i].RemoveMultiple( nWeightCount, nWeightCount - nDeltaStateCount );
}
}
}
}
//-----------------------------------------------------------------------------
// Adds deltas into a delta mesh
//-----------------------------------------------------------------------------
template< class T > bool CDmeMesh::AddVertexDelta(
CDmeVertexData *pBaseState,
void *pVertexData, int nStride, CDmeVertexDataBase::StandardFields_t fieldId, int nIndex, bool bDoLag )
{
CDmeVertexDeltaData *pDeltaState = GetDeltaState( nIndex );
if ( !pBaseState || !pDeltaState )
return false;
const FieldIndex_t nBaseFieldIndex = pBaseState->FindFieldIndex( fieldId == CDmeVertexData::FIELD_WRINKLE ? CDmeVertexData::FIELD_TEXCOORD : fieldId );
const FieldIndex_t nDeltaFieldIndex = pDeltaState->FindFieldIndex( fieldId );
if ( nBaseFieldIndex < 0 || nDeltaFieldIndex < 0 )
return false;
const CDmrArray<int> indices = pDeltaState->GetIndexData( nDeltaFieldIndex );
const CDmrArray<T> delta = pDeltaState->GetVertexData( nDeltaFieldIndex );
const int nDeltaCount = indices.Count();
const float flWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][nIndex].x;
const FieldIndex_t nSpeedFieldIndex = pBaseState->FindFieldIndex( CDmeVertexData::FIELD_MORPH_SPEED );
if ( !bDoLag || nSpeedFieldIndex < 0 )
{
for ( int j = 0; j < nDeltaCount; ++j )
{
int nDataIndex = indices.Get( j );
T* pDeltaData = (T*)( (char*)pVertexData + nStride * nDataIndex );
*pDeltaData += delta.Get( j ) * flWeight;
}
return true;
}
const float flLaggedWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][nIndex].x;
const CDmrArrayConst<int> speedIndices = pBaseState->GetIndexData( nSpeedFieldIndex );
const CDmrArrayConst<float> speedDelta = pBaseState->GetVertexData( nSpeedFieldIndex );
for ( int j = 0; j < nDeltaCount; ++j )
{
int nDataIndex = indices.Get( j );
const CUtlVector<int> &list = pBaseState->FindVertexIndicesFromDataIndex( nBaseFieldIndex, nDataIndex );
Assert( list.Count() > 0 );
// FIXME: Average everything in the list.. shouldn't be necessary though
float flSpeed = speedDelta.Get( speedIndices.Get( list[0] ) );
float flActualWeight = Lerp( flSpeed, flLaggedWeight, flWeight );
T* pDeltaData = (T*)( (char*)pVertexData + nStride * nDataIndex );
*pDeltaData += delta.Get( j ) * flActualWeight;
}
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::AddTexCoordDelta( RenderVertexDelta_t *pRenderDelta, float flWeight, CDmeVertexDeltaData *pDeltaState )
{
FieldIndex_t nFieldIndex = pDeltaState->FindFieldIndex( CDmeVertexDeltaData::FIELD_TEXCOORD );
if ( nFieldIndex < 0 )
return;
bool bIsVCoordinateFlipped = pDeltaState->IsVCoordinateFlipped();
const CDmrArray<int> indices = pDeltaState->GetIndexData( nFieldIndex );
const CDmrArray<Vector2D> delta = pDeltaState->GetVertexData( nFieldIndex );
int nDeltaCount = indices.Count();
for ( int j = 0; j < nDeltaCount; ++j )
{
Vector2D uvDelta = delta.Get( j );
if ( bIsVCoordinateFlipped )
{
uvDelta.y = -uvDelta.y;
}
Vector2D &vec2D = pRenderDelta[ indices.Get( j ) ].m_vecDeltaUV;
Vector2DMA( vec2D, flWeight, uvDelta, vec2D );
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::AddColorDelta( RenderVertexDelta_t *pRenderDelta, float flWeight, CDmeVertexDeltaData *pDeltaState )
{
FieldIndex_t nFieldIndex = pDeltaState->FindFieldIndex( CDmeVertexDeltaData::FIELD_COLOR );
if ( nFieldIndex < 0 )
return;
const CDmrArray<int> indices = pDeltaState->GetIndexData( nFieldIndex );
const CDmrArray<Color> delta = pDeltaState->GetVertexData( nFieldIndex );
int nDeltaCount = indices.Count();
for ( int j = 0; j < nDeltaCount; ++j )
{
const Color &srcDeltaColor = delta[ j ];
Vector4D &vecDelta = pRenderDelta[ indices[ j ] ].m_vecDeltaColor;
vecDelta[0] += flWeight * srcDeltaColor.r();
vecDelta[1] += flWeight * srcDeltaColor.g();
vecDelta[2] += flWeight * srcDeltaColor.b();
vecDelta[3] += flWeight * srcDeltaColor.a();
}
}
template< class T > bool CDmeMesh::AddStereoVertexDelta(
CDmeVertexData *pBaseState,
void *pVertexData, int nStride, CDmeVertexDataBase::StandardFields_t fieldId, int nIndex, bool bDoLag )
{
CDmeVertexDeltaData *pDeltaState = GetDeltaState( nIndex );
if ( !pBaseState || !pDeltaState )
return false;
const FieldIndex_t nBaseFieldIndex = pBaseState->FindFieldIndex( fieldId == CDmeVertexData::FIELD_WRINKLE ? CDmeVertexData::FIELD_TEXCOORD : fieldId );
const FieldIndex_t nDeltaFieldIndex = pDeltaState->FindFieldIndex( fieldId );
if ( nBaseFieldIndex < 0 || nDeltaFieldIndex < 0 )
return false;
float flLeftWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][nIndex].x;
float flRightWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][nIndex].y;
const CDmrArray<int> indices = pDeltaState->GetIndexData( nDeltaFieldIndex );
const CDmrArray<T> delta = pDeltaState->GetVertexData( nDeltaFieldIndex );
const CUtlVector<int>& balanceIndices = pBaseState->GetVertexIndexData( CDmeVertexData::FIELD_BALANCE );
const CUtlVector<float> &balanceDelta = pBaseState->GetBalanceData();
const int nDeltaCount = indices.Count();
const FieldIndex_t nSpeedFieldIndex = pBaseState->FindFieldIndex( CDmeVertexData::FIELD_MORPH_SPEED );
if ( !bDoLag || nSpeedFieldIndex < 0 )
{
for ( int j = 0; j < nDeltaCount; ++j )
{
int nDataIndex = indices.Get( j );
const CUtlVector<int> &list = pBaseState->FindVertexIndicesFromDataIndex( nBaseFieldIndex, nDataIndex );
Assert( list.Count() > 0 );
// FIXME: Average everything in the list.. shouldn't be necessary though
float flRightAmount = balanceDelta[ balanceIndices[ list[0] ] ];
float flWeight = Lerp( flRightAmount, flLeftWeight, flRightWeight );
T* pDeltaData = (T*)( (char*)pVertexData + nStride * nDataIndex );
*pDeltaData += delta.Get( j ) * flWeight;
}
return true;
}
float flLeftWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][nIndex].x;
float flRightWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][nIndex].y;
const CDmrArray<int> pSpeedIndices = pBaseState->GetIndexData( nSpeedFieldIndex );
const CDmrArray<float> pSpeedDelta = pBaseState->GetVertexData( nSpeedFieldIndex );
for ( int j = 0; j < nDeltaCount; ++j )
{
int nDataIndex = indices.Get( j );
const CUtlVector<int> &list = pBaseState->FindVertexIndicesFromDataIndex( nBaseFieldIndex, nDataIndex );
Assert( list.Count() > 0 );
// FIXME: Average everything in the list.. shouldn't be necessary though
float flRightAmount = balanceDelta[ balanceIndices[ list[0] ] ];
float flWeight = Lerp( flRightAmount, flLeftWeight, flRightWeight );
float flLaggedWeight = Lerp( flRightAmount, flLeftWeightLagged, flRightWeightLagged );
float flSpeed = pSpeedDelta.Get( pSpeedIndices.Get( list[0] ) );
float flActualWeight = Lerp( flSpeed, flLaggedWeight, flWeight );
T* pDeltaData = (T*)( (char*)pVertexData + nStride * nDataIndex );
*pDeltaData += delta.Get( j ) * flActualWeight;
}
return true;
}
//-----------------------------------------------------------------------------
// Draws the mesh when it uses too many bones
//-----------------------------------------------------------------------------
bool CDmeMesh::BuildDeltaMesh( int nVertices, RenderVertexDelta_t *pRenderDelta )
{
bool bHasWrinkleDelta = false;
memset( pRenderDelta, 0, nVertices * sizeof( RenderVertexDelta_t ) );
int nCount = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Count();
Assert( m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Count() == m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED].Count() );
CDmeVertexData *pBindState = GetBindBaseState();
const FieldIndex_t nBalanceFieldIndex = pBindState->FindFieldIndex( CDmeVertexDeltaData::FIELD_BALANCE );
const FieldIndex_t nSpeedFieldIndex = pBindState->FindFieldIndex( CDmeVertexDeltaData::FIELD_MORPH_SPEED );
const bool bDoLag = nSpeedFieldIndex >= 0;
if ( nBalanceFieldIndex < 0 )
{
for ( int i = 0; i < nCount; ++i )
{
float flWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x;
float flLaggedWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x;
if ( flWeight <= 0.0f && flLaggedWeight <= 0.0f )
continue;
// prepare vertices
CDmeVertexDeltaData *pDeltaState = GetDeltaState(i);
AddVertexDelta<Vector>( pBindState, &pRenderDelta->m_vecDeltaPosition, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_POSITION, i, bDoLag );
AddVertexDelta<Vector>( pBindState, &pRenderDelta->m_vecDeltaNormal, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_NORMAL, i, bDoLag );
AddTexCoordDelta( pRenderDelta, flWeight, pDeltaState );
AddColorDelta( pRenderDelta, flWeight, pDeltaState );
bool bWrinkle = AddVertexDelta<float>( pBindState, &pRenderDelta->m_flDeltaWrinkle, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_WRINKLE, i, bDoLag );
bHasWrinkleDelta = bHasWrinkleDelta || bWrinkle;
}
return bHasWrinkleDelta;
}
for ( int i = 0; i < nCount; ++i )
{
float flLeftWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x;
float flRightWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].y;
float flLeftWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x;
float flRightWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].y;
if ( flLeftWeight <= 0.0f && flRightWeight <= 0.0f && flLeftWeightLagged <= 0.0f && flRightWeightLagged <= 0.0f )
continue;
// FIXME: Need to make balanced versions of texcoord + color
bool bWrinkle;
CDmeVertexDeltaData *pDeltaState = GetDeltaState(i);
AddStereoVertexDelta<Vector>( pBindState, &pRenderDelta->m_vecDeltaPosition, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_POSITION, i, bDoLag );
AddStereoVertexDelta<Vector>( pBindState, &pRenderDelta->m_vecDeltaNormal, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_NORMAL, i, bDoLag );
bWrinkle = AddStereoVertexDelta<float>( pBindState, &pRenderDelta->m_flDeltaWrinkle, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_WRINKLE, i, bDoLag);
bHasWrinkleDelta = bHasWrinkleDelta || bWrinkle;
AddTexCoordDelta( pRenderDelta, flLeftWeight, pDeltaState );
AddColorDelta( pRenderDelta, flLeftWeight, pDeltaState );
}
return bHasWrinkleDelta;
}
//-----------------------------------------------------------------------------
// Writes triangulated indices for a face set into a meshbuilder
//-----------------------------------------------------------------------------
void CDmeMesh::WriteTriangluatedIndices( const CDmeVertexData *pBaseState, CDmeFaceSet *pFaceSet, CMeshBuilder &meshBuilder )
{
// prepare indices
int nFirstIndex = 0;
int nIndexCount = pFaceSet->NumIndices();
while ( nFirstIndex < nIndexCount )
{
int nVertexCount = pFaceSet->GetNextPolygonVertexCount( nFirstIndex );
if ( nVertexCount >= 3 )
{
int nOutCount = ( nVertexCount-2 ) * 3;
int *pIndices = (int*)_alloca( nOutCount * sizeof(int) );
ComputeTriangulatedIndices( pBaseState, pFaceSet, nFirstIndex, pIndices, nOutCount );
for ( int ii = 0; ii < nOutCount; ++ii )
{
meshBuilder.FastIndex( pIndices[ii] );
}
}
nFirstIndex += nVertexCount + 1;
}
}
//-----------------------------------------------------------------------------
// Draws the mesh when it uses too many bones
//-----------------------------------------------------------------------------
void CDmeMesh::DrawDynamicMesh( CDmeFaceSet *pFaceSet, matrix3x4_t *pPoseToWorld, bool bHasActiveDeltaStates, CDmeDrawSettings *pDrawSettings /* = NULL */ )
{
CDmeVertexData *pBindBase = GetCurrentBaseState();
if ( !pBindBase )
return;
// NOTE: This is inherently inefficient; we re-skin the *entire* mesh,
// even if it's not being used by the entire model. This is because we can't
// guarantee the various materials from the various face sets use the
// same vertex format (even though they should), and we don't want to
// spend the work to detemine the sub-part of the mesh used by this face set.
// Compute vertex deltas for rendering
const int nVertices = pBindBase->VertexCount();
// NOTE: The Delta Data is actually indexed by the pPositionIndices, pNormalIndices, etc.
// The fact that we're storing one delta per final vertex nVertices
// is a waste of memory and simply implementational convenience.
bool bHasActiveWrinkle = false;
RenderVertexDelta_t *pVertexDelta = (RenderVertexDelta_t*)_alloca( nVertices * sizeof(RenderVertexDelta_t) );
if ( bHasActiveDeltaStates )
{
bHasActiveWrinkle = BuildDeltaMesh( nVertices, pVertexDelta );
}
else
{
pVertexDelta = NULL;
}
CRenderInfo renderInfo( pBindBase );
Assert( renderInfo.HasPositionData() );
// prepare vertices
FieldIndex_t uvField = pBindBase->FindFieldIndex( CDmeVertexData::FIELD_TEXCOORD );
FieldIndex_t colorField = pBindBase->FindFieldIndex( CDmeVertexData::FIELD_COLOR );
bool bHasTexCoords = ( uvField >= 0 );
bool bHasColors = ( colorField >= 0 );
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
IMesh *pMesh = pRenderContext->GetDynamicMesh( );
const CDmrArrayConst<int> pUVIndices = bHasTexCoords ? pBindBase->GetIndexData( uvField ) : NULL;
if ( bHasActiveWrinkle && bHasTexCoords )
{
// Create the wrinkle flex mesh
IMesh *pFlexDelta = pRenderContext->GetFlexMesh();
int nFlexVertexOffset = 0;
CMeshBuilder meshBuilder;
meshBuilder.Begin( pFlexDelta, MATERIAL_HETEROGENOUS, nVertices, 0, &nFlexVertexOffset );
for ( int j=0; j < nVertices; j++ )
{
// NOTE: The UV indices are also used to index into wrinkle data
int nUVIndex = pUVIndices.Get( j );
meshBuilder.Position3f( 0.0f, 0.0f, 0.0f );
meshBuilder.NormalDelta3f( 0.0f, 0.0f, 0.0f );
meshBuilder.Wrinkle1f( pVertexDelta[nUVIndex].m_flDeltaWrinkle );
meshBuilder.AdvanceVertex();
}
meshBuilder.End( false, false );
pMesh->SetFlexMesh( pFlexDelta, nFlexVertexOffset );
}
// build the mesh
int nIndices = pFaceSet->GetTriangulatedIndexCount();
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertices, nIndices );
const CDmrArrayConst<Vector2D> pUVData = bHasTexCoords ? pBindBase->GetVertexData( uvField ) : NULL;
const CDmrArrayConst<int> pColorIndices = bHasColors ? pBindBase->GetIndexData( colorField ) : NULL;
const CDmrArrayConst<Color> pColorData = bHasColors ? pBindBase->GetVertexData( colorField ) : NULL;
Vector vecPosition, vecNormal;
Vector4D vecTangent;
for ( int vi = 0; vi < nVertices; ++vi )
{
renderInfo.ComputeVertex( vi, pPoseToWorld, pVertexDelta, &vecPosition, &vecNormal, &vecTangent );
meshBuilder.Position3fv( vecPosition.Base() );
meshBuilder.Normal3fv( vecNormal.Base() );
meshBuilder.UserData( vecTangent.Base() );
if ( pUVData.IsValid() )
{
int uvi = pUVIndices.Get( vi );
Vector2D uv = pUVData.Get( uvi );
if ( pBindBase->IsVCoordinateFlipped() )
{
uv.y = 1.0f - uv.y;
}
if ( bHasActiveDeltaStates )
{
uv += pVertexDelta[uvi].m_vecDeltaUV;
}
meshBuilder.TexCoord2fv( 0, uv.Base() );
}
else
{
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f );
}
if ( pColorIndices.IsValid() )
{
int ci = pColorIndices.Get( vi );
int color = pColorData.Get( ci ).GetRawColor();
meshBuilder.Color4ubv( (unsigned char*)&color );
}
else
{
meshBuilder.Color4ub( 255, 255, 255, 255 );
}
meshBuilder.AdvanceVertex();
}
WriteTriangluatedIndices( pBindBase, pFaceSet, meshBuilder );
meshBuilder.End();
pMesh->Draw();
if ( pDrawSettings && pDrawSettings->GetNormals() )
{
RenderNormals( pPoseToWorld, bHasActiveDeltaStates ? pVertexDelta : NULL );
}
}
//-----------------------------------------------------------------------------
// Renders normals
//-----------------------------------------------------------------------------
#define NORMAL_LINE_SIZE 0.25f
void CDmeMesh::RenderNormals( matrix3x4_t *pPoseToWorld, RenderVertexDelta_t *pDelta )
{
CDmeVertexData *pBind = GetBindBaseState();
if ( !pBind )
return;
CRenderInfo renderInfo( pBind );
Assert( renderInfo.HasPositionData() );
if ( !renderInfo.HasNormalData() )
return;
bool bHasTangents = renderInfo.HasTangentData();
// build the mesh
InitializeNormalMaterial();
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
pRenderContext->Bind( s_NormalMaterial );
IMesh *pMesh = pRenderContext->GetDynamicMesh( );
int nMaxIndices, nMaxVertices;
pRenderContext->GetMaxToRender( pMesh, false, &nMaxVertices, &nMaxIndices );
int nFirstVertex = 0;
int nVerticesRemaining = pBind->VertexCount();;
int nFactor = bHasTangents ? 6 : 2;
while ( nVerticesRemaining > 0 )
{
int nVertices = nVerticesRemaining;
if ( nVertices > nMaxVertices / nFactor )
{
nVertices = nMaxVertices / nFactor;
}
if ( nVertices > nMaxIndices / nFactor )
{
nVertices = nMaxIndices / nFactor;
}
nVerticesRemaining -= nVertices;
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_LINES, bHasTangents ? nVertices * 3 : nVertices );
Vector vecPosition, vecNormal, vecEndPoint, vecTangentS, vecTangentT;
Vector4D vecTangent;
for ( int vi = nFirstVertex; vi < nVertices; ++vi )
{
renderInfo.ComputeVertex( vi, pPoseToWorld, pDelta, &vecPosition, &vecNormal, &vecTangent );
meshBuilder.Position3fv( vecPosition.Base() );
meshBuilder.Color4ub( 0, 0, 255, 255 );
meshBuilder.AdvanceVertex();
VectorMA( vecPosition, NORMAL_LINE_SIZE, vecNormal, vecEndPoint );
meshBuilder.Position3fv( vecEndPoint.Base() );
meshBuilder.Color4ub( 0, 0, 255, 255 );
meshBuilder.AdvanceVertex();
continue;
if ( !bHasTangents )
continue;
CrossProduct( vecNormal, vecTangent.AsVector3D(), vecTangentT );
VectorNormalize( vecTangentT );
// NOTE: This is the new, desired tangentS morphing behavior
// CrossProduct( vecTangentT, vecNormal, vecTangentS );
VectorCopy( vecTangent.AsVector3D(), vecTangentS );
vecTangentT *= vecTangent.w;
meshBuilder.Position3fv( vecPosition.Base() );
meshBuilder.Color4ub( 255, 0, 0, 255 );
meshBuilder.AdvanceVertex();
VectorMA( vecPosition, NORMAL_LINE_SIZE, vecTangentS, vecEndPoint );
meshBuilder.Position3fv( vecEndPoint.Base() );
meshBuilder.Color4ub( 255, 0, 0, 255 );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( vecPosition.Base() );
meshBuilder.Color4ub( 0, 255, 0, 255 );
meshBuilder.AdvanceVertex();
VectorMA( vecPosition, NORMAL_LINE_SIZE, vecTangentT, vecEndPoint );
meshBuilder.Position3fv( vecEndPoint.Base() );
meshBuilder.Color4ub( 0, 255, 0, 255 );
meshBuilder.AdvanceVertex();
}
meshBuilder.End();
pMesh->Draw();
nFirstVertex += nVertices;
}
}
//-----------------------------------------------------------------------------
// Draws the passed DmeFaceSet in wireframe mode
//-----------------------------------------------------------------------------
void CDmeMesh::DrawWireframeFaceSet( CDmeFaceSet *pFaceSet, matrix3x4_t *pPoseToWorld, bool bHasActiveDeltaStates, CDmeDrawSettings *pDrawSettings )
{
CDmeVertexData *pBind = GetBindBaseState();
if ( !pBind )
return;
const FieldIndex_t posField = pBind->FindFieldIndex( CDmeVertexData::FIELD_POSITION );
if ( posField < 0 )
return;
const CUtlVector< Vector > &posData( CDmrArrayConst< Vector >( pBind->GetVertexData( posField ) ).Get() );
const int nVertices = posData.Count();
const CUtlVector< int > &posIndices( CDmrArrayConst< int >( pBind->GetIndexData( posField ) ).Get() );
Vector *pDeltaVertices = bHasActiveDeltaStates ? pDeltaVertices = reinterpret_cast< Vector * >( alloca( nVertices * sizeof( Vector ) ) ) : NULL;
if ( bHasActiveDeltaStates )
{
memset( pDeltaVertices, 0, sizeof( Vector ) * nVertices );
const int nCount = m_DeltaStateWeights[ MESH_DELTA_WEIGHT_NORMAL ].Count();
const FieldIndex_t nBalanceFieldIndex = pBind->FindFieldIndex( CDmeVertexDeltaData::FIELD_BALANCE );
const FieldIndex_t nSpeedFieldIndex = pBind->FindFieldIndex( CDmeVertexDeltaData::FIELD_MORPH_SPEED );
const bool bDoLag = ( nSpeedFieldIndex >= 0 );
if ( nBalanceFieldIndex < 0 )
{
for ( int i = 0; i < nCount; ++i )
{
float flWeight = m_DeltaStateWeights[ MESH_DELTA_WEIGHT_NORMAL ][ i ].x;
float flLaggedWeight = m_DeltaStateWeights[ MESH_DELTA_WEIGHT_LAGGED ][ i ].x;
if ( flWeight <= 0.0f && ( !bDoLag || flLaggedWeight <= 0.0f ) )
continue;
AddVertexDelta< Vector >( pBind, pDeltaVertices, sizeof( Vector ), CDmeVertexDeltaData::FIELD_POSITION, i, bDoLag );
}
}
else
{
for ( int i = 0; i < nCount; ++i )
{
float flLeftWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x;
float flRightWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].y;
float flLeftWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x;
float flRightWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].y;
if ( flLeftWeight <= 0.0f && flRightWeight <= 0.0f && ( !bDoLag || ( flLeftWeightLagged <= 0.0f && flRightWeightLagged <= 0.0f ) ) )
continue;
AddStereoVertexDelta< Vector >( pBind, pDeltaVertices, sizeof( Vector ), CDmeVertexDeltaData::FIELD_POSITION, i, bDoLag );
}
}
}
Vector *pVertices = reinterpret_cast< Vector * >( alloca( nVertices * sizeof( Vector ) ) );
CRenderInfo renderInfo( pBind );
Assert( renderInfo.HasPositionData() );
for ( int pi = 0; pi < nVertices; ++pi )
{
renderInfo.ComputePosition( pi, pPoseToWorld, pDeltaVertices, pVertices );
}
InitializeNormalMaterial();
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
pRenderContext->Bind( s_NormalMaterial );
IMesh *pMesh = pRenderContext->GetDynamicMesh();
// build the mesh
CMeshBuilder meshBuilder;
// Draw the polygons in the face set
const int nFaceSetIndices = pFaceSet->NumIndices();
const int *pFaceSetIndices = pFaceSet->GetIndices();
int vR = 0;
int vG = 0;
int vB = 0;
if ( pDrawSettings )
{
const Color &vColor = pDrawSettings->GetColor();
vR = vColor.r();
vG = vColor.g();
vB = vColor.b();
}
int nFaceIndices;
for ( int i = 0; i < nFaceSetIndices; )
{
nFaceIndices = pFaceSet->GetNextPolygonVertexCount( i );
meshBuilder.Begin( pMesh, MATERIAL_LINES, nFaceIndices );
for ( int j = 0; j < nFaceIndices; ++j )
{
Assert( i < nFaceSetIndices );
int vIndex0 = posIndices[ pFaceSetIndices[ i + j ] ];
Assert( vIndex0 < nVertices );
meshBuilder.Position3fv( reinterpret_cast< float * >( pVertices + vIndex0 ) );
meshBuilder.Color3ub( vR, vG, vB );
meshBuilder.AdvanceVertex();
int vIndex1 = posIndices[ pFaceSetIndices[ i + ( ( j + 1 ) % nFaceIndices ) ] ];
Assert( vIndex1 < nVertices );
meshBuilder.Position3fv( reinterpret_cast< float * >( pVertices + vIndex1) );
meshBuilder.Color3ub( vR, vG, vB );
meshBuilder.AdvanceVertex();
}
meshBuilder.End();
i += nFaceIndices + 1;
}
pMesh->Draw();
}
//-----------------------------------------------------------------------------
// Do we have active delta state data?
//-----------------------------------------------------------------------------
bool CDmeMesh::HasActiveDeltaStates() const
{
for ( int t = 0; t < MESH_DELTA_WEIGHT_TYPE_COUNT; ++t )
{
int nCount = m_DeltaStateWeights[t].Count();
for ( int i = 0; i < nCount; ++i )
{
if ( m_DeltaStateWeights[t][i].x != 0.0f || m_DeltaStateWeights[t][i].y != 0.0f )
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Draws the mesh
//-----------------------------------------------------------------------------
void CDmeMesh::Draw( const matrix3x4_t &shapeToWorld, CDmeDrawSettings *pDrawSettings /* = NULL */ )
{
const CDmeVertexData *pBind = GetBindBaseState();
if ( !pBind || !g_pMaterialSystem || !g_pMDLCache || !g_pStudioRender )
return;
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
const bool bHasActiveDeltaStates = HasActiveDeltaStates();
const bool bDrawNormals = pDrawSettings ? pDrawSettings->GetNormals() : false;
const CDmeDrawSettings::DrawType_t drawType = pDrawSettings ? pDrawSettings->GetDrawType() : CDmeDrawSettings::DRAW_SMOOTH;
const bool bShaded = ( drawType == CDmeDrawSettings::DRAW_SMOOTH || drawType == CDmeDrawSettings::DRAW_FLAT );
const bool bWireframe = ( drawType == CDmeDrawSettings::DRAW_WIREFRAME );
// const bool bBoundingBox = ( drawType == CDmeDrawSettings::DRAW_BOUNDINGBOX );
const bool bSoftwareSkinning = bHasActiveDeltaStates | bDrawNormals | bWireframe;
matrix3x4_t *pPoseToWorld = CDmeModel::SetupModelRenderState( shapeToWorld, pBind->HasSkinningData(), bSoftwareSkinning );
pRenderContext->SetNumBoneWeights( pPoseToWorld ? 0 : pBind->JointCount() );
int nFaceSets = FaceSetCount();
m_hwFaceSets.EnsureCount( nFaceSets );
const bool bindMaterial = pDrawSettings ? !pDrawSettings->IsAMaterialBound() : true;
for ( int fi = 0; fi < nFaceSets; ++fi )
{
CDmeFaceSet *pFaceSet = GetFaceSet( fi );
if ( bWireframe )
{
DrawWireframeFaceSet( pFaceSet, pPoseToWorld, bHasActiveDeltaStates, pDrawSettings );
continue;
}
if ( bindMaterial )
{
pRenderContext->Bind( pFaceSet->GetMaterial()->GetCachedMTL() );
}
if ( pPoseToWorld || ( bShaded && bSoftwareSkinning ) )
{
DrawDynamicMesh( pFaceSet, pPoseToWorld, bHasActiveDeltaStates, pDrawSettings );
continue;
}
// TODO: figure out how to tell the mesh when the faceset's indices change
if ( !m_hwFaceSets[fi].m_bBuilt )
{
m_hwFaceSets[fi].m_pMesh = CreateHwMesh( pFaceSet );
m_hwFaceSets[fi].m_bBuilt = true;
}
if ( m_hwFaceSets[fi].m_pMesh )
{
m_hwFaceSets[fi].m_pMesh->Draw();
}
}
pRenderContext->SetNumBoneWeights( 0 );
CDmeModel::CleanupModelRenderState();
}
//-----------------------------------------------------------------------------
// Face sets
//-----------------------------------------------------------------------------
int CDmeMesh::FaceSetCount() const
{
return m_FaceSets.Count();
}
CDmeFaceSet *CDmeMesh::GetFaceSet( int faceSetIndex )
{
return m_FaceSets[ faceSetIndex ];
}
const CDmeFaceSet *CDmeMesh::GetFaceSet( int faceSetIndex ) const
{
return m_FaceSets[ faceSetIndex ];
}
void CDmeMesh::AddFaceSet( CDmeFaceSet *faceSet )
{
m_FaceSets.AddToTail( faceSet );
}
void CDmeMesh::RemoveFaceSet( int faceSetIndex )
{
m_FaceSets.Remove( faceSetIndex );
}
//-----------------------------------------------------------------------------
// Find a base state by name
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::FindBaseState( const char *pStateName ) const
{
const int nBaseStateCount = BaseStateCount();
for ( int i = 0; i < nBaseStateCount; ++i )
{
CDmeVertexData *pBaseState = GetBaseState( i );
if ( !Q_stricmp( pStateName, pBaseState->GetName() ) )
return pBaseState;
}
return NULL;
}
//-----------------------------------------------------------------------------
// Find a base state by name, add a new one if not found
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::FindOrCreateBaseState( const char *pStateName )
{
CDmeVertexData *pBaseState = FindBaseState( pStateName );
if ( pBaseState )
return pBaseState;
pBaseState = CreateElement< CDmeVertexData >( pStateName, GetFileId() );
m_BaseStates.AddToTail( pBaseState );
return pBaseState;
}
//-----------------------------------------------------------------------------
// Remove a base state by name
//-----------------------------------------------------------------------------
bool CDmeMesh::DeleteBaseState( const char *pStateName )
{
const int nBaseStateCount = BaseStateCount();
for ( int i = 0; i < nBaseStateCount; ++i )
{
const CDmeVertexData *pBaseState = GetBaseState( i );
if ( !Q_stricmp( pStateName, pBaseState->GetName() ) )
{
m_BaseStates.Remove( i );
g_pDataModel->DestroyElement( pBaseState->GetHandle() );
// TODO: Fix up all dependent states
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Selects a particular base state to be current state
//-----------------------------------------------------------------------------
void CDmeMesh::SetCurrentBaseState( const char *pStateName )
{
m_CurrentBaseState = FindBaseState( pStateName );
}
//-----------------------------------------------------------------------------
// Selects a particular base state to be current state
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::GetCurrentBaseState()
{
return m_CurrentBaseState;
}
//-----------------------------------------------------------------------------
// Selects a particular base state to be current state
//-----------------------------------------------------------------------------
const CDmeVertexData *CDmeMesh::GetCurrentBaseState() const
{
return m_CurrentBaseState;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CDmeMesh::SetBindBaseState( CDmeVertexData *pBaseState )
{
if ( !pBaseState )
return false;
CDmeVertexData *pCheckState = FindBaseState( pBaseState->GetName() );
if ( pCheckState != pBaseState )
return false;
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::GetBindBaseState()
{
if ( m_BindBaseState.GetElement() )
return m_BindBaseState;
// Backwards compatibility
return FindBaseState( "bind" );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
const CDmeVertexData *CDmeMesh::GetBindBaseState() const
{
if ( m_BindBaseState.GetElement() )
return m_BindBaseState;
// Backwards compatibility
return FindBaseState( "bind" );
}
//-----------------------------------------------------------------------------
// Delta states
//-----------------------------------------------------------------------------
int CDmeMesh::DeltaStateCount() const
{
return m_DeltaStates.Count();
}
//-----------------------------------------------------------------------------
// Returns the delta
//-----------------------------------------------------------------------------
CDmeVertexDeltaData *CDmeMesh::GetDeltaState( int nDeltaIndex ) const
{
if ( nDeltaIndex < 0 || nDeltaIndex >= m_DeltaStates.Count() )
return NULL;
return m_DeltaStates[ nDeltaIndex ];
}
//-----------------------------------------------------------------------------
// Finds a delta state by name. If it isn't found, return NULL
//-----------------------------------------------------------------------------
CDmeVertexDeltaData *CDmeMesh::FindDeltaState( const char *pDeltaName ) const
{
return GetDeltaState( FindDeltaStateIndex( pDeltaName ) );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int SortDeltaNameFunc( const void *a, const void *b )
{
return Q_strcmp( *( const char ** )( a ), *( const char ** )( b ) );
}
//-----------------------------------------------------------------------------
// If the name doe
//-----------------------------------------------------------------------------
const char *SortDeltaName( const char *pInDeltaName, char *pOutDeltaName, int nOutDeltaNameBufLen )
{
if ( !pInDeltaName || !strchr( pInDeltaName, '_' ) )
return pInDeltaName;
char **ppDeltaNames = reinterpret_cast< char ** >( stackalloc( nOutDeltaNameBufLen * sizeof( char * ) ) );
memset( ppDeltaNames, 0, nOutDeltaNameBufLen * sizeof( char * ) );
const char *pStart = pInDeltaName;
int nDimensionCount = 0;
while ( pStart )
{
const char *pUnderBar = strchr( pStart, '_' );
const int nControlNameBufLen = ( pUnderBar ? pUnderBar - pStart : Q_strlen( pStart ) ) + 1;
if ( nControlNameBufLen )
{
ppDeltaNames[ nDimensionCount ] = reinterpret_cast< char * >( stackalloc( nControlNameBufLen * sizeof( char ) ) );
Q_strncpy( ppDeltaNames[ nDimensionCount ], pStart, nControlNameBufLen );
++nDimensionCount;
}
pStart = pUnderBar;
if ( pStart )
{
++pStart;
}
}
// This should only happen if the input name is all _'s
if ( nDimensionCount <= 0 )
return pInDeltaName;
qsort( ppDeltaNames, nDimensionCount, sizeof( char * ), SortDeltaNameFunc );
char *pDst = pOutDeltaName;
for ( int i = 0; i < nDimensionCount; ++i )
{
if ( i != 0 )
{
Q_strncpy( pDst, "_", nOutDeltaNameBufLen );
++pDst;
--nOutDeltaNameBufLen;
}
const int nControlNameLen = Q_strlen( ppDeltaNames[ i ] );
Q_strncpy( pDst, ppDeltaNames[ i ], nOutDeltaNameBufLen );
pDst += nControlNameLen;
nOutDeltaNameBufLen -= nControlNameLen;
}
return pOutDeltaName;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
CDmeVertexDeltaData *CDmeMesh::FindOrCreateDeltaState( const char *pInDeltaName )
{
CDmeVertexDeltaData *pDeltaState = FindDeltaState( pInDeltaName );
if ( pDeltaState )
return pDeltaState;
const int nDeltaNameBufLen = Q_strlen( pInDeltaName ) + 1;
char *pDeltaNameBuf = reinterpret_cast< char * >( stackalloc( nDeltaNameBufLen * sizeof( char ) ) );
const char *pDeltaName = SortDeltaName( pInDeltaName, pDeltaNameBuf, nDeltaNameBufLen );
pDeltaState = CreateElement< CDmeVertexDeltaData >( pDeltaName, GetFileId() );
if ( pDeltaState )
{
m_DeltaStates.AddToTail( pDeltaState );
}
return pDeltaState;
}
//-----------------------------------------------------------------------------
// Finds a delta state index by comparing names, if it can't be found
// searches for all permutations of the delta name
//-----------------------------------------------------------------------------
int CDmeMesh::FindDeltaStateIndex( const char *pInDeltaName ) const
{
const char *pDeltaName = pInDeltaName;
if ( strchr( pInDeltaName, '_' ) )
{
const int nDeltaNameBufLen = Q_strlen( pInDeltaName ) + 1;
char *pDeltaNameBuf = reinterpret_cast< char * >( stackalloc( nDeltaNameBufLen * sizeof( char ) ) );
pDeltaName = SortDeltaName( pInDeltaName, pDeltaNameBuf, nDeltaNameBufLen );
}
int dn = DeltaStateCount();
for ( int di = 0; di < dn; ++di )
{
CDmeVertexDeltaData *pDeltaState = GetDeltaState( di );
if ( !Q_stricmp( pDeltaName, pDeltaState->GetName() ) )
return di;
}
return -1;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SetDeltaStateWeight( int nDeltaIndex, MeshDeltaWeightType_t type, float flMorphWeight )
{
if ( nDeltaIndex < m_DeltaStateWeights[type].Count() )
{
m_DeltaStateWeights[type].Set( nDeltaIndex, Vector2D( flMorphWeight, flMorphWeight ) );
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SetDeltaStateWeight( int nDeltaIndex, MeshDeltaWeightType_t type, float flLeftWeight, float flRightWeight )
{
if ( nDeltaIndex < m_DeltaStateWeights[type].Count() )
{
m_DeltaStateWeights[type].Set( nDeltaIndex, Vector2D( flLeftWeight, flRightWeight ) );
}
}
//-----------------------------------------------------------------------------
// Determines the appropriate vertex format for hardware meshes
//-----------------------------------------------------------------------------
VertexFormat_t CDmeMesh::ComputeHwMeshVertexFormat( void )
{
bool bIsDX7 = !g_pMaterialSystemHardwareConfig->SupportsVertexAndPixelShaders();
VertexFormat_t vertexFormat = VERTEX_POSITION | VERTEX_COLOR | VERTEX_NORMAL | VERTEX_TEXCOORD_SIZE(0,2) | VERTEX_BONEWEIGHT(2) | VERTEX_BONE_INDEX
| ( bIsDX7 ? 0 : VERTEX_USERDATA_SIZE(4) );
// FIXME: set VERTEX_FORMAT_COMPRESSED if there are no artifacts and if it saves enough memory (use 'mem_dumpvballocs')
// vertexFormat |= VERTEX_FORMAT_COMPRESSED;
// FIXME: check for and strip unused vertex elements (see 'bHasNormals', etc, in CreateHwMesh below)
return vertexFormat;
}
//-----------------------------------------------------------------------------
// Builds a hardware mesh
//-----------------------------------------------------------------------------
IMesh *CDmeMesh::CreateHwMesh( CDmeFaceSet *pFaceSet )
{
const CDmeVertexData *pBind = GetBindBaseState();
if ( !pBind )
return NULL;
// NOTE: This is memory inefficient. We create a copy of all vertices
// for each face set, even if those vertices aren't used by the face set
// Mostly chose to do this for code simplicity, although it also is faster to generate meshes
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
VertexFormat_t vertexFormat = ComputeHwMeshVertexFormat( );
IMesh *pMesh = pRenderContext->CreateStaticMesh( vertexFormat, "dmemesh" );
CMeshBuilder meshBuilder;
// prepare vertices
FieldIndex_t posField = pBind->FindFieldIndex( CDmeVertexData::FIELD_POSITION );
FieldIndex_t normalField = pBind->FindFieldIndex( CDmeVertexData::FIELD_NORMAL );
FieldIndex_t tangentField = pBind->FindFieldIndex( CDmeVertexData::FIELD_TANGENT );
FieldIndex_t uvField = pBind->FindFieldIndex( CDmeVertexData::FIELD_TEXCOORD );
FieldIndex_t colorField = pBind->FindFieldIndex( CDmeVertexData::FIELD_COLOR );
Assert( posField >= 0 );
bool bHasNormals = ( normalField >= 0 );
bool bHasTangent = ( tangentField >= 0 );
bool bHasTexCoords = ( uvField >= 0 );
bool bHasColors = ( colorField >= 0 );
// build the mesh
int nIndices = pFaceSet->GetTriangulatedIndexCount();
int nVertices = pBind->VertexCount();
int nJointCount = pBind->JointCount();
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertices, nIndices );
const CDmrArrayConst<int> pPositionIndices = pBind->GetIndexData( posField );
const CDmrArrayConst<Vector> pPositionData = pBind->GetVertexData( posField );
const CDmrArrayConst<int> pNormalIndices = bHasNormals ? pBind->GetIndexData( normalField ) : NULL;
const CDmrArrayConst<Vector> pNormalData = bHasNormals ? pBind->GetVertexData( normalField ) : NULL;
const CDmrArrayConst<int> pTangentIndices = bHasTangent ? pBind->GetIndexData( tangentField ) : NULL;
const CDmrArrayConst<Vector4D> pTangentData = bHasTangent ? pBind->GetVertexData( tangentField ) : NULL;
const CDmrArrayConst<int> pUVIndices = bHasTexCoords ? pBind->GetIndexData( uvField ) : NULL;
const CDmrArrayConst<Vector2D> pUVData = bHasTexCoords ? pBind->GetVertexData( uvField ) : NULL;
const CDmrArrayConst<int> pColorIndices = bHasColors ? pBind->GetIndexData( colorField ) : NULL;
const CDmrArrayConst<Color> pColorData = bHasColors ? pBind->GetVertexData( colorField ) : NULL;
Vector4D defaultTangentS( 1.0f, 0.0f, 0.0f, 1.0f );
for ( int vi = 0; vi < nVertices; ++vi )
{
meshBuilder.Position3fv( pPositionData.Get( pPositionIndices.Get( vi ) ).Base() );
if ( pNormalData.IsValid() )
{
meshBuilder.Normal3fv( pNormalData.Get( pNormalIndices.Get( vi ) ).Base() );
}
else
{
meshBuilder.Normal3f( 0.0f, 0.0f, 1.0f );
}
if ( pTangentData.IsValid() )
{
meshBuilder.UserData( pTangentData.Get( pTangentIndices.Get( vi ) ).Base() );
}
else
{
meshBuilder.UserData( defaultTangentS.Base() );
}
if ( pUVData.IsValid() )
{
const Vector2D &uv = pUVData.Get( pUVIndices.Get( vi ) );
if ( !pBind->IsVCoordinateFlipped() )
{
meshBuilder.TexCoord2fv( 0, uv.Base() );
}
else
{
meshBuilder.TexCoord2f( 0, uv.x, 1.0f - uv.y );
}
}
else
{
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f );
}
if ( pColorIndices.IsValid() )
{
int color = pColorData.Get( pColorIndices.Get( vi ) ).GetRawColor();
meshBuilder.Color4ubv( (unsigned char*)&color );
}
else
{
meshBuilder.Color4ub( 255, 255, 255, 255 );
}
// FIXME: Note that this will break once we exceeed the max joint count
// that the hardware can handle
const float *pJointWeight = pBind->GetJointWeights( vi );
const int *pJointIndices = pBind->GetJointIndices( vi );
for ( int i = 0; i < nJointCount; ++i )
{
meshBuilder.BoneWeight( i, pJointWeight[i] );
meshBuilder.BoneMatrix( i, pJointIndices[i] );
}
for ( int i = nJointCount; i < 4; ++i )
{
meshBuilder.BoneWeight( i, ( i == 0 ) ? 1.0f : 0.0f );
meshBuilder.BoneMatrix( i, 0 );
}
meshBuilder.AdvanceVertex();
}
// prepare indices
int nFirstIndex = 0;
int nIndexCount = pFaceSet->NumIndices();
while ( nFirstIndex < nIndexCount )
{
int nVertexCount = pFaceSet->GetNextPolygonVertexCount( nFirstIndex );
if ( nVertexCount >= 3 )
{
int nOutCount = ( nVertexCount-2 ) * 3;
int *pIndices = (int*)_alloca( nOutCount * sizeof(int) );
ComputeTriangulatedIndices( pBind, pFaceSet, nFirstIndex, pIndices, nOutCount );
for ( int ii = 0; ii < nOutCount; ++ii )
{
meshBuilder.FastIndex( pIndices[ii] );
}
}
nFirstIndex += nVertexCount + 1;
}
meshBuilder.End();
return pMesh;
}
//-----------------------------------------------------------------------------
// Compute triangulated indices
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeTriangulatedIndices( const CDmeVertexData *pBaseState, CDmeFaceSet *pFaceSet, int nFirstIndex, int *pIndices, int nOutCount )
{
// FIXME: Come up with a more efficient way of computing this
// This involves a bunch of recomputation of distances
float flMinDistance = FLT_MAX;
int nMinIndex = 0;
int nVertexCount = pFaceSet->GetNextPolygonVertexCount( nFirstIndex );
// Optimization for quads + triangles.. it's totally symmetric
int nLoopCount = nVertexCount;
if ( nVertexCount <= 3 )
{
nLoopCount = 0;
}
else if ( nVertexCount == 4 )
{
nLoopCount = 2;
}
for ( int i = 0; i < nLoopCount; ++i )
{
float flDistance = 0.0f;
const Vector &vecCenter = pBaseState->GetPosition( pFaceSet->GetIndex( nFirstIndex+i ) );
for ( int j = 2; j < nVertexCount-1; ++j )
{
int vi = ( i + j ) % nVertexCount;
const Vector &vecEdge = pBaseState->GetPosition( pFaceSet->GetIndex( nFirstIndex+vi ) );
flDistance += vecEdge.DistTo( vecCenter );
}
if ( flDistance < flMinDistance )
{
nMinIndex = i;
flMinDistance = flDistance;
}
}
// Compute the triangulation indices
Assert( nOutCount == ( nVertexCount - 2 ) * 3 );
int nOutIndex = 0;
for ( int i = 1; i < nVertexCount - 1; ++i )
{
pIndices[nOutIndex++] = pFaceSet->GetIndex( nFirstIndex + nMinIndex );
pIndices[nOutIndex++] = pFaceSet->GetIndex( nFirstIndex + ((nMinIndex + i) % nVertexCount) );
pIndices[nOutIndex++] = pFaceSet->GetIndex( nFirstIndex + ((nMinIndex + i + 1) % nVertexCount) );
}
}
//-----------------------------------------------------------------------------
// Build a map from vertex index to a list of triangles that share the vert.
//-----------------------------------------------------------------------------
void CDmeMesh::BuildTriangleMap( const CDmeVertexData *pBaseState, CDmeFaceSet* pFaceSet, CUtlVector<Triangle_t>& triangles, CUtlVector< CUtlVector<int> >* pVertToTriMap )
{
// prepare indices
int nFirstIndex = 0;
int nIndexCount = pFaceSet->NumIndices();
while ( nFirstIndex < nIndexCount )
{
int nVertexCount = pFaceSet->GetNextPolygonVertexCount( nFirstIndex );
if ( nVertexCount >= 3 )
{
int nOutCount = ( nVertexCount-2 ) * 3;
int *pIndices = (int*)_alloca( nOutCount * sizeof(int) );
ComputeTriangulatedIndices( pBaseState, pFaceSet, nFirstIndex, pIndices, nOutCount );
for ( int ii = 0; ii < nOutCount; ii += 3 )
{
int t = triangles.AddToTail();
Triangle_t& triangle = triangles[t];
triangle.m_nIndex[0] = pIndices[ii];
triangle.m_nIndex[1] = pIndices[ii+1];
triangle.m_nIndex[2] = pIndices[ii+2];
if ( pVertToTriMap )
{
(*pVertToTriMap)[ pIndices[ii] ].AddToTail( t );
(*pVertToTriMap)[ pIndices[ii+1] ].AddToTail( t );
(*pVertToTriMap)[ pIndices[ii+2] ].AddToTail( t );
}
}
}
nFirstIndex += nVertexCount + 1;
}
}
//-----------------------------------------------------------------------------
// Computes tangent space data for triangles
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeTriangleTangets( const CDmeVertexData *pVertexData, CUtlVector<Triangle_t>& triangles )
{
// Calculate the tangent space for each triangle.
int nTriangleCount = triangles.Count();
for ( int triID = 0; triID < nTriangleCount; triID++ )
{
Triangle_t &triangle = triangles[triID];
const Vector &p0 = pVertexData->GetPosition( triangle.m_nIndex[0] );
const Vector &p1 = pVertexData->GetPosition( triangle.m_nIndex[1] );
const Vector &p2 = pVertexData->GetPosition( triangle.m_nIndex[2] );
const Vector2D &t0 = pVertexData->GetTexCoord( triangle.m_nIndex[0] );
const Vector2D &t1 = pVertexData->GetTexCoord( triangle.m_nIndex[1] );
const Vector2D &t2 = pVertexData->GetTexCoord( triangle.m_nIndex[2] );
CalcTriangleTangentSpace( p0, p1, p2, t0, t1, t2, triangle.m_vecTangentS, triangle.m_vecTangentT );
}
}
//-----------------------------------------------------------------------------
// Build a map from vertex index to a list of triangles that share the vert.
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeAverageTangent( CDmeVertexData *pVertexData, bool bSmoothTangents, CUtlVector< CUtlVector<int> >& vertToTriMap, CUtlVector<Triangle_t>& triangles )
{
FieldIndex_t posField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_POSITION );
FieldIndex_t normalField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL );
FieldIndex_t tangentField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_TANGENT );
const CDmrArray<int> pPositionIndices = pVertexData->GetIndexData( posField );
const CDmrArray<Vector> pPositionData = pVertexData->GetVertexData( posField );
const CDmrArray<int> pNormalIndices = pVertexData->GetIndexData( normalField );
const CDmrArray<Vector> pNormalData = pVertexData->GetVertexData( normalField );
// calculate an average tangent space for each vertex.
int nVertexCount = pVertexData->VertexCount();
Vector4D finalSVect;
for( int vertID = 0; vertID < nVertexCount; vertID++ )
{
CUtlVector<int> &triangleList = vertToTriMap[vertID];
Vector sVect, tVect;
sVect.Init( 0.0f, 0.0f, 0.0f );
tVect.Init( 0.0f, 0.0f, 0.0f );
int nTriangleCount = triangleList.Count();
for ( int triID = 0; triID < nTriangleCount; triID++ )
{
Triangle_t &tri = triangles[ triangleList[triID] ];
sVect += tri.m_vecTangentS;
tVect += tri.m_vecTangentT;
}
// In the case of zbrush, everything needs to be treated as smooth.
if ( bSmoothTangents )
{
const Vector &vertPos1 = pPositionData.Get( pPositionIndices.Get( vertID ) );
for( int vertID2 = 0; vertID2 < nVertexCount; vertID2++ )
{
if ( vertID2 == vertID )
continue;
const Vector &vertPos2 = pPositionData.Get( pPositionIndices.Get( vertID2 ) );
if ( vertPos1 != vertPos2 )
continue;
CUtlVector<int> &triangleList2 = vertToTriMap[vertID2];
int nTriangleCount2 = triangleList2.Count();
for ( int triID2 = 0; triID2 < nTriangleCount2; triID2++ )
{
Triangle_t &tri2 = triangles[ triangleList2[triID2] ];
sVect += tri2.m_vecTangentS;
tVect += tri2.m_vecTangentT;
}
}
}
// make an orthonormal system.
// need to check if we are left or right handed.
Vector tmpVect;
CrossProduct( sVect, tVect, tmpVect );
const Vector &normal = pNormalData.Get( pNormalIndices.Get( vertID ) );
bool bLeftHanded = DotProduct( tmpVect, normal ) < 0.0f;
if ( !bLeftHanded )
{
CrossProduct( normal, sVect, tVect );
CrossProduct( tVect, normal, sVect );
VectorNormalize( sVect );
VectorNormalize( tVect );
finalSVect[0] = sVect[0];
finalSVect[1] = sVect[1];
finalSVect[2] = sVect[2];
finalSVect[3] = 1.0f;
}
else
{
CrossProduct( sVect, normal, tVect );
CrossProduct( normal, tVect, sVect );
VectorNormalize( sVect );
VectorNormalize( tVect );
finalSVect[0] = sVect[0];
finalSVect[1] = sVect[1];
finalSVect[2] = sVect[2];
finalSVect[3] = -1.0f;
}
pVertexData->SetVertexData( tangentField, vertID, 1, AT_VECTOR4, &finalSVect );
pVertexData->SetVertexIndices( tangentField, vertID, 1, &vertID );
}
}
//-----------------------------------------------------------------------------
// Builds a map from vertex index to all triangles that use it
//-----------------------------------------------------------------------------
void CDmeMesh::BuildVertToTriMap( const CDmeVertexData *pVertexData, CUtlVector<Triangle_t> &triangles, CUtlVector< CUtlVector<int> > &vertToTriMap )
{
vertToTriMap.AddMultipleToTail( pVertexData->VertexCount() );
int nCount = FaceSetCount();
for ( int i = 0; i < nCount; ++i )
{
CDmeFaceSet *pFaceSet = GetFaceSet( i );
BuildTriangleMap( pVertexData, pFaceSet, triangles, &vertToTriMap );
}
}
//-----------------------------------------------------------------------------
// Compute a default per-vertex tangent given normal data + uv data
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDefaultTangentData( CDmeVertexData *pVertexData, bool bSmoothTangents )
{
if ( !pVertexData )
return;
// Need to have valid pos, uv, and normal to perform this operation
FieldIndex_t posField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_POSITION );
FieldIndex_t normalField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL );
FieldIndex_t uvField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_TEXCOORD );
if ( posField < 0 || uvField < 0 || normalField < 0 )
return;
// FIXME: Need to do a pass to make sure no vertex is referenced by
// multiple facesets that have different materials in them.
// In that case, we need to add extra copies of that vertex and modify
// the face set data to refer to the new vertices
// Build a map from vertex to a list of triangles that share the vert.
CUtlVector<Triangle_t> triangles( 0, 1024 );
CUtlVector< CUtlVector<int> > vertToTriMap;
vertToTriMap.AddMultipleToTail( pVertexData->VertexCount() );
int nCount = FaceSetCount();
for ( int i = 0; i < nCount; ++i )
{
CDmeFaceSet *pFaceSet = GetFaceSet( i );
BuildTriangleMap( pVertexData, pFaceSet, triangles, &vertToTriMap );
}
ComputeTriangleTangets( pVertexData, triangles );
// FIXME: We could do a pass to determine the unique combinations of
// position + tangent indices in the vertex data. We only need to have
// a unique tangent for each of these unique vertices. For simplicity
// (and speed), I'll assume all tangents are unique per vertex.
FieldIndex_t tangent = pVertexData->CreateField<Vector4D>( "tangents" );
pVertexData->RemoveAllVertexData( tangent );
pVertexData->AddVertexData( tangent, pVertexData->VertexCount() );
ComputeAverageTangent( pVertexData, bSmoothTangents, vertToTriMap, triangles );
}
//-----------------------------------------------------------------------------
// Compute a default per-vertex tangent given normal data + uv data for all vertex data referenced by this mesh
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDefaultTangentData( bool bSmoothTangents )
{
const int nBaseStateCount = m_BaseStates.Count();
for ( int i = 0; i < nBaseStateCount; ++i )
{
if ( m_BaseStates[i] && m_BaseStates[i]->NeedsTangentData() )
{
ComputeDefaultTangentData( m_BaseStates[i], bSmoothTangents );
}
}
}
//-----------------------------------------------------------------------------
// Utility method to compute default tangent data on all meshes in the sub-dag hierarchy
//-----------------------------------------------------------------------------
void ComputeDefaultTangentData( CDmeDag *pDag, bool bSmoothTangents )
{
if ( !pDag )
return;
CDmeMesh *pMesh = CastElement< CDmeMesh >( pDag->GetShape() );
if ( pMesh )
{
pMesh->ComputeDefaultTangentData( bSmoothTangents );
}
int nChildCount = pDag->GetChildCount();
for ( int i = 0; i < nChildCount; ++i )
{
ComputeDefaultTangentData( pDag->GetChild( i ), bSmoothTangents );
}
}
//-----------------------------------------------------------------------------
// Compute the dimensionality of the delta state (how many inputs affect it)
//-----------------------------------------------------------------------------
int CDmeMesh::ComputeDeltaStateDimensionality( int nDeltaIndex )
{
CDmeVertexDeltaData *pDeltaState = GetDeltaState( nDeltaIndex );
const char *pDeltaStateName = pDeltaState->GetName();
const char *pUnderBar = pDeltaStateName;
int nDimensions = 0;
while ( pUnderBar )
{
++nDimensions;
pUnderBar = strchr( pUnderBar, '_' );
if ( pUnderBar )
{
++pUnderBar;
}
}
return nDimensions;
}
//-----------------------------------------------------------------------------
// Computes the aggregate position for all vertices after applying a set of delta states
//-----------------------------------------------------------------------------
void CDmeMesh::AddDelta( CDmeVertexData *pBaseState, Vector *pDeltaPosition, int nDeltaStateIndex, CDmeVertexData::StandardFields_t fieldId )
{
CDmeVertexDeltaData *pDeltaState = GetDeltaState( nDeltaStateIndex );
FieldIndex_t nFieldIndex = pDeltaState->FindFieldIndex( fieldId );
if ( nFieldIndex < 0 )
return;
if ( pBaseState->FindFieldIndex( CDmeVertexData::FIELD_BALANCE ) != -1 )
{
AddStereoVertexDelta<Vector>( pBaseState, pDeltaPosition, sizeof(Vector), fieldId, nDeltaStateIndex, true );
}
else
{
AddVertexDelta<Vector>( pBaseState, pDeltaPosition, sizeof(Vector), fieldId, nDeltaStateIndex, true );
}
}
//-----------------------------------------------------------------------------
// Computes correctly averaged vertex normals from position data
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeNormalsFromPositions(
CDmeVertexData *pBase,
const Vector *pPosition,
const CUtlVector<Triangle_t> &triangles,
int nNormalCount,
Vector *pNormals )
{
Assert( nNormalCount == pBase->GetNormalData().Count() );
int *pNormalsAdded = (int*)_alloca( nNormalCount * sizeof(int) );
memset( pNormalsAdded, 0, nNormalCount * sizeof(int) );
memset( pNormals, 0, nNormalCount * sizeof(Vector) );
const CUtlVector<int> &positionIndices = pBase->GetVertexIndexData( CDmeVertexData::FIELD_POSITION );
const CUtlVector<int> &normalIndices = pBase->GetVertexIndexData( CDmeVertexData::FIELD_NORMAL );
int nTriangleCount = triangles.Count();
for ( int i = 0; i < nTriangleCount; ++i )
{
const Triangle_t &tri = triangles[i];
int p1 = positionIndices[ tri.m_nIndex[0] ];
int p2 = positionIndices[ tri.m_nIndex[1] ];
int p3 = positionIndices[ tri.m_nIndex[2] ];
int n1 = normalIndices[ tri.m_nIndex[0] ];
int n2 = normalIndices[ tri.m_nIndex[1] ];
int n3 = normalIndices[ tri.m_nIndex[2] ];
Vector vecDelta, vecDelta2, vecNormal;
VectorSubtract( pPosition[p2], pPosition[p1], vecDelta );
VectorSubtract( pPosition[p3], pPosition[p1], vecDelta2 );
CrossProduct( vecDelta, vecDelta2, vecNormal );
VectorNormalize( vecNormal );
pNormals[n1] += vecNormal;
pNormals[n2] += vecNormal;
pNormals[n3] += vecNormal;
++pNormalsAdded[n1]; ++pNormalsAdded[n2]; ++pNormalsAdded[n3];
}
for ( int i = 0; i < nNormalCount; ++i )
{
if ( pNormalsAdded[i] > 0 )
{
pNormals[i] /= pNormalsAdded[i];
VectorNormalize( pNormals[i] );
}
else
{
pNormals[i].Init( 0, 1, 0 );
}
}
}
//-----------------------------------------------------------------------------
// Converts pose-space normals into deltas appropriate for correction delta states
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeCorrectedNormalsFromActualNormals( const CUtlVector<int> &deltaStateList, int nNormalCount, Vector *pNormals )
{
CDmeVertexData *pBind = GetBindBaseState();
if ( !pBind )
return;
Assert( nNormalCount == pBind->GetNormalData().Count() );
// Subtract out all other normal contributions
Vector *pUncorrectedNormals = (Vector*)_alloca( nNormalCount * sizeof(Vector) );
memcpy( pUncorrectedNormals, pBind->GetNormalData().Base(), nNormalCount * sizeof( Vector ) );
int nDeltaStateCount = deltaStateList.Count();
for ( int i = 0; i < nDeltaStateCount; ++i )
{
AddDelta( pBind, pUncorrectedNormals, deltaStateList[i], CDmeVertexData::FIELD_NORMAL );
}
for ( int i = 0; i < nNormalCount; ++i )
{
pNormals[i] -= pUncorrectedNormals[i];
}
}
//-----------------------------------------------------------------------------
// Copies the corrected normal data into a delta state
//-----------------------------------------------------------------------------
void CDmeMesh::SetDeltaNormalData( int nDeltaIndex, int nNormalCount, Vector *pNormals )
{
// pNormals represents the correct normal delta state for this combination
// Copy it into the delta state for this combination.
// Use tolerance to deal with precision errors introduced by the various computations
CDmeVertexDeltaData *pDeltaState = GetDeltaState( nDeltaIndex );
FieldIndex_t nNormalField = pDeltaState->FindFieldIndex( CDmeVertexDeltaData::FIELD_NORMAL );
if ( nNormalField >= 0 )
{
pDeltaState->RemoveAllVertexData( nNormalField );
}
else
{
nNormalField = pDeltaState->CreateField( CDmeVertexDeltaData::FIELD_NORMAL );
}
for ( int i = 0; i < nNormalCount; ++i )
{
if ( pNormals[i].LengthSqr() < 1e-4 )
continue;
int nNormalIndex = pDeltaState->AddVertexData( nNormalField, 1 );
pDeltaState->SetVertexData( nNormalField, nNormalIndex, 1, AT_VECTOR3, &pNormals[i] );
pDeltaState->SetVertexIndices( nNormalField, nNormalIndex, 1, &i );
}
}
//-----------------------------------------------------------------------------
// Discovers the atomic controls used by the various delta states
//-----------------------------------------------------------------------------
static int DeltaStateUsageLessFunc( const int * lhs, const int * rhs )
{
return *lhs - *rhs;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::BuildAtomicControlLists( int nCount, DeltaComputation_t *pInfo, CUtlVector< CUtlVector< int > > &deltaStateUsage )
{
CUtlVector< CUtlString > atomicControls;
deltaStateUsage.SetCount( nCount );
// Build a list of atomic controls
int nCurrentDelta;
for ( nCurrentDelta = 0; nCurrentDelta < nCount; ++nCurrentDelta )
{
if ( pInfo[nCurrentDelta].m_nDimensionality != 1 )
break;
int j = atomicControls.AddToTail( GetDeltaState( pInfo[nCurrentDelta].m_nDeltaIndex )->GetName() );
deltaStateUsage[ nCurrentDelta ].AddToTail( j );
}
for ( ; nCurrentDelta < nCount; ++nCurrentDelta )
{
CDmeVertexDeltaData *pDeltaState = GetDeltaState( pInfo[nCurrentDelta].m_nDeltaIndex );
int nLen = Q_strlen( pDeltaState->GetName() );
char *pTempBuf = (char*)_alloca( nLen + 1 );
memcpy( pTempBuf, pDeltaState->GetName(), nLen+1 );
char *pNext;
for ( char *pUnderBar = pTempBuf; pUnderBar; pUnderBar = pNext )
{
pNext = strchr( pUnderBar, '_' );
if ( pNext )
{
*pNext = 0;
++pNext;
}
// Find this name in the list of strings
int j;
int nControlCount = atomicControls.Count();
for ( j = 0; j < nControlCount; ++j )
{
if ( !Q_stricmp( pUnderBar, atomicControls[j] ) )
break;
}
if ( j == nControlCount )
{
j = atomicControls.AddToTail( pUnderBar );
}
deltaStateUsage[ nCurrentDelta ].AddToTail( j );
}
deltaStateUsage[ nCurrentDelta ].Sort( DeltaStateUsageLessFunc );
}
}
//-----------------------------------------------------------------------------
// Construct list of all n-1 -> 1 dimensional delta states
// that will be active when this delta state is active
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDependentDeltaStateList( CUtlVector< DeltaComputation_t > &compList )
{
if ( compList.Count() == 0 )
{
ComputeDeltaStateComputationList( compList );
}
CUtlVector< CUtlVector< int > > deltaStateUsage;
const int nCount( compList.Count() );
BuildAtomicControlLists( nCount, compList.Base(), deltaStateUsage );
// Now build up a list of dependent delta states based on usage
// NOTE: Usage is sorted in ascending order.
for ( int i = 1; i < nCount; ++i )
{
int nUsageCount1 = deltaStateUsage[i].Count();
for ( int j = 0; j < i; ++j )
{
// At the point they have the same dimensionality, no more need to check
if ( compList[j].m_nDimensionality == compList[i].m_nDimensionality )
break;
int ii = 0;
bool bSubsetFound = true;
int nUsageCount2 = deltaStateUsage[j].Count();
for ( int ji = 0; ji < nUsageCount2; ++ji )
{
for ( bSubsetFound = false; ii < nUsageCount1; ++ii )
{
if ( deltaStateUsage[j][ji] == deltaStateUsage[i][ii] )
{
++ii;
bSubsetFound = true;
break;
}
if ( deltaStateUsage[j][ji] < deltaStateUsage[i][ii] )
break;
}
if ( !bSubsetFound )
break;
}
if ( bSubsetFound )
{
compList[i].m_DependentDeltas.AddToTail( compList[j].m_nDeltaIndex );
}
}
}
}
//-----------------------------------------------------------------------------
// Sorts DeltaComputation_t's by dimensionality
//-----------------------------------------------------------------------------
int CDmeMesh::DeltaStateLessFunc( const void * lhs, const void * rhs )
{
DeltaComputation_t &info1 = *(DeltaComputation_t*)lhs;
DeltaComputation_t &info2 = *(DeltaComputation_t*)rhs;
return info1.m_nDimensionality - info2.m_nDimensionality;
}
//-----------------------------------------------------------------------------
// Generates a sorted list in order of dimensionality of the delta states
// NOTE: This assumes a naming scheme where delta state names have _ that separate control names
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDeltaStateComputationList( CUtlVector< DeltaComputation_t > &compList )
{
// Do all combinations in order of dimensionality, lowest dimension first
const int nCount = DeltaStateCount();
compList.EnsureCount( nCount ); // Resets the CUtlVector
for ( int i = 0; i < nCount; ++i )
{
compList[i].m_nDeltaIndex = i;
compList[i].m_nDimensionality = ComputeDeltaStateDimensionality( i );
}
qsort( compList.Base(), nCount, sizeof(DeltaComputation_t), DeltaStateLessFunc );
}
//-----------------------------------------------------------------------------
// Computes normal deltas for all delta states based on position deltas
// NOTE: This assumes a naming scheme where delta state names have _ that separate control names
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDeltaStateNormals()
{
CDmeVertexData *pBind = GetBindBaseState();
if ( !pBind )
return;
const FieldIndex_t nBindNormalIndex = pBind->CreateField( CDmeVertexData::FIELD_NORMAL );
const CUtlVector< Vector > &basePosData = pBind->GetPositionData();
const int nPosCount = basePosData.Count();
// Build a map from vertex to a list of triangles that share the vert.
CUtlVector< Triangle_t > triangles( 0, 1024 );
CUtlVector< CUtlVector<int> > vertToTriMap;
vertToTriMap.AddMultipleToTail( pBind->VertexCount() );
const int nFaceSetCount = FaceSetCount();
for ( int i = 0; i < nFaceSetCount; ++i )
{
CDmeFaceSet *pFaceSet = GetFaceSet( i );
BuildTriangleMap( pBind, pFaceSet, triangles, &vertToTriMap );
}
// Temporary storage for normals
Vector *pNormals = reinterpret_cast< Vector * >( alloca( nPosCount * sizeof( Vector ) ) );
// Make all of the normals in the bind pose smooth
{
const CUtlVector< int > &basePosIndices = pBind->GetVertexIndexData( CDmeVertexData::FIELD_POSITION );
pBind->SetVertexIndices( nBindNormalIndex, 0, basePosIndices.Count(), basePosIndices.Base() );
pBind->RemoveAllVertexData( nBindNormalIndex );
pBind->AddVertexData( nBindNormalIndex, nPosCount );
ComputeNormalsFromPositions( pBind, basePosData.Base(), triangles, nPosCount, pNormals );
pBind->SetVertexData( nBindNormalIndex, 0, nPosCount, AT_VECTOR3, pNormals );
// Fix up the current state to have smooth normals if current is not bind
CDmeVertexData *pCurrent = GetCurrentBaseState();
if ( pCurrent != pBind )
{
const FieldIndex_t nCurrentNormalIndex = pCurrent->CreateField( CDmeVertexData::FIELD_NORMAL );
pCurrent->SetVertexIndices( nCurrentNormalIndex, 0, basePosIndices.Count(), basePosIndices.Base() );
pCurrent->RemoveAllVertexData( nCurrentNormalIndex );
pCurrent->AddVertexData( nCurrentNormalIndex, nPosCount );
const CUtlVector< Vector > &currPosData = pCurrent->GetPositionData();
ComputeNormalsFromPositions( pCurrent, currPosData.Base(), triangles, nPosCount, pNormals );
pCurrent->SetVertexData( nCurrentNormalIndex, 0, nPosCount, AT_VECTOR3, pNormals );
}
}
// Temporary storage for the positions
Vector *pPosData = reinterpret_cast< Vector * >( alloca( nPosCount * sizeof( Vector ) ) );
// Compute the dependent delta state list like thing
CUtlVector< DeltaComputation_t > computationOrder;
ComputeDependentDeltaStateList( computationOrder );
const int nDeltaStateCount = computationOrder.Count();
for ( int i = 0; i < nDeltaStateCount; ++i )
{
const DeltaComputation_t &deltaComputation = computationOrder[ i ];
memcpy( pPosData, basePosData.Base(), nPosCount * sizeof( Vector ) );
const CUtlVector< int > &depDeltas = deltaComputation.m_DependentDeltas;
const int nDepStateCount = depDeltas.Count();
for ( int j = 0; j < nDepStateCount; ++j )
{
AddDelta( GetDeltaState( depDeltas[ j ] ), pPosData, nPosCount, CDmeVertexData::FIELD_POSITION );
}
AddDelta( GetDeltaState( deltaComputation.m_nDeltaIndex ), pPosData, nPosCount, CDmeVertexData::FIELD_POSITION );
ComputeNormalsFromPositions( pBind, pPosData, triangles, nPosCount, pNormals );
SetDeltaNormalDataFromActualNormals( computationOrder[ i ].m_nDeltaIndex, depDeltas, nPosCount, pNormals );
}
}
//-----------------------------------------------------------------------------
// Computes normal deltas for all delta states based on position deltas
// NOTE: This assumes a naming scheme where delta state names have _ that separate control names
//-----------------------------------------------------------------------------
void CDmeMesh::SetDeltaNormalDataFromActualNormals( int nDeltaIndex, const CUtlVector<int> &deltaStateList, int nNormalCount, Vector *pNormals )
{
// Store off the current state values
CUtlVector< Vector2D > deltaStateWeights[MESH_DELTA_WEIGHT_TYPE_COUNT];
for ( int i = 0; i < MESH_DELTA_WEIGHT_TYPE_COUNT; ++i )
{
deltaStateWeights[i] = m_DeltaStateWeights[i].Get();
// Turn on the current weights to all be 1 to get max effect of morphs
int nCount = m_DeltaStateWeights[i].Count();
for ( int j = 0; j < nCount; ++j )
{
m_DeltaStateWeights[i].Set( j, Vector2D( 1.0f, 1.0f ) );
}
}
ComputeCorrectedNormalsFromActualNormals( deltaStateList, nNormalCount, pNormals );
// Finally, store the corrected normals into the delta state
SetDeltaNormalData( nDeltaIndex, nNormalCount, pNormals );
// Restore weights to their current value
for ( int i = 0; i < MESH_DELTA_WEIGHT_TYPE_COUNT; ++i )
{
m_DeltaStateWeights[i] = deltaStateWeights[i];
}
}
//-----------------------------------------------------------------------------
// A recursive algorithm to compute nCk, i.e. the number of order independent
// Combinations without any repeats of k items taking n at a time
// The size of the returned array is:
//
// n!
// -------------
// k! ( n - r )!
//
// e.g. 4C4 = { 0 1 2 3 }
// e.g. 3C4 = { 0 1 2 }, { 0 1 3 }, { 0 2 3 }, { 1 2 3 }
// e.g. 2C4 = { 0 1 }, { 0 2 }, { 0 3 }, { 1 2 }, { 1 3 }, { 2 3 }
// e.g. 1C4 = { 0 }, { 1 }, { 2 }, { 3 }
//
// It's recursive and meant to be called by the user with just n, k and combos
// the other default arguments are for the recursive steps
//-----------------------------------------------------------------------------
void CDmeMesh::Combinations(
int n,
int k,
CUtlVector< CUtlVector< int > > &combos,
int *pTmpArray,
int start,
int currentK )
{
if ( !pTmpArray )
{
pTmpArray = reinterpret_cast< int * >( alloca( k * sizeof( int ) ) );
memset( pTmpArray, 0, k * sizeof( int ) );
}
if ( currentK >= k )
{
combos[ combos.AddToTail() ].CopyArray( pTmpArray, k );
return;
}
for ( int i( start ); i < n; ++i )
{
pTmpArray[ currentK ] = i;
Combinations( n, k, combos, pTmpArray, i + 1, currentK + 1 );
}
}
//-----------------------------------------------------------------------------
// Takes an incoming Delta state, splits it's name '_' and then finds the
// control delta (a state without a '_' in its name) and adds the index
// of that control delta to the referenced array
//
// Returns true if all of the control states exist, false otherwise
//-----------------------------------------------------------------------------
bool CDmeMesh::GetControlDeltaIndices(
CDmeVertexDeltaData *pDeltaState,
CUtlVector< int > &controlDeltaIndices ) const
{
Assert( pDeltaState );
return GetControlDeltaIndices( pDeltaState->GetName(), controlDeltaIndices );
}
//-----------------------------------------------------------------------------
// Same as above but just uses the name of a delta
//-----------------------------------------------------------------------------
bool CDmeMesh::GetControlDeltaIndices(
const char *pDeltaStateName,
CUtlVector< int > &controlDeltaIndices ) const
{
Assert( pDeltaStateName );
controlDeltaIndices.RemoveAll();
const int nDeltaStateName( Q_strlen( pDeltaStateName ) );
char *pTmpBuf( reinterpret_cast< char * >( alloca( nDeltaStateName + 1 ) ) );
Q_strncpy( pTmpBuf, pDeltaStateName, nDeltaStateName + 1 );
char *pNext;
for ( char *pCurr = pTmpBuf; pCurr; pCurr = pNext )
{
pNext = strchr( pCurr, '_' );
if ( pNext )
{
*pNext = '\0';
++pNext;
}
if ( Q_strlen( pCurr ) )
{
const int controlDeltaIndex( FindDeltaStateIndex( pCurr ) );
if ( controlDeltaIndex >= 0 )
{
controlDeltaIndices.AddToTail( controlDeltaIndex );
}
else
{
controlDeltaIndices.RemoveAll();
return false;
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// Builds a list of all of the underlying control delta indices for each
// delta state in the mesh
//
// e.g. Say the delta states are (in this order): A, B, C, A_C, A_B_C
//
// Will build: {
// { 0 },
// { 1 },
// { 2 },
// { 0, 2 },
// { 0, 1, 2 }
// }
//
// Returns true if all of the control states exist, false otherwise
//-----------------------------------------------------------------------------
bool CDmeMesh::BuildCompleteDeltaStateControlList(
CUtlVector< CUtlVector< int > > &deltaStateControlList ) const
{
deltaStateControlList.RemoveAll();
CUtlVector< int > tmpControlDeltaIndices;
const int nDeltas( m_DeltaStates.Count() );
for ( int i = 0; i < nDeltas; ++i )
{
if ( !GetControlDeltaIndices( m_DeltaStates[ i ], tmpControlDeltaIndices ) )
return false;
deltaStateControlList[ deltaStateControlList.AddToTail() ].CopyArray( tmpControlDeltaIndices.Base(), tmpControlDeltaIndices.Count() );
}
return true;
}
//-----------------------------------------------------------------------------
// Searches controlList for a sub array that has exactly the same indices as
// controlIndices. The order of the indices do not have to match but all of
// them must be present and no extras can be present.
// It assumes that the controlList is in the same order as m_deltaStates
//-----------------------------------------------------------------------------
int CDmeMesh::FindDeltaIndexFromControlIndices(
const CUtlVector< int > &controlIndices,
const CUtlVector< CUtlVector< int > > &controlList ) const
{
const int nControlIndices( controlIndices.Count() );
const int nControlList( controlList.Count() );
int nControlListIndices;
int foundCount;
for ( int i = 0; i < nControlList; ++i )
{
const CUtlVector< int > &controlListIndices( controlList[ i ] );
nControlListIndices = controlListIndices.Count();
if ( nControlListIndices == nControlIndices )
{
foundCount = 0;
for ( int j( 0 ); j < nControlListIndices; ++j )
{
for ( int k( 0 ); k < nControlIndices; ++k )
{
if ( controlListIndices[ j ] == controlIndices[ k ] )
{
++foundCount;
break;
}
}
}
if ( foundCount == nControlIndices )
return i;
}
}
return -1;
}
//-----------------------------------------------------------------------------
// Builds a list of all of the required underlying deltas that make up this
// state whether that do not exist. All of the control deltas must exist
// though (Deltas without '_' in their name).
//
// e.g. Say only Delta states A, B, C, D, A_B_C_D exist and A_B_C_D is
// passed in. This function will return:
//
// A_B_C, A_B_D, A_C_D, B_C_D, A_B, A_C, A_D, B_C, B_D, C_D
//
// Returns true if all of the control states exist, false otherwise
//-----------------------------------------------------------------------------
bool CDmeMesh::BuildMissingDependentDeltaList(
CDmeVertexDeltaData *pDeltaState,
CUtlVector< int > &controlIndices,
CUtlVector< CUtlVector< int > > &dependentStates ) const
{
dependentStates.RemoveAll();
CUtlVector< CUtlVector< int > > deltaStateControlList;
BuildCompleteDeltaStateControlList( deltaStateControlList );
if ( !GetControlDeltaIndices( pDeltaState, controlIndices ) )
return false;
const int nControlIndices( controlIndices.Count() );
CUtlVector< int > comboControls;
for ( int i( nControlIndices - 1 ); i > 0; --i )
{
CUtlVector< CUtlVector< int > > combos;
Combinations( nControlIndices, i, combos );
const int nCombos( combos.Count() );
for ( int j( 0 ); j < nCombos; ++j )
{
const CUtlVector< int > &comboIndices( combos[ j ] );
const int nComboIndices( comboIndices.Count() );
if ( comboIndices.Count() )
{
comboControls.RemoveAll();
comboControls.EnsureCapacity( nComboIndices );
for ( int k( 0 ); k < nComboIndices; ++k )
{
comboControls.AddToTail( controlIndices[ comboIndices[ k ] ] );
}
if ( FindDeltaIndexFromControlIndices( comboControls, deltaStateControlList) < 0 )
{
dependentStates[ dependentStates.AddToTail() ].CopyArray( comboControls.Base(), comboControls.Count() );
}
}
}
}
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t >
int CDmeMesh::GenerateCompleteDataForDelta(
const CDmeVertexDeltaData *pDelta,
T_t *pFullData,
int nFullData,
CDmeVertexData::StandardFields_t standardField )
{
memset( pFullData, 0, nFullData * sizeof( T_t ) );
const FieldIndex_t fIndex( pDelta->FindFieldIndex( standardField ) );
if ( fIndex >= 0 )
{
CDmrArrayConst< T_t > fDataArray( pDelta->GetVertexData( fIndex ) );
const CUtlVector< T_t > &fData( fDataArray.Get() );
const CUtlVector< int > &fIndexData( pDelta->GetVertexIndexData( fIndex ) );
const int nIndexData( fIndexData.Count() );
Assert( nIndexData <= nFullData );
int index;
int i( 0 );
for ( int j( 0 ); j < nIndexData; ++j )
{
index = fIndexData[ j ];
while ( index > i )
{
++i;
}
Assert( i < nFullData );
pFullData[ i ] = fData[ j ];
}
return nIndexData;
}
return 0;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t >
void CDmeMesh::AddDelta(
const CDmeVertexDeltaData *pDelta,
T_t *pFullData,
int nFullData,
FieldIndex_t fieldIndex,
float weight,
const CDmeSingleIndexedComponent *pMask )
{
if ( fieldIndex >= 0 )
{
CDmrArrayConst< T_t > fDataArray( pDelta->GetVertexData( fieldIndex ) );
const CUtlVector< T_t > &fData( fDataArray.Get() );
const CUtlVector< int > &fIndexData( pDelta->GetVertexIndexData( fieldIndex ) );
const int nIndexData( fIndexData.Count() );
T_t t;
Assert( nIndexData <= nFullData );
int index;
int i( 0 );
if ( pMask )
{
float cWeight;
for ( int j( 0 ); j < nIndexData; ++j )
{
index = fIndexData[ j ];
if ( !pMask->GetWeight( index, cWeight ) )
continue;
while ( index > i )
{
++i;
}
Assert( i < nFullData );
t = fData[ j ];
t *= ( weight * cWeight );
pFullData[ i ] += t;
}
}
else
{
for ( int j( 0 ); j < nIndexData; ++j )
{
index = fIndexData[ j ];
while ( index > i )
{
++i;
}
Assert( i < nFullData );
t = fData[ j ];
t *= weight;
pFullData[ i ] += t;
}
}
}
}
template void CDmeMesh::AddDelta< float >( const CDmeVertexDeltaData *, float *, int, FieldIndex_t, float, const CDmeSingleIndexedComponent * );
template void CDmeMesh::AddDelta< Vector2D >( const CDmeVertexDeltaData *, Vector2D *, int, FieldIndex_t, float, const CDmeSingleIndexedComponent * );
template void CDmeMesh::AddDelta< Vector >( const CDmeVertexDeltaData *, Vector *, int, FieldIndex_t, float, const CDmeSingleIndexedComponent * );
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t >
void CDmeMesh::AddDelta(
const CDmeVertexDeltaData *pDelta,
T_t *pFullData,
int nFullData,
CDmeVertexData::StandardFields_t standardField,
float weight,
const CDmeSingleIndexedComponent *pMask )
{
const FieldIndex_t fIndex( pDelta->FindFieldIndex( standardField ) );
AddDelta( pDelta, pFullData, nFullData, fIndex, weight, pMask );
}
template void CDmeMesh::AddDelta< float >( const CDmeVertexDeltaData *, float *, int, CDmeVertexData::StandardFields_t, float, const CDmeSingleIndexedComponent * );
template void CDmeMesh::AddDelta< Vector2D >( const CDmeVertexDeltaData *, Vector2D *, int, CDmeVertexData::StandardFields_t, float, const CDmeSingleIndexedComponent * );
template void CDmeMesh::AddDelta< Vector >( const CDmeVertexDeltaData *, Vector *, int, CDmeVertexData::StandardFields_t, float, const CDmeSingleIndexedComponent * );
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeAllCorrectedPositionsFromActualPositions()
{
const CDmeVertexData *pBase = GetBindBaseState();
if ( !pBase )
return;
CUtlVector< DeltaComputation_t > deltaList;
ComputeDependentDeltaStateList( deltaList );
const int nDeltas( deltaList.Count() );
const int nPositions( pBase->GetPositionData().Count() );
Vector *pPositions( reinterpret_cast< Vector * >( alloca( nPositions * sizeof( Vector ) ) ) );
int *pIndices( reinterpret_cast< int * >( alloca( nPositions * sizeof( int ) ) ) );
int pCount;
for ( int i = 0; i < nDeltas; ++i )
{
const DeltaComputation_t &deltaComputation( deltaList[ i ] );
CDmeVertexDeltaData *pDelta( m_DeltaStates[ deltaComputation.m_nDeltaIndex ] );
if ( !pDelta->GetValue< bool >( "corrected" ) )
{
const FieldIndex_t pIndex( pDelta->FindFieldIndex( CDmeVertexDeltaData::FIELD_POSITION ) );
if ( pIndex < 0 )
continue;
GenerateCompleteDataForDelta( pDelta, pPositions, nPositions, CDmeVertexData::FIELD_POSITION );
const CUtlVector< int > &dependentDeltas( deltaComputation.m_DependentDeltas );
const int nDependentDeltas( dependentDeltas.Count() );
for ( int j( 0 ); j < nDependentDeltas; ++j )
{
const CDmeVertexDeltaData *pDependentDelta( m_DeltaStates[ dependentDeltas[ j ] ] );
const CUtlVector< Vector > &dPositions( pDependentDelta->GetPositionData() );
const CUtlVector<int> &dIndices( pDependentDelta->GetVertexIndexData( CDmeVertexData::FIELD_POSITION ) );
Assert( dPositions.Count() == dIndices.Count() );
const int nIndices( dIndices.Count() );
int index;
int k( 0 );
for ( int l( 0 ); l < nIndices; ++l )
{
index = dIndices[ l ];
while ( index > k )
{
++k;
}
Assert( k < nPositions );
pPositions[ k ] -= dPositions[ l ];
}
}
pCount = 0;
for ( int j( 0 ); j < nPositions; ++j )
{
const Vector &v( pPositions[ j ] );
// Kind of a magic number but it's because of 16 bit compression of the delta values
if ( fabs( v.x ) >= ( 1 / 4096.0f ) || fabs( v.y ) >= ( 1 / 4096.0f ) || fabs( v.z ) >= ( 1 / 4096.0f ) )
{
pPositions[ pCount ] = v;
pIndices[ pCount ] = j;
++pCount;
}
}
pDelta->RemoveAllVertexData( pIndex );
if ( pCount )
{
pDelta->AddVertexData( pIndex, pCount );
pDelta->SetVertexData( pIndex, 0, pCount, AT_VECTOR3, pPositions );
pDelta->SetVertexIndices( pIndex, 0, pCount, pIndices );
}
pDelta->SetValue( "corrected", true );
}
}
}
//-----------------------------------------------------------------------------
// There's no guarantee that fields are added in any order, nor that only
// standard fields exist...
//-----------------------------------------------------------------------------
template < class T_t >
void CDmeMesh::AddCorrectedDelta(
CDmrArray< T_t > &baseDataArray,
const CUtlVector< int > &baseIndices,
const DeltaComputation_t &deltaComputation,
const char *pFieldName,
float weight,
const CDmeSingleIndexedComponent *pMask )
{
const CUtlVector< T_t > &baseData( baseDataArray.Get() );
const int nData( baseData.Count() );
T_t *pData( reinterpret_cast< T_t * >( alloca( nData * sizeof( T_t ) ) ) );
Q_memcpy( pData, baseData.Base(), nData * sizeof( T_t ) );
CDmeVertexDeltaData *pDelta( GetDeltaState( deltaComputation.m_nDeltaIndex ) );
const int deltaFieldIndex( pDelta->FindFieldIndex( pFieldName ) );
if ( deltaFieldIndex < 0 )
return;
AddDelta( pDelta, pData, nData, deltaFieldIndex, weight, pMask );
const CUtlVector< int > &depDeltas( deltaComputation.m_DependentDeltas );
const int nDepDeltas( depDeltas.Count() );
for ( int j( 0 ); j < nDepDeltas; ++j )
{
pDelta = GetDeltaState( depDeltas[ j ] );
int depFieldIndex = pDelta->FindFieldIndex( pFieldName );
if ( depFieldIndex < 0 )
continue;
AddDelta( pDelta, pData, nData, depFieldIndex, weight, pMask );
}
baseDataArray.CopyArray( pData, nData );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t >
void CDmeMesh::AddCorrectedDelta(
CUtlVector< T_t > &baseData,
const CUtlVector< int > &baseIndices,
const DeltaComputation_t &deltaComputation,
const char *pFieldName,
float weight,
const CDmeSingleIndexedComponent *pMask )
{
const int nData( baseData.Count() );
CDmeVertexDeltaData *pDelta( GetDeltaState( deltaComputation.m_nDeltaIndex ) );
const int deltaFieldIndex( pDelta->FindFieldIndex( pFieldName ) );
if ( deltaFieldIndex < 0 )
return;
AddDelta( pDelta, baseData.Base(), nData, deltaFieldIndex, weight, pMask );
const CUtlVector< int > &depDeltas( deltaComputation.m_DependentDeltas );
const int nDepDeltas( depDeltas.Count() );
for ( int j( 0 ); j < nDepDeltas; ++j )
{
pDelta = GetDeltaState( depDeltas[ j ] );
int depFieldIndex = pDelta->FindFieldIndex( pFieldName );
if ( depFieldIndex < 0 )
continue;
AddDelta( pDelta, baseData.Base(), nData, depFieldIndex, weight, pMask );
}
}
//-----------------------------------------------------------------------------
// There's no guarantee that fields are added in any order, nor that only
// standard fields exist...
//-----------------------------------------------------------------------------
template < class T_t >
void CDmeMesh::AddRawDelta(
CDmeVertexDeltaData *pDelta,
CDmrArray< T_t > &baseDataArray,
FieldIndex_t nDeltaFieldIndex,
float weight,
const CDmeSingleIndexedComponent *pMask )
{
if ( !pDelta || nDeltaFieldIndex < 0 )
return;
const CUtlVector< T_t > &baseData( baseDataArray.Get() );
const int nData( baseData.Count() );
T_t *pData( reinterpret_cast< T_t * >( alloca( nData * sizeof( T_t ) ) ) );
Q_memcpy( pData, baseData.Base(), nData * sizeof( T_t ) );
AddDelta( pDelta, pData, nData, nDeltaFieldIndex, weight, pMask );
baseDataArray.CopyArray( pData, nData );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t >
void CDmeMesh::AddRawDelta(
CDmeVertexDeltaData *pDelta,
CUtlVector< T_t > &baseData,
FieldIndex_t nDeltaFieldIndex,
float weight,
const CDmeSingleIndexedComponent *pMask )
{
if ( !pDelta || nDeltaFieldIndex < 0 )
return;
const int nData( baseData.Count() );
AddDelta( pDelta, baseData.Base(), nData, nDeltaFieldIndex, weight, pMask );
}
//-----------------------------------------------------------------------------
// Sets the specified base state to the specified delta
// If no delta is specified then the current state is copied from the bind state
// If no base state is specified then the current base state is used
// The specified base state or the current base state cannot be the bind state
//-----------------------------------------------------------------------------
bool CDmeMesh::SetBaseStateToDelta( const CDmeVertexDeltaData *pDelta, CDmeVertexData *pPassedBase /* = NULL */ )
{
CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
const CDmeVertexData *pBind = GetBindBaseState();
if ( !pBase || !pBind || pBase == pBind )
return false;
pBind->CopyTo( pBase );
if ( !pDelta )
return true;
// This should be cached and recomputed only when states are added
CUtlVector< DeltaComputation_t > compList;
ComputeDependentDeltaStateList( compList );
const int nDeltas( compList.Count() );
for ( int i = 0; i < nDeltas; ++i )
{
if ( pDelta != GetDeltaState( compList[ i ].m_nDeltaIndex ) )
continue;
const int nBaseField( pBase->FieldCount() );
const int nDeltaField( pDelta->FieldCount() );
for ( int j( 0 ); j < nBaseField; ++j )
{
const CUtlString &baseFieldName( pBase->FieldName( j ) );
for ( int k( 0 ); k < nDeltaField; ++k )
{
const CUtlString &deltaFieldName( pDelta->FieldName( k ) );
if ( baseFieldName != deltaFieldName )
continue;
const FieldIndex_t baseFieldIndex( pBase->FindFieldIndex( baseFieldName ) );
const FieldIndex_t deltaFieldIndex( pDelta->FindFieldIndex( deltaFieldName ) );
if ( baseFieldIndex < 0 || deltaFieldIndex < 0 )
break;
CDmAttribute *pBaseData( pBase->GetVertexData( baseFieldIndex ) );
const CDmAttribute *pDeltaData( pDelta->GetVertexData( deltaFieldIndex ) );
if ( pBaseData->GetType() != pDeltaData->GetType() )
break;
const CUtlVector< int > &baseIndices( pBase->GetVertexIndexData( baseFieldIndex ) );
switch ( pBaseData->GetType() )
{
case AT_FLOAT_ARRAY:
AddCorrectedDelta( CDmrArray< float >( pBaseData ), baseIndices, compList[ i ], baseFieldName );
break;
case AT_COLOR_ARRAY:
AddCorrectedDelta( CDmrArray< Vector >( pBaseData ), baseIndices, compList[ i ], baseFieldName );
break;
case AT_VECTOR2_ARRAY:
AddCorrectedDelta( CDmrArray< Vector2D >( pBaseData ), baseIndices, compList[ i ], baseFieldName );
break;
case AT_VECTOR3_ARRAY:
AddCorrectedDelta( CDmrArray< Vector >( pBaseData ), baseIndices, compList[ i ], baseFieldName );
break;
default:
break;
}
break;
}
}
}
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SelectVerticesFromDelta(
CDmeVertexDeltaData *pDelta,
CDmeSingleIndexedComponent *pSelection )
{
if ( !pSelection )
return;
pSelection->Clear();
if ( !pDelta )
return;
const FieldIndex_t pField( pDelta->FindFieldIndex( CDmeVertexData::FIELD_POSITION ) );
if ( pField < 0 )
return;
const CUtlVector< int > &pIndicies( pDelta->GetVertexIndexData( CDmeVertexData::FIELD_POSITION ) );
pSelection->AddComponents( pIndicies );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SelectAllVertices( CDmeSingleIndexedComponent *pSelection, CDmeVertexData *pPassedBase /* = NULL */ )
{
const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase )
{
pBase = GetBindBaseState();
}
if ( !pBase )
return;
if ( !pSelection )
return;
pSelection->Clear();
const FieldIndex_t pField( pBase->FindFieldIndex( CDmeVertexData::FIELD_POSITION ) );
if ( pField < 0 )
return;
CUtlVector< int > indices;
indices.EnsureCount( CDmrArrayConst< Vector >( pBase->GetVertexData( pField ) ).Count() );
const int nIndices = indices.Count();
for ( int i = 0; i < nIndices; ++i )
{
indices[ i ] = i;
}
pSelection->AddComponents( indices );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SelectHalfVertices( SelectHalfType_t selectHalfType, CDmeSingleIndexedComponent *pSelection, CDmeVertexData *pPassedBase /* = NULL */ )
{
const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase )
{
pBase = GetBindBaseState();
}
if ( !pBase )
return;
if ( !pSelection )
return;
pSelection->Clear();
const FieldIndex_t pField( pBase->FindFieldIndex( CDmeVertexData::FIELD_POSITION ) );
if ( pField < 0 )
return;
const CDmrArrayConst< Vector > pos( pBase->GetVertexData( pField ) );
const int nPosCount = pos.Count();
CUtlVector< int > indices;
indices.EnsureCapacity( nPosCount );
if ( selectHalfType == kRight )
{
for ( int i = 0; i < nPosCount; ++i )
{
if ( pos[ i ].x <= 0.0f )
{
indices.AddToTail( i );
}
}
}
else
{
for ( int i = 0; i < nPosCount; ++i )
{
if ( pos[ i ].x >= 0.0f )
{
indices.AddToTail( i );
}
}
}
pSelection->AddComponents( indices );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CDmeMesh::CreateDeltaFieldFromBaseField(
CDmeVertexData::StandardFields_t nStandardFieldIndex,
const CDmrArrayConst< float > &baseArray,
const CDmrArrayConst< float > &bindArray,
CDmeVertexDeltaData *pDelta )
{
const int nData( baseArray.Count() );
if ( nData != bindArray.Count() )
return false;
const float *pBaseData( baseArray.Get().Base() );
const float *pBindData( bindArray.Get().Base() );
float *pData( reinterpret_cast< float * >( nData * sizeof( float ) ) );
Q_memcpy( pData, pBaseData, nData * sizeof( float ) );
int *pIndices( reinterpret_cast< int * >( nData * sizeof( int ) ) );
float v;
int nDeltaCount( 0 );
for ( int i = 0; i < nData; ++i )
{
v = pBaseData[ i ] - pBindData[ i ];
// Kind of a magic number but it's because of 16 bit compression of the delta values
if ( fabs( v ) >= ( 1 / 4096.0f ) )
{
pData[ nDeltaCount ] = v;
pIndices[ nDeltaCount ] = i;
++nDeltaCount;
}
}
if ( nDeltaCount <= 0 )
return true;
FieldIndex_t fieldIndex( pDelta->CreateField( nStandardFieldIndex ) );
if ( fieldIndex < 0 )
return false;
pDelta->AddVertexData( fieldIndex, nDeltaCount );
pDelta->SetVertexData( fieldIndex, 0, nDeltaCount, AT_FLOAT, pData );
pDelta->SetVertexIndices( fieldIndex, 0, nDeltaCount, pIndices );
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CDmeMesh::CreateDeltaFieldFromBaseField(
CDmeVertexData::StandardFields_t nStandardFieldIndex,
const CDmrArrayConst< Vector2D > &baseArray,
const CDmrArrayConst< Vector2D > &bindArray,
CDmeVertexDeltaData *pDelta )
{
const int nData( baseArray.Count() );
if ( nData != bindArray.Count() )
return false;
const Vector2D *pBaseData( baseArray.Get().Base() );
const Vector2D *pBindData( bindArray.Get().Base() );
Vector2D *pData( reinterpret_cast< Vector2D * >( nData * sizeof( Vector2D ) ) );
Q_memcpy( pData, pBaseData, nData * sizeof( Vector2D ) );
int *pIndices( reinterpret_cast< int * >( nData * sizeof( int ) ) );
Vector2D v;
int nDeltaCount( 0 );
for ( int i = 0; i < nData; ++i )
{
v = pBaseData[ i ] - pBindData[ i ];
// Kind of a magic number but it's because of 16 bit compression of the delta values
if ( fabs( v.x ) >= ( 1 / 4096.0f ) || fabs( v.y ) >= ( 1 / 4096.0f ) )
{
pData[ nDeltaCount ] = v;
pIndices[ nDeltaCount ] = i;
++nDeltaCount;
}
}
if ( nDeltaCount <= 0 )
return true;
FieldIndex_t fieldIndex( pDelta->CreateField( nStandardFieldIndex ) );
if ( fieldIndex < 0 )
return false;
pDelta->AddVertexData( fieldIndex, nDeltaCount );
pDelta->SetVertexData( fieldIndex, 0, nDeltaCount, AT_VECTOR2, pData );
pDelta->SetVertexIndices( fieldIndex, 0, nDeltaCount, pIndices );
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CDmeMesh::CreateDeltaFieldFromBaseField(
CDmeVertexData::StandardFields_t nStandardFieldIndex,
const CDmrArrayConst< Vector > &baseArray,
const CDmrArrayConst< Vector > &bindArray,
CDmeVertexDeltaData *pDelta )
{
const int nData( baseArray.Count() );
if ( nData != bindArray.Count() )
return false;
const Vector *pBaseData( baseArray.Get().Base() );
const Vector *pBindData( bindArray.Get().Base() );
Vector *pData( reinterpret_cast< Vector * >( alloca( nData * sizeof( Vector ) ) ) );
Q_memcpy( pData, pBaseData, nData * sizeof( Vector ) );
int *pIndices( reinterpret_cast< int * >( alloca( nData * sizeof( int ) ) ) );
Vector v;
int nDeltaCount( 0 );
for ( int i = 0; i < nData; ++i )
{
v = pBaseData[ i ] - pBindData[ i ];
// Kind of a magic number but it's because of 16 bit compression of the delta values
if ( fabs( v.x ) >= ( 1 / 4096.0f ) || fabs( v.y ) >= ( 1 / 4096.0f ) || fabs( v.z ) >= ( 1 / 4096.0f ) )
{
pData[ nDeltaCount ] = v;
pIndices[ nDeltaCount ] = i;
++nDeltaCount;
}
}
if ( nDeltaCount <= 0 )
return true;
FieldIndex_t fieldIndex( pDelta->CreateField( nStandardFieldIndex ) );
if ( fieldIndex < 0 )
return false;
pDelta->AddVertexData( fieldIndex, nDeltaCount );
pDelta->SetVertexData( fieldIndex, 0, nDeltaCount, AT_VECTOR3, pData );
pDelta->SetVertexIndices( fieldIndex, 0, nDeltaCount, pIndices );
return true;
}
//-----------------------------------------------------------------------------
// Creates a delta from the difference between the bind base state and the
// specified base state. If pBaseName is NULL the current base state is used
//-----------------------------------------------------------------------------
CDmeVertexDeltaData *CDmeMesh::ModifyOrCreateDeltaStateFromBaseState( const char *pDeltaName, CDmeVertexData *pPassedBase /* = NULL */, bool absolute /* = false */ )
{
// Find All States Which Have This Guy
CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase )
return NULL;
CDmeVertexData *pBind = GetBindBaseState();
if ( !pBind )
return NULL;
// It's ok if pBase == pBind
CUtlVector< int > superiorDeltaStates;
ComputeSuperiorDeltaStateList( pDeltaName, superiorDeltaStates );
const int nSuperior = superiorDeltaStates.Count();
if ( nSuperior > 0 )
{
UniqueId_t id;
char idBuf[ MAX_PATH ];
CDmeVertexData *pTmpBaseState = NULL;
do
{
CreateUniqueId( &id );
UniqueIdToString( id, idBuf, sizeof( idBuf ) );
pTmpBaseState = FindBaseState( idBuf );
} while( pTmpBaseState != NULL );
pTmpBaseState = FindOrCreateBaseState( idBuf );
if ( !pTmpBaseState )
return NULL;
for ( int i = 0; i < nSuperior; ++i )
{
Assert( superiorDeltaStates[ i ] < DeltaStateCount() );
CDmeVertexDeltaData *pSuperiorDelta = GetDeltaState( superiorDeltaStates[ i ] );
if ( pSuperiorDelta->GetValue< bool >( "corrected" ) )
{
// Only fiddle with states that are "corrected"
if ( !SetBaseStateToDelta( pSuperiorDelta, pTmpBaseState ) )
return NULL;
if ( !ModifyOrCreateDeltaStateFromBaseState( CUtlString( pSuperiorDelta->GetName() ), pTmpBaseState, true ) )
return NULL;
}
}
DeleteBaseState( idBuf );
}
ResetDeltaState( pDeltaName );
CDmeVertexDeltaData *pDelta = FindOrCreateDeltaState( pDeltaName );
if ( !pDelta )
return NULL;
CDmeVertexData::StandardFields_t deltaFields[] =
{
CDmeVertexData::FIELD_POSITION,
CDmeVertexData::FIELD_NORMAL,
CDmeVertexData::FIELD_WRINKLE
};
for ( int i = 0; i < sizeof( deltaFields ) / sizeof( deltaFields[ 0 ] ); ++i )
{
CDmeVertexData::StandardFields_t standardFieldIndex( deltaFields[ i ] );
const FieldIndex_t baseFieldIndex( pBase->FindFieldIndex( standardFieldIndex ) );
const FieldIndex_t bindFieldIndex( pBind->FindFieldIndex( standardFieldIndex ) );
if ( baseFieldIndex < 0 || bindFieldIndex < 0 )
continue;
CDmAttribute *pBaseData( pBase->GetVertexData( baseFieldIndex ) );
CDmAttribute *pBindData( pBind->GetVertexData( bindFieldIndex ) );
if ( pBaseData->GetType() != pBindData->GetType() )
continue;
switch ( pBaseData->GetType() )
{
case AT_FLOAT_ARRAY:
CreateDeltaFieldFromBaseField( standardFieldIndex, CDmrArrayConst< float >( pBaseData ), CDmrArrayConst< float >( pBindData ), pDelta );
break;
case AT_COLOR_ARRAY:
CreateDeltaFieldFromBaseField( standardFieldIndex, CDmrArrayConst< Vector >( pBaseData ), CDmrArrayConst< Vector >( pBindData ), pDelta );
break;
case AT_VECTOR2_ARRAY:
CreateDeltaFieldFromBaseField( standardFieldIndex, CDmrArrayConst< Vector2D >( pBaseData ), CDmrArrayConst< Vector2D >( pBindData ), pDelta );
break;
case AT_VECTOR3_ARRAY:
CreateDeltaFieldFromBaseField( standardFieldIndex, CDmrArrayConst< Vector >( pBaseData ), CDmrArrayConst< Vector >( pBindData ), pDelta );
break;
default:
break;
}
}
if ( !strchr( pDelta->GetName(), '_' ) )
{
const static UtlSymId_t symTargets = g_pDataModel->GetSymbol( "targets" );
CDmeCombinationOperator *pCombo( FindReferringElement< CDmeCombinationOperator >( this, symTargets ) );
if ( pCombo )
{
pCombo->FindOrCreateControl( pDelta->GetName(), false, true );
}
}
if ( !absolute )
{
ComputeAllCorrectedPositionsFromActualPositions();
}
return pDelta;
}
//-----------------------------------------------------------------------------
// TODO: Uncorrect all superior states and then correct them afterwards
//-----------------------------------------------------------------------------
bool CDmeMesh::DeleteDeltaState( const char *pDeltaName )
{
const int nDeltaIndex = FindDeltaStateIndex( pDeltaName );
if ( nDeltaIndex < 0 )
return false;
Assert( m_DeltaStates.Count() == m_DeltaStateWeights[ MESH_DELTA_WEIGHT_NORMAL ].Count() );
Assert( m_DeltaStates.Count() == m_DeltaStateWeights[ MESH_DELTA_WEIGHT_LAGGED ].Count() );
CDmeVertexDeltaData *pDelta( m_DeltaStates[ nDeltaIndex ] );
if ( !pDelta )
return false;
m_DeltaStates.Remove( nDeltaIndex );
m_DeltaStateWeights[ MESH_DELTA_WEIGHT_NORMAL ].Remove( nDeltaIndex );
m_DeltaStateWeights[ MESH_DELTA_WEIGHT_LAGGED ].Remove( nDeltaIndex );
g_pDataModel->DestroyElement( pDelta->GetHandle() );
const static UtlSymId_t symTargets = g_pDataModel->GetSymbol( "targets" );
CDmeCombinationOperator *pCombo( FindReferringElement< CDmeCombinationOperator >( this, symTargets ) );
if ( pCombo )
{
pCombo->Purge();
}
return true;
}
//-----------------------------------------------------------------------------
// TODO: Uncorrect all superior states and then correct them afterwards
//-----------------------------------------------------------------------------
bool CDmeMesh::ResetDeltaState( const char *pDeltaName )
{
const int nDeltaIndex = FindDeltaStateIndex( pDeltaName );
if ( nDeltaIndex < 0 )
return false;
CDmeVertexDeltaData *pOldDelta = m_DeltaStates[ nDeltaIndex ];
CDmeVertexDeltaData *pNewDelta = CreateElement< CDmeVertexDeltaData >( pOldDelta->GetName(), GetFileId() );
if ( !pNewDelta )
return false;
m_DeltaStates.Set( nDeltaIndex, pNewDelta );
g_pDataModel->DestroyElement( pOldDelta->GetHandle() );
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class CSelectionHelper
{
public:
class CVert
{
public:
int m_index;
int m_count;
float m_weight;
};
void AddVert( int vIndex, float weight = 1.0f );
int AddToSelection( CDmeSingleIndexedComponent *pSelection ) const;
int RemoveFromSelection( CDmeSingleIndexedComponent *pSelection, bool bAllowEmpty ) const;
protected:
CUtlVector< CVert > m_verts;
int BinarySearch( int component ) const;
};
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CSelectionHelper::AddVert( int vIndex, float weight /* = 1.0f */ )
{
// Find the vertex, add it if necessary
const int index = BinarySearch( vIndex );
if ( index == m_verts.Count() )
{
// New Add to end
CVert &v( m_verts[ m_verts.AddToTail() ] );
v.m_index = vIndex;
v.m_count = 1;
v.m_weight = weight;
}
else if ( vIndex == m_verts[ index ].m_index )
{
// Existing, increment
CVert &v( m_verts[ index ] );
Assert( v.m_index == vIndex );
v.m_count += 1;
v.m_weight += weight;
}
else
{
// New insert before index
CVert &v( m_verts[ m_verts.InsertBefore( index ) ] );
v.m_index = vIndex;
v.m_count = 1;
v.m_weight = weight;
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int CSelectionHelper::AddToSelection( CDmeSingleIndexedComponent *pSelection ) const
{
const int nVerts = m_verts.Count();
for ( int i = 0; i < nVerts; ++i )
{
const CVert &v( m_verts[ i ] );
Assert( !pSelection->HasComponent( v.m_index ) );
pSelection->AddComponent( v.m_index, v.m_weight / static_cast< float >( v.m_count ) );
}
return nVerts;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int CSelectionHelper::RemoveFromSelection( CDmeSingleIndexedComponent *pSelection, bool bAllowEmpty ) const
{
const int nVerts = m_verts.Count();
int nVertsRemovedCount = 0;
for ( int i = 0; i < nVerts; ++i )
{
const CVert &v( m_verts[ i ] );
if ( bAllowEmpty || pSelection->Count() > 1 )
{
pSelection->RemoveComponent( v.m_index );
++nVertsRemovedCount;
}
}
return nVertsRemovedCount;
}
//-----------------------------------------------------------------------------
// Searches for the component in the sorted component list and returns the
// index if it's found or if it's not found, returns the index at which it
// should be inserted to maintain the sorted order of the component list
//-----------------------------------------------------------------------------
int CSelectionHelper::BinarySearch( int vIndex ) const
{
const int nVerts( m_verts.Count() );
int left( 0 );
int right( nVerts - 1 );
int mid;
while ( left <= right )
{
mid = ( left + right ) >> 1; // floor( ( left + right ) / 2.0 )
if ( vIndex > m_verts[ mid ].m_index )
{
left = mid + 1;
}
else if ( vIndex < m_verts[ mid ].m_index )
{
right = mid - 1;
}
else
{
return mid;
}
}
return left;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::GrowSelection( int nSize, CDmeSingleIndexedComponent *pSelection, CDmMeshComp *pPassedMeshComp )
{
if ( nSize <= 0 || !pSelection )
return;
CUtlVector< int > sIndices;
CUtlVector< float > sWeights;
pSelection->GetComponents( sIndices, sWeights );
const int nVertices = sIndices.Count();
CDmMeshComp *pMeshComp = pPassedMeshComp ? pPassedMeshComp : new CDmMeshComp( this );
CUtlVector< CDmMeshComp::CVert * > neighbours;
CSelectionHelper sHelper;
for ( int i = 0; i < nVertices; ++i )
{
const int nNeighbours = pMeshComp->FindNeighbouringVerts( sIndices[ i ], neighbours );
for ( int j = 0; j < nNeighbours; ++j )
{
CDmMeshComp::CVert *pNeighbour = neighbours[ j ];
Assert( pNeighbour );
if ( pNeighbour )
{
const int vIndex = pNeighbour->PositionIndex();
if ( !pSelection->HasComponent( vIndex ) )
{
sHelper.AddVert( vIndex, sWeights[ i ] );
}
}
}
}
if ( sHelper.AddToSelection( pSelection ) > 0 )
{
GrowSelection( nSize - 1, pSelection, pMeshComp );
}
if ( pMeshComp != pPassedMeshComp )
{
delete pMeshComp;
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::ShrinkSelection( int nSize, CDmeSingleIndexedComponent *pSelection, CDmMeshComp *pPassedMeshComp )
{
if ( nSize <= 0 || !pSelection )
return;
CUtlVector< int > sIndices;
CUtlVector< float > sWeights;
pSelection->GetComponents( sIndices, sWeights );
const int nVertices = sIndices.Count();
CDmMeshComp *pMeshComp = pPassedMeshComp ? pPassedMeshComp : new CDmMeshComp( this );
CUtlVector< CDmMeshComp::CVert * > neighbours;
CSelectionHelper sHelper;
for ( int i = 0; i < nVertices; ++i )
{
bool hasSelectedNeighbour = false;
bool hasUnselectedNeighbour = false;
const int vIndex = sIndices[ i ];
const int nNeighbours = pMeshComp->FindNeighbouringVerts( vIndex, neighbours );
for ( int j = 0; j < nNeighbours; ++j )
{
const int nvIndex = neighbours[ j ]->PositionIndex();
if ( pSelection->HasComponent( nvIndex ) )
{
hasSelectedNeighbour = true;
if ( hasUnselectedNeighbour )
{
sHelper.AddVert( vIndex );
break;
}
}
else
{
hasUnselectedNeighbour = true;
if ( hasSelectedNeighbour )
{
sHelper.AddVert( vIndex );
break;
}
}
}
}
if ( sHelper.RemoveFromSelection( pSelection, false ) > 0 )
{
ShrinkSelection( nSize - 1, pSelection, pMeshComp );
}
if ( pMeshComp != pPassedMeshComp )
{
delete pMeshComp;
}
}
CDmeSingleIndexedComponent *CDmeMesh::FeatherSelection(
float falloffDistance,
Falloff_t falloffType,
Distance_t distanceType,
CDmeSingleIndexedComponent *pSelection,
CDmMeshComp *pPassedMeshComp )
{
switch ( falloffType )
{
case SMOOTH:
return FeatherSelection< SMOOTH >( falloffDistance, distanceType, pSelection, pPassedMeshComp );
case SPIKE:
return FeatherSelection< SPIKE >( falloffDistance, distanceType, pSelection, pPassedMeshComp );
case DOME:
return FeatherSelection< DOME >( falloffDistance, distanceType, pSelection, pPassedMeshComp );
default:
return FeatherSelection< LINEAR >( falloffDistance, distanceType, pSelection, pPassedMeshComp );
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < int T >
CDmeSingleIndexedComponent *CDmeMesh::FeatherSelection(
float fDistance, Distance_t distanceType,
CDmeSingleIndexedComponent *pSelection, CDmMeshComp *pPassedMeshComp )
{
// TODO: Support feathering inward instead of just outward
if ( fDistance <= 0.0f || !pSelection )
return NULL;
// Make a new CDmeSingleIndexedComponent to do all of the dirty work
CDmeSingleIndexedComponent *pNewSelection = CreateElement< CDmeSingleIndexedComponent >( "feather", pSelection->GetFileId() );
pSelection->CopyAttributesTo( pNewSelection );
CDmMeshComp *pMeshComp = pPassedMeshComp ? pPassedMeshComp : new CDmMeshComp( this );
CDmeVertexData *pBase = pMeshComp->BaseState();
if ( distanceType == DIST_RELATIVE )
{
Vector vCenter;
float flRadius;
GetBoundingSphere( vCenter, flRadius, pBase, pSelection );
fDistance *= flRadius;
}
const CUtlVector< Vector > &positions( pBase->GetPositionData() );
const int nPositions = positions.Count();
if ( !pBase )
return NULL;
CUtlVector< int > sIndices;
int insideCount = 0;
CFalloff< T > falloff;
do
{
insideCount = 0;
CUtlVector< CDmMeshComp::CVert * > neighbours;
CSelectionHelper sHelper;
pNewSelection->GetComponents( sIndices );
int nVertices = sIndices.Count();
for ( int i = 0; i < nVertices; ++i )
{
const int nNeighbours = pMeshComp->FindNeighbouringVerts( sIndices[ i ], neighbours );
for ( int j = 0; j < nNeighbours; ++j )
{
const int vIndex = neighbours[ j ]->PositionIndex();
if ( pNewSelection->HasComponent( vIndex ) )
continue;
const int closestVert = ClosestSelectedVertex( vIndex, pSelection, pBase );
if ( closestVert < 0 || closestVert >= nPositions )
continue;
const float vDistance = positions[ vIndex ].DistTo( positions[ closestVert ] );
if ( vDistance <= fDistance )
{
sHelper.AddVert( vIndex, falloff( vDistance / fDistance ) );
++insideCount;
}
}
}
sHelper.AddToSelection( pNewSelection );
} while ( insideCount > 0 );
return pNewSelection;
}
//-----------------------------------------------------------------------------
// Add the specified delta, scaled by the weight value to the DmeVertexData
// base state specified. Optionally the add can be masked by a specified
// weight map.
//
// If a DmeVertexData is not explicitly specified, the current state of the
// mesh is modified unless it's the bind state. The bind state will never
// be modified even if it is explicitly specified.
//
// Only the delta specified is added. No dependent states are added.
//-----------------------------------------------------------------------------
bool CDmeMesh::AddMaskedDelta(
CDmeVertexDeltaData *pDelta,
CDmeVertexData *pDst /* = NULL */,
float weight /* = 1.0f */,
const CDmeSingleIndexedComponent *pMask /* = NULL */ )
{
CDmeVertexData *pBase = pDst ? pDst : GetCurrentBaseState();
if ( !pBase || pBase == GetBindBaseState() )
return false;
bool retVal = true;
const int nBaseField( pBase->FieldCount() );
const int nDeltaField( pDelta->FieldCount() );
// Try to add every field of the base state
for ( int j( 0 ); j < nBaseField; ++j )
{
const CUtlString &baseFieldName( pBase->FieldName( j ) );
// Find the corresponding field in the delta
for ( int k( 0 ); k < nDeltaField; ++k )
{
const CUtlString &deltaFieldName( pDelta->FieldName( k ) );
if ( baseFieldName != deltaFieldName )
continue;
const FieldIndex_t baseFieldIndex( pBase->FindFieldIndex( baseFieldName ) );
const FieldIndex_t deltaFieldIndex( pDelta->FindFieldIndex( deltaFieldName ) );
if ( baseFieldIndex < 0 || deltaFieldIndex < 0 )
break;
CDmAttribute *pBaseData( pBase->GetVertexData( baseFieldIndex ) );
CDmAttribute *pDeltaData( pDelta->GetVertexData( deltaFieldIndex ) );
if ( pBaseData->GetType() != pDeltaData->GetType() )
break;
switch ( pBaseData->GetType() )
{
case AT_FLOAT_ARRAY:
AddRawDelta( pDelta, CDmrArray< float >( pBaseData ), baseFieldIndex, weight, pMask );
break;
case AT_COLOR_ARRAY:
// TODO: Color is missing some algebraic operators
// AddRawDelta( pDelta, CDmrArray< Color >( pBaseData ), baseFieldIndex, weight, pMask );
break;
case AT_VECTOR2_ARRAY:
AddRawDelta( pDelta, CDmrArray< Vector2D >( pBaseData ), baseFieldIndex, weight, pMask );
break;
case AT_VECTOR3_ARRAY:
AddRawDelta( pDelta, CDmrArray< Vector >( pBaseData ), baseFieldIndex, weight, pMask );
break;
default:
break;
}
break;
}
}
return retVal;
}
//-----------------------------------------------------------------------------
// Add the specified delta, scaled by the weight value to the DmeVertexData
// base state specified. Optionally the add can be masked by a specified
// weight map.
//
// If a DmeVertexData is not explicitly specified, the current state of the
// mesh is modified unless it's the bind state. The bind state will never
// be modified even if it is explicitly specified.
//
// Only the delta specified is added. No dependent states are added.
//-----------------------------------------------------------------------------
bool CDmeMesh::AddCorrectedMaskedDelta(
CDmeVertexDeltaData *pDelta,
CDmeVertexData *pDst /* = NULL */,
float weight /* = 1.0f */,
const CDmeSingleIndexedComponent *pMask /* = NULL */ )
{
CDmeVertexData *pBase = pDst ? pDst : GetCurrentBaseState();
if ( !pBase || pBase == GetBindBaseState() )
return false;
bool retVal = true;
const int nBaseField( pBase->FieldCount() );
const int nDeltaField( pDelta->FieldCount() );
// This should be cached and recomputed only when states are added
CUtlVector< DeltaComputation_t > compList;
ComputeDependentDeltaStateList( compList );
const int nDeltas( compList.Count() );
for ( int i = 0; i < nDeltas; ++i )
{
if ( pDelta != GetDeltaState( compList[ i ].m_nDeltaIndex ) )
continue;
// Try to add every field of the base state
for ( int j( 0 ); j < nBaseField; ++j )
{
const CUtlString &baseFieldName( pBase->FieldName( j ) );
// Find the corresponding field in the delta
for ( int k( 0 ); k < nDeltaField; ++k )
{
const CUtlString &deltaFieldName( pDelta->FieldName( k ) );
if ( baseFieldName != deltaFieldName )
continue;
const FieldIndex_t baseFieldIndex( pBase->FindFieldIndex( baseFieldName ) );
const FieldIndex_t deltaFieldIndex( pDelta->FindFieldIndex( deltaFieldName ) );
if ( baseFieldIndex < 0 || deltaFieldIndex < 0 )
break;
CDmAttribute *pBaseData( pBase->GetVertexData( baseFieldIndex ) );
CDmAttribute *pDeltaData( pDelta->GetVertexData( deltaFieldIndex ) );
if ( pBaseData->GetType() != pDeltaData->GetType() )
break;
const CUtlVector< int > &baseIndices( pBase->GetVertexIndexData( baseFieldIndex ) );
switch ( pBaseData->GetType() )
{
case AT_FLOAT_ARRAY:
AddCorrectedDelta( CDmrArray< float >( pBaseData ), baseIndices, compList[ i ], baseFieldName, weight, pMask );
break;
case AT_COLOR_ARRAY:
AddCorrectedDelta( CDmrArray< Vector >( pBaseData ), baseIndices, compList[ i ], baseFieldName, weight, pMask );
break;
case AT_VECTOR2_ARRAY:
AddCorrectedDelta( CDmrArray< Vector2D >( pBaseData ), baseIndices, compList[ i ], baseFieldName, weight, pMask );
break;
case AT_VECTOR3_ARRAY:
AddCorrectedDelta( CDmrArray< Vector >( pBaseData ), baseIndices, compList[ i ], baseFieldName, weight, pMask );
break;
default:
break;
}
break;
}
}
}
return retVal;
}
//-----------------------------------------------------------------------------
// Interpolates between two arrays of values and stores the result in a
// CDmrArray.
//
// result = ( ( 1 - weight ) * a ) + ( weight * b )
//
//-----------------------------------------------------------------------------
template< class T_t >
bool CDmeMesh::InterpMaskedData(
CDmrArray< T_t > &aData,
const CUtlVector< T_t > &bData,
float weight,
const CDmeSingleIndexedComponent *pMask ) const
{
const int nDst = aData.Count();
if ( bData.Count() != nDst )
return false;
// The wacky way of writing these expression is because Vector4D is missing operators
// And this probably works better because of fewer temporaries
T_t a;
T_t b;
if ( pMask )
{
// With a weight mask
float vWeight;
for ( int i = 0; i < nDst; ++i )
{
if ( pMask->GetWeight( i, vWeight ) )
{
vWeight *= weight; // Specifically not clamping
a = aData.Get( i );
a *= ( 1.0f - vWeight );
b = bData[ i ];
b *= vWeight;
b += a;
aData.Set( i, b );
}
}
}
else
{
// Without a weight mask
const float oneMinusWeight( 1.0f - weight );
for ( int i = 0; i < nDst; ++i )
{
a = aData.Get( i );
a *= oneMinusWeight;
b = bData[ i ];
b *= weight;
b += a;
aData.Set( i, b );
}
}
return true;
}
//-----------------------------------------------------------------------------
// Interpolates between two CDmeVertexData's
//
// paData = ( ( 1 - weight ) * a ) + ( weight * b )
//-----------------------------------------------------------------------------
bool CDmeMesh::InterpMaskedData(
CDmeVertexData *paData,
const CDmeVertexData *pbData,
float weight,
const CDmeSingleIndexedComponent *pMask ) const
{
if ( !paData || !pbData || paData == pbData )
return false;
const int naField = paData->FieldCount();
const int nbField = pbData->FieldCount();
for ( int i = 0; i < naField; ++i )
{
const CUtlString &aFieldName( paData->FieldName( i ) );
for ( int j = 0; j < nbField; ++j )
{
const CUtlString &bFieldName( pbData->FieldName( j ) );
if ( aFieldName != bFieldName )
continue;
const FieldIndex_t aFieldIndex( paData->FindFieldIndex( aFieldName ) );
const FieldIndex_t bFieldIndex( pbData->FindFieldIndex( bFieldName ) );
if ( aFieldIndex < 0 || bFieldIndex < 0 )
break;
CDmAttribute *paAttr( paData->GetVertexData( aFieldIndex ) );
const CDmAttribute *pbAttr( pbData->GetVertexData( bFieldIndex ) );
if ( paAttr->GetType() != pbAttr->GetType() )
break;
if ( paData->GetVertexIndexData( aFieldIndex ).Count() != pbData->GetVertexIndexData( bFieldIndex ).Count() )
break;
switch ( paAttr->GetType() )
{
case AT_FLOAT_ARRAY:
InterpMaskedData( CDmrArray< float >( paAttr ), CDmrArrayConst< float >( pbAttr ).Get(), weight, pMask );
break;
case AT_COLOR_ARRAY:
InterpMaskedData( CDmrArray< Vector4D >( paAttr ), CDmrArrayConst< Vector4D >( pbAttr ).Get(), weight, pMask );
break;
case AT_VECTOR2_ARRAY:
InterpMaskedData( CDmrArray< Vector2D >( paAttr ), CDmrArrayConst< Vector2D >( pbAttr ).Get(), weight, pMask );
break;
case AT_VECTOR3_ARRAY:
InterpMaskedData( CDmrArray< Vector >( paAttr ), CDmrArrayConst< Vector >( pbAttr ).Get(), weight, pMask );
break;
default:
break;
}
break;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Interpolates between the specified VertexData and the specified Delta
// If pBase is NULL it will become the current state
// If pDelta is NULL then the state to interpolate to will be the bind state
//-----------------------------------------------------------------------------
bool CDmeMesh::InterpMaskedDelta(
CDmeVertexDeltaData *pDelta,
CDmeVertexData *pDst /* = NULL */,
float weight /*= 1.0f */,
const CDmeSingleIndexedComponent *pMask /*= NULL */ )
{
CDmeVertexData *pDstBase = pDst ? pDst : GetCurrentBaseState();
CDmeVertexData *pBind = GetBindBaseState();
if ( !pDstBase || !pBind || pDstBase == pBind )
return false;
if ( pDelta == NULL )
{
// Interpolate between specified state and bind state
return InterpMaskedData( pDstBase, pBind, weight, pMask );
}
// This should be cached and recomputed only when states are added
CUtlVector< DeltaComputation_t > compList;
ComputeDependentDeltaStateList( compList );
bool retVal = false;
const int nDeltas( compList.Count() );
for ( int i = 0; i < nDeltas; ++i )
{
if ( pDelta != GetDeltaState( compList[ i ].m_nDeltaIndex ) )
continue;
retVal = true;
const int nBaseField( pDstBase->FieldCount() );
const int nBindField( pBind->FieldCount() );
const int nDeltaField( pDelta->FieldCount() );
CUtlVector< float > floatData;
CUtlVector< Vector2D > vector2DData;
CUtlVector< Vector > vectorData;
CUtlVector< Vector4D > vector4DData;
for ( int j( 0 ); j < nBaseField; ++j )
{
const CUtlString &baseFieldName( pDstBase->FieldName( j ) );
for ( int k = 0; k < nBindField; ++k )
{
const CUtlString &bindFieldName( pBind->FieldName( k ) );
if ( baseFieldName != bindFieldName )
continue;
for ( int l = 0; l < nDeltaField; ++l )
{
const CUtlString &deltaFieldName( pDelta->FieldName( l ) );
if ( bindFieldName != deltaFieldName )
continue;
const FieldIndex_t baseFieldIndex( pDstBase->FindFieldIndex( baseFieldName ) );
const FieldIndex_t bindFieldIndex( pBind->FindFieldIndex( bindFieldName ) );
const FieldIndex_t deltaFieldIndex( pDelta->FindFieldIndex( deltaFieldName ) );
if ( baseFieldIndex < 0 || bindFieldIndex < 0 || deltaFieldIndex < 0 )
break;
CDmAttribute *pDstBaseData( pDstBase->GetVertexData( baseFieldIndex ) );
CDmAttribute *pBindData( pBind->GetVertexData( bindFieldIndex ) );
CDmAttribute *pDeltaData( pDelta->GetVertexData( deltaFieldIndex ) );
if ( pDstBaseData->GetType() != pBindData->GetType() || pBindData->GetType() != pDeltaData->GetType() )
break;
const CUtlVector< int > &bindIndices( pBind->GetVertexIndexData( bindFieldIndex ) );
switch ( pDstBaseData->GetType() )
{
case AT_FLOAT_ARRAY:
floatData = CDmrArrayConst< float >( pBindData ).Get();
AddCorrectedDelta( floatData, bindIndices, compList[ i ], baseFieldName );
InterpMaskedData( CDmrArray< float >( pDstBaseData ), floatData, weight, pMask );
break;
case AT_COLOR_ARRAY:
vector4DData = CDmrArrayConst< Vector4D >( pBindData ).Get();
AddCorrectedDelta( vector4DData, bindIndices, compList[ i ], baseFieldName );
InterpMaskedData( CDmrArray< Vector4D >( pDstBaseData ), vector4DData, weight, pMask );
break;
case AT_VECTOR2_ARRAY:
vector2DData = CDmrArrayConst< Vector2D >( pBindData ).Get();
AddCorrectedDelta( vector2DData, bindIndices, compList[ i ], baseFieldName );
InterpMaskedData( CDmrArray< Vector2D >( pDstBaseData ), vector2DData, weight, pMask );
break;
case AT_VECTOR3_ARRAY:
vectorData = CDmrArrayConst< Vector >( pBindData ).Get();
AddCorrectedDelta( vectorData, bindIndices, compList[ i ], baseFieldName );
InterpMaskedData( CDmrArray< Vector >( pDstBaseData ), vectorData, weight, pMask );
break;
default:
break;
}
break;
}
}
}
}
return retVal;
}
//-----------------------------------------------------------------------------
// Returns the index of the closest selected vertex in the mesh to vIndex
// -1 on failure
//-----------------------------------------------------------------------------
int CDmeMesh::ClosestSelectedVertex( int vIndex, CDmeSingleIndexedComponent *pSelection, const CDmeVertexData *pPassedBase /* = NULL */ ) const
{
const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase )
return -1;
const CUtlVector< Vector > &positions( pBase->GetPositionData() );
if ( vIndex >= positions.Count() )
return -1;
const Vector &p( positions[ vIndex ] );
CUtlVector< int > verts;
pSelection->GetComponents( verts );
const int nVerts = verts.Count();
if ( nVerts <= 0 )
return -1;
float minSqDist = p.DistToSqr( positions[ verts[ 0 ] ] );
float tmpSqDist;
int retVal = verts[ 0 ];
for ( int i = 1; i < nVerts; ++i )
{
tmpSqDist = p.DistToSqr( positions[ verts[ i ] ] );
if ( tmpSqDist < minSqDist )
{
minSqDist = tmpSqDist;
retVal = verts[ i ];
}
}
return retVal;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
float CDmeMesh::DistanceBetween( int vIndex0, int vIndex1, const CDmeVertexData *pPassedBase /*= NULL */ ) const
{
const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase )
return 0.0f;
const CUtlVector< Vector > &positions( pBase->GetPositionData() );
const int nPositions = positions.Count();
if ( vIndex0 >= nPositions || vIndex1 >= nPositions )
return 0.0f;
return positions[ vIndex0 ].DistTo( positions[ vIndex1 ] );
}
//-----------------------------------------------------------------------------
// Sorts DeltaComputation_t's by dimensionality
//-----------------------------------------------------------------------------
int ControlIndexLessFunc( const void *lhs, const void *rhs )
{
const int &lVal = *reinterpret_cast< const int * >( lhs );
const int &rVal = *reinterpret_cast< const int * >( rhs );
return lVal - rVal;
}
//-----------------------------------------------------------------------------
// This will compute a list of delta states that are superior to the passed
// delta state name (which has the form of <NAME>[_<NAME>]..., i.e. controls
// separated by underscores. The states will be returned in order from
// most superior to least superior. Since the deltas need to be broken down
// by the control deltas, if any control delta doesn't exist it will return false.
//
// A superior delta state is defined as a delta which has this delta as
// a dependent (or inferior) delta.
//
// Given the network of:
//
// A, B, C
// A_B, A_C, B_C
// A_B_C
//
// A_B_C is superior to A, B, A_B, A_C & B_C
// A_B is superior to A, B & C
// A_C is superior to A, B & C
// B_C is superior to A, B & C
//
// Input Output
// ------- --------------------
// A A_B_C, A_B, A_C, B_C
// B A_B_C, A_B, A_C, B_C
// C A_B_C, A_B, A_C, B_C
// A_B A_B_C
// A_C A_B_C
// B_C A_B_C
// A_B_C
//-----------------------------------------------------------------------------
bool CDmeMesh::ComputeSuperiorDeltaStateList( const char *pInferiorDeltaName, CUtlVector< int > &superiorDeltaStates )
{
// TODO: Compute this data only when the deltas are added, removed or renamed
CUtlVector< DeltaComputation_t > compList;
ComputeDeltaStateComputationList( compList );
// Typically the passed delta won't be in the list yet, but it could be, that's ok
// Treat it like it isn't to be sure.
CUtlVector< int > inferiorIndices;
if ( !GetControlDeltaIndices( pInferiorDeltaName, inferiorIndices ) )
return false;
const int nInferiorIndices = inferiorIndices.Count();
qsort( inferiorIndices.Base(), nInferiorIndices, sizeof( int ), ControlIndexLessFunc );
CUtlVector< int > superiorIndices;
int nSuperiorIndices;
CDmeVertexDeltaData *pSuperiorDelta;
for ( int i = compList.Count() - 1; i >= 0; --i )
{
const DeltaComputation_t &deltaComp = compList[ i ];
// For a delta to be superior, it has to have more control inputs than the specified delta
// compList is sorted in order of dimensionality, so safe to abort
if ( nInferiorIndices >= deltaComp.m_nDimensionality )
break;
pSuperiorDelta = GetDeltaState( deltaComp.m_nDeltaIndex );
if ( !pSuperiorDelta )
continue;
if ( !GetControlDeltaIndices( pSuperiorDelta, superiorIndices ) )
continue;
nSuperiorIndices = superiorIndices.Count();
qsort( superiorIndices.Base(), nSuperiorIndices, sizeof( int ), ControlIndexLessFunc );
int nFound = 0;
int si = 0;
for ( int ii = 0; ii < nInferiorIndices; ++ii )
{
const int &iIndex = inferiorIndices[ ii ];
while ( si < nSuperiorIndices && iIndex != superiorIndices[ si ] )
{
++si;
}
if ( si < nSuperiorIndices )
{
++nFound;
}
}
if ( nFound == nInferiorIndices )
{
superiorDeltaStates.AddToTail( deltaComp.m_nDeltaIndex );
}
}
return true;
}
//-----------------------------------------------------------------------------
// Removes the passed base state from the list of base states in the mesh
// if it exists in the list of base states in the mesh, but doesn't delete
// the element itself
//-----------------------------------------------------------------------------
bool CDmeMesh::RemoveBaseState( CDmeVertexData *pBase )
{
const int nBaseStates = m_BaseStates.Count();
for ( int i = 0; i < nBaseStates; ++i )
{
if ( m_BaseStates[ i ] == pBase )
{
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Adds an existing element to the list of base states of the mesh if it
// isn't already one of the base states
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::FindOrAddBaseState( CDmeVertexData *pBase )
{
const int nBaseStates = m_BaseStates.Count();
for ( int i = 0; i < nBaseStates; ++i )
{
if ( m_BaseStates[ i ] == pBase )
{
return pBase;
}
}
return m_BaseStates[ m_BaseStates.AddToTail( pBase ) ];
}
//-----------------------------------------------------------------------------
// TODO: Current state is insufficient as long as the current state isn't
// created from the current delta weights
//-----------------------------------------------------------------------------
void CDmeMesh::GetBoundingSphere(
Vector &c, float &r,
CDmeVertexData *pPassedBase /* = NULL */, CDmeSingleIndexedComponent *pPassedSelection /* = NULL */ ) const
{
c.Zero();
r = 0.0f;
const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase )
return;
const FieldIndex_t pIndex = pBase->FindFieldIndex( CDmeVertexData::FIELD_POSITION );
if ( pIndex < 0 )
return;
const CUtlVector< Vector > &pData( pBase->GetPositionData() );
const int nPositions = pData.Count();
if ( pPassedSelection )
{
const int nSelectionCount = pPassedSelection->Count();
int nIndex;
float fWeight;
for ( int i = 0; i < nSelectionCount; ++i )
{
pPassedSelection->GetComponent( i, nIndex, fWeight );
c += pData[ nIndex ];
}
c /= static_cast< float >( nSelectionCount );
float sqDist;
for ( int i = 0; i < nSelectionCount; ++i )
{
for ( int iPos = 0; iPos < nPositions; ++iPos )
{
sqDist = c.DistToSqr( pData[ iPos ] );
if ( sqDist > r )
{
r = sqDist;
}
}
}
}
else
{
for ( int i = 0; i < nPositions; ++i )
{
c += pData[ i ];
}
c /= static_cast< float >( nPositions );
float sqDist;
for ( int i = 0; i < nPositions; ++i )
{
for ( int iPos = 0; iPos < nPositions; ++iPos )
{
sqDist = c.DistToSqr( pData[iPos] );
if ( sqDist > r )
{
r = sqDist;
}
}
}
}
r = sqrt( r );
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::GetBoundingBox( Vector &min, Vector &max, CDmeVertexData *pPassedBase /* = NULL */, CDmeSingleIndexedComponent *pPassedSelection /* = NULL */ ) const
{
min.Zero();
max.Zero();
const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase )
return;
const FieldIndex_t pIndex = pBase->FindFieldIndex( CDmeVertexData::FIELD_POSITION );
if ( pIndex < 0 )
return;
const CUtlVector< Vector > &pData( pBase->GetPositionData() );
const int nPositions = pData.Count();
if ( pPassedSelection )
{
const int nSelectionCount = pPassedSelection->Count();
if ( nSelectionCount > 0 )
{
int nIndex;
float fWeight;
pPassedSelection->GetComponent( 0, nIndex, fWeight );
min = pData[ nIndex ];
max = min;
for ( int i = 1; i < nSelectionCount; ++i )
{
pPassedSelection->GetComponent( i, nIndex, fWeight );
const Vector &p = pData[ nIndex ];
if ( p.x < min.x )
{
min.x = p.x;
}
else if ( p.x > max.x )
{
max.x = p.x;
}
if ( p.y < min.y )
{
min.y = p.y;
}
else if ( p.y > max.y )
{
max.y = p.y;
}
if ( p.z < min.z )
{
min.z = p.z;
}
else if ( p.z > max.z )
{
max.z = p.z;
}
}
}
}
else
{
if ( nPositions > 0 )
{
min = pData[ 0 ];
max = min;
for ( int i = 1; i < nPositions; ++i )
{
const Vector &p = pData[ i ];
if ( p.x < min.x )
{
min.x = p.x;
}
else if ( p.x > max.x )
{
max.x = p.x;
}
if ( p.y < min.y )
{
min.y = p.y;
}
else if ( p.y > max.y )
{
max.y = p.y;
}
if ( p.z < min.z )
{
min.z = p.z;
}
else if ( p.z > max.z )
{
max.z = p.z;
}
}
}
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t >
bool CDmeMesh::SetBaseDataToDeltas(
CDmeVertexData *pBase,
CDmeVertexData::StandardFields_t nStandardField, CDmrArrayConst< T_t > &srcData, CDmrArray< T_t > &dstData, bool bDoStereo, bool bDoLag )
{
const int nDataCount = dstData.Count();
if ( srcData.Count() != nDataCount )
return false;
// Create the temp buffer for the data
T_t *pData = reinterpret_cast< T_t * >( alloca( nDataCount * sizeof( T_t ) ) );
// Copy the data from the src base state
memcpy( pData, srcData.Base(), nDataCount * sizeof( T_t ) );
const int nCount = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Count();
Assert( m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Count() == m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED].Count() );
if ( bDoStereo )
{
for ( int i = 0; i < nCount; ++i )
{
float flLeftWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x;
float flRightWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].y;
float flLeftWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x;
float flRightWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].y;
if ( flLeftWeight <= 0.0f && flRightWeight <= 0.0f && ( !bDoLag || ( flLeftWeightLagged <= 0.0f && flRightWeightLagged <= 0.0f ) ) )
continue;
AddStereoVertexDelta< T_t >( pBase, pData, sizeof( T_t ), nStandardField, i, bDoLag );
}
}
else
{
for ( int i = 0; i < nCount; ++i )
{
float flWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x;
float flWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x;
if ( flWeight < 0.0f && ( !bDoLag || flWeightLagged <= 0.0f ) )
continue;
AddVertexDelta< T_t >( pBase, pData, sizeof( T_t ), nStandardField, i, bDoLag );
}
}
dstData.SetMultiple( 0, nDataCount, pData );
return true;
}
//-----------------------------------------------------------------------------
// Sets the specified based state to the version of the mesh specified by the
// current weighted deltas
// It's ok to modify the bind state... if you know what you're doing
//-----------------------------------------------------------------------------
bool CDmeMesh::SetBaseStateToDeltas( CDmeVertexData *pPassedBase /*= NULL */ )
{
CDmeVertexData *pBind = GetBindBaseState();
CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBind || !pBase )
return false;
CDmeVertexData::StandardFields_t deltaFields[] =
{
CDmeVertexData::FIELD_POSITION,
CDmeVertexData::FIELD_NORMAL,
CDmeVertexData::FIELD_WRINKLE
};
const bool bDoStereo = ( pBind->FindFieldIndex( CDmeVertexDeltaData::FIELD_BALANCE ) >= 0 );
for ( int i = 0; i < sizeof( deltaFields ) / sizeof( deltaFields[ 0 ] ); ++i )
{
const CDmeVertexDeltaData::StandardFields_t nStandardField = deltaFields[ i ];
const int nSrcField = pBind->FindFieldIndex( nStandardField );
const int nDstField = pBase->FindFieldIndex( nStandardField );
if ( nSrcField < 0 || nDstField < 0 )
continue;
const CDmAttribute *pSrcAttr = pBind->GetVertexData( nSrcField );
CDmAttribute *pDstAttr = pBase->GetVertexData( nDstField );
if ( !pSrcAttr || !pDstAttr || pSrcAttr->GetType() != pDstAttr->GetType() )
continue;
switch ( pDstAttr->GetType() )
{
case AT_FLOAT_ARRAY:
SetBaseDataToDeltas( pBind, nStandardField, CDmrArrayConst< float >( pSrcAttr ), CDmrArray< float >( pDstAttr ), bDoStereo, false );
break;
case AT_VECTOR3_ARRAY:
SetBaseDataToDeltas( pBind, nStandardField, CDmrArrayConst< Vector >( pSrcAttr ), CDmrArray< Vector >( pDstAttr ), bDoStereo, false );
break;
default:
Assert( 0 );
break;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Replace all instances of a material with a different material
//-----------------------------------------------------------------------------
void CDmeMesh::ReplaceMaterial( const char *pOldMaterialName, const char *pNewMaterialName )
{
char pOldFixedName[MAX_PATH];
char pNewFixedName[MAX_PATH];
char pFixedName[MAX_PATH];
if ( pOldMaterialName )
{
V_FixupPathName( pOldFixedName, sizeof(pOldFixedName), pOldMaterialName );
}
V_FixupPathName( pNewFixedName, sizeof(pNewFixedName), pNewMaterialName );
V_FixSlashes( pNewFixedName, '/' );
CDmeMaterial *pReplacementMaterial = NULL;
int nCount = m_FaceSets.Count();
for ( int i = 0; i < nCount; ++i )
{
CDmeFaceSet *pFaceSet = m_FaceSets[i];
CDmeMaterial *pMaterial = pFaceSet->GetMaterial();
if ( pOldMaterialName )
{
const char *pMaterialName = pMaterial->GetMaterialName();
V_FixupPathName( pFixedName, sizeof(pFixedName), pMaterialName );
if ( Q_stricmp( pFixedName, pOldFixedName ) )
continue;
}
if ( !pReplacementMaterial )
{
pReplacementMaterial = CreateElement< CDmeMaterial >( pMaterial->GetName(), pMaterial->GetFileId() );
pReplacementMaterial->SetMaterial( pNewFixedName );
}
pFaceSet->SetMaterial( pReplacementMaterial );
}
}
//-----------------------------------------------------------------------------
// Cleans up delta data that is referring to normals which have been merged out
//-----------------------------------------------------------------------------
static void CollapseRedundantDeltaNormals( CDmeVertexDeltaData *pDmeDelta, const CUtlVector< int > &normalMap )
{
if ( !pDmeDelta )
return;
FieldIndex_t nNormalFieldIndex = pDmeDelta->FindFieldIndex( CDmeVertexData::FIELD_NORMAL );
if ( nNormalFieldIndex < 0 )
return; // No normal deltas
const CUtlVector< Vector > &oldNormalData = pDmeDelta->GetNormalData();
const CUtlVector< int > &oldNormalIndices = pDmeDelta->GetVertexIndexData( nNormalFieldIndex );
Assert( oldNormalData.Count() == oldNormalIndices.Count() );
CUtlVector< bool > done;
done.SetCount( normalMap.Count() );
Q_memset( done.Base(), 0, done.Count() * sizeof( bool ) );
CUtlVector< Vector > newNormalData;
CUtlVector< int > newNormalIndices;
for ( int i = 0; i < oldNormalIndices.Count(); ++i )
{
const int nNewIndex = normalMap[ oldNormalIndices[i] ];
if ( nNewIndex < 0 || done[ nNewIndex ] )
continue;
done[ nNewIndex ] = true;
newNormalData.AddToTail( oldNormalData[i] );
newNormalIndices.AddToTail( nNewIndex );
}
pDmeDelta->RemoveAllVertexData( nNormalFieldIndex );
nNormalFieldIndex = pDmeDelta->CreateField( CDmeVertexDeltaData::FIELD_NORMAL );
pDmeDelta->AddVertexData( nNormalFieldIndex, newNormalData.Count() );
pDmeDelta->SetVertexData( nNormalFieldIndex, 0, newNormalData.Count(), AT_VECTOR3, newNormalData.Base() );
pDmeDelta->SetVertexIndices( nNormalFieldIndex, 0, newNormalIndices.Count(), newNormalIndices.Base() );
}
//-----------------------------------------------------------------------------
// Remove redundant normals from a DMX Mesh
// Looks at all of the normals around each position vertex and merges normals
// which are numerically similar (within flNormalBlend which by default in
// studiomdl is within 2 degrees) around that vertex
//
// If this would result in more normals being created, then don't do anything
// return false.
//-----------------------------------------------------------------------------
static bool CollapseRedundantBaseNormals( CDmeVertexData *pDmeVertexData, CUtlVector< int > &normalMap, float flNormalBlend )
{
if ( !pDmeVertexData )
return false;
FieldIndex_t nPositionFieldIndex = pDmeVertexData->FindFieldIndex( CDmeVertexData::FIELD_POSITION );
FieldIndex_t nNormalFieldIndex = pDmeVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL );
if ( nPositionFieldIndex < 0 || nNormalFieldIndex < 0 )
return false;
const CUtlVector< Vector > &oldNormalData = pDmeVertexData->GetNormalData();
const CUtlVector< int > &oldNormalIndices = pDmeVertexData->GetVertexIndexData( nNormalFieldIndex );
CUtlVector< Vector > newNormalData;
CUtlVector< int > newNormalIndices;
newNormalIndices.SetCount( oldNormalIndices.Count() );
for ( int i = 0; i < newNormalIndices.Count(); ++i )
{
newNormalIndices[i] = -1;
}
const int nPositionDataCount = pDmeVertexData->GetPositionData().Count();
for ( int i = 0; i < nPositionDataCount; ++i )
{
int nNewNormalDataIndex = newNormalData.Count();
const CUtlVector< int > &vertexIndices = pDmeVertexData->FindVertexIndicesFromDataIndex( CDmeVertexData::FIELD_POSITION, i );
for ( int j = 0; j < vertexIndices.Count(); ++j )
{
bool bUnique = true;
const int nVertexIndex = vertexIndices[j];
const Vector &vNormal = oldNormalData[ oldNormalIndices[ vertexIndices[j] ] ];
for ( int k = nNewNormalDataIndex; k < newNormalData.Count(); ++k )
{
if ( DotProduct( vNormal, newNormalData[k] ) > flNormalBlend )
{
newNormalIndices[ nVertexIndex ] = k;
bUnique = false;
break;
}
}
if ( !bUnique )
continue;
newNormalIndices[ nVertexIndex ] = newNormalData.AddToTail( vNormal );
}
}
for ( int i = 0; i < newNormalIndices.Count(); ++i )
{
if ( newNormalIndices[i] == -1 )
{
newNormalIndices[i] = newNormalData.AddToTail( oldNormalData[ oldNormalIndices[i] ] );
}
}
// If it's the same or more don't do anything
if ( newNormalData.Count() >= oldNormalData.Count() )
return false;
normalMap.SetCount( oldNormalData.Count() );
for ( int i = 0; i < normalMap.Count(); ++i )
{
normalMap[i] = -1;
}
Assert( newNormalIndices.Count() == oldNormalIndices.Count() );
for ( int i = 0; i < oldNormalIndices.Count(); ++i )
{
if ( normalMap[ oldNormalIndices[i] ] == -1 )
{
normalMap[ oldNormalIndices[i] ] = newNormalIndices[i];
}
else
{
Assert( normalMap[ oldNormalIndices[i] ] == newNormalIndices[i] );
}
}
pDmeVertexData->RemoveAllVertexData( nNormalFieldIndex );
nNormalFieldIndex = pDmeVertexData->CreateField( CDmeVertexDeltaData::FIELD_NORMAL );
pDmeVertexData->AddVertexData( nNormalFieldIndex, newNormalData.Count() );
pDmeVertexData->SetVertexData( nNormalFieldIndex, 0, newNormalData.Count(), AT_VECTOR3, newNormalData.Base() );
pDmeVertexData->SetVertexIndices( nNormalFieldIndex, 0, newNormalIndices.Count(), newNormalIndices.Base() );
return true;
}
//-----------------------------------------------------------------------------
// Collapse all normals with the same numerical value into the same normal
//-----------------------------------------------------------------------------
static bool CollapseRedundantBaseNormalsAggressive( CDmeVertexData *pDmeVertexData, float flNormalBlend )
{
if ( !pDmeVertexData )
return false;
FieldIndex_t nNormalFieldIndex = pDmeVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL );
if ( nNormalFieldIndex < 0 )
return false;
const CUtlVector< Vector > &oldNormalData = pDmeVertexData->GetNormalData();
const CUtlVector< int > &oldNormalIndices = pDmeVertexData->GetVertexIndexData( nNormalFieldIndex );
CUtlVector< int > normalMap;
normalMap.SetCount( oldNormalData.Count() );
CUtlVector< Vector > newNormalData;
for ( int i = 0; i < oldNormalData.Count(); ++i )
{
bool bUnique = true;
const Vector &vNormal = oldNormalData[ i ];
for ( int j = 0; j < newNormalData.Count(); ++j )
{
if ( DotProduct( vNormal, newNormalData[j] ) > flNormalBlend )
{
normalMap[ i ] = j;
bUnique = false;
break;
}
}
if ( !bUnique )
continue;
normalMap[ i ] = newNormalData.AddToTail( vNormal );
}
// If it's the same then don't do anything.
if ( newNormalData.Count() >= oldNormalData.Count() )
return false;
CUtlVector< int > newNormalIndices;
newNormalIndices.SetCount( oldNormalIndices.Count() );
for ( int i = 0; i < oldNormalIndices.Count(); ++i )
{
newNormalIndices[i] = normalMap[ oldNormalIndices[i] ];
}
pDmeVertexData->RemoveAllVertexData( nNormalFieldIndex );
nNormalFieldIndex = pDmeVertexData->CreateField( CDmeVertexDeltaData::FIELD_NORMAL );
pDmeVertexData->AddVertexData( nNormalFieldIndex, newNormalData.Count() );
pDmeVertexData->SetVertexData( nNormalFieldIndex, 0, newNormalData.Count(), AT_VECTOR3, newNormalData.Base() );
pDmeVertexData->SetVertexIndices( nNormalFieldIndex, 0, newNormalIndices.Count(), newNormalIndices.Base() );
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::NormalizeNormals()
{
Vector vNormal;
for ( int i = 0; i < this->BaseStateCount(); ++i )
{
CDmeVertexData *pDmeVertexData = GetBaseState( i );
if ( !pDmeVertexData )
continue;
FieldIndex_t nNormalIndex = pDmeVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL );
if ( nNormalIndex < 0 )
continue;
CDmAttribute *pDmNormalAttr = pDmeVertexData->GetVertexData( nNormalIndex );
if ( !pDmNormalAttr )
continue;
CDmrArray< Vector > normalData( pDmNormalAttr );
for ( int j = 0; j < normalData.Count(); ++j )
{
vNormal = normalData.Get( j );
VectorNormalize( vNormal );
normalData.Set( j, vNormal );
}
}
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::CollapseRedundantNormals( float flNormalBlend )
{
NormalizeNormals();
CDmeVertexData *pDmeBind = GetBindBaseState();
if ( !pDmeBind )
return;
CUtlVector< int > normalMap;
const int nDeltaStateCount = DeltaStateCount();
if ( nDeltaStateCount <= 0 )
{
// No deltas
if ( CollapseRedundantBaseNormalsAggressive( pDmeBind, flNormalBlend ) )
{
// Collapse any other states
for ( int i = 0; i < BaseStateCount(); ++i )
{
CDmeVertexData *pDmeVertexData = GetBaseState( i );
if ( !pDmeVertexData || pDmeVertexData == pDmeBind )
continue;
CollapseRedundantBaseNormalsAggressive( pDmeVertexData, flNormalBlend );
}
}
}
else
{
// Collapse the base state
if ( CollapseRedundantBaseNormals( pDmeBind, normalMap, flNormalBlend ) )
{
// Collapse any delta states using the baseState normal map
for ( int i = 0; i < DeltaStateCount(); ++i )
{
CDmeVertexDeltaData *pDmeDeltaData = GetDeltaState( i );
if ( !pDmeDeltaData )
continue;
CollapseRedundantDeltaNormals( pDmeDeltaData, normalMap );
}
// Collapse any other states
for ( int i = 0; i < BaseStateCount(); ++i )
{
CDmeVertexData *pDmeVertexData = GetBaseState( i );
if ( !pDmeVertexData || pDmeVertexData == pDmeBind )
continue;
CollapseRedundantBaseNormals( pDmeVertexData, normalMap, flNormalBlend );
}
}
}
}