source-engine/studiorender/studiorendercontext.cpp

2461 lines
82 KiB
C++
Raw Permalink Normal View History

2020-04-23 00:56:21 +08:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//===========================================================================//
#include <stdlib.h>
#include "tier0/platform.h"
#include "studiorendercontext.h"
#include "optimize.h"
#include "materialsystem/imaterialvar.h"
#include "materialsystem/imesh.h"
#include "materialsystem/imorph.h"
#include "materialsystem/ivballoctracker.h"
#include "vstdlib/random.h"
#include "tier0/tslist.h"
#include "tier0/platform.h"
#include "tier1/refcount.h"
#include "tier1/callqueue.h"
#include "cmodel.h"
#include "tier0/vprof.h"
2022-11-16 18:28:39 +08:00
#include "tier1/memhelpers.h"
2020-04-23 00:56:21 +08:00
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// garymcthack - this should go elsewhere
#define MAX_NUM_BONE_INDICES 4
//-----------------------------------------------------------------------------
// Toggles studio queued mode
//-----------------------------------------------------------------------------
void StudioChangeCallback( IConVar *var, const char *pOldValue, float flOldValue )
{
// NOTE: This is necessary to flush the queued thread when this value changes
MaterialLock_t hLock = g_pMaterialSystem->Lock();
g_pMaterialSystem->Unlock( hLock );
}
static ConVar studio_queue_mode( "studio_queue_mode", "1", 0, "", StudioChangeCallback );
//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------
static float s_pZeroFlexWeights[MAXSTUDIOFLEXDESC];
//-----------------------------------------------------------------------------
// Singleton instance
//-----------------------------------------------------------------------------
IStudioDataCache *g_pStudioDataCache = NULL;
static CStudioRenderContext s_StudioRenderContext;
EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CStudioRenderContext, IStudioRender,
STUDIO_RENDER_INTERFACE_VERSION, s_StudioRenderContext );
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CStudioRenderContext::CStudioRenderContext()
{
// Initialize render context
m_RC.m_pForcedMaterial = NULL;
m_RC.m_nForcedMaterialType = OVERRIDE_NORMAL;
m_RC.m_ColorMod[0] = m_RC.m_ColorMod[1] = m_RC.m_ColorMod[2] = 1.0f;
m_RC.m_AlphaMod = 1.0f;
m_RC.m_ViewOrigin.Init();
m_RC.m_ViewRight.Init();
m_RC.m_ViewUp.Init();
m_RC.m_ViewPlaneNormal.Init();
m_RC.m_Config.m_bEnableHWMorph = true;
m_RC.m_Config.m_bStatsMode = false;
m_RC.m_NumLocalLights = 0;
for ( int i = 0; i < 6; ++i )
{
m_RC.m_LightBoxColors[i].Init( 0, 0, 0 );
}
}
CStudioRenderContext::~CStudioRenderContext()
{
}
//-----------------------------------------------------------------------------
// Connect, disconnect
//-----------------------------------------------------------------------------
bool CStudioRenderContext::Connect( CreateInterfaceFn factory )
{
if ( !BaseClass::Connect( factory ) )
return false;
g_pStudioDataCache = ( IStudioDataCache * )factory( STUDIO_DATA_CACHE_INTERFACE_VERSION, NULL );
if ( !g_pMaterialSystem || !g_pMaterialSystemHardwareConfig || !g_pStudioDataCache )
{
Msg("StudioRender failed to connect to a required system\n" );
}
return ( g_pMaterialSystem && g_pMaterialSystemHardwareConfig && g_pStudioDataCache );
}
void CStudioRenderContext::Disconnect()
{
g_pStudioDataCache = NULL;
BaseClass::Disconnect();
}
//-----------------------------------------------------------------------------
// Here's where systems can access other interfaces implemented by this object
// Returns NULL if it doesn't implement the requested interface
//-----------------------------------------------------------------------------
void *CStudioRenderContext::QueryInterface( const char *pInterfaceName )
{
// Loading the studiorender DLL mounts *all* interfaces
CreateInterfaceFn factory = Sys_GetFactoryThis(); // This silly construction is necessary
return factory( pInterfaceName, NULL ); // to prevent the LTCG compiler from crashing.
}
//-----------------------------------------------------------------------------
// Init, shutdown
//-----------------------------------------------------------------------------
InitReturnVal_t CStudioRenderContext::Init()
{
MathLib_Init( 2.2f, 2.2f, 0.0f, 2.0f );
InitReturnVal_t nRetVal = BaseClass::Init();
if ( nRetVal != INIT_OK )
return nRetVal;
if( !g_pMaterialSystem || !g_pMaterialSystemHardwareConfig )
return INIT_FAILED;
return g_pStudioRenderImp->Init();
}
void CStudioRenderContext::Shutdown( void )
{
g_pStudioRenderImp->Shutdown();
BaseClass::Shutdown();
}
//-----------------------------------------------------------------------------
// Used to activate the stub material system.
//-----------------------------------------------------------------------------
void CStudioRenderContext::Mat_Stub( IMaterialSystem *pMatSys )
{
g_pMaterialSystem = pMatSys;
}
//-----------------------------------------------------------------------------
// Determines material flags
//-----------------------------------------------------------------------------
void CStudioRenderContext::ComputeMaterialFlags( studiohdr_t *phdr, studioloddata_t &lodData, IMaterial *pMaterial )
{
// requesting info forces the initial material precache (and its build out)
if ( pMaterial->UsesEnvCubemap() )
{
phdr->flags |= STUDIOHDR_FLAGS_USES_ENV_CUBEMAP;
}
if ( pMaterial->NeedsPowerOfTwoFrameBufferTexture( false ) ) // The false checks if it will ever need the frame buffer, not just this frame
{
phdr->flags |= STUDIOHDR_FLAGS_USES_FB_TEXTURE;
}
// FIXME: I'd rather know that the material is definitely using the bumpmap.
// It could be in the file without actually being used.
static unsigned int bumpvarCache = 0;
IMaterialVar *pBumpMatVar = pMaterial->FindVarFast( "$bumpmap", &bumpvarCache );
if ( pBumpMatVar && pBumpMatVar->IsDefined() && pMaterial->NeedsTangentSpace() )
{
phdr->flags |= STUDIOHDR_FLAGS_USES_BUMPMAPPING;
}
// Make sure material is treated as bump mapped if phong is set
static unsigned int phongVarCache = 0;
IMaterialVar *pPhongMatVar = pMaterial->FindVarFast( "$phong", &phongVarCache );
if ( pPhongMatVar && pPhongMatVar->IsDefined() && ( pPhongMatVar->GetIntValue() != 0 ) )
{
phdr->flags |= STUDIOHDR_FLAGS_USES_BUMPMAPPING;
}
}
//-----------------------------------------------------------------------------
// Does this material use a mouth shader?
//-----------------------------------------------------------------------------
static bool UsesMouthShader( IMaterial *pMaterial )
{
// FIXME: hack, needs proper client side material system interface
static unsigned int clientShaderCache = 0;
IMaterialVar *clientShaderVar = pMaterial->FindVarFast( "$clientShader", &clientShaderCache );
if ( clientShaderVar )
return ( Q_stricmp( clientShaderVar->GetStringValue(), "MouthShader" ) == 0 );
return false;
}
//-----------------------------------------------------------------------------
// Returns the actual texture name to use on the model
//-----------------------------------------------------------------------------
static const char *GetTextureName( studiohdr_t *phdr, OptimizedModel::FileHeader_t *pVtxHeader,
int lodID, int inMaterialID )
{
OptimizedModel::MaterialReplacementListHeader_t *materialReplacementList =
pVtxHeader->pMaterialReplacementList( lodID );
int i;
for( i = 0; i < materialReplacementList->numReplacements; i++ )
{
OptimizedModel::MaterialReplacementHeader_t *materialReplacement =
materialReplacementList->pMaterialReplacement( i );
if( materialReplacement->materialID == inMaterialID )
{
const char *str = materialReplacement->pMaterialReplacementName();
return str;
}
}
return phdr->pTexture( inMaterialID )->pszName();
}
//-----------------------------------------------------------------------------
// Loads materials associated with a particular LOD of a model
//-----------------------------------------------------------------------------
void CStudioRenderContext::LoadMaterials( studiohdr_t *phdr,
OptimizedModel::FileHeader_t *pVtxHeader, studioloddata_t &lodData, int lodID )
{
typedef IMaterial *IMaterialPtr;
Assert( phdr );
lodData.numMaterials = phdr->numtextures;
if ( lodData.numMaterials == 0 )
{
lodData.ppMaterials = NULL;
return;
}
lodData.ppMaterials = new IMaterialPtr[lodData.numMaterials];
Assert( lodData.ppMaterials );
lodData.pMaterialFlags = new int[lodData.numMaterials];
Assert( lodData.pMaterialFlags );
int i, j;
// get index of each material
// set the runtime studiohdr flags that are material derived
if ( phdr->textureindex == 0 )
return;
for ( i = 0; i < phdr->numtextures; i++ )
{
char szPath[MAX_PATH];
IMaterial *pMaterial = NULL;
// search through all specified directories until a valid material is found
for ( j = 0; j < phdr->numcdtextures && IsErrorMaterial( pMaterial ); j++ )
{
// If we don't do this, we get filenames like "materials\\blah.vmt".
const char *textureName = GetTextureName( phdr, pVtxHeader, lodID, i );
if ( textureName[0] == CORRECT_PATH_SEPARATOR || textureName[0] == INCORRECT_PATH_SEPARATOR )
++textureName;
// This prevents filenames like /models/blah.vmt.
const char *pCdTexture = phdr->pCdtexture( j );
if ( pCdTexture[0] == CORRECT_PATH_SEPARATOR || pCdTexture[0] == INCORRECT_PATH_SEPARATOR )
++pCdTexture;
V_ComposeFileName( pCdTexture, textureName, szPath, sizeof( szPath ) );
if ( phdr->flags & STUDIOHDR_FLAGS_OBSOLETE )
{
pMaterial = g_pMaterialSystem->FindMaterial( "models/obsolete/obsolete", TEXTURE_GROUP_MODEL, false );
if ( IsErrorMaterial( pMaterial ) )
{
Warning( "StudioRender: OBSOLETE material missing: \"models/obsolete/obsolete\"\n" );
}
}
else
{
pMaterial = g_pMaterialSystem->FindMaterial( szPath, TEXTURE_GROUP_MODEL, false );
}
}
if ( IsErrorMaterial( pMaterial ) )
{
// hack - if it isn't found, go through the motions of looking for it again
// so that the materialsystem will give an error.
char szPrefix[256];
Q_strncpy( szPrefix, phdr->pszName(), sizeof( szPrefix ) );
Q_strncat( szPrefix, " : ", sizeof( szPrefix ), COPY_ALL_CHARACTERS );
for ( j = 0; j < phdr->numcdtextures; j++ )
{
Q_strncpy( szPath, phdr->pCdtexture( j ), sizeof( szPath ) );
const char *textureName = GetTextureName( phdr, pVtxHeader, lodID, i );
Q_strncat( szPath, textureName, sizeof( szPath ), COPY_ALL_CHARACTERS );
Q_FixSlashes( szPath, CORRECT_PATH_SEPARATOR );
g_pMaterialSystem->FindMaterial( szPath, TEXTURE_GROUP_MODEL, true, szPrefix );
}
}
lodData.ppMaterials[i] = pMaterial;
if ( pMaterial )
{
// Increment the reference count for the material.
pMaterial->IncrementReferenceCount();
ComputeMaterialFlags( phdr, lodData, pMaterial );
lodData.pMaterialFlags[i] = UsesMouthShader( pMaterial ) ? 1 : 0;
}
}
}
//-----------------------------------------------------------------------------
// Suppresses all hw morphs on a model
//-----------------------------------------------------------------------------
static void SuppressAllHWMorphs( mstudiomodel_t *pModel, OptimizedModel::ModelLODHeader_t *pVtxLOD )
{
for ( int k = 0; k < pModel->nummeshes; ++k )
{
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k);
for (int i = 0; i < pVtxMesh->numStripGroups; ++i )
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i);
if ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED ) )
{
pStripGroup->flags |= OptimizedModel::STRIPGROUP_SUPPRESS_HW_MORPH;
}
}
}
}
//-----------------------------------------------------------------------------
// Computes the total flexes on a model
//-----------------------------------------------------------------------------
static int ComputeTotalFlexCount( mstudiomodel_t *pModel )
{
int nFlexCount = 0;
for ( int k = 0; k < pModel->nummeshes; ++k )
{
mstudiomesh_t* pMesh = pModel->pMesh(k);
nFlexCount += pMesh->numflexes;
}
return nFlexCount;
}
//-----------------------------------------------------------------------------
// Count deltas affecting a particular stripgroup
//-----------------------------------------------------------------------------
int CStudioRenderContext::CountDeltaFlexedStripGroups( mstudiomodel_t *pModel, OptimizedModel::ModelLODHeader_t *pVtxLOD )
{
int nFlexedStripGroupCount = 0;
for ( int k = 0; k < pModel->nummeshes; ++k )
{
Assert( pModel->nummeshes == pVtxLOD->numMeshes );
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k);
for (int i = 0; i < pVtxMesh->numStripGroups; ++i )
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i);
if ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED ) == 0 )
continue;
++nFlexedStripGroupCount;
}
}
return nFlexedStripGroupCount;
}
//-----------------------------------------------------------------------------
// Count vertices affected by deltas in a particular strip group
//-----------------------------------------------------------------------------
int CStudioRenderContext::CountFlexedVertices( mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t* pStripGroup )
{
if ( !pMesh->numflexes )
return 0;
// an inverse mapping from mesh index to strip group index
unsigned short *pMeshIndexToGroupIndex = (unsigned short*)_alloca( pMesh->pModel()->numvertices * sizeof(unsigned short) );
memset( pMeshIndexToGroupIndex, 0xFF, pMesh->pModel()->numvertices * sizeof(unsigned short) );
for ( int i = 0; i < pStripGroup->numVerts; ++i )
{
int nMeshVert = pStripGroup->pVertex(i)->origMeshVertID;
pMeshIndexToGroupIndex[ nMeshVert ] = (unsigned short)i;
}
int nFlexVertCount = 0;
for ( int i = 0; i < pMesh->numflexes; ++i )
{
mstudioflex_t *pFlex = pMesh->pFlex( i );
byte *pVAnim = pFlex->pBaseVertanim();
int nVAnimSizeBytes = pFlex->VertAnimSizeBytes();
for ( int j = 0; j < pFlex->numverts; ++j )
{
mstudiovertanim_t *pAnim = (mstudiovertanim_t*)( pVAnim + j * nVAnimSizeBytes );
int nMeshVert = pAnim->index;
unsigned short nGroupVert = pMeshIndexToGroupIndex[nMeshVert];
// In this case, this vertex is not part of this meshgroup. Ignore it.
if ( nGroupVert != 0xFFFF )
{
// Only count it once
pMeshIndexToGroupIndex[nMeshVert] = 0xFFFF;
++nFlexVertCount;
}
}
}
return nFlexVertCount;
}
//-----------------------------------------------------------------------------
// Determine if any strip groups shouldn't be morphed
//-----------------------------------------------------------------------------
static int* s_pVertexCount;
static int SortVertCount( const void *arg1, const void *arg2 )
{
/* Compare all of both strings: */
return s_pVertexCount[*( const int* )arg2] - s_pVertexCount[*( const int* )arg1];
}
#define MIN_HWMORPH_FLEX_COUNT 200
void CStudioRenderContext::DetermineHWMorphing( mstudiomodel_t *pModel, OptimizedModel::ModelLODHeader_t *pVtxLOD )
{
if ( !g_pMaterialSystemHardwareConfig->HasFastVertexTextures() )
return;
// There is fixed cost to using HW morphing in the form of setting rendertargets.
// Therefore if there is a low chance of there being enough work, then do it in software.
int nTotalFlexCount = ComputeTotalFlexCount( pModel );
if ( nTotalFlexCount == 0 )
return;
if ( nTotalFlexCount < MIN_HWMORPH_FLEX_COUNT )
{
SuppressAllHWMorphs( pModel, pVtxLOD );
return;
}
// If we have less meshes than the most morphs we can do in a batch, we're done.
int nMaxHWMorphBatchCount = g_pMaterialSystemHardwareConfig->MaxHWMorphBatchCount();
bool bHWMorph = ( pModel->nummeshes <= nMaxHWMorphBatchCount );
if ( bHWMorph )
return;
// If we have less flexed strip groups than the most we can do in a batch, we're done.
int nFlexedStripGroup = CountDeltaFlexedStripGroups( pModel, pVtxLOD );
if ( nFlexedStripGroup <= nMaxHWMorphBatchCount )
return;
// Finally, the expensive method. Do HW morphing on the N most expensive strip groups
// FIXME: We should do this at studiomdl time?
// Certainly counting the # of flexed vertices can be done at studiomdl time.
int *pVertexCount = (int*)_alloca( nFlexedStripGroup * sizeof(int) );
int nCount = 0;
for ( int k = 0; k < pModel->nummeshes; ++k )
{
Assert( pModel->nummeshes == pVtxLOD->numMeshes );
mstudiomesh_t* pMesh = pModel->pMesh(k);
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k);
for (int i = 0; i < pVtxMesh->numStripGroups; ++i )
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i);
if ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED ) == 0 )
continue;
pVertexCount[nCount++] = CountFlexedVertices( pMesh, pStripGroup );
}
}
int *pSortedVertexIndices = (int*)_alloca( nFlexedStripGroup * sizeof(int) );
for ( int i = 0; i < nFlexedStripGroup; ++i )
{
pSortedVertexIndices[i] = i;
}
s_pVertexCount = pVertexCount;
qsort( pSortedVertexIndices, nCount, sizeof(int), SortVertCount );
bool *pSuppressHWMorph = (bool*)_alloca( nFlexedStripGroup * sizeof(bool) );
memset( pSuppressHWMorph, 1, nFlexedStripGroup * sizeof(bool) );
for ( int i = 0; i < nMaxHWMorphBatchCount; ++i )
{
pSuppressHWMorph[pSortedVertexIndices[i]] = false;
}
// Bleah. Pretty lame. We should change StripGroupHeader_t to store the flex vertex count
int nIndex = 0;
for ( int k = 0; k < pModel->nummeshes; ++k )
{
Assert( pModel->nummeshes == pVtxLOD->numMeshes );
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k);
for (int i = 0; i < pVtxMesh->numStripGroups; ++i )
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i);
if ( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED ) == 0 )
continue;
if ( pSuppressHWMorph[nIndex] )
{
pStripGroup->flags |= OptimizedModel::STRIPGROUP_SUPPRESS_HW_MORPH;
}
++nIndex;
}
}
}
//-----------------------------------------------------------------------------
// Adds a vertex to the meshbuilder. Returns false if boneweights did not sum to 1.0
//-----------------------------------------------------------------------------
template <VertexCompressionType_t T> bool CStudioRenderContext::R_AddVertexToMesh( const char *pModelName, bool bNeedsTangentSpace, CMeshBuilder& meshBuilder,
OptimizedModel::Vertex_t* pVertex, mstudiomesh_t* pMesh, const mstudio_meshvertexdata_t *vertData, bool hwSkin )
{
bool bOK = true;
int idx = pVertex->origMeshVertID;
mstudiovertex_t &vert = *vertData->Vertex( idx );
// FIXME: if this ever becomes perf-critical... these writes are not in memory-ascending order,
// which hurts since VBs are in write-combined memory (See WriteCombineOrdering_t)
meshBuilder.Position3fv( vert.m_vecPosition.Base() );
meshBuilder.CompressedNormal3fv<T>( vert.m_vecNormal.Base() );
/*
if( vert.m_vecNormal.Length() < .9f || vert.m_vecNormal.Length() > 1.1f )
{
static CUtlStringMap<bool> errorMessages;
if( !errorMessages.Defined( pModelName ) )
{
errorMessages[pModelName] = true;
Warning( "MODELBUG %s: bad normal\n", pModelName );
Warning( "\tnormal %0.1f %0.1f %0.1f pos: %0.1f %0.1f %0.1f\n",
vert.m_vecNormal.x, vert.m_vecNormal.y, vert.m_vecNormal.z,
vert.m_vecPosition.x, vert.m_vecPosition.y, vert.m_vecPosition.z );
}
}
*/
meshBuilder.TexCoord2fv( 0, vert.m_vecTexCoord.Base() );
if (vertData->HasTangentData())
{
/*
if( bNeedsTangentSpace && pModelName && vertData->TangentS( idx ) )
{
const Vector4D &tangentS = *vertData->TangentS( idx );
float w = tangentS.w;
if( !( w == 1.0f || w == -1.0f ) )
{
static CUtlStringMap<bool> errorMessages;
if( !errorMessages.Defined( pModelName ) )
{
errorMessages[pModelName] = true;
Warning( "MODELBUG %s: bad tangent sign\n", pModelName );
Warning( "\tsign %0.1f at position %0.1f %0.1f %0.1f\n",
w, vert.m_vecPosition.x, vert.m_vecPosition.y, vert.m_vecPosition.z );
}
}
float len = tangentS.AsVector3D().Length();
if( len < .9f || len > 1.1f )
{
static CUtlStringMap<bool> errorMessages;
if( !errorMessages.Defined( pModelName ) )
{
errorMessages[pModelName] = true;
Warning( "MODELBUG %s: bad tangent vector\n", pModelName );
Warning( "\ttangent: %0.1f %0.1f %0.1f with length %0.1f at position %0.1f %0.1f %0.1f\n",
tangentS.x, tangentS.y, tangentS.z,
len,
vert.m_vecPosition.x, vert.m_vecPosition.y, vert.m_vecPosition.z );
}
}
#if 0
float dot = DotProduct( vert.m_vecNormal, tangentS.AsVector3D() );
if( dot > .95 || dot < -.95 )
{
static CUtlStringMap<bool> errorMessages;
if( !errorMessages.Defined( pModelName ) )
{
errorMessages[pModelName] = true;
// this is crashing for some reason. .need to investigate.
Warning( "MODELBUG %s: nearly colinear tangentS (%f %f %f) and normal (%f %f %f) at position %f %f %f Probably have 2 or more texcoords that are the same on a triangle.\n",
pModelName, tangentS.x, tangentS.y, tangentS.y, vert.m_vecNormal.x, vert.m_vecNormal.y, vert.m_vecNormal.z, vert.m_vecPosition.x, vert.m_vecPosition.y, vert.m_vecPosition.z );
}
}
#endif
}
*/
// send down tangent S as a 4D userdata vect.
meshBuilder.CompressedUserData<T>( (*vertData->TangentS( idx )).Base() );
}
// Just in case we get hooked to a material that wants per-vertex color
meshBuilder.Color4ub( 255, 255, 255, 255 );
float boneWeights[ MAX_NUM_BONE_INDICES ];
if ( hwSkin )
{
// sum up weights..
int i;
// We have to do this because since we're potentially dropping bones
// to get them to fit in hardware, we'll need to renormalize based on
// the actual total.
mstudioboneweight_t *pBoneWeight = vertData->BoneWeights(idx);
// NOTE: We use pVertex->numbones because that's the number of bones actually influencing this
// vertex. Note that pVertex->numBones is not necessary the *desired* # of bones influencing this
// vertex; we could have collapsed some of those bones out. pBoneWeight->numbones stures the desired #
float totalWeight = 0;
for (i = 0; i < pVertex->numBones; ++i)
{
totalWeight += pBoneWeight->weight[pVertex->boneWeightIndex[i]];
}
// The only way we should not add up to 1 is if there's more than 3 *desired* bones
// and more than 1 *actual* bone (we can have 0 vertex bones in the case of static props
if ( (pVertex->numBones > 0) && (pBoneWeight->numbones <= 3) && fabs(totalWeight - 1.0f) > 1e-3 )
{
// force them to re-normalize
bOK = false;
totalWeight = 1.0f;
}
// Fix up the static prop case
if ( totalWeight == 0.0f )
{
totalWeight = 1.0f;
}
float invTotalWeight = 1.0f / totalWeight;
// It is essential to iterate over all actual bones so that the bone indices
// are set correctly, even though the last bone weight is computed in a shader program
for (i = 0; i < pVertex->numBones; ++i)
{
if ( pVertex->boneID[i] == -1 )
{
boneWeights[ i ] = 0.0f;
meshBuilder.BoneMatrix( i, BONE_MATRIX_INDEX_INVALID );
}
else
{
float weight = pBoneWeight->weight[pVertex->boneWeightIndex[i]];
boneWeights[ i ] = weight * invTotalWeight;
meshBuilder.BoneMatrix( i, pVertex->boneID[i] );
}
}
for( ; i < MAX_NUM_BONE_INDICES; i++ )
{
boneWeights[ i ] = 0.0f;
meshBuilder.BoneMatrix( i, BONE_MATRIX_INDEX_INVALID );
}
}
else
{
for (int i = 0; i < MAX_NUM_BONE_INDICES; ++i)
{
boneWeights[ i ] = (i == 0) ? 1.0f : 0.0f;
meshBuilder.BoneMatrix( i, BONE_MATRIX_INDEX_INVALID );
}
}
// Set all the weights at once (the meshbuilder performs additional, post-compression, normalization):
Assert( pVertex->numBones <= 3 );
if ( pVertex->numBones > 0 )
{
meshBuilder.CompressedBoneWeight3fv<T>( &( boneWeights[ 0 ] ) );
}
meshBuilder.AdvanceVertex();
return bOK;
}
// Get (uncompressed) vertex data from a mesh, if available
inline const mstudio_meshvertexdata_t * GetFatVertexData( mstudiomesh_t * pMesh, studiohdr_t * pStudioHdr )
{
if ( !pMesh->pModel()->CacheVertexData( pStudioHdr ) )
{
// not available yet
return NULL;
}
const mstudio_meshvertexdata_t *pVertData = pMesh->GetVertexData( pStudioHdr );
Assert( pVertData );
if ( !pVertData )
{
static unsigned int warnCount = 0;
if ( warnCount++ < 20 )
Warning( "ERROR: model verts have been compressed, cannot render! (use \"-no_compressed_vvds\")" );
}
return pVertData;
}
//-----------------------------------------------------------------------------
// Builds the group
//-----------------------------------------------------------------------------
void CStudioRenderContext::R_StudioBuildMeshGroup( const char *pModelName, bool bNeedsTangentSpace, studiomeshgroup_t* pMeshGroup,
OptimizedModel::StripGroupHeader_t *pStripGroup, mstudiomesh_t* pMesh,
studiohdr_t *pStudioHdr, VertexFormat_t vertexFormat )
{
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
// We have to do this here because of skinning; there may be any number of
// materials that are applied to this mesh.
// Copy over all the vertices + indices in this strip group
pMeshGroup->m_pMesh = pRenderContext->CreateStaticMesh( vertexFormat, TEXTURE_GROUP_STATIC_VERTEX_BUFFER_MODELS );
VertexCompressionType_t compressionType = CompressionType( vertexFormat );
pMeshGroup->m_ColorMeshID = -1;
bool hwSkin = (pMeshGroup->m_Flags & MESHGROUP_IS_HWSKINNED) != 0;
// This mesh could have tristrips or trilists in it
CMeshBuilder meshBuilder;
meshBuilder.SetCompressionType( compressionType );
meshBuilder.Begin( pMeshGroup->m_pMesh, MATERIAL_HETEROGENOUS,
hwSkin ? pStripGroup->numVerts : 0, pStripGroup->numIndices );
int i;
bool bBadBoneWeights = false;
if ( hwSkin )
{
const mstudio_meshvertexdata_t *vertData = GetFatVertexData( pMesh, pStudioHdr );
Assert( vertData );
for ( i = 0; i < pStripGroup->numVerts; ++i )
{
bool success;
switch ( compressionType )
{
case VERTEX_COMPRESSION_ON:
success = R_AddVertexToMesh<VERTEX_COMPRESSION_ON>( pModelName, bNeedsTangentSpace, meshBuilder, pStripGroup->pVertex(i), pMesh, vertData, hwSkin );
break;
case VERTEX_COMPRESSION_NONE:
default:
success = R_AddVertexToMesh<VERTEX_COMPRESSION_NONE>( pModelName, bNeedsTangentSpace, meshBuilder, pStripGroup->pVertex(i), pMesh, vertData, hwSkin );
break;
}
if ( !success )
{
bBadBoneWeights = true;
}
}
}
if ( bBadBoneWeights )
{
mstudiomodel_t* pModel = pMesh->pModel();
ConMsg( "Bad data found in model \"%s\" (bad bone weights)\n", pModel->pszName() );
}
for (i = 0; i < pStripGroup->numIndices; ++i)
{
2022-05-16 02:09:59 +08:00
unsigned short index;
memcpy( &index, pStripGroup->pIndex(i), sizeof(index) );
meshBuilder.Index( index );
2020-04-23 00:56:21 +08:00
meshBuilder.AdvanceIndex();
}
meshBuilder.End();
// Copy over the strip indices. We need access to the indices for decals
pMeshGroup->m_pIndices = new unsigned short[ pStripGroup->numIndices ];
memcpy( pMeshGroup->m_pIndices, pStripGroup->pIndex(0),
pStripGroup->numIndices * sizeof(unsigned short) );
// Compute the number of non-degenerate trianges in each strip group
// for statistics gathering
pMeshGroup->m_pUniqueTris = new int[ pStripGroup->numStrips ];
for (i = 0; i < pStripGroup->numStrips; ++i )
{
int numUnique = 0;
if (pStripGroup->pStrip(i)->flags & OptimizedModel::STRIP_IS_TRISTRIP)
{
int last[2] = {-1, -1};
int curr = pStripGroup->pStrip(i)->indexOffset;
int end = curr + pStripGroup->pStrip(i)->numIndices;
while (curr != end)
{
int idx = *pStripGroup->pIndex(curr);
if (idx != last[0] && idx != last[1] && last[0] != last[1] && last[0] != -1)
++numUnique;
last[0] = last[1];
last[1] = idx;
++curr;
}
}
else
{
numUnique = pStripGroup->pStrip(i)->numIndices / 3;
}
pMeshGroup->m_pUniqueTris[i] = numUnique;
}
}
//-----------------------------------------------------------------------------
// Builds the group
//-----------------------------------------------------------------------------
void CStudioRenderContext::R_StudioBuildMorph( studiohdr_t *pStudioHdr,
studiomeshgroup_t* pMeshGroup, mstudiomesh_t* pMesh,
OptimizedModel::StripGroupHeader_t *pStripGroup )
{
if ( !g_pMaterialSystemHardwareConfig->HasFastVertexTextures() ||
( ( pMeshGroup->m_Flags & MESHGROUP_IS_DELTA_FLEXED ) == 0 ) ||
( ( pStripGroup->flags & OptimizedModel::STRIPGROUP_SUPPRESS_HW_MORPH ) != 0 ) )
{
pMeshGroup->m_pMorph = NULL;
return;
}
// Build an inverse mapping from mesh index to strip group index
unsigned short *pMeshIndexToGroupIndex = (unsigned short*)_alloca( pMesh->pModel()->numvertices * sizeof(unsigned short) );
memset( pMeshIndexToGroupIndex, 0xFF, pMesh->pModel()->numvertices * sizeof(unsigned short) );
for ( int i = 0; i < pStripGroup->numVerts; ++i )
{
int nMeshVert = pStripGroup->pVertex(i)->origMeshVertID;
pMeshIndexToGroupIndex[ nMeshVert ] = (unsigned short)i;
}
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
MorphFormat_t morphType = MORPH_POSITION | MORPH_NORMAL | MORPH_SPEED | MORPH_SIDE;
for ( int i = 0; i < pMesh->numflexes; ++i )
{
if ( pMesh->pFlex( i )->vertanimtype == STUDIO_VERT_ANIM_WRINKLE )
{
morphType |= MORPH_WRINKLE;
break;
}
}
char pTemp[256];
Q_snprintf( pTemp, sizeof(pTemp), "%s [%p]", pStudioHdr->pszName(), pMeshGroup );
pMeshGroup->m_pMorph = pRenderContext->CreateMorph( morphType, pTemp );
const float flVertAnimFixedPointScale = pStudioHdr->VertAnimFixedPointScale();
CMorphBuilder morphBuilder;
morphBuilder.Begin( pMeshGroup->m_pMorph, 1.0f / flVertAnimFixedPointScale );
for ( int i = 0; i < pMesh->numflexes; ++i )
{
mstudioflex_t *pFlex = pMesh->pFlex( i );
byte *pVAnim = pFlex->pBaseVertanim();
int nVAnimSizeBytes = pFlex->VertAnimSizeBytes();
for ( int j = 0; j < pFlex->numverts; ++j )
{
mstudiovertanim_t *pAnim = (mstudiovertanim_t*)( pVAnim + j * nVAnimSizeBytes );
int nMeshVert = pAnim->index;
unsigned short nGroupVert = pMeshIndexToGroupIndex[nMeshVert];
// In this case, this vertex is not part of this meshgroup. Ignore it.
if ( nGroupVert == 0xFFFF )
continue;
morphBuilder.PositionDelta3( pAnim->GetDeltaFixed( flVertAnimFixedPointScale ) );
morphBuilder.NormalDelta3( pAnim->GetNDeltaFixed( flVertAnimFixedPointScale ) );
morphBuilder.Speed1f( pAnim->speed / 255.0f );
morphBuilder.Side1f( pAnim->side / 255.0f );
if ( pFlex->vertanimtype == STUDIO_VERT_ANIM_WRINKLE )
{
mstudiovertanim_wrinkle_t *pWrinkleAnim = static_cast<mstudiovertanim_wrinkle_t*>( pAnim );
morphBuilder.WrinkleDelta1f( pWrinkleAnim->GetWrinkleDeltaFixed( flVertAnimFixedPointScale ) );
}
else
{
morphBuilder.WrinkleDelta1f( 0.0f );
}
morphBuilder.AdvanceMorph( nGroupVert, i );
}
}
morphBuilder.End();
}
//-----------------------------------------------------------------------------
// Builds the strip data
//-----------------------------------------------------------------------------
void CStudioRenderContext::R_StudioBuildMeshStrips( studiomeshgroup_t* pMeshGroup,
OptimizedModel::StripGroupHeader_t *pStripGroup )
{
// FIXME: This is bogus
// Compute the amount of memory we need to store the strip data
int i;
int stripDataSize = 0;
2022-11-29 23:49:29 +08:00
size_t stripHdrSize = (pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_MDL49)
? sizeof(OptimizedModel::StripHeader_v49_t) : sizeof(OptimizedModel::StripHeader_t);
2020-04-23 00:56:21 +08:00
for( i = 0; i < pStripGroup->numStrips; ++i )
{
2022-11-29 23:49:29 +08:00
stripDataSize += stripHdrSize;
2020-04-23 00:56:21 +08:00
stripDataSize += pStripGroup->pStrip(i)->numBoneStateChanges *
sizeof(OptimizedModel::BoneStateChangeHeader_t);
}
pMeshGroup->m_pStripData = (OptimizedModel::StripHeader_t*)malloc(stripDataSize);
// Copy over the strip info
2022-11-29 23:49:29 +08:00
int boneStateChangeOffset = pStripGroup->numStrips * stripHdrSize;
2020-04-23 00:56:21 +08:00
for( i = 0; i < pStripGroup->numStrips; ++i )
{
2022-11-29 23:49:29 +08:00
memcpy( &pMeshGroup->m_pStripData[i], pStripGroup->pStrip(i), stripHdrSize);
2020-04-23 00:56:21 +08:00
// Fixup the bone state change offset, since we have it right after the strip data
pMeshGroup->m_pStripData[i].boneStateChangeOffset = boneStateChangeOffset -
2022-11-29 23:49:29 +08:00
i * stripHdrSize;
2020-04-23 00:56:21 +08:00
// copy over bone state changes
int boneWeightSize = pMeshGroup->m_pStripData[i].numBoneStateChanges *
sizeof(OptimizedModel::BoneStateChangeHeader_t);
if (boneWeightSize != 0)
{
unsigned char* pBoneStateChange = (unsigned char*)pMeshGroup->m_pStripData + boneStateChangeOffset;
memcpy( pBoneStateChange, pStripGroup->pStrip(i)->pBoneStateChange(0), boneWeightSize);
boneStateChangeOffset += boneWeightSize;
}
}
pMeshGroup->m_NumStrips = pStripGroup->numStrips;
}
//-----------------------------------------------------------------------------
// Determine the max. number of bone weights used by a stripgroup
//-----------------------------------------------------------------------------
int CStudioRenderContext::GetNumBoneWeights( const OptimizedModel::StripGroupHeader_t *pGroup )
{
int nBoneWeightsMax = 0;
for (int i = 0;i < pGroup->numStrips; i++)
{
OptimizedModel::StripHeader_t * pStrip = pGroup->pStrip( i );
nBoneWeightsMax = max( nBoneWeightsMax, (int)pStrip->numBones );
}
return nBoneWeightsMax;
}
//-----------------------------------------------------------------------------
// Determine an actual model vertex format for a mesh based on its material usage.
// Bypasses the homegenous model vertex format in favor of the actual format.
// Ideally matches 1:1 the shader's data requirements without any bloat.
//-----------------------------------------------------------------------------
VertexFormat_t CStudioRenderContext::CalculateVertexFormat( const studiohdr_t *pStudioHdr, const studioloddata_t *pStudioLodData,
const mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t *pGroup, bool bIsHwSkinned )
{
bool bSkinnedMesh = ( pStudioHdr->numbones > 1 );
int nBoneWeights = GetNumBoneWeights( pGroup );
bool bIsDX7 = !g_pMaterialSystemHardwareConfig->SupportsVertexAndPixelShaders();
bool bIsDX8 = ( g_pMaterialSystemHardwareConfig->GetDXSupportLevel() < 90 );
if ( bIsDX7 )
{
// FIXME: this is untested (as of June '07, the engine currently doesn't work with "-dxlevel 70")
if ( bSkinnedMesh )
return MATERIAL_VERTEX_FORMAT_MODEL_SKINNED_DX7;
else
return MATERIAL_VERTEX_FORMAT_MODEL_DX7;
}
else if ( bIsDX8 )
{
if ( bSkinnedMesh )
return MATERIAL_VERTEX_FORMAT_MODEL_SKINNED;
else
return MATERIAL_VERTEX_FORMAT_MODEL;
}
else
{
// DX9+ path (supports vertex compression)
// iterate each skin table
// determine aggregate vertex format for specified mesh's material
VertexFormat_t newVertexFormat = 0;
//bool bBumpmapping = false;
short *pSkinref = pStudioHdr->pSkinref( 0 );
for ( int i = 0; i < pStudioHdr->numskinfamilies; i++ )
{
// FIXME: ### MATERIAL VERTEX FORMATS ARE UNRELIABLE! ###
//
// IMaterial* pMaterial = pStudioLodData->ppMaterials[ pSkinref[ pMesh->material ] ];
// Assert( pMaterial );
// VertexFormat_t vertexFormat = pMaterial->GetVertexFormat();
// newVertexFormat &= ~VERTEX_FORMAT_COMPRESSED; // Decide whether to compress below
//
// FIXME: ### MATERIAL VERTEX FORMATS ARE UNRELIABLE! ###
// we need to go through all the shader CPP code and make sure that the correct vertex format
// is being specified for every single shader combo! We don't have time to fix that before
// shipping Ep2, but should fix it ASAP afterwards. To make catching such errors easier, we
// should Assert in draw calls that the vertexdecl matches vertex shader inputs (note that D3D
// debug DLLs will do that on PC, though it's not as informative as if we do it ourselves).
// So, in the absence of reliable material vertex formats, use the old 'standard' elements
// (we can still omit skinning data - and COLOR for DX8+, where it should come from the
// second static lighting stream):
VertexFormat_t vertexFormat = bIsDX7 ? MATERIAL_VERTEX_FORMAT_MODEL_DX7 : ( MATERIAL_VERTEX_FORMAT_MODEL & ~VERTEX_COLOR );
// aggregate single bit settings
newVertexFormat |= vertexFormat & ( ( 1 << VERTEX_LAST_BIT ) - 1 );
int nUserDataSize = UserDataSize( vertexFormat );
if ( nUserDataSize > UserDataSize( newVertexFormat ) )
{
newVertexFormat &= ~USER_DATA_SIZE_MASK;
newVertexFormat |= VERTEX_USERDATA_SIZE( nUserDataSize );
}
for (int j = 0; j < VERTEX_MAX_TEXTURE_COORDINATES; ++j)
{
int nSize = TexCoordSize( j, vertexFormat );
if ( nSize > TexCoordSize( j, newVertexFormat ) )
{
newVertexFormat &= ~VERTEX_TEXCOORD_SIZE( j, 0x7 );
newVertexFormat |= VERTEX_TEXCOORD_SIZE( j, nSize );
}
}
// FIXME: re-enable this test, fix it to work and see how much memory we save (Q: why is this different to CStudioRenderContext::MeshNeedsTangentSpace ?)
/*if ( !bBumpmapping && pMaterial->NeedsTangentSpace() )
{
bool bFound = false;
IMaterialVar *pEnvmapMatVar = pMaterial->FindVar( "$envmap", &bFound, false );
if ( bFound && pEnvmapMatVar->IsDefined() )
{
IMaterialVar *pBumpMatVar = pMaterial->FindVar( "$bumpmap", &bFound, false );
if ( bFound && pBumpMatVar->IsDefined() )
{
bBumpmapping = true;
}
}
} */
pSkinref += pStudioHdr->numskinref;
}
// Add skinning elements for non-rigid models (with more than one bone weight)
if ( bSkinnedMesh )
{
if ( nBoneWeights > 0 )
{
// Always exactly zero or two weights
newVertexFormat |= VERTEX_BONEWEIGHT( 2 );
}
newVertexFormat |= VERTEX_BONE_INDEX;
}
// FIXME: re-enable this (see above)
/*if ( !bBumpmapping )
{
// no bumpmapping, user data not needed
newVertexFormat &= ~USER_DATA_SIZE_MASK;
}*/
// materials on models should never have tangent space as they use userdata
Assert( !(newVertexFormat & VERTEX_TANGENT_SPACE) );
// Don't compress the mesh unless it is HW-skinned (we only want to compress static
// VBs, not dynamic ones - that would slow down the MeshBuilder in dynamic use cases).
// Also inspect the vertex data to see if it's appropriate for the vertex element
// compression techniques that we do (e.g. look at UV ranges).
if ( //IsX360() && // Disabled until the craziness is banished
bIsHwSkinned &&
( g_pMaterialSystemHardwareConfig->SupportsCompressedVertices() == VERTEX_COMPRESSION_ON ) )
{
// this mesh is appropriate for vertex compression
newVertexFormat |= VERTEX_FORMAT_COMPRESSED;
}
return newVertexFormat;
}
}
bool CStudioRenderContext::MeshNeedsTangentSpace( studiohdr_t *pStudioHdr, studioloddata_t *pStudioLodData, mstudiomesh_t* pMesh )
{
// iterate each skin table
if( !pStudioHdr || !pStudioHdr->pSkinref( 0 ) || !pStudioHdr->numskinfamilies )
{
return false;
}
short *pSkinref = pStudioHdr->pSkinref( 0 );
for ( int i=0; i<pStudioHdr->numskinfamilies; i++)
{
IMaterial* pMaterial = pStudioLodData->ppMaterials[pSkinref[pMesh->material]];
Assert( pMaterial );
if( !pMaterial )
{
continue;
}
// Warning( "*****%s needstangentspace: %d\n", pMaterial->GetName(), pMaterial->NeedsTangentSpace() ? 1 : 0 );
if( pMaterial->NeedsTangentSpace() )
{
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Creates a single mesh
//-----------------------------------------------------------------------------
void CStudioRenderContext::R_StudioCreateSingleMesh( studiohdr_t *pStudioHdr, studioloddata_t *pStudioLodData,
mstudiomesh_t* pMesh, OptimizedModel::MeshHeader_t* pVtxMesh, int numBones,
studiomeshdata_t* pMeshData, int *pColorMeshID )
{
// Here are the cases where we don't use any meshes at all...
// In the case of eyes, we're just gonna use dynamic buffers
// because it's the fastest solution (prevents lots of locks)
bool bNeedsTangentSpace = MeshNeedsTangentSpace( pStudioHdr, pStudioLodData, pMesh );
// Each strip group represents a locking group, it's a set of vertices
// that are locked together, and, potentially, software light + skinned together
pMeshData->m_NumGroup = pVtxMesh->numStripGroups;
pMeshData->m_pMeshGroup = new studiomeshgroup_t[pVtxMesh->numStripGroups];
for (int i = 0; i < pVtxMesh->numStripGroups; ++i )
{
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(i);
studiomeshgroup_t* pMeshGroup = &pMeshData->m_pMeshGroup[i];
pMeshGroup->m_MeshNeedsRestore = false;
// Set the flags...
pMeshGroup->m_Flags = 0;
if (pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_FLEXED)
{
pMeshGroup->m_Flags |= MESHGROUP_IS_FLEXED;
}
if (pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_DELTA_FLEXED)
{
pMeshGroup->m_Flags |= MESHGROUP_IS_DELTA_FLEXED;
}
bool bIsHwSkinned = !!(pStripGroup->flags & OptimizedModel::STRIPGROUP_IS_HWSKINNED);
if ( bIsHwSkinned )
{
pMeshGroup->m_Flags |= MESHGROUP_IS_HWSKINNED;
}
// get the minimal vertex format for this mesh
VertexFormat_t vertexFormat = CalculateVertexFormat( pStudioHdr, pStudioLodData, pMesh, pStripGroup, bIsHwSkinned );
// Build the vertex + index buffers
R_StudioBuildMeshGroup( pStudioHdr->pszName(), bNeedsTangentSpace, pMeshGroup, pStripGroup, pMesh, pStudioHdr, vertexFormat );
// Copy over the tristrip and triangle list data
R_StudioBuildMeshStrips( pMeshGroup, pStripGroup );
// Builds morph targets
R_StudioBuildMorph( pStudioHdr, pMeshGroup, pMesh, pStripGroup );
// Build the mapping from strip group vertex idx to actual mesh idx
pMeshGroup->m_pGroupIndexToMeshIndex = new unsigned short[pStripGroup->numVerts + PREFETCH_VERT_COUNT];
pMeshGroup->m_NumVertices = pStripGroup->numVerts;
int j;
for ( j = 0; j < pStripGroup->numVerts; ++j )
{
pMeshGroup->m_pGroupIndexToMeshIndex[j] = pStripGroup->pVertex(j)->origMeshVertID;
}
// Extra copies are for precaching...
for ( j = pStripGroup->numVerts; j < pStripGroup->numVerts + PREFETCH_VERT_COUNT; ++j )
{
pMeshGroup->m_pGroupIndexToMeshIndex[j] = pMeshGroup->m_pGroupIndexToMeshIndex[pStripGroup->numVerts - 1];
}
// assign the possibly used color mesh id now
pMeshGroup->m_ColorMeshID = (*pColorMeshID)++;
}
}
//-----------------------------------------------------------------------------
// Creates static meshes
//-----------------------------------------------------------------------------
void CStudioRenderContext::R_StudioCreateStaticMeshes( studiohdr_t *pStudioHdr,
OptimizedModel::FileHeader_t *pVtxHdr, studiohwdata_t *pStudioHWData, int nLodID, int *pColorMeshID )
{
int i, j, k;
Assert( pStudioHdr && pVtxHdr && pStudioHWData );
pStudioHWData->m_pLODs[nLodID].m_pMeshData = new studiomeshdata_t[pStudioHWData->m_NumStudioMeshes];
// Iterate over every body part...
for ( i = 0; i < pStudioHdr->numbodyparts; i++ )
{
mstudiobodyparts_t* pBodyPart = pStudioHdr->pBodypart(i);
OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart(i);
// Iterate over every submodel...
for ( j = 0; j < pBodyPart->nummodels; ++j )
{
mstudiomodel_t* pModel = pBodyPart->pModel(j);
OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel(j);
OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLodID );
// Determine which meshes should be hw morphed
DetermineHWMorphing( pModel, pVtxLOD );
// Support tracking of VB allocations
// FIXME: categorise studiomodel allocs more precisely
if ( g_VBAllocTracker )
{
if ( ( pStudioHdr->numbones > 8 ) || ( pStudioHdr->numflexdesc > 0 ) )
{
g_VBAllocTracker->TrackMeshAllocations( "R_StudioCreateStaticMeshes (character)" );
}
else
{
if ( pStudioHdr->flags & STUDIOHDR_FLAGS_STATIC_PROP )
{
g_VBAllocTracker->TrackMeshAllocations( "R_StudioCreateStaticMeshes (prop_static)" );
}
else
{
g_VBAllocTracker->TrackMeshAllocations( "R_StudioCreateStaticMeshes (prop_dynamic)" );
}
}
}
// Iterate over all the meshes....
for ( k = 0; k < pModel->nummeshes; ++k )
{
Assert( pModel->nummeshes == pVtxLOD->numMeshes );
mstudiomesh_t* pMesh = pModel->pMesh(k);
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k);
Assert( pMesh->meshid < pStudioHWData->m_NumStudioMeshes );
R_StudioCreateSingleMesh( pStudioHdr, &pStudioHWData->m_pLODs[nLodID],
pMesh, pVtxMesh, pVtxHdr->maxBonesPerVert,
&pStudioHWData->m_pLODs[nLodID].m_pMeshData[pMesh->meshid], pColorMeshID );
}
if ( g_VBAllocTracker )
{
g_VBAllocTracker->TrackMeshAllocations( NULL );
}
}
}
}
//-----------------------------------------------------------------------------
// Destroys static meshes
//-----------------------------------------------------------------------------
void CStudioRenderContext::R_StudioDestroyStaticMeshes( int numStudioMeshes, studiomeshdata_t **ppStudioMeshes )
{
if( !*ppStudioMeshes)
return;
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
// Iterate over every body mesh...
for ( int i = 0; i < numStudioMeshes; ++i )
{
studiomeshdata_t* pMesh = &((*ppStudioMeshes)[i]);
for (int j = 0; j < pMesh->m_NumGroup; ++j)
{
studiomeshgroup_t* pGroup = &pMesh->m_pMeshGroup[j];
if (pGroup->m_pGroupIndexToMeshIndex)
{
delete[] pGroup->m_pGroupIndexToMeshIndex;
pGroup->m_pGroupIndexToMeshIndex = 0;
}
if (pGroup->m_pUniqueTris)
{
delete [] pGroup->m_pUniqueTris;
pGroup->m_pUniqueTris = 0;
}
if (pGroup->m_pIndices)
{
delete [] pGroup->m_pIndices;
pGroup->m_pIndices = 0;
}
if (pGroup->m_pMesh)
{
pRenderContext->DestroyStaticMesh( pGroup->m_pMesh );
pGroup->m_pMesh = 0;
}
if (pGroup->m_pMorph)
{
pRenderContext->DestroyMorph( pGroup->m_pMorph );
pGroup->m_pMorph = 0;
}
if (pGroup->m_pStripData)
{
free( pGroup->m_pStripData );
pGroup->m_pStripData = 0;
}
}
if (pMesh->m_pMeshGroup)
{
delete[] pMesh->m_pMeshGroup;
pMesh->m_pMeshGroup = 0;
}
}
if ( *ppStudioMeshes )
{
2022-04-25 22:21:00 +08:00
delete[] *ppStudioMeshes;
2020-04-23 00:56:21 +08:00
*ppStudioMeshes = 0;
}
}
//-----------------------------------------------------------------------------
// Builds the decal bone remap for a particular mesh
//-----------------------------------------------------------------------------
void CStudioRenderContext::BuildDecalBoneMap( studiohdr_t *pStudioHdr, int *pUsedBones, int *pBoneRemap, int *pMaxBoneCount, mstudiomesh_t* pMesh, OptimizedModel::StripGroupHeader_t* pStripGroup )
{
const mstudio_meshvertexdata_t *pVertData = GetFatVertexData( pMesh, pStudioHdr );
Assert( pVertData );
for ( int i = 0; i < pStripGroup->numVerts; ++i )
{
int nMeshVert = pStripGroup->pVertex( i )->origMeshVertID;
mstudioboneweight_t &boneWeight = pVertData->Vertex( nMeshVert )->m_BoneWeights;
int nBoneCount = boneWeight.numbones;
for ( int j = 0; j < nBoneCount; ++j )
{
if ( boneWeight.weight[j] == 0.0f )
continue;
if ( pBoneRemap[ (unsigned)boneWeight.bone[j] ] >= 0 )
continue;
pBoneRemap[ (unsigned)boneWeight.bone[j] ] = *pUsedBones;
*pUsedBones = *pUsedBones + 1;
}
}
for ( int i = 0; i < pStripGroup->numStrips; ++i )
{
if ( pStripGroup->pStrip(i)->numBones > *pMaxBoneCount )
{
*pMaxBoneCount = pStripGroup->pStrip(i)->numBones;
}
}
}
//-----------------------------------------------------------------------------
// For decals on hardware morphing, we must actually do hardware skinning
// because the flex must occur before skinning.
// For this to work, we have to hope that the total # of bones used by
// hw flexed verts is < than the max possible for the dx level we're running under
//-----------------------------------------------------------------------------
void CStudioRenderContext::ComputeHWMorphDecalBoneRemap( studiohdr_t *pStudioHdr, OptimizedModel::FileHeader_t *pVtxHdr, studiohwdata_t *pStudioHWData, int nLOD )
{
if ( pStudioHdr->numbones == 0 )
return;
// Remaps sw bones to hw bones during decal rendering
// NOTE: Only bones affecting vertices which have hw flexes will be add to this map.
int nBufSize = pStudioHdr->numbones * sizeof(int);
int *pBoneRemap = (int*)_alloca( nBufSize );
memset( pBoneRemap, 0xFF, nBufSize );
int nMaxBoneCount = 0;
// NOTE: HW bone index 0 is always the identity transform during decals.
pBoneRemap[0] = 0; // necessary for unused bones in a vertex
int nUsedBones = 1;
studioloddata_t *pStudioLOD = &pStudioHWData->m_pLODs[nLOD];
for ( int i = 0; i < pStudioHdr->numbodyparts; ++i )
{
mstudiobodyparts_t* pBodyPart = pStudioHdr->pBodypart(i);
OptimizedModel::BodyPartHeader_t* pVtxBodyPart = pVtxHdr->pBodyPart(i);
// Iterate over every submodel...
for ( int j = 0; j < pBodyPart->nummodels; ++j )
{
mstudiomodel_t* pModel = pBodyPart->pModel(j);
OptimizedModel::ModelHeader_t* pVtxModel = pVtxBodyPart->pModel(j);
OptimizedModel::ModelLODHeader_t *pVtxLOD = pVtxModel->pLOD( nLOD );
// Iterate over all the meshes....
for ( int k = 0; k < pModel->nummeshes; ++k )
{
Assert( pModel->nummeshes == pVtxLOD->numMeshes );
mstudiomesh_t* pMesh = pModel->pMesh(k);
OptimizedModel::MeshHeader_t* pVtxMesh = pVtxLOD->pMesh(k);
studiomeshdata_t* pMeshData = &pStudioLOD->m_pMeshData[pMesh->meshid];
for ( int l = 0; l < pVtxMesh->numStripGroups; ++l )
{
studiomeshgroup_t* pMeshGroup = &pMeshData->m_pMeshGroup[l];
if ( !pMeshGroup->m_pMorph )
continue;
OptimizedModel::StripGroupHeader_t* pStripGroup = pVtxMesh->pStripGroup(l);
BuildDecalBoneMap( pStudioHdr, &nUsedBones, pBoneRemap, &nMaxBoneCount, pMesh, pStripGroup );
}
}
}
}
if ( nUsedBones > 1 )
{
if ( nUsedBones > g_pMaterialSystemHardwareConfig->MaxVertexShaderBlendMatrices() )
{
Warning( "Hardware morphing of decals will be busted! Too many unique bones on flexed vertices!\n" );
}
pStudioLOD->m_pHWMorphDecalBoneRemap = new int[ pStudioHdr->numbones ];
memcpy( pStudioLOD->m_pHWMorphDecalBoneRemap, pBoneRemap, nBufSize );
pStudioLOD->m_nDecalBoneCount = nMaxBoneCount;
}
}
//-----------------------------------------------------------------------------
// Hook needed by mdlcache to load the vertex data
//-----------------------------------------------------------------------------
const vertexFileHeader_t * mstudiomodel_t::CacheVertexData( void *pModelData )
{
// make requested data resident
return g_pStudioDataCache->CacheVertexData( (studiohdr_t *)pModelData );
}
//-----------------------------------------------------------------------------
// Loads, unloads models
//-----------------------------------------------------------------------------
bool CStudioRenderContext::LoadModel( studiohdr_t *pStudioHdr, void *pVtxBuffer, studiohwdata_t *pStudioHWData )
{
int i;
int j;
Assert( pStudioHdr );
Assert( pVtxBuffer );
Assert( pStudioHWData );
if ( !pStudioHdr || !pVtxBuffer || !pStudioHWData )
return false;
// NOTE: This must be called *after* Mod_LoadStudioModel
OptimizedModel::FileHeader_t* pVertexHdr = (OptimizedModel::FileHeader_t*)pVtxBuffer;
if ( pVertexHdr->checkSum != pStudioHdr->checksum )
{
ConDMsg("Error! Model %s .vtx file out of synch with .mdl\n", pStudioHdr->pszName() );
return false;
}
pStudioHWData->m_NumStudioMeshes = 0;
for ( i = 0; i < pStudioHdr->numbodyparts; i++ )
{
mstudiobodyparts_t* pBodyPart = pStudioHdr->pBodypart(i);
for (j = 0; j < pBodyPart->nummodels; j++)
{
pStudioHWData->m_NumStudioMeshes += pBodyPart->pModel(j)->nummeshes;
}
}
// Create static meshes
Assert( pVertexHdr->numLODs );
pStudioHWData->m_RootLOD = min( (int)pStudioHdr->rootLOD, pVertexHdr->numLODs-1 );
pStudioHWData->m_NumLODs = pVertexHdr->numLODs;
pStudioHWData->m_pLODs = new studioloddata_t[pVertexHdr->numLODs];
memset( pStudioHWData->m_pLODs, 0, pVertexHdr->numLODs * sizeof( studioloddata_t ));
// reset the runtime flags
pStudioHdr->flags &= ~STUDIOHDR_FLAGS_USES_ENV_CUBEMAP;
pStudioHdr->flags &= ~STUDIOHDR_FLAGS_USES_FB_TEXTURE;
pStudioHdr->flags &= ~STUDIOHDR_FLAGS_USES_BUMPMAPPING;
#ifdef _DEBUG
int totalNumMeshGroups = 0;
#endif
int nColorMeshID = 0;
int nLodID;
for ( nLodID = pStudioHWData->m_RootLOD; nLodID < pStudioHWData->m_NumLODs; nLodID++ )
{
// Load materials and determine material dependent mesh requirements
LoadMaterials( pStudioHdr, pVertexHdr, pStudioHWData->m_pLODs[nLodID], nLodID );
// build the meshes
R_StudioCreateStaticMeshes( pStudioHdr, pVertexHdr, pStudioHWData, nLodID, &nColorMeshID );
// Build the hardware bone remap for decal rendering using HW morphing
ComputeHWMorphDecalBoneRemap( pStudioHdr, pVertexHdr, pStudioHWData, nLodID );
// garymcthack - need to check for NULL here.
// save off the lod switch point
pStudioHWData->m_pLODs[nLodID].m_SwitchPoint = pVertexHdr->pBodyPart( 0 )->pModel( 0 )->pLOD( nLodID )->switchPoint;
#ifdef _DEBUG
studioloddata_t *pLOD = &pStudioHWData->m_pLODs[nLodID];
for ( int meshID = 0; meshID < pStudioHWData->m_NumStudioMeshes; ++meshID )
{
totalNumMeshGroups += pLOD->m_pMeshData[meshID].m_NumGroup;
}
#endif
}
#ifdef _DEBUG
Assert( nColorMeshID == totalNumMeshGroups );
#endif
return true;
}
void CStudioRenderContext::UnloadModel( studiohwdata_t *pHardwareData )
{
int i;
for ( i = pHardwareData->m_RootLOD; i < pHardwareData->m_NumLODs; i++ )
{
int j;
for ( j = 0; j < pHardwareData->m_pLODs[i].numMaterials; j++ )
{
if ( pHardwareData->m_pLODs[i].ppMaterials[j] )
{
pHardwareData->m_pLODs[i].ppMaterials[j]->DecrementReferenceCount();
}
}
delete [] pHardwareData->m_pLODs[i].ppMaterials;
delete [] pHardwareData->m_pLODs[i].pMaterialFlags;
pHardwareData->m_pLODs[i].ppMaterials = NULL;
pHardwareData->m_pLODs[i].pMaterialFlags = NULL;
}
for ( i = pHardwareData->m_RootLOD; i < pHardwareData->m_NumLODs; i++ )
{
R_StudioDestroyStaticMeshes( pHardwareData->m_NumStudioMeshes, &pHardwareData->m_pLODs[i].m_pMeshData );
}
delete[] pHardwareData->m_pLODs;
pHardwareData->m_pLODs = NULL;
}
//-----------------------------------------------------------------------------
// Refresh the studiohdr since it was lost...
//-----------------------------------------------------------------------------
void CStudioRenderContext::RefreshStudioHdr( studiohdr_t* pStudioHdr, studiohwdata_t* pHardwareData )
{
}
//-----------------------------------------------------------------------------
// Set the eye view target
//-----------------------------------------------------------------------------
void CStudioRenderContext::SetEyeViewTarget( const studiohdr_t *pStudioHdr, int nBodyIndex, const Vector& viewtarget )
{
VectorCopy( viewtarget, m_RC.m_ViewTarget );
}
//-----------------------------------------------------------------------------
// Returns information about the ambient light samples
//-----------------------------------------------------------------------------
static TableVector s_pAmbientLightDir[6] =
{
{ 1, 0, 0 },
{ -1, 0, 0 },
{ 0, 1, 0 },
{ 0, -1, 0 },
{ 0, 0, 1 },
{ 0, 0, -1 },
};
int CStudioRenderContext::GetNumAmbientLightSamples()
{
return 6;
}
const Vector *CStudioRenderContext::GetAmbientLightDirections()
{
return (const Vector*)s_pAmbientLightDir;
}
//-----------------------------------------------------------------------------
// Methods related to LOD
//-----------------------------------------------------------------------------
int CStudioRenderContext::GetNumLODs( const studiohwdata_t &hardwareData ) const
{
return hardwareData.m_NumLODs;
}
float CStudioRenderContext::GetLODSwitchValue( const studiohwdata_t &hardwareData, int nLOD ) const
{
return hardwareData.m_pLODs[nLOD].m_SwitchPoint;
}
void CStudioRenderContext::SetLODSwitchValue( studiohwdata_t &hardwareData, int nLOD, float flSwitchValue )
{
// NOTE: This must block the hardware thread since it reads this data.
// This method is only used in tools, though.
MaterialLock_t hLock = g_pMaterialSystem->Lock();
hardwareData.m_pLODs[nLOD].m_SwitchPoint = flSwitchValue;
g_pMaterialSystem->Unlock( hLock );
}
//-----------------------------------------------------------------------------
// Returns the first n materials. The studiohdr material list is the superset
// for all lods.
//-----------------------------------------------------------------------------
int CStudioRenderContext::GetMaterialList( studiohdr_t *pStudioHdr, int count, IMaterial** ppMaterials )
{
AssertMsg( pStudioHdr, "Don't ignore this assert! CStudioRenderContext::GetMaterialList() has null pStudioHdr." );
if ( !pStudioHdr )
return 0;
if ( pStudioHdr->textureindex == 0 )
return 0;
// iterate each texture
int i;
int j;
int found = 0;
for ( i = 0; i < pStudioHdr->numtextures; i++ )
{
char szPath[MAX_PATH];
IMaterial *pMaterial = NULL;
// iterate quietly through all specified directories until a valid material is found
for ( j = 0; j < pStudioHdr->numcdtextures && IsErrorMaterial( pMaterial ); j++ )
{
// If we don't do this, we get filenames like "materials\\blah.vmt".
const char *textureName = pStudioHdr->pTexture( i )->pszName();
if ( textureName[0] == CORRECT_PATH_SEPARATOR || textureName[0] == INCORRECT_PATH_SEPARATOR )
++textureName;
// This prevents filenames like /models/blah.vmt.
const char *pCdTexture = pStudioHdr->pCdtexture( j );
if ( pCdTexture[0] == CORRECT_PATH_SEPARATOR || pCdTexture[0] == INCORRECT_PATH_SEPARATOR )
++pCdTexture;
V_ComposeFileName( pCdTexture, textureName, szPath, sizeof( szPath ) );
if ( pStudioHdr->flags & STUDIOHDR_FLAGS_OBSOLETE )
{
pMaterial = g_pMaterialSystem->FindMaterialEx( "models/obsolete/obsolete", TEXTURE_GROUP_MODEL, MATERIAL_FINDCONTEXT_ISONAMODEL, false );
}
else
{
pMaterial = g_pMaterialSystem->FindMaterialEx( szPath, TEXTURE_GROUP_MODEL, MATERIAL_FINDCONTEXT_ISONAMODEL, false );
}
}
if ( !pMaterial )
continue;
if ( found < count )
{
int k;
for ( k=0; k<found; k++ )
{
if ( ppMaterials[k] == pMaterial )
break;
}
if ( k >= found )
{
// add uniquely
ppMaterials[found++] = pMaterial;
}
}
else
{
break;
}
}
return found;
}
int CStudioRenderContext::GetMaterialListFromBodyAndSkin( MDLHandle_t studio, int nSkin, int nBody, int nCountOutputMaterials, IMaterial** ppOutputMaterials )
{
int found = 0;
studiohwdata_t *pStudioHWData = g_pMDLCache->GetHardwareData( studio );
if ( pStudioHWData == NULL )
return 0;
for ( int lodID = pStudioHWData->m_RootLOD; lodID < pStudioHWData->m_NumLODs; lodID++ )
{
studiohdr_t *pStudioHdr = g_pMDLCache->GetStudioHdr( studio );
IMaterial **ppInputMaterials = pStudioHWData->m_pLODs[lodID].ppMaterials;
if ( nSkin >= pStudioHdr->numskinfamilies )
{
nSkin = 0;
}
short *pSkinRef = pStudioHdr->pSkinref( nSkin * pStudioHdr->numskinref );
for (int i=0 ; i < pStudioHdr->numbodyparts ; i++)
{
mstudiomodel_t *pModel = NULL;
R_StudioSetupModel( i, nBody, &pModel, pStudioHdr );
// Iterate over all the meshes.... each mesh is a new material
for( int k = 0; k < pModel->nummeshes; ++k )
{
mstudiomesh_t *pMesh = pModel->pMesh(k);
IMaterial *pMaterial = ppInputMaterials[pSkinRef[pMesh->material]];
Assert( pMaterial );
int m;
for ( m=0; m<found; m++ )
{
if ( ppOutputMaterials[m] == pMaterial )
break;
}
if ( m >= found )
{
// add uniquely
ppOutputMaterials[found++] = pMaterial;
// No more room to store additional materials!
if ( found >= nCountOutputMaterials )
return found;
}
}
}
}
return found;
}
//-----------------------------------------------------------------------------
// Returns perf stats about a particular model
//-----------------------------------------------------------------------------
void CStudioRenderContext::GetPerfStats( DrawModelResults_t *pResults, const DrawModelInfo_t &info, CUtlBuffer *pSpewBuf ) const
{
pResults->m_ActualTriCount = pResults->m_TextureMemoryBytes = 0;
pResults->m_Materials.RemoveAll();
Assert( info.m_Lod >= 0 );
if ( info.m_Lod < 0 || !info.m_pHardwareData->m_pLODs )
return;
studiomeshdata_t *pStudioMeshes = info.m_pHardwareData->m_pLODs[info.m_Lod].m_pMeshData;
// Set up an array that keeps up with the number of used hardware bones in the models.
CUtlVector<bool> hardwareBonesUsed;
hardwareBonesUsed.EnsureCount( info.m_pStudioHdr->numbones );
int i;
for( i = 0; i < info.m_pStudioHdr->numbones; i++ )
{
hardwareBonesUsed[i] = false;
}
// Warning( "\n\n\n" );
pResults->m_NumMaterials = 0;
int numBoneStateChangeBatches = 0;
int numBoneStateChanges = 0;
// Iterate over every submodel...
IMaterial **ppMaterials = info.m_pHardwareData->m_pLODs[info.m_Lod].ppMaterials;
int nSkin = info.m_Skin;
if ( nSkin >= info.m_pStudioHdr->numskinfamilies )
{
nSkin = 0;
}
short *pSkinRef = info.m_pStudioHdr->pSkinref( nSkin * info.m_pStudioHdr->numskinref );
pResults->m_NumBatches = 0;
for (i=0 ; i < info.m_pStudioHdr->numbodyparts ; i++)
{
mstudiomodel_t *pModel = NULL;
R_StudioSetupModel( i, info.m_Body, &pModel, info.m_pStudioHdr );
// Iterate over all the meshes.... each mesh is a new material
int k;
for( k = 0; k < pModel->nummeshes; ++k )
{
mstudiomesh_t *pMesh = pModel->pMesh(k);
IMaterial *pMaterial = ppMaterials[pSkinRef[pMesh->material]];
Assert( pMaterial );
studiomeshdata_t *pMeshData = &pStudioMeshes[pMesh->meshid];
if( pMeshData->m_NumGroup == 0 )
continue;
Assert( pResults->m_NumMaterials == pResults->m_Materials.Count() );
pResults->m_NumMaterials++;
if( pResults->m_NumMaterials < MAX_DRAW_MODEL_INFO_MATERIALS )
{
pResults->m_Materials.AddToTail( pMaterial );
}
else
{
Assert( 0 );
}
if( pSpewBuf )
{
pSpewBuf->Printf( " material: %s\n", pMaterial->GetName() );
}
int numPasses = m_RC.m_pForcedMaterial ? m_RC.m_pForcedMaterial->GetNumPasses() : pMaterial->GetNumPasses();
if( pSpewBuf )
{
pSpewBuf->Printf( " numPasses:%d\n", numPasses );
}
int bytes = pMaterial->GetTextureMemoryBytes();
pResults->m_TextureMemoryBytes += bytes;
if( pSpewBuf )
{
pSpewBuf->Printf( " texture memory: %d (Only valid in a rendering app)\n", bytes );
}
// Iterate over all stripgroups
int stripGroupID;
for( stripGroupID = 0; stripGroupID < pMeshData->m_NumGroup; stripGroupID++ )
{
studiomeshgroup_t *pMeshGroup = &pMeshData->m_pMeshGroup[stripGroupID];
bool bIsFlexed = ( pMeshGroup->m_Flags & MESHGROUP_IS_FLEXED ) != 0;
bool bIsHWSkinned = ( pMeshGroup->m_Flags & MESHGROUP_IS_HWSKINNED ) != 0;
if( pSpewBuf )
{
pSpewBuf->Printf( " %d batch(es):\n", ( int )pMeshGroup->m_NumStrips );
}
// Iterate over all strips. . . each strip potentially changes bones states.
int stripID;
for( stripID = 0; stripID < pMeshGroup->m_NumStrips; stripID++ )
{
pResults->m_NumBatches++;
OptimizedModel::StripHeader_t *pStripData = &pMeshGroup->m_pStripData[stripID];
numBoneStateChangeBatches++;
numBoneStateChanges += pStripData->numBoneStateChanges;
if( bIsHWSkinned )
{
// Only count bones as hardware bones if we are using hardware skinning here.
int boneID;
for( boneID = 0; boneID < pStripData->numBoneStateChanges; boneID++ )
{
OptimizedModel::BoneStateChangeHeader_t *pBoneStateChange = pStripData->pBoneStateChange( boneID );
hardwareBonesUsed[pBoneStateChange->newBoneID] = true;
}
}
if( pStripData->flags & OptimizedModel::STRIP_IS_TRILIST )
{
// TODO: need to factor in bIsFlexed and bIsHWSkinned
int numTris = pStripData->numIndices / 3;
if( pSpewBuf )
{
pSpewBuf->Printf( " %s%s", bIsFlexed ? "flexed " : "nonflexed ",
bIsHWSkinned ? "hwskinned " : "swskinned " );
pSpewBuf->Printf( "tris: %d ", numTris );
pSpewBuf->Printf( "bone changes: %d bones/strip: %d\n", pStripData->numBoneStateChanges,
( int )pStripData->numBones );
}
pResults->m_ActualTriCount += numTris * numPasses;
}
else if( pStripData->flags & OptimizedModel::STRIP_IS_TRISTRIP )
{
Assert( 0 ); // FIXME: fill this in when we start using strips again.
}
else
{
Assert( 0 );
}
}
}
}
}
if( pSpewBuf )
{
char nil = '\0';
pSpewBuf->Put( &nil, 1 );;
}
pResults->m_NumHardwareBones = 0;
for( i = 0; i < info.m_pStudioHdr->numbones; i++ )
{
if( hardwareBonesUsed[i] )
{
pResults->m_NumHardwareBones++;
}
}
}
//-----------------------------------------------------------------------------
// Begin/end frame
//-----------------------------------------------------------------------------
static ConVar r_hwmorph( "r_hwmorph", "1", FCVAR_CHEAT );
void CStudioRenderContext::BeginFrame( void )
{
// Cache a few values here so I don't have to in software inner loops:
Assert( g_pMaterialSystemHardwareConfig );
m_RC.m_Config.m_bSupportsVertexAndPixelShaders = g_pMaterialSystemHardwareConfig->SupportsVertexAndPixelShaders();
m_RC.m_Config.m_bSupportsOverbright = g_pMaterialSystemHardwareConfig->SupportsOverbright();
m_RC.m_Config.m_bEnableHWMorph = r_hwmorph.GetInt() != 0;
// Haven't implemented the hw morph with threading yet
if ( g_pMaterialSystem->GetThreadMode() != MATERIAL_SINGLE_THREADED )
{
m_RC.m_Config.m_bEnableHWMorph = false;
}
m_RC.m_Config.m_bStatsMode = false;
g_pStudioRenderImp->PrecacheGlint();
}
void CStudioRenderContext::EndFrame( void )
{
}
//-----------------------------------------------------------------------------
// Methods related to config
//-----------------------------------------------------------------------------
void CStudioRenderContext::UpdateConfig( const StudioRenderConfig_t& config )
{
memcpy( &m_RC.m_Config, &config, sizeof( StudioRenderConfig_t ) );
}
void CStudioRenderContext::GetCurrentConfig( StudioRenderConfig_t& config )
{
memcpy( &config, &m_RC.m_Config, sizeof( StudioRenderConfig_t ) );
}
//-----------------------------------------------------------------------------
// Material overrides
//-----------------------------------------------------------------------------
void CStudioRenderContext::ForcedMaterialOverride( IMaterial *newMaterial, OverrideType_t nOverrideType )
{
m_RC.m_pForcedMaterial = newMaterial;
m_RC.m_nForcedMaterialType = nOverrideType;
}
//-----------------------------------------------------------------------------
// Return the material overrides
//-----------------------------------------------------------------------------
void CStudioRenderContext::GetMaterialOverride( IMaterial** ppOutForcedMaterial, OverrideType_t* pOutOverrideType )
{
Assert( ppOutForcedMaterial != NULL && pOutOverrideType != NULL );
*ppOutForcedMaterial = m_RC.m_pForcedMaterial;
*pOutOverrideType = m_RC.m_nForcedMaterialType;
}
//-----------------------------------------------------------------------------
// Sets the view state
//-----------------------------------------------------------------------------
void CStudioRenderContext::SetViewState( const Vector& viewOrigin,
const Vector& viewRight, const Vector& viewUp, const Vector& viewPlaneNormal )
{
VectorCopy( viewOrigin, m_RC.m_ViewOrigin );
VectorCopy( viewRight, m_RC.m_ViewRight );
VectorCopy( viewUp, m_RC.m_ViewUp );
VectorCopy( viewPlaneNormal, m_RC.m_ViewPlaneNormal );
}
//-----------------------------------------------------------------------------
// Sets lighting state
//-----------------------------------------------------------------------------
void CStudioRenderContext::SetAmbientLightColors( const Vector *pColors )
{
for( int i = 0; i < 6; i++ )
{
VectorCopy( pColors[i], m_RC.m_LightBoxColors[i].AsVector3D() );
m_RC.m_LightBoxColors[i][3] = 1.0f;
}
// FIXME: Would like to get this into the render thread, but there's systemic confusion
// about whether to set lighting state here or in the material system
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
pRenderContext->SetAmbientLightCube( m_RC.m_LightBoxColors );
}
void CStudioRenderContext::SetAmbientLightColors( const Vector4D *pColors )
{
2022-11-16 18:28:39 +08:00
memutils::copy( &m_RC.m_LightBoxColors[0], pColors, 6 );
2020-04-23 00:56:21 +08:00
// FIXME: Would like to get this into the render thread, but there's systemic confusion
// about whether to set lighting state here or in the material system
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
pRenderContext->SetAmbientLightCube( m_RC.m_LightBoxColors );
}
void CStudioRenderContext::SetLocalLights( int nLightCount, const LightDesc_t *pLights )
{
m_RC.m_NumLocalLights = CopyLocalLightingState( MAXLOCALLIGHTS, m_RC.m_LocalLights, nLightCount, pLights );
// FIXME: Would like to get this into the render thread, but there's systemic confusion
// about whether to set lighting state here or in the material system
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
if ( m_RC.m_Config.bSoftwareLighting || m_RC.m_NumLocalLights == 0 )
{
pRenderContext->DisableAllLocalLights();
}
else
{
int i;
int nMaxLightCount = g_pMaterialSystemHardwareConfig->MaxNumLights();
int nLightCount = min( m_RC.m_NumLocalLights, nMaxLightCount );
for( i = 0; i < nLightCount; i++ )
{
pRenderContext->SetLight( i, m_RC.m_LocalLights[i] );
}
for( ; i < nMaxLightCount; i++ )
{
LightDesc_t desc;
desc.m_Type = MATERIAL_LIGHT_DISABLE;
pRenderContext->SetLight( i, desc );
}
}
}
//-----------------------------------------------------------------------------
// Sets the color modulation
//-----------------------------------------------------------------------------
void CStudioRenderContext::SetColorModulation( const float* pColor )
{
VectorCopy( pColor, m_RC.m_ColorMod );
}
void CStudioRenderContext::SetAlphaModulation( float alpha )
{
m_RC.m_AlphaMod = alpha;
}
//-----------------------------------------------------------------------------
// Used to set bone-to-world transforms.
// FIXME: Should this be a lock/unlock pattern so we can't read after unlock?
//-----------------------------------------------------------------------------
matrix3x4_t* CStudioRenderContext::LockBoneMatrices( int nCount )
{
MEM_ALLOC_CREDIT_( "CStudioRenderContext::m_BoneToWorldMatrices" );
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
CMatRenderData<matrix3x4_t> rdMatrix( pRenderContext );
matrix3x4_t *pDest = rdMatrix.Lock( nCount );
return pDest;
}
void CStudioRenderContext::UnlockBoneMatrices()
{
}
//-----------------------------------------------------------------------------
// Allocates flex weights
//-----------------------------------------------------------------------------
void CStudioRenderContext::LockFlexWeights( int nWeightCount, float **ppFlexWeights, float **ppFlexDelayedWeights )
{
MEM_ALLOC_CREDIT_( "CStudioRenderContext::m_FlexWeights" );
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
CMatRenderData<float> rdFlex( pRenderContext );
CMatRenderData<float> rdFlexDelayed( pRenderContext );
float *pFlexOut = rdFlex.Lock( nWeightCount );
for ( int i = 0; i < nWeightCount; i++ )
{
pFlexOut[i] = 0.0f;
}
*ppFlexWeights = pFlexOut;
if ( ppFlexDelayedWeights )
{
pFlexOut = rdFlexDelayed.Lock( nWeightCount );
for ( int i = 0; i < nWeightCount; i++ )
{
pFlexOut[i] = 0.0f;
}
*ppFlexDelayedWeights = pFlexOut;
}
}
void CStudioRenderContext::UnlockFlexWeights()
{
}
//-----------------------------------------------------------------------------
// Methods related to flex weights
//-----------------------------------------------------------------------------
static ConVar r_randomflex( "r_randomflex", "0", FCVAR_CHEAT );
//-----------------------------------------------------------------------------
// This will generate random flex data that has a specified # of non-zero values
//-----------------------------------------------------------------------------
void CStudioRenderContext::GenerateRandomFlexWeights( int nWeightCount, float* pWeights, float *pDelayedWeights )
{
int nRandomFlex = r_randomflex.GetInt();
if ( nRandomFlex <= 0 || !pWeights )
return;
if ( nRandomFlex > nWeightCount )
{
nRandomFlex = nWeightCount;
}
int *pIndices = (int*)_alloca( nWeightCount * sizeof(int) );
for ( int i = 0; i < nWeightCount; ++i )
{
pIndices[i] = i;
}
// Shuffle
for ( int i = 0; i < nWeightCount; ++i )
{
int n = RandomInt( 0, nWeightCount-1 );
int nTemp = pIndices[n];
pIndices[n] = pIndices[i];
pIndices[i] = nTemp;
}
memset( pWeights, 0, nWeightCount * sizeof(float) );
for ( int i = 0; i < nRandomFlex; ++i )
{
pWeights[ pIndices[i] ] = RandomFloat( 0.0f, 1.0f );
}
if ( pDelayedWeights )
{
memset( pDelayedWeights, 0, nWeightCount * sizeof(float) );
for ( int i = 0; i < nRandomFlex; ++i )
{
pDelayedWeights[ pIndices[i] ] = RandomFloat( 0.0f, 1.0f );
}
}
}
//-----------------------------------------------------------------------------
// Computes LOD
//-----------------------------------------------------------------------------
int CStudioRenderContext::ComputeRenderLOD( IMatRenderContext *pRenderContext,
const DrawModelInfo_t& info, const Vector &origin, float *pMetric )
{
int lod = info.m_Lod;
int lastlod = info.m_pHardwareData->m_NumLODs - 1;
if ( pMetric )
{
*pMetric = 0.0f;
}
if ( lod == USESHADOWLOD )
return lastlod;
if ( lod != -1 )
return clamp( lod, info.m_pHardwareData->m_RootLOD, lastlod );
float screenSize = pRenderContext->ComputePixelWidthOfSphere( origin, 0.5f );
lod = ComputeModelLODAndMetric( info.m_pHardwareData, screenSize, pMetric );
// make sure we have a valid lod
if ( info.m_pStudioHdr->flags & STUDIOHDR_FLAGS_HASSHADOWLOD )
{
lastlod--;
}
lod = clamp( lod, info.m_pHardwareData->m_RootLOD, lastlod );
return lod;
}
//-----------------------------------------------------------------------------
// This invokes proxies of all materials that are queued to be rendered
// It has the effect of ensuring the material vars are in the correct state
// since material var sets generated by the proxy bind are queued.
//-----------------------------------------------------------------------------
void CStudioRenderContext::InvokeBindProxies( const DrawModelInfo_t &info )
{
if ( m_RC.m_pForcedMaterial )
{
if ( m_RC.m_nForcedMaterialType == OVERRIDE_NORMAL && m_RC.m_pForcedMaterial->HasProxy() )
{
m_RC.m_pForcedMaterial->CallBindProxy( info.m_pClientEntity );
}
return;
}
// get skinref array
int nSkin = ( m_RC.m_Config.skin > 0 ) ? m_RC.m_Config.skin : info.m_Skin;
short *pSkinRef = info.m_pStudioHdr->pSkinref( 0 );
if ( nSkin > 0 && nSkin < info.m_pStudioHdr->numskinfamilies )
{
pSkinRef += ( nSkin * info.m_pStudioHdr->numskinref );
}
// This is used to ensure proxies are only called once
int nBufSize = info.m_pStudioHdr->numtextures * sizeof(bool);
bool *pProxyCalled = (bool*)stackalloc( nBufSize );
memset( pProxyCalled, 0, nBufSize );
IMaterial **ppMaterials = info.m_pHardwareData->m_pLODs[ info.m_Lod ].ppMaterials;
mstudiomodel_t *pModel;
for ( int i=0 ; i < info.m_pStudioHdr->numbodyparts; ++i )
{
R_StudioSetupModel( i, info.m_Body, &pModel, info.m_pStudioHdr );
for ( int somethingOtherThanI = 0; somethingOtherThanI < pModel->nummeshes; ++somethingOtherThanI)
{
mstudiomesh_t *pMesh = pModel->pMesh(somethingOtherThanI);
int nMaterialIndex = pSkinRef[ pMesh->material ];
if ( pProxyCalled[ nMaterialIndex ] )
continue;
pProxyCalled[ nMaterialIndex ] = true;
IMaterial* pMaterial = ppMaterials[ nMaterialIndex ];
if ( pMaterial && pMaterial->HasProxy() )
{
pMaterial->CallBindProxy( info.m_pClientEntity );
}
}
}
}
//-----------------------------------------------------------------------------
// Draws a model
//-----------------------------------------------------------------------------
void CStudioRenderContext::DrawModel( DrawModelResults_t *pResults, const DrawModelInfo_t& info,
matrix3x4_t *pBoneToWorld, float *pFlexWeights, float *pFlexDelayedWeights, const Vector &origin, int flags )
{
// Set to zero in case we don't render anything.
if ( pResults )
{
pResults->m_ActualTriCount = pResults->m_TextureMemoryBytes = 0;
}
if( !info.m_pStudioHdr || !info.m_pHardwareData ||
!info.m_pHardwareData->m_NumLODs || !info.m_pHardwareData->m_pLODs )
{
return;
}
// Replace the flex weight data with random data for testing
GenerateRandomFlexWeights( info.m_pStudioHdr->numflexdesc, pFlexWeights, pFlexDelayedWeights );
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
float flMetric;
const_cast<DrawModelInfo_t*>( &info )->m_Lod = ComputeRenderLOD( pRenderContext, info, origin, &flMetric );
if ( pResults )
{
pResults->m_nLODUsed = info.m_Lod;
pResults->m_flLODMetric = flMetric;
}
MaterialLock_t hLock = 0;
if ( flags & STUDIORENDER_DRAW_ACCURATETIME )
{
VPROF("STUDIORENDER_DRAW_ACCURATETIME");
// Flush the material system before timing this model:
hLock = g_pMaterialSystem->Lock();
g_pMaterialSystem->Flush(true);
}
if ( pResults )
{
pResults->m_RenderTime.Start();
}
FlexWeights_t flex;
flex.m_pFlexWeights = pFlexWeights ? pFlexWeights : s_pZeroFlexWeights;
flex.m_pFlexDelayedWeights = pFlexDelayedWeights ? pFlexDelayedWeights : flex.m_pFlexWeights;
ICallQueue *pCallQueue = pRenderContext->GetCallQueue();
if ( !pCallQueue || studio_queue_mode.GetInt() == 0 )
{
g_pStudioRenderImp->DrawModel( info, m_RC, pBoneToWorld, flex, flags );
}
else
{
CMatRenderData<matrix3x4_t> rdMatrix( pRenderContext, info.m_pStudioHdr->numbones, pBoneToWorld );
CMatRenderData<float> rdFlex( pRenderContext );
CMatRenderData<float> rdFlexDelayed( pRenderContext );
InvokeBindProxies( info );
pBoneToWorld = rdMatrix.Base();
if ( info.m_pStudioHdr->numflexdesc != 0 )
{
rdFlex.Lock( info.m_pStudioHdr->numflexdesc, flex.m_pFlexWeights );
flex.m_pFlexWeights = rdFlex.Base();
if ( !pFlexDelayedWeights )
{
flex.m_pFlexDelayedWeights = flex.m_pFlexWeights;
}
else
{
rdFlexDelayed.Lock( info.m_pStudioHdr->numflexdesc, flex.m_pFlexDelayedWeights );
flex.m_pFlexDelayedWeights = rdFlexDelayed.Base();
}
}
pCallQueue->QueueCall( g_pStudioRenderImp, &CStudioRender::DrawModel, info, m_RC, pBoneToWorld, flex, flags );
}
if( flags & STUDIORENDER_DRAW_ACCURATETIME )
{
VPROF( "STUDIORENDER_DRAW_ACCURATETIME" );
// Make sure this model is completely drawn before ending the timer:
g_pMaterialSystem->Flush(true);
g_pMaterialSystem->Flush(true);
g_pMaterialSystem->Unlock( hLock );
}
if ( pResults )
{
pResults->m_RenderTime.End();
if( flags & STUDIORENDER_DRAW_GET_PERF_STATS )
{
GetPerfStats( pResults, info, 0 );
}
}
}
void CStudioRenderContext::DrawModelArray( const DrawModelInfo_t &drawInfo, int arrayCount, model_array_instance_t *pInstanceData, int instanceStride, int flags )
{
// UNDONE: Support queue mode?
g_pStudioRenderImp->DrawModelArray( drawInfo, m_RC, arrayCount, pInstanceData, instanceStride, flags );
}
//-----------------------------------------------------------------------------
// Methods related to rendering static props
//-----------------------------------------------------------------------------
void CStudioRenderContext::DrawModelStaticProp( const DrawModelInfo_t& info, const matrix3x4_t &modelToWorld, int flags )
{
if ( info.m_Lod < info.m_pHardwareData->m_RootLOD )
{
const_cast< DrawModelInfo_t* >( &info )->m_Lod = info.m_pHardwareData->m_RootLOD;
}
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
ICallQueue *pCallQueue = pRenderContext->GetCallQueue();
if ( !pCallQueue || studio_queue_mode.GetInt() == 0 )
{
g_pStudioRenderImp->DrawModelStaticProp( info, m_RC, modelToWorld, flags );
}
else
{
InvokeBindProxies( info );
pCallQueue->QueueCall( g_pStudioRenderImp, &CStudioRender::DrawModelStaticProp, info, m_RC, modelToWorld, flags );
}
}
void CStudioRenderContext::DrawStaticPropDecals( const DrawModelInfo_t &info, const matrix3x4_t &modelToWorld )
{
QUEUE_STUDIORENDER_CALL( DrawStaticPropDecals, CStudioRender, g_pStudioRenderImp, info, m_RC, modelToWorld );
}
void CStudioRenderContext::DrawStaticPropShadows( const DrawModelInfo_t &info, const matrix3x4_t &modelToWorld, int flags )
{
QUEUE_STUDIORENDER_CALL( DrawStaticPropShadows, CStudioRender, g_pStudioRenderImp, info, m_RC, modelToWorld, flags );
}
//-----------------------------------------------------------------------------
// Methods related to shadows
//-----------------------------------------------------------------------------
void CStudioRenderContext::AddShadow( IMaterial* pMaterial, void* pProxyData,
FlashlightState_t *pFlashlightState, VMatrix *pWorldToTexture, ITexture *pFlashlightDepthTexture )
{
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
ICallQueue *pCallQueue = pRenderContext->GetCallQueue();
if ( !pCallQueue || studio_queue_mode.GetInt() == 0 )
{
g_pStudioRenderImp->AddShadow( pMaterial, pProxyData, pFlashlightState, pWorldToTexture, pFlashlightDepthTexture );
}
else
{
// NOTE: We don't need to make proxies work, because proxies are only ever used
// when casting shadows onto props, which we don't do..that feature is disabled.
// When casting flashlights onto mdls, which we *do* use, the proxy is NULL.
Assert( pProxyData == NULL );
if ( pProxyData != NULL )
{
Warning( "Cannot call CStudioRenderContext::AddShadows w/ proxies in queued mode!\n" );
return;
}
CMatRenderData< FlashlightState_t > rdFlashlight( pRenderContext, 1, pFlashlightState );
CMatRenderData< VMatrix > rdMatrix( pRenderContext, 1, pWorldToTexture );
pCallQueue->QueueCall( g_pStudioRenderImp, &CStudioRender::AddShadow, pMaterial,
(void*)NULL, rdFlashlight.Base(), rdMatrix.Base(), pFlashlightDepthTexture );
}
}
void CStudioRenderContext::ClearAllShadows()
{
QUEUE_STUDIORENDER_CALL( ClearAllShadows, CStudioRender, g_pStudioRenderImp );
}
//-----------------------------------------------------------------------------
// Methods related to decals
//-----------------------------------------------------------------------------
void CStudioRenderContext::DestroyDecalList( StudioDecalHandle_t handle )
{
QUEUE_STUDIORENDER_CALL( DestroyDecalList, CStudioRender, g_pStudioRenderImp, handle );
}
void CStudioRenderContext::AddDecal( StudioDecalHandle_t handle, studiohdr_t *pStudioHdr,
matrix3x4_t *pBoneToWorld, const Ray_t& ray, const Vector& decalUp,
IMaterial* pDecalMaterial, float radius, int body, bool noPokethru, int maxLODToDecal )
{
// This substition always has to be done in the main thread, so do it here.
pDecalMaterial = GetModelSpecificDecalMaterial( pDecalMaterial );
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
Assert( pRenderContext->IsRenderData( pBoneToWorld ) );
QUEUE_STUDIORENDER_CALL_RC( AddDecal, CStudioRender, g_pStudioRenderImp, pRenderContext,
handle, m_RC, pBoneToWorld, pStudioHdr, ray, decalUp, pDecalMaterial, radius,
body, noPokethru, maxLODToDecal );
}
// Function to do replacement because we always need to do this from the main thread.
IMaterial* GetModelSpecificDecalMaterial( IMaterial* pDecalMaterial )
{
Assert( ThreadInMainThread() );
// Since we're adding this to a studio model, check the decal to see if
// there's an alternate form used for static props...
bool found;
IMaterialVar* pModelMaterialVar = pDecalMaterial->FindVar( "$modelmaterial", &found, false );
if ( found )
{
IMaterial* pModelMaterial = g_pMaterialSystem->FindMaterial( pModelMaterialVar->GetStringValue(), TEXTURE_GROUP_DECAL, false );
if ( !IsErrorMaterial( pModelMaterial ) )
{
return pModelMaterial;
}
}
return pDecalMaterial;
}