756 lines
22 KiB
C
Raw Normal View History

2020-04-22 12:56:21 -04:00
/*
File: vBLAS.h
Contains: Header for the Basic Linear Algebra Subprograms, with Apple extensions.
Version: QuickTime 7.3
Copyright: (c) 2007 (c) 2000-2001 by Apple Computer, Inc., all rights reserved.
Bugs?: For bug reports, consult the following page on
the World Wide Web:
http://developer.apple.com/bugreporter/
*/
/* ==========================================================================================================================*/
/*
=================================================================================================
Definitions of the Basic Linear Algebra Subprograms (BLAS) as provided by Apple Computer. At
present this is a subset of the "legacy" FORTRAN and C interfaces. Only single precision forms
are provided, and only the most useful routines. For example only the general matrix forms are
provided, not the symmetric, Hermitian, or triangular forms. A few additional functions, unique
to Mac OS, have also been provided. These are clearly documented as Apple extensions.
Documentation on the BLAS standard, including reference implementations, can be found on the web
starting from the BLAS FAQ page at these URLs (at least as of August 2000):
http://www.netlib.org/blas/faq.html
http://www.netlib.org/blas/blast-forum/blast-forum.html
=================================================================================================
*/
/*
=================================================================================================
Matrix shape and storage
========================
Keeping the various matrix shape and storage parameters straight can be difficult. The BLAS
documentation generally makes a distinction between the concpetual "matrix" and the physical
"array". However there are a number of places where this becomes fuzzy because of the overall
bias towards FORTRAN's column major storage. The confusion is made worse by style differences
between the level 2 and level 3 functions. It is amplified further by the explicit choice of row
or column major storage in the C interface.
The storage order does not affect the actual computation that is performed. That is, it does not
affect the results other than where they appear in memory. It does affect the values passed
for so-called "leading dimension" parameters, such as lda in sgemv. These are always the major
stride in storage, allowing operations on rectangular subsets of larger matrices. For row major
storage this is the number of columns in the parent matrix, and for column major storage this is
the number of rows in the parent matrix.
For the level 2 functions, which deal with only a single matrix, the matrix shape parameters are
always M and N. These are the logical shape of the matrix, M rows by N columns. The transpose
parameter, such as transA in sgemv, defines whether the regular matrix or its transpose is used
in the operation. This affects the implicit length of the input and output vectors. For example,
if the regular matrix A is used in sgemv, the input vector X has length N, the number of columns
of A, and the output vector Y has length M, the number of rows of A. The length of the input and
output vectors is not affected by the storage order of the matrix.
The level 3 functions deal with 2 input matrices and one output matrix, the matrix shape parameters
are M, N, and K. The logical shape of the output matrix is always M by N, while K is the common
dimension of the input matrices. Like level 2, the transpose parameters, such as transA and transB
in sgemm, define whether the regular input or its transpose is used in the operation. However
unlike level 2, in level 3 the transpose parameters affect the implicit shape of the input matrix.
Consider sgemm, which computes "C = (alpha * A * B) + (beta * C)", where A and B might be regular
or transposed. The logical shape of C is always M rows by N columns. The physical shape depends
on the storage order parameter. Using column major storage the declaration of C (the array) in C
(the language) would be something like "float C[N][M]". The logical shape of A without transposition
is M by K, and B is K by N. The one storage order parameter affects all three matrices.
For those readers still wondering about the style differences between level 2 and level 3, they
involve whether the input or output shapes are explicit. For level 2, the input matrix shape is
always M by N. The input and output vector lengths are implicit and vary according to the
transpose parameter. For level 3, the output matrix shape is always M by N. The input matrix
shapes are implicit and vary according to the transpose parameters.
=================================================================================================
*/
/* ==========================================================================================================================*/
#ifndef __VBLAS__
#define __VBLAS__
#ifndef __CONDITIONALMACROS__
#include <ConditionalMacros.h>
#endif
#if PRAGMA_ONCE
#pragma once
#endif
#ifdef __cplusplus
extern "C" {
#endif
#if PRAGMA_IMPORT
#pragma import on
#endif
#if PRAGMA_STRUCT_ALIGN
#pragma options align=power
#elif PRAGMA_STRUCT_PACKPUSH
#pragma pack(push, 2)
#elif PRAGMA_STRUCT_PACK
#pragma pack(2)
#endif
#if PRAGMA_ENUM_ALWAYSINT
#if defined(__fourbyteints__) && !__fourbyteints__
#define __VBLAS__RESTORE_TWOBYTEINTS
#pragma fourbyteints on
#endif
#pragma enumsalwaysint on
#elif PRAGMA_ENUM_OPTIONS
#pragma option enum=int
#elif PRAGMA_ENUM_PACK
#if __option(pack_enums)
#define __VBLAS__RESTORE_PACKED_ENUMS
#pragma options(!pack_enums)
#endif
#endif
/*
==========================================================================================================================
Types and constants
===================
*/
enum CBLAS_ORDER {
CblasRowMajor = 101,
CblasColMajor = 102
};
typedef enum CBLAS_ORDER CBLAS_ORDER;
enum CBLAS_TRANSPOSE {
CblasNoTrans = 111,
CblasTrans = 112,
CblasConjTrans = 113
};
typedef enum CBLAS_TRANSPOSE CBLAS_TRANSPOSE;
enum CBLAS_UPLO {
CblasUpper = 121,
CblasLower = 122
};
typedef enum CBLAS_UPLO CBLAS_UPLO;
enum CBLAS_DIAG {
CblasNonUnit = 131,
CblasUnit = 132
};
typedef enum CBLAS_DIAG CBLAS_DIAG;
enum CBLAS_SIDE {
CblasLeft = 141,
CblasRight = 142
};
typedef enum CBLAS_SIDE CBLAS_SIDE;
/*
------------------------------------------------------------------------------------------------------------------
IsAlignedCount - True if an integer is positive and a multiple of 4. Negative strides are considered unaligned.
IsAlignedAddr - True if an address is a multiple of 16.
*/
#define IsAlignedCount(n) ( (n > 0) && ((n & 3L) == 0) )
#define IsAlignedAddr(a) ( ((long)a & 15L) == 0 )
/*
==========================================================================================================================
==========================================================================================================================
Legacy BLAS Functions
==========================================================================================================================
==========================================================================================================================
*/
/*
==========================================================================================================================
Level 1 Single Precision Functions
==================================
*/
/*
* cblas_sdot()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( float )
cblas_sdot(
int N,
const float * X,
int incX,
const float * Y,
int incY);
/*
* cblas_snrm2()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( float )
cblas_snrm2(
int N,
const float * X,
int incX);
/*
* cblas_sasum()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( float )
cblas_sasum(
int N,
const float * X,
int incX);
/*
* cblas_isamax()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( int )
cblas_isamax(
int N,
const float * X,
int incX);
/*
* cblas_sswap()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
cblas_sswap(
int N,
float * X,
int incX,
float * Y,
int incY);
/*
* cblas_scopy()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
cblas_scopy(
int N,
const float * X,
int incX,
float * Y,
int incY);
/*
* cblas_saxpy()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
cblas_saxpy(
int N,
float alpha,
const float * X,
int incX,
float * Y,
int incY);
/*
* cblas_srot()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
cblas_srot(
int N,
float * X,
int incX,
float * Y,
int incY,
float c,
float s);
/*
* cblas_sscal()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
cblas_sscal(
int N,
float alpha,
float * X,
int incX);
/*
==========================================================================================================================
Level 1 Double Precision Functions
==================================
*/
/* *** TBD ****/
/*
==========================================================================================================================
Level 1 Complex Single Precision Functions
==========================================
*/
/* *** TBD ****/
/*
==========================================================================================================================
Level 2 Single Precision Functions
==================================
*/
/*
* cblas_sgemv()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
cblas_sgemv(
CBLAS_ORDER order,
CBLAS_TRANSPOSE transA,
int M,
int N,
float alpha,
const float * A,
int lda,
const float * X,
int incX,
float beta,
float * Y,
int incY);
/*
==========================================================================================================================
Level 2 Double Precision Functions
==================================
*/
/* *** TBD ****/
/*
==========================================================================================================================
Level 2 Complex Single Precision Functions
==========================================
*/
/* *** TBD ****/
/*
==========================================================================================================================
Level 3 Single Precision Functions
==================================
*/
/*
* cblas_sgemm()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
cblas_sgemm(
CBLAS_ORDER order,
CBLAS_TRANSPOSE transA,
CBLAS_TRANSPOSE transB,
int M,
int N,
int K,
float alpha,
const float * A,
int lda,
const float * B,
int ldb,
float beta,
float * C,
int ldc);
/*
==========================================================================================================================
Level 3 Double Precision Functions
==================================
*/
/* *** TBD ****/
/*
==========================================================================================================================
Level 3 Complex Single Precision Functions
==========================================
*/
/* *** TBD ****/
/*
==========================================================================================================================
==========================================================================================================================
Latest Standard BLAS Functions
==========================================================================================================================
==========================================================================================================================
*/
/* *** TBD ****/
/*
==========================================================================================================================
==========================================================================================================================
Additional Functions from Apple
==========================================================================================================================
==========================================================================================================================
*/
/*
-------------------------------------------------------------------------------------------------
These routines provide optimized, AltiVec-only support for common small matrix multiplications.
They do not check for the availability of AltiVec instructions or parameter errors. They just do
the multiplication as fast as possible. Matrices are presumed to use row major storage. Because
these are all square, column major matrices can be multiplied by simply reversing the parameters.
*/
#ifdef __VEC__
typedef vector float ConstVectorFloat;
/*
* vMultVecMat_4x4()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultVecMat_4x4(
ConstVectorFloat X[1],
ConstVectorFloat A[4][1],
vector float Y[1]);
/*
* vMultMatVec_4x4()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultMatVec_4x4(
ConstVectorFloat A[4][1],
ConstVectorFloat X[1],
vector float Y[1]);
/*
* vMultMatMat_4x4()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultMatMat_4x4(
ConstVectorFloat A[4][1],
ConstVectorFloat B[4][1],
vector float C[4][1]);
/*
* vMultVecMat_8x8()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultVecMat_8x8(
ConstVectorFloat X[2],
ConstVectorFloat A[8][2],
vector float Y[2]);
/*
* vMultMatVec_8x8()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultMatVec_8x8(
ConstVectorFloat A[8][2],
ConstVectorFloat X[2],
vector float Y[2]);
/*
* vMultMatMat_8x8()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultMatMat_8x8(
ConstVectorFloat A[8][2],
ConstVectorFloat B[8][2],
vector float C[8][2]);
/*
* vMultVecMat_16x16()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultVecMat_16x16(
ConstVectorFloat X[4],
ConstVectorFloat A[16][4],
vector float Y[4]);
/*
* vMultMatVec_16x16()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultMatVec_16x16(
ConstVectorFloat A[16][4],
ConstVectorFloat X[4],
vector float Y[4]);
/*
* vMultMatMat_16x16()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultMatMat_16x16(
ConstVectorFloat A[16][4],
ConstVectorFloat B[16][4],
vector float C[16][4]);
/*
* vMultVecMat_32x32()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultVecMat_32x32(
ConstVectorFloat X[8],
ConstVectorFloat A[32][8],
vector float Y[8]);
/*
* vMultMatVec_32x32()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultMatVec_32x32(
ConstVectorFloat A[32][8],
ConstVectorFloat X[8],
vector float Y[8]);
/*
* vMultMatMat_32x32()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
vMultMatMat_32x32(
ConstVectorFloat A[32][8],
ConstVectorFloat B[32][8],
vector float C[32][8]);
#endif /* defined(__VEC__) */
/*
==========================================================================================================================
Error handling
==============
*/
/*
-------------------------------------------------------------------------------------------------
The BLAS standard requires that parameter errors be reported and cause the program to terminate.
The default behavior for the Mac OS implementation of the BLAS is to print a message in English
to stdout using printf and call exit with EXIT_FAILURE as the status. If this is adequate, then
you need do nothing more or worry about error handling.
The BLAS standard also mentions a function, cblas_xerbla, suggesting that a program provide its
own implementation to override the default error handling. This will not work in the shared
library environment of Mac OS 9. Instead the Mac OS implementation provides a means to install
an error handler. There can only be one active error handler, installing a new one causes any
previous handler to be forgotten. Passing a null function pointer installs the default handler.
The default handler is automatically installed at startup and implements the default behavior
defined above.
An error handler may return, it need not abort the program. If the error handler returns, the
BLAS routine also returns immediately without performing any processing. Level 1 functions that
return a numeric value return zero if the error handler returns.
*/
typedef CALLBACK_API_C( void , BLASParamErrorProc )(const char *funcName, const char *paramName, const int *paramPos, const int *paramValue);
/*
* SetBLASParamErrorProc()
*
* Availability:
* Non-Carbon CFM: in vecLib 1.0.2 and later
* CarbonLib: not in Carbon, but vecLib is compatible with CarbonLib
* Mac OS X: in version 10.0 and later
*/
EXTERN_API_C( void )
SetBLASParamErrorProc(BLASParamErrorProc ErrorProc);
/* ==========================================================================================================================*/
#if PRAGMA_ENUM_ALWAYSINT
#pragma enumsalwaysint reset
#ifdef __VBLAS__RESTORE_TWOBYTEINTS
#pragma fourbyteints off
#endif
#elif PRAGMA_ENUM_OPTIONS
#pragma option enum=reset
#elif defined(__VBLAS__RESTORE_PACKED_ENUMS)
#pragma options(pack_enums)
#endif
#if PRAGMA_STRUCT_ALIGN
#pragma options align=reset
#elif PRAGMA_STRUCT_PACKPUSH
#pragma pack(pop)
#elif PRAGMA_STRUCT_PACK
#pragma pack()
#endif
#ifdef PRAGMA_IMPORT_OFF
#pragma import off
#elif PRAGMA_IMPORT
#pragma import reset
#endif
#ifdef __cplusplus
}
#endif
#endif /* __VBLAS__ */