source-engine/tier0/platform_posix.cpp

1083 lines
26 KiB
C++
Raw Permalink Normal View History

2020-04-22 12:56:21 -04:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "tier0/platform.h"
#include "tier0/vcrmode.h"
#include "tier0/memalloc.h"
#include "tier0/dbg.h"
#include <algorithm>
#include <vector>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#if defined(OSX) || defined(PLATFORM_BSD)
# ifdef PLATFORM_BSD
# include <sys/proc.h>
# include <sys/user.h>
# else
# include <mach/mach.h>
# include <mach/mach_time.h>
# endif
2020-04-22 12:56:21 -04:00
#include <stdbool.h>
#include <unistd.h>
#include <sys/types.h>
2020-04-22 12:56:21 -04:00
#include <sys/sysctl.h>
#endif
#ifdef LINUX
#include <time.h>
#include <fcntl.h>
#endif
#ifdef ANDROID
#include <linux/stat.h>
#endif
2020-04-22 12:56:21 -04:00
#include "tier0/memdbgon.h"
// Benchmark mode uses this heavy-handed method
// *** WARNING ***. On Linux gettimeofday returns the system's best guess at
// actual wall clock time and this can go backwards. You need to use
// clock_gettime( CLOCK_MONOTONIC ... ) if this isn't what you want.
// If you want to try using rdtsc for Plat_FloatTime(), enable USE_RDTSC_FOR_FLOATTIME:
//
// Make sure you know what you're doing. This was disabled due to the long startup time, and
// in our testing, even though constant_tsc was set, we couldn't rely on the
// max frequency result returned from CalculateCPUFreq() (ie /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq).
//
// #define USE_RDTSC_FOR_FLOATTIME
extern VCRMode_t g_VCRMode;
static bool g_bBenchmarkMode = false;
static double g_FakeBenchmarkTime = 0;
static double g_FakeBenchmarkTimeInc = 1.0 / 66.0;
#ifdef USE_RDTSC_FOR_FLOATTIME
static bool s_bTimeInitted;
static bool s_bUseRDTSC;
static uint64 s_nRDTSCBase;
static float s_flRDTSCToMicroSeconds;
static double s_flRDTSCScale;
#endif // USE_RDTSC_FOR_FLOATTIME
bool Plat_IsInBenchmarkMode()
{
return g_bBenchmarkMode;
}
void Plat_SetBenchmarkMode( bool bBenchmark )
{
g_bBenchmarkMode = bBenchmark;
}
#define N_ITERATIONS_OF_RDTSC_TEST_TO_RUN 5 // should be odd
#define TEST_RDTSC_FLOATTIME 0
size_t ApproximateProcessMemoryUsage( void )
{
/*
From http://man7.org/linux/man-pages/man5/proc.5.html:
/proc/[pid]/statm
Provides information about memory usage, measured in pages.
The columns are:
size (1) total program size
(same as VmSize in /proc/[pid]/status)
resident (2) resident set size
(same as VmRSS in /proc/[pid]/status)
share (3) shared pages (i.e., backed by a file)
text (4) text (code)
lib (5) library (unused in Linux 2.6)
data (6) data + stack
dt (7) dirty pages (unused in Linux 2.6)
*/
// This returns the resident memory size (RES column in 'top') in bytes.
size_t nRet = 0;
FILE *pFile = fopen( "/proc/self/statm", "r" );
if ( pFile )
{
size_t nSize, nResident, nShare, nText, nLib_Unused, nDataPlusStack, nDt_Unused;
if ( fscanf( pFile, "%zu %zu %zu %zu %zu %zu %zu", &nSize, &nResident, &nShare, &nText, &nLib_Unused, &nDataPlusStack, &nDt_Unused ) >= 2 )
{
nRet = 4096 * nResident;
}
fclose( pFile );
}
return nRet;
}
#ifdef USE_RDTSC_FOR_FLOATTIME
static void InitTimeSystem( void )
{
s_bTimeInitted = true;
// now, see if we can use rdtsc instead. If this is one of the chips with a separate constant clock for rdtsc, we can
FILE *pCpuInfo = fopen( "/proc/cpuinfo", "r" );
if ( pCpuInfo )
{
bool bAnyBadCores = false;
char lbuf[2048];
while( fgets( lbuf, sizeof( lbuf ), pCpuInfo ) )
{
if ( memcmp( lbuf, "flags", 4 ) == 0 )
{
if ( ! strstr( lbuf, "constant_tsc" ) )
{
bAnyBadCores = true;
break;
}
}
}
fclose( pCpuInfo );
if ( ! bAnyBadCores )
{
// this system appears to have the proper cpu setup to use rdtsc from reliable timing. Let's either read the cpu frequency from an
// environment variable, or time it ourselves
char const *pEnv = getenv( "RDTSC_FREQUENCY" );
if ( pEnv )
{
// the environment variable is allowed to hold either a benchmark result, or a string such as "disable"
if ( pEnv && ( ( pEnv[0] > '9' ) || ( pEnv[0] < '0' ) ) )
return; // leave rdtsc disabled
// the variable holds the number of ticks per microsecond
s_flRDTSCToMicroSeconds = atof( pEnv );
// sanity check
if ( s_flRDTSCToMicroSeconds > 1.0 )
{
s_bUseRDTSC = true;
s_flRDTSCScale = 1.0 / ( 1000.0 * 1000.0 * s_flRDTSCToMicroSeconds );
s_nRDTSCBase = Plat_Rdtsc();
return;
}
}
else
{
printf( "Running a benchmark to measure system clock frequency...\n" );
// run n iterations and use the median
double flRDTSCToMicroSeconds[N_ITERATIONS_OF_RDTSC_TEST_TO_RUN];
for( int i = 0; i < ARRAYSIZE( flRDTSCToMicroSeconds ) ; i++ )
{
uint64 stime = Plat_Rdtsc();
struct timeval stimeval;
gettimeofday( &stimeval, NULL );
sleep( 1 );
uint64 etime = Plat_Rdtsc() - stime;
struct timeval etimeval;
gettimeofday( &etimeval, NULL );
// subtract timevals to get elapsed microseconds
struct timeval elapsedtimeval;
timersub( &etimeval, &stimeval, &elapsedtimeval );
uint64 nUs = 1000000 * elapsedtimeval.tv_sec + elapsedtimeval.tv_usec;
flRDTSCToMicroSeconds[ i ] = ( etime / nUs );
}
std::make_heap( flRDTSCToMicroSeconds, flRDTSCToMicroSeconds + ARRAYSIZE( flRDTSCToMicroSeconds ) - 1 );
std::sort_heap( flRDTSCToMicroSeconds, flRDTSCToMicroSeconds + ARRAYSIZE( flRDTSCToMicroSeconds ) - 1 );
s_flRDTSCToMicroSeconds = flRDTSCToMicroSeconds[ARRAYSIZE( flRDTSCToMicroSeconds ) / 2 ];
s_flRDTSCScale = 1.0 / ( 1000.0 * 1000.0 * s_flRDTSCToMicroSeconds );
printf( "Finished RDTSC test. To prevent the startup delay from this benchmark, set the environment variable RDTSC_FREQUENCY to %f on this system."
" This value is dependent upon the CPU clock speed and architecture and should be determined separately for each server. The use of this mechanism"
" for timing can be disabled by setting RDTSC_FREQUENCY to 'disabled'.\n",
s_flRDTSCToMicroSeconds );
s_nRDTSCBase = Plat_Rdtsc();
s_bUseRDTSC = true;
#if TEST_RDTSC_FLOATTIME
printf( "RDTSC test results:\n" );
for( int i = 0; i < ARRAYSIZE( flRDTSCToMicroSeconds ); i++ )
printf(" [%d] = %f\n", i, flRDTSCToMicroSeconds[i] );
printf( "scale factor = %f\n", s_flRDTSCScale );
uint64 srdtsc_time = Plat_Rdtsc();
for( int i = 0; i < 1000 * 1000 * 10; i++ )
{
float p = Plat_FloatTime();
}
printf( "slow = %lld\n", Plat_Rdtsc() - srdtsc_time );
// now, run a benchmark to see how much this optimization buys us
srdtsc_time = Plat_Rdtsc();
for( int i = 0; i < 1000 * 1000 * 10; i++ )
{
float p = Plat_FloatTime();
}
printf( "sfast = %lld\n", Plat_Rdtsc() - srdtsc_time );
#endif
}
}
}
}
static FORCEINLINE void TestTimeSystem( void )
{
#if TEST_RDTSC_FLOATTIME
// now, test that plat_float time actually works
for( int t = 0 ; t < 5; t++ )
{
float flStartT = Plat_FloatTime();
struct timeval stime;
gettimeofday( &stime, NULL );
sleep( 5 );
float flElapsedT = Plat_FloatTime() - flStartT;
struct timeval etime;
gettimeofday( &etime, NULL );
struct timeval dtime;
timersub( &etime, &stime, &dtime );
printf( " plat_float time says %f elapsed. gettimeofday says %f\n",
flElapsedT, dtime.tv_sec + dtime.tv_usec / 1000000.0 );
}
#endif
}
#endif // USE_RDTSC_FOR_FLOATTIME
double Plat_FloatTime()
{
if ( g_bBenchmarkMode )
{
g_FakeBenchmarkTime += g_FakeBenchmarkTimeInc;
return g_FakeBenchmarkTime;
}
#ifdef OSX
// OSX
static uint64 start_time = 0;
static mach_timebase_info_data_t sTimebaseInfo;
static double conversion = 0.0;
if ( !start_time )
{
start_time = mach_absolute_time();
mach_timebase_info(&sTimebaseInfo);
conversion = 1e-9 * (double) sTimebaseInfo.numer / (double) sTimebaseInfo.denom;
}
uint64 now = mach_absolute_time();
return ( now - start_time ) * conversion;
#else
// Linux
static struct timespec start_time = { 0, 0 };
static bool bInitialized = false;
if ( !bInitialized )
{
bInitialized = true;
clock_gettime( CLOCK_MONOTONIC, &start_time );
}
struct timespec now;
clock_gettime( CLOCK_MONOTONIC, &now );
return ( now.tv_sec - start_time.tv_sec ) + ( now.tv_nsec * 1e-9 );
#ifdef USE_RDTSC_FOR_FLOATTIME
if ( ! s_bTimeInitted )
{
InitTimeSystem();
TestTimeSystem();
}
if ( s_bUseRDTSC )
{
uint64 nTicks = Plat_Rdtsc() - s_nRDTSCBase;
return ( (double) nTicks) * s_flRDTSCScale;
}
else
{
struct timeval tp;
gettimeofday( &tp, NULL );
if (VCRGetMode() == VCR_Disabled)
return (( tp.tv_sec - s_nSecBase ) + tp.tv_usec / 1000000.0 );
return VCRHook_Sys_FloatTime( ( tp.tv_sec - s_nSecBase ) + tp.tv_usec / 1000000.0 );
}
#endif // USE_RDTSC_FOR_FLOATTIME
#endif
}
unsigned int Plat_MSTime()
{
if ( g_bBenchmarkMode )
{
g_FakeBenchmarkTime += g_FakeBenchmarkTimeInc;
return (unsigned int)(g_FakeBenchmarkTime * 1000.0);
}
#ifdef USE_RDTSC_FOR_FLOATTIME
if ( ! s_bTimeInitted )
{
InitTimeSystem();
TestTimeSystem();
}
if ( s_bUseRDTSC )
{
uint64 nTicks = Plat_Rdtsc() - s_nRDTSCBase;
return 1000.0 * nTicks * s_flRDTSCScale;
}
else
#endif // USE_RDTSC_FOR_FLOATTIME
{
return ( uint )( Plat_FloatTime() * 1000 );
}
}
uint64 Plat_USTime()
{
if ( g_bBenchmarkMode )
{
g_FakeBenchmarkTime += g_FakeBenchmarkTimeInc;
return (unsigned int)(g_FakeBenchmarkTime * 1000000.0);
}
#ifdef USE_RDTSC_FOR_FLOATTIME
if ( ! s_bTimeInitted )
{
InitTimeSystem();
TestTimeSystem();
}
if ( s_bUseRDTSC )
{
uint64 nTicks = Plat_Rdtsc() - s_nRDTSCBase;
return 1000000.0 * nTicks * s_flRDTSCScale;
}
else
#endif // USE_RDTSC_FOR_FLOATTIME
{
return ( uint64 )( Plat_FloatTime() * 1000000 );
}
}
// Wraps the thread-safe versions of ctime. buf must be at least 26 bytes
char *Plat_ctime( const time_t *timep, char *buf, size_t bufsize )
{
return ctime_r( timep, buf );
}
// Wraps the thread-safe versions of gmtime
struct tm *Plat_gmtime( const time_t *timep, struct tm *result )
{
return gmtime_r( timep, result );
}
time_t Plat_timegm( struct tm *timeptr )
{
return timegm( timeptr );
}
// Wraps the thread-safe versions of localtime
struct tm *Plat_localtime( const time_t *timep, struct tm *result )
{
return localtime_r( timep, result );
}
bool vtune( bool resume )
{
return 0;
}
// -------------------------------------------------------------------------------------------------- //
// Memory stuff.
// -------------------------------------------------------------------------------------------------- //
#ifndef NO_HOOK_MALLOC
PLATFORM_INTERFACE void Plat_DefaultAllocErrorFn( unsigned long size )
{
}
typedef void (*Plat_AllocErrorFn)( unsigned long size );
Plat_AllocErrorFn g_AllocError = Plat_DefaultAllocErrorFn;
PLATFORM_INTERFACE void* Plat_Alloc( unsigned long size )
{
void *pRet = MemAlloc_Alloc( size );
if ( pRet )
{
return pRet;
}
else
{
g_AllocError( size );
return 0;
}
}
PLATFORM_INTERFACE void* Plat_Realloc( void *ptr, unsigned long size )
{
void *pRet = g_pMemAlloc->Realloc( ptr, size );
if ( pRet )
{
return pRet;
}
else
{
g_AllocError( size );
return 0;
}
}
PLATFORM_INTERFACE void Plat_Free( void *ptr )
{
g_pMemAlloc->Free( ptr );
}
PLATFORM_INTERFACE void Plat_SetAllocErrorFn( Plat_AllocErrorFn fn )
{
g_AllocError = fn;
}
#endif // !NO_HOOK_MALLOC
#if defined( OSX ) || defined(PLATFORM_BSD)
2020-04-22 12:56:21 -04:00
// From the Apple tech note: http://developer.apple.com/library/mac/#qa/qa1361/_index.html
bool Plat_IsInDebugSession()
{
static int s_IsInDebugSession;
2020-04-22 12:56:21 -04:00
int junk;
struct kinfo_proc info;
size_t size;
int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, getpid()};
#ifndef PLATFORM_BSD
info.kp_proc.p_flag = 0;
#endif
2020-04-22 12:56:21 -04:00
size = sizeof(info);
junk = sysctl(mib, sizeof(mib) / sizeof(*mib), &info, &size, NULL, 0);
2020-04-22 12:56:21 -04:00
// We're being debugged if the P_TRACED flag is set.
#ifdef PLATFORM_BSD
s_IsInDebugSession = info.ki_flag & P_TRACED;
#else
s_IsInDebugSession = info.kp_proc.p_flag & P_TRACED;
#endif
2020-04-22 12:56:21 -04:00
return !!s_IsInDebugSession;
}
#elif defined( LINUX )
bool Plat_IsInDebugSession()
{
// For linux: http://stackoverflow.com/questions/3596781/detect-if-gdb-is-running
// Don't use "if (ptrace(PTRACE_TRACEME, 0, NULL, 0) == -1)" as it means debuggers can't attach.
// Other solutions they mention involve forking. Ugh.
//
// Good solution from Pierre-Loup: Check TracerPid in /proc/self/status.
// from "man proc"
// TracerPid: PID of process tracing this process (0 if not being traced).
int tracerpid = -1;
int fd = open( "/proc/self/status", O_RDONLY, S_IRUSR );
if( fd >= 0 )
{
char buf[ 1024 ];
static const char s_TracerPid[] = "TracerPid:";
int len = read( fd, buf, sizeof( buf ) - 1 );
if ( len > 0 )
{
buf[ len ] = 0;
const char *str = strstr( buf, s_TracerPid );
tracerpid = str ? atoi( str + sizeof( s_TracerPid ) ) : -1;
}
close( fd );
}
return ( tracerpid > 0 );
}
#endif // defined( LINUX )
void Plat_DebugString( const char * psz )
{
printf( "%s", psz );
}
static char g_CmdLine[ 2048 ];
PLATFORM_INTERFACE void Plat_SetCommandLine( const char *cmdLine )
{
strncpy( g_CmdLine, cmdLine, sizeof(g_CmdLine) );
g_CmdLine[ sizeof(g_CmdLine) -1 ] = 0;
}
PLATFORM_INTERFACE const tchar *Plat_GetCommandLine()
{
#ifdef LINUX
if( !g_CmdLine[ 0 ] )
{
FILE *fp = fopen( "/proc/self/cmdline", "rb" );
if( fp )
{
size_t nCharRead = 0;
// -1 to leave room for the '\0'
nCharRead = fread( g_CmdLine, sizeof( g_CmdLine[0] ), ARRAYSIZE( g_CmdLine ) - 1, fp );
if ( feof( fp ) && !ferror( fp ) ) // Should have read the whole command line without error
{
Assert ( nCharRead < ARRAYSIZE( g_CmdLine ) );
2021-11-16 23:46:29 +03:00
for( uint i = 0; i < nCharRead; i++ )
2020-04-22 12:56:21 -04:00
{
if( g_CmdLine[ i ] == '\0' )
g_CmdLine[ i ] = ' ';
}
g_CmdLine[ nCharRead ] = '\0';
}
fclose( fp );
}
Assert( g_CmdLine[ 0 ] );
}
#endif // LINUX
return g_CmdLine;
}
PLATFORM_INTERFACE const char *Plat_GetCommandLineA()
{
return Plat_GetCommandLine();
}
PLATFORM_INTERFACE bool GetMemoryInformation( MemoryInformation *pOutMemoryInfo )
{
#if defined( LINUX ) || defined( OSX ) || defined(PLATFORM_BSD)
2020-04-22 12:56:21 -04:00
return false;
#else
#error "Need to fill out GetMemoryInformation or at least return false for this platform"
#endif
}
PLATFORM_INTERFACE bool Is64BitOS()
{
#if defined OSX
return true;
#elif defined(LINUX) || defined(PLATFORM_BSD)
2020-04-22 12:56:21 -04:00
FILE *pp = popen( "uname -m", "r" );
if ( pp != NULL )
{
char rgchArchString[256];
fgets( rgchArchString, sizeof( rgchArchString ), pp );
pclose( pp );
if ( !strncasecmp( rgchArchString, "x86_64", strlen( "x86_64" ) ) )
return true;
}
#else
Assert( !"implement Is64BitOS" );
#endif
return false;
}
PLATFORM_INTERFACE void Plat_ExitProcess( int nCode )
{
_exit( nCode );
}
static int s_nWatchDogTimerTimeScale = 0;
static bool s_bInittedWD = false;
static int s_WatchdogTime = 0;
static Plat_WatchDogHandlerFunction_t s_pWatchDogHandlerFunction;
static void InitWatchDogTimer( void )
{
if( !strstr( g_CmdLine, "-nowatchdog" ) )
{
#ifdef _DEBUG
s_nWatchDogTimerTimeScale = 10; // debug is slow
#else
s_nWatchDogTimerTimeScale = 1;
#endif
}
}
// SIGALRM handler. Used by Watchdog timer code.
static void WatchDogHandler( int s )
{
Plat_DebugString( "WatchDog! Server took too long to process (probably infinite loop).\n" );
DebuggerBreakIfDebugging();
if ( s_pWatchDogHandlerFunction )
{
s_pWatchDogHandlerFunction();
}
else
{
// force a crash
abort();
}
}
// watchdog timer support
PLATFORM_INTERFACE void Plat_BeginWatchdogTimer( int nSecs )
{
if ( !s_bInittedWD )
{
s_bInittedWD = true;
InitWatchDogTimer();
}
nSecs *= s_nWatchDogTimerTimeScale;
nSecs = MIN( nSecs, 5 * 60 ); // no more than 5 minutes no matter what
if ( nSecs )
{
s_WatchdogTime = nSecs;
signal( SIGALRM, WatchDogHandler );
alarm( nSecs );
}
}
PLATFORM_INTERFACE void Plat_EndWatchdogTimer( void )
{
alarm( 0 );
signal( SIGALRM, SIG_DFL );
s_WatchdogTime = 0;
}
PLATFORM_INTERFACE int Plat_GetWatchdogTime( void )
{
return s_WatchdogTime;
}
PLATFORM_INTERFACE void Plat_SetWatchdogHandlerFunction( Plat_WatchDogHandlerFunction_t function )
{
s_pWatchDogHandlerFunction = function;
}
#ifndef NO_HOOK_MALLOC
// memory logging this functionality is portable code, except for the way in which it hooks
// malloc/free. glibc contains the ability for the app to install hooks into malloc/free.
2022-02-23 19:56:29 +08:00
#ifdef OSX
#include <malloc/malloc.h>
#else
2020-04-22 12:56:21 -04:00
#include <malloc.h>
2022-02-23 19:56:29 +08:00
#endif
2020-04-22 12:56:21 -04:00
#include <tier1/utlintrusivelist.h>
#include <execinfo.h>
#include <tier1/utlvector.h>
#define MEMALLOC_HASHSIZE 8193
2022-02-23 19:56:29 +08:00
typedef uintp ptrint_t;
2020-04-22 12:56:21 -04:00
struct CLinuxMemStats
{
int nNumMallocs; // total every
int nNumFrees; // total
int nNumMallocsInUse;
int nTotalMallocInUse;
};
#define MAX_STACK_TRACEBACK 20
struct CLinuxMallocContext
{
CLinuxMallocContext *m_pNext;
void *pStackTraceBack[MAX_STACK_TRACEBACK];
int m_nCurrentAllocSize;
int m_nNumAllocsInUse;
int m_nMaximumSize;
int m_TotalNumAllocs;
int m_nLastAllocSize;
CLinuxMallocContext( void )
{
memset( this, 0, sizeof( *this ) );
}
};
static CUtlIntrusiveList<CLinuxMallocContext> s_ContextHash[MEMALLOC_HASHSIZE];
CLinuxMemStats g_LinuxMemStats;
struct RememberedAlloc_t
{
RememberedAlloc_t *m_pNext, *m_pPrev; // all addresses that hash to the same value are linked
CLinuxMallocContext *m_pAllocContext;
ptrint_t m_nAddress; // the address of the memory that came from malloc/realloc
size_t m_nSize;
void AdjustSize( size_t nsize )
{
int nDelta = nsize - m_nSize;
m_nSize = nsize;
m_pAllocContext->m_nCurrentAllocSize += nDelta;
m_pAllocContext->m_nMaximumSize = MAX( m_pAllocContext->m_nMaximumSize, m_pAllocContext->m_nCurrentAllocSize );
}
};
static inline int AddressHash( ptrint_t nAdr )
{
return ( nAdr % MEMALLOC_HASHSIZE );
}
static CUtlIntrusiveDList<RememberedAlloc_t> s_AddressData[MEMALLOC_HASHSIZE];
static struct RememberedAlloc_t *FindAddress( void *pAdr, int *pHash = NULL )
{
ptrint_t nAdr = ( ptrint_t ) pAdr;
int nHash = AddressHash( nAdr );
if ( pHash )
*pHash = nHash;
for( RememberedAlloc_t *i = s_AddressData[nHash].m_pHead; i; i = i->m_pNext )
{
if ( i->m_nAddress == nAdr )
return i;
}
return NULL;
}
#ifdef LINUX
static void *MallocHook( size_t, const void * );
static void FreeHook( void*, const void * );
static void *ReallocHook( void *ptr, size_t size, const void *caller );
static void RemoveHooks( void )
{
__malloc_hook = NULL;
__free_hook = NULL;
__realloc_hook = NULL;
}
static void InstallHooks( void )
{
__malloc_hook = MallocHook;
__free_hook = FreeHook;
__realloc_hook = ReallocHook;
}
#elif OSX || PLATFORM_BSD
2020-04-22 12:56:21 -04:00
static void RemoveHooks( void )
{
}
static void InstallHooks( void )
{
}
#else
#error
#endif
static void AddMemoryAllocation( void *pResult, size_t size )
{
if ( pResult )
{
g_LinuxMemStats.nNumMallocs++;
g_LinuxMemStats.nNumMallocsInUse++;
g_LinuxMemStats.nTotalMallocInUse += size;
RememberedAlloc_t *pNew = new RememberedAlloc_t;
pNew->m_nAddress = ( ptrint_t ) pResult;
pNew->m_nSize = size;
s_AddressData[AddressHash( pNew->m_nAddress )].AddToHead( pNew );
// now, find the stack traceback context for this call
void *pTraceBack[MAX_STACK_TRACEBACK];
int nNumGot = backtrace( pTraceBack, ARRAYSIZE( pTraceBack ) );
for( int n = MAX( 0, nNumGot - 1 ); n < MAX_STACK_TRACEBACK; n++ )
pTraceBack[n] = NULL;
uint32 nHash = 0;
for( int i = 0; i < MAX_STACK_TRACEBACK; i++ )
{
nHash = ( nHash * 3 ) + ( ( ptrint_t ) pTraceBack[i] );
}
nHash %= MEMALLOC_HASHSIZE;
CLinuxMallocContext *pFoundCtx = NULL;
// see if we have this context
for( CLinuxMallocContext *i = s_ContextHash[nHash].m_pHead; i ; i = i->m_pNext )
{
if ( memcmp( pTraceBack, i->pStackTraceBack, sizeof( pTraceBack ) ) == 0 )
{
pFoundCtx = i;
break;
}
}
if ( ! pFoundCtx )
{
pFoundCtx = new CLinuxMallocContext;
memcpy( pFoundCtx->pStackTraceBack, pTraceBack, sizeof( pTraceBack ) );
s_ContextHash[nHash].AddToHead( pFoundCtx );
}
pNew->m_pAllocContext = pFoundCtx;
pFoundCtx->m_nCurrentAllocSize += size;
pFoundCtx->m_nNumAllocsInUse++;
pFoundCtx->m_nMaximumSize = MAX( pFoundCtx->m_nCurrentAllocSize, pFoundCtx->m_nMaximumSize );
pFoundCtx->m_TotalNumAllocs++;
}
}
static CThreadFastMutex s_MemoryMutex;
static void *ReallocHook( void *ptr, size_t size, const void *caller )
{
AUTO_LOCK( s_MemoryMutex );
RemoveHooks();
void *nResult = realloc( ptr, size );
if ( ptr ) // did we have this memory before
{
int nHash;
RememberedAlloc_t *pBlock = FindAddress( ptr, &nHash );
if ( pBlock )
{
if ( ptr == nResult )
{
// it successfully alloced, just need to update size info, etc
pBlock->AdjustSize( size );
g_LinuxMemStats.nTotalMallocInUse += ( size - pBlock->m_nSize );
}
else
{
pBlock->m_pAllocContext->m_nCurrentAllocSize -= pBlock->m_nSize;
pBlock->m_pAllocContext->m_nNumAllocsInUse--;
s_AddressData[nHash].RemoveNode( pBlock ); // throw away this node
AddMemoryAllocation( nResult, size );
}
}
else
AddMemoryAllocation( nResult, size );
}
else
AddMemoryAllocation( nResult, size );
InstallHooks();
return nResult;
}
static void *MallocHook(size_t size, const void *caller)
{
// turn off hooking so we won't recurse
AUTO_LOCK( s_MemoryMutex );
RemoveHooks();
void *pResult = malloc (size);
// now, add this memory chunk to our list
AddMemoryAllocation( pResult, size );
InstallHooks();
return pResult;
}
static void FreeHook(void *ptr, const void *caller )
{
AUTO_LOCK( s_MemoryMutex );
RemoveHooks();
// call real free
free (ptr);
// look in our list
if ( ptr )
{
int nHash;
RememberedAlloc_t *pFound = FindAddress( ptr, &nHash );
if ( !pFound )
{
//printf(" free of unallocated adr %p (maybe)\n", ptr );
}
else
{
pFound->m_pAllocContext->m_nCurrentAllocSize -= pFound->m_nSize;
pFound->m_pAllocContext->m_nNumAllocsInUse--;
g_LinuxMemStats.nTotalMallocInUse -= pFound->m_nSize;
g_LinuxMemStats.nNumFrees++;
g_LinuxMemStats.nNumMallocsInUse--;
s_AddressData[nHash].RemoveNode( pFound );
delete pFound;
}
}
InstallHooks();
}
void EnableMemoryLogging( bool bOnOff )
{
if ( bOnOff )
{
InstallHooks();
#if 0
// simple test
char *p[10];
for( int i =0; i < 10; i++ )
p[i] = new char[10];
printf( "log with memory\n" );
DumpMemoryLog();
for( int i = 0; i < 10; i++ )
delete[] p[i];
printf( "after free,\n" );
DumpMemoryLog();
// now, try som realloc action
int *p1 = NULL;
int *p2;
for( int i =1 ; i < 10; i++ )
{
p1 = (int * ) realloc( p1, i * 100 );
if ( i == 3 )
p2 = new int[300];
}
printf(" after realloc loop\n" );
DumpMemoryLog();
delete[] p2;
free( p1 );
printf(" after realloc frees\n" );
DumpMemoryLog();
#endif
}
else
RemoveHooks();
}
static inline bool SortLessFunc( CLinuxMallocContext * const &left, CLinuxMallocContext * const &right )
{
return left->m_nCurrentAllocSize > right->m_nCurrentAllocSize;
}
void DumpMemoryLog( int nThresh )
{
AUTO_LOCK( s_MemoryMutex );
2022-02-23 19:56:29 +08:00
Plat_EndWatchdogTimer();
2020-04-22 12:56:21 -04:00
RemoveHooks();
std::vector<CLinuxMallocContext *> memList;
for( int i =0 ; i < MEMALLOC_HASHSIZE; i++ )
{
for( CLinuxMallocContext *p = s_ContextHash[i].m_pHead; p; p=p->m_pNext )
{
if ( p->m_nCurrentAllocSize >= nThresh )
{
memList.push_back( p );
}
}
}
std::sort( memList.begin(), memList.end(), SortLessFunc );
for( int i = 0; i < memList.size(); i++ )
{
CLinuxMallocContext *p = memList[i];
char **strings = backtrace_symbols( p->pStackTraceBack, MAX_STACK_TRACEBACK );
Msg( "Context cursize=%d nallocs=%d maxsize=%d total_allocs=%d\n", p->m_nCurrentAllocSize, p->m_nNumAllocsInUse, p->m_nMaximumSize, p->m_TotalNumAllocs );
Msg(" stack\n" );
for( int n = 0 ; n < MAX_STACK_TRACEBACK; n++ )
if ( p->pStackTraceBack[n] )
Msg(" %p %s\n", p->pStackTraceBack[n], strings[n] );
free( strings );
}
Msg("End of memory list\n" );
InstallHooks();
}
void DumpChangedMemory( int nThresh )
{
AUTO_LOCK( s_MemoryMutex );
2022-02-23 19:56:29 +08:00
Plat_EndWatchdogTimer();
2020-04-22 12:56:21 -04:00
RemoveHooks();
std::vector<CLinuxMallocContext *> memList;
for( int i =0 ; i < MEMALLOC_HASHSIZE; i++ )
{
for( CLinuxMallocContext *p = s_ContextHash[i].m_pHead; p; p=p->m_pNext )
{
if ( p->m_nCurrentAllocSize - p->m_nLastAllocSize > nThresh )
{
memList.push_back( p );
}
}
}
std::sort( memList.begin(), memList.end(), SortLessFunc );
for( int i = 0; i < memList.size(); i++ )
{
CLinuxMallocContext *p = memList[i];
char **strings = backtrace_symbols( p->pStackTraceBack, MAX_STACK_TRACEBACK );
Msg( "Context cursize=%d lastsize=%d nallocs=%d maxsize=%d total_allocs=%d\n", p->m_nCurrentAllocSize, p->m_nLastAllocSize, p->m_nNumAllocsInUse, p->m_nMaximumSize, p->m_TotalNumAllocs );
Msg(" stack\n" );
for( int n = 0 ; n < MAX_STACK_TRACEBACK; n++ )
if ( p->pStackTraceBack[n] )
Msg(" %p %s\n", p->pStackTraceBack[n], strings[n] );
free( strings );
}
Msg("End of memory list\n" );
InstallHooks();
}
void SetMemoryMark( void )
{
AUTO_LOCK( s_MemoryMutex );
for( int i =0 ; i < MEMALLOC_HASHSIZE; i++ )
{
for( CLinuxMallocContext *p = s_ContextHash[i].m_pHead; p; p=p->m_pNext )
{
p->m_nLastAllocSize = p->m_nCurrentAllocSize;
}
}
}
void DumpMemorySummary( void )
{
Msg( "Total memory in use = %d, NumMallocs=%d, Num Frees=%d approx process usage=%ul\n", g_LinuxMemStats.nTotalMallocInUse, g_LinuxMemStats.nNumMallocs, g_LinuxMemStats.nNumFrees,
(unsigned int)ApproximateProcessMemoryUsage() );
}
#endif // !NO_HOOK_MALLOC
// Turn off memdbg macros (turned on up top) since this is included like a header
#include "tier0/memdbgoff.h"