386 lines
12 KiB
C
Raw Permalink Normal View History

2020-04-22 12:56:21 -04:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// A set of generic, template-based matrix functions.
//===========================================================================//
#ifndef MATRIXMATH_H
#define MATRIXMATH_H
#include <stdarg.h>
// The operations in this file can perform basic matrix operations on matrices represented
// using any class that supports the necessary operations:
//
// .Element( row, col ) - return the element at a given matrox position
// .SetElement( row, col, val ) - modify an element
// .Width(), .Height() - get dimensions
// .SetDimensions( nrows, ncols) - set a matrix to be un-initted and the appropriate size
//
// Generally, vectors can be used with these functions by using N x 1 matrices to represent them.
// Matrices are addressed as row, column, and indices are 0-based
//
//
// Note that the template versions of these routines are defined for generality - it is expected
// that template specialization is used for common high performance cases.
namespace MatrixMath
{
/// M *= flScaleValue
template<class MATRIXCLASS>
void ScaleMatrix( MATRIXCLASS &matrix, float flScaleValue )
{
for( int i = 0; i < matrix.Height(); i++ )
{
for( int j = 0; j < matrix.Width(); j++ )
{
matrix.SetElement( i, j, flScaleValue * matrix.Element( i, j ) );
}
}
}
/// AppendElementToMatrix - same as setting the element, except only works when all calls
/// happen in top to bottom left to right order, end you have to call FinishedAppending when
/// done. For normal matrix classes this is not different then SetElement, but for
/// CSparseMatrix, it is an accelerated way to fill a matrix from scratch.
template<class MATRIXCLASS>
FORCEINLINE void AppendElement( MATRIXCLASS &matrix, int nRow, int nCol, float flValue )
{
matrix.SetElement( nRow, nCol, flValue ); // default implementation
}
template<class MATRIXCLASS>
FORCEINLINE void FinishedAppending( MATRIXCLASS &matrix ) {} // default implementation
/// M += fl
template<class MATRIXCLASS>
void AddToMatrix( MATRIXCLASS &matrix, float flAddend )
{
for( int i = 0; i < matrix.Height(); i++ )
{
for( int j = 0; j < matrix.Width(); j++ )
{
matrix.SetElement( i, j, flAddend + matrix.Element( i, j ) );
}
}
}
/// transpose
template<class MATRIXCLASSIN, class MATRIXCLASSOUT>
void TransposeMatrix( MATRIXCLASSIN const &matrixIn, MATRIXCLASSOUT *pMatrixOut )
{
pMatrixOut->SetDimensions( matrixIn.Width(), matrixIn.Height() );
for( int i = 0; i < pMatrixOut->Height(); i++ )
{
for( int j = 0; j < pMatrixOut->Width(); j++ )
{
AppendElement( *pMatrixOut, i, j, matrixIn.Element( j, i ) );
}
}
FinishedAppending( *pMatrixOut );
}
/// copy
template<class MATRIXCLASSIN, class MATRIXCLASSOUT>
void CopyMatrix( MATRIXCLASSIN const &matrixIn, MATRIXCLASSOUT *pMatrixOut )
{
pMatrixOut->SetDimensions( matrixIn.Height(), matrixIn.Width() );
for( int i = 0; i < matrixIn.Height(); i++ )
{
for( int j = 0; j < matrixIn.Width(); j++ )
{
AppendElement( *pMatrixOut, i, j, matrixIn.Element( i, j ) );
}
}
FinishedAppending( *pMatrixOut );
}
/// M+=M
template<class MATRIXCLASSIN, class MATRIXCLASSOUT>
void AddMatrixToMatrix( MATRIXCLASSIN const &matrixIn, MATRIXCLASSOUT *pMatrixOut )
{
for( int i = 0; i < matrixIn.Height(); i++ )
{
for( int j = 0; j < matrixIn.Width(); j++ )
{
pMatrixOut->SetElement( i, j, pMatrixOut->Element( i, j ) + matrixIn.Element( i, j ) );
}
}
}
// M += scale * M
template<class MATRIXCLASSIN, class MATRIXCLASSOUT>
void AddScaledMatrixToMatrix( float flScale, MATRIXCLASSIN const &matrixIn, MATRIXCLASSOUT *pMatrixOut )
{
for( int i = 0; i < matrixIn.Height(); i++ )
{
for( int j = 0; j < matrixIn.Width(); j++ )
{
pMatrixOut->SetElement( i, j, pMatrixOut->Element( i, j ) + flScale * matrixIn.Element( i, j ) );
}
}
}
// simple way to initialize a matrix with constants from code.
template<class MATRIXCLASSOUT>
void SetMatrixToIdentity( MATRIXCLASSOUT *pMatrixOut, float flDiagonalValue = 1.0 )
{
for( int i = 0; i < pMatrixOut->Height(); i++ )
{
for( int j = 0; j < pMatrixOut->Width(); j++ )
{
AppendElement( *pMatrixOut, i, j, ( i == j ) ? flDiagonalValue : 0 );
}
}
FinishedAppending( *pMatrixOut );
}
//// simple way to initialize a matrix with constants from code
template<class MATRIXCLASSOUT>
void SetMatrixValues( MATRIXCLASSOUT *pMatrix, int nRows, int nCols, ... )
{
va_list argPtr;
va_start( argPtr, nCols );
pMatrix->SetDimensions( nRows, nCols );
for( int nRow = 0; nRow < nRows; nRow++ )
{
for( int nCol = 0; nCol < nCols; nCol++ )
{
double flNewValue = va_arg( argPtr, double );
pMatrix->SetElement( nRow, nCol, flNewValue );
}
}
va_end( argPtr );
}
/// row and colum accessors. treat a row or a column as a column vector
template<class MATRIXTYPE> class MatrixRowAccessor
{
public:
FORCEINLINE MatrixRowAccessor( MATRIXTYPE const &matrix, int nRow )
{
m_pMatrix = &matrix;
m_nRow = nRow;
}
FORCEINLINE float Element( int nRow, int nCol ) const
{
Assert( nCol == 0 );
return m_pMatrix->Element( m_nRow, nRow );
}
FORCEINLINE int Width( void ) const { return 1; };
FORCEINLINE int Height( void ) const { return m_pMatrix->Width(); }
private:
MATRIXTYPE const *m_pMatrix;
int m_nRow;
};
template<class MATRIXTYPE> class MatrixColumnAccessor
{
public:
FORCEINLINE MatrixColumnAccessor( MATRIXTYPE const &matrix, int nColumn )
{
m_pMatrix = &matrix;
m_nColumn = nColumn;
}
FORCEINLINE float Element( int nRow, int nColumn ) const
{
Assert( nColumn == 0 );
return m_pMatrix->Element( nRow, m_nColumn );
}
FORCEINLINE int Width( void ) const { return 1; }
FORCEINLINE int Height( void ) const { return m_pMatrix->Height(); }
private:
MATRIXTYPE const *m_pMatrix;
int m_nColumn;
};
/// this translator acts as a proxy for the transposed matrix
template<class MATRIXTYPE> class MatrixTransposeAccessor
{
public:
FORCEINLINE MatrixTransposeAccessor( MATRIXTYPE const & matrix )
{
m_pMatrix = &matrix;
}
FORCEINLINE float Element( int nRow, int nColumn ) const
{
return m_pMatrix->Element( nColumn, nRow );
}
FORCEINLINE int Width( void ) const { return m_pMatrix->Height(); }
FORCEINLINE int Height( void ) const { return m_pMatrix->Width(); }
private:
MATRIXTYPE const *m_pMatrix;
};
/// this tranpose returns a wrapper around it's argument, allowing things like AddMatrixToMatrix( Transpose( matA ), &matB ) without an extra copy
template<class MATRIXCLASSIN>
MatrixTransposeAccessor<MATRIXCLASSIN> TransposeMatrix( MATRIXCLASSIN const &matrixIn )
{
return MatrixTransposeAccessor<MATRIXCLASSIN>( matrixIn );
}
/// retrieve rows and columns
template<class MATRIXTYPE>
FORCEINLINE MatrixColumnAccessor<MATRIXTYPE> MatrixColumn( MATRIXTYPE const &matrix, int nColumn )
{
return MatrixColumnAccessor<MATRIXTYPE>( matrix, nColumn );
}
template<class MATRIXTYPE>
FORCEINLINE MatrixRowAccessor<MATRIXTYPE> MatrixRow( MATRIXTYPE const &matrix, int nRow )
{
return MatrixRowAccessor<MATRIXTYPE>( matrix, nRow );
}
//// dot product between vectors (or rows and/or columns via accessors)
template<class MATRIXACCESSORATYPE, class MATRIXACCESSORBTYPE >
float InnerProduct( MATRIXACCESSORATYPE const &vecA, MATRIXACCESSORBTYPE const &vecB )
{
Assert( vecA.Width() == 1 );
Assert( vecB.Width() == 1 );
Assert( vecA.Height() == vecB.Height() );
double flResult = 0;
for( int i = 0; i < vecA.Height(); i++ )
{
flResult += vecA.Element( i, 0 ) * vecB.Element( i, 0 );
}
return flResult;
}
/// matrix x matrix multiplication
template<class MATRIXATYPE, class MATRIXBTYPE, class MATRIXOUTTYPE>
void MatrixMultiply( MATRIXATYPE const &matA, MATRIXBTYPE const &matB, MATRIXOUTTYPE *pMatrixOut )
{
Assert( matA.Width() == matB.Height() );
pMatrixOut->SetDimensions( matA.Height(), matB.Width() );
for( int i = 0; i < matA.Height(); i++ )
{
for( int j = 0; j < matB.Width(); j++ )
{
pMatrixOut->SetElement( i, j, InnerProduct( MatrixRow( matA, i ), MatrixColumn( matB, j ) ) );
}
}
}
/// solve Ax=B via the conjugate graident method. Code and naming conventions based on the
/// wikipedia article.
template<class ATYPE, class XTYPE, class BTYPE>
void ConjugateGradient( ATYPE const &matA, BTYPE const &vecB, XTYPE &vecX, float flTolerance = 1.0e-20 )
{
XTYPE vecR;
vecR.SetDimensions( vecX.Height(), 1 );
MatrixMultiply( matA, vecX, &vecR );
ScaleMatrix( vecR, -1 );
AddMatrixToMatrix( vecB, &vecR );
XTYPE vecP;
CopyMatrix( vecR, &vecP );
float flRsOld = InnerProduct( vecR, vecR );
for( int nIter = 0; nIter < 100; nIter++ )
{
XTYPE vecAp;
MatrixMultiply( matA, vecP, &vecAp );
float flDivisor = InnerProduct( vecAp, vecP );
float flAlpha = flRsOld / flDivisor;
AddScaledMatrixToMatrix( flAlpha, vecP, &vecX );
AddScaledMatrixToMatrix( -flAlpha, vecAp, &vecR );
float flRsNew = InnerProduct( vecR, vecR );
if ( flRsNew < flTolerance )
{
break;
}
ScaleMatrix( vecP, flRsNew / flRsOld );
AddMatrixToMatrix( vecR, &vecP );
flRsOld = flRsNew;
}
}
/// solve (A'*A) x=B via the conjugate gradient method. Code and naming conventions based on
/// the wikipedia article. Same as Conjugate gradient but allows passing in two matrices whose
/// product is used as the A matrix (in order to preserve sparsity)
template<class ATYPE, class APRIMETYPE, class XTYPE, class BTYPE>
void ConjugateGradient( ATYPE const &matA, APRIMETYPE const &matAPrime, BTYPE const &vecB, XTYPE &vecX, float flTolerance = 1.0e-20 )
{
XTYPE vecR1;
vecR1.SetDimensions( vecX.Height(), 1 );
MatrixMultiply( matA, vecX, &vecR1 );
XTYPE vecR;
vecR.SetDimensions( vecR1.Height(), 1 );
MatrixMultiply( matAPrime, vecR1, &vecR );
ScaleMatrix( vecR, -1 );
AddMatrixToMatrix( vecB, &vecR );
XTYPE vecP;
CopyMatrix( vecR, &vecP );
float flRsOld = InnerProduct( vecR, vecR );
for( int nIter = 0; nIter < 100; nIter++ )
{
XTYPE vecAp1;
MatrixMultiply( matA, vecP, &vecAp1 );
XTYPE vecAp;
MatrixMultiply( matAPrime, vecAp1, &vecAp );
float flDivisor = InnerProduct( vecAp, vecP );
float flAlpha = flRsOld / flDivisor;
AddScaledMatrixToMatrix( flAlpha, vecP, &vecX );
AddScaledMatrixToMatrix( -flAlpha, vecAp, &vecR );
float flRsNew = InnerProduct( vecR, vecR );
if ( flRsNew < flTolerance )
{
break;
}
ScaleMatrix( vecP, flRsNew / flRsOld );
AddMatrixToMatrix( vecR, &vecP );
flRsOld = flRsNew;
}
}
template<class ATYPE, class XTYPE, class BTYPE>
void LeastSquaresFit( ATYPE const &matA, BTYPE const &vecB, XTYPE &vecX )
{
// now, generate the normal equations
BTYPE vecBeta;
MatrixMath::MatrixMultiply( MatrixMath::TransposeMatrix( matA ), vecB, &vecBeta );
vecX.SetDimensions( matA.Width(), 1 );
MatrixMath::SetMatrixToIdentity( &vecX );
ATYPE matATransposed;
TransposeMatrix( matA, &matATransposed );
ConjugateGradient( matA, matATransposed, vecBeta, vecX, 1.0e-20 );
}
};
/// a simple fixed-size matrix class
template<int NUMROWS, int NUMCOLS> class CFixedMatrix
{
public:
FORCEINLINE int Width( void ) const { return NUMCOLS; }
FORCEINLINE int Height( void ) const { return NUMROWS; }
FORCEINLINE float Element( int nRow, int nCol ) const { return m_flValues[nRow][nCol]; }
FORCEINLINE void SetElement( int nRow, int nCol, float flValue ) { m_flValues[nRow][nCol] = flValue; }
FORCEINLINE void SetDimensions( int nNumRows, int nNumCols ) { Assert( ( nNumRows == NUMROWS ) && ( nNumCols == NUMCOLS ) ); }
private:
float m_flValues[NUMROWS][NUMCOLS];
};
#endif //matrixmath_h