source-engine/materialsystem/ctexturecompositor.cpp

2843 lines
90 KiB
C++
Raw Permalink Normal View History

2020-04-22 12:56:21 -04:00
//========= Copyright Valve Corporation, All rights reserved. ================================== //
//
// Purpose:
//
//============================================================================================== //
#include "pch_materialsystem.h"
#include "ctexturecompositor.h"
#include "materialsystem/itexture.h"
#include "materialsystem/imaterialsystem.h"
#include "materialsystem/combineoperations.h"
#include "texturemanager.h"
#define MATSYS_INTERNAL // Naughty!
#include "cmaterialsystem.h"
#include "tier0/memdbgon.h"
#ifndef _WINDOWS
#define sscanf_s sscanf
#endif
// If this is 0 or unset, we won't use the caching functionality.
#define WITH_TEX_COMPOSITE_CACHE 1
#ifdef STAGING_ONLY // Always should remain staging only.
ConVar r_texcomp_dump( "r_texcomp_dump", "0", FCVAR_NONE, "Whether we should dump the textures to disk or not. 1: Save all; 2: Save Final; 3: Save Final with name suitable for scripting; 4: Save Final and skip saving workshop icons." );
#endif
const int cMaxSelectors = 16;
// Ugh, this is annoying and matches TF's enums. That's lame. We should workaround this.
enum { Neutral = 0, Red = 2, Blue = 3 };
static int s_nDumpCount = 0;
static CInterlockedInt s_nCompositeCount = 0;
void ComputeTextureMatrixFromRectangle( VMatrix* pOutMat, const Vector2D& bl, const Vector2D& tl, const Vector2D& tr );
bool HasCycle( CTextureCompositorTemplate* pStartTempl );
CTextureCompositorTemplate* Advance( CTextureCompositorTemplate* pTmpl, int nSteps );
void PrintMinimumCycle( CTextureCompositorTemplate* pStartTempl );
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
struct CTCStageResult_t
{
ITexture* m_pTexture;
ITexture* m_pRenderTarget;
float m_fAdjustBlackPoint;
float m_fAdjustWhitePoint;
float m_fAdjustGamma;
matrix3x4_t m_mUvAdjust;
inline CTCStageResult_t()
: m_pTexture(NULL)
, m_pRenderTarget(NULL)
, m_fAdjustBlackPoint(0.0f)
, m_fAdjustWhitePoint(1.0f)
, m_fAdjustGamma(1.0f)
{
SetIdentityMatrix( m_mUvAdjust );
}
inline void Cleanup( CTextureCompositor* _comp )
{
if ( m_pRenderTarget )
_comp->ReleaseCompositorRenderTarget( m_pRenderTarget );
m_pTexture = NULL;
m_pRenderTarget = NULL;
}
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
class CTCStage : public IAsyncTextureOperationReceiver
{
public:
CTCStage();
protected:
// Called by Release()
virtual ~CTCStage();
public:
// IAsyncTextureOperationReceiver
virtual int AddRef() OVERRIDE;
virtual int Release() OVERRIDE;
virtual int GetRefCount() const OVERRIDE { return m_nReferenceCount; }
virtual void OnAsyncCreateComplete( ITexture* pTex, void* pExtraArgs ) OVERRIDE { }
virtual void OnAsyncFindComplete( ITexture* pTex, void* pExtraArgs ) OVERRIDE { }
virtual void OnAsyncMapComplete( ITexture* pTex, void* pExtraArgs, void* pMemory, int pPitch ) OVERRIDE { }
virtual void OnAsyncReadbackBegin( ITexture* pDst, ITexture* pSrc, void* pExtraArgs ) OVERRIDE { }
// Our stuff.
void Resolve( bool bFirstTime, CTextureCompositor* _comp );
inline ECompositeResolveStatus GetResolveStatus() const { return m_ResolveStatus; }
inline const CTCStageResult_t& GetResult() const { Assert( GetResolveStatus() == ECRS_Complete ); return m_Result; }
bool HasTeamSpecifics() const;
void ComputeRandomValues( int* pCurIndex, CUniformRandomStream* pRNGs, int nRNGCount );
inline void SetFirstChild( CTCStage* _stage ) { m_pFirstChild = _stage; }
inline void SetNextSibling( CTCStage* _stage ) { m_pNextSibling = _stage; }
inline CTCStage* GetFirstChild() { return m_pFirstChild; }
inline CTCStage* GetNextSibling() { return m_pNextSibling; }
inline const CTCStage* GetFirstChild() const { return m_pFirstChild; }
inline const CTCStage* GetNextSibling() const { return m_pNextSibling; }
void AppendChildren( const CUtlVector< CTCStage* >& _children )
{
// Do these in reverse order, they will wind up in the right order
FOR_EACH_VEC_BACK( _children, i )
{
CTCStage* childStage = _children[i];
childStage->SetNextSibling( GetFirstChild() );
SetFirstChild( childStage );
}
}
void CleanupChildResults( CTextureCompositor* _comp );
// Render a quad with _mat using _inputs to _destRT
void Render( ITexture* _destRT, IMaterial* _mat, const CUtlVector<CTCStageResult_t>& _inputs, CTextureCompositor* _comp, bool bClear );
void Cleanup( CTextureCompositor* _comp );
// Does this stage target a render target or a texture?
virtual bool DoesTargetRenderTarget() const = 0;
inline void SetResult( const CTCStageResult_t& _result )
{
Assert( m_ResolveStatus != ECRS_Complete );
m_Result = _result;
m_ResolveStatus = ECRS_Complete;
}
protected:
inline void SetResolveStatus( ECompositeResolveStatus _status )
{
m_ResolveStatus = _status;
}
// This function is called only once during the first ResolveTraversal, and is
// for the compositor to request its textures. Textures should not be requested
// before this or they can be held waaaay too long.
virtual void RequestTextures() = 0;
// This function will be called during Resolve traversal. At the point when this is called,
// all of this node's children will have had their resolve completed. Our siblings will
// not have resolved yet.
virtual void ResolveThis( CTextureCompositor* _comp ) = 0;
// This function is called during HasTeamSpecifics traversal.
virtual bool HasTeamSpecificsThis() const = 0;
virtual bool ComputeRandomValuesThis( CUniformRandomStream* pRNG ) = 0;
private:
CInterlockedInt m_nReferenceCount;
CTCStage* m_pFirstChild;
CTCStage* m_pNextSibling;
CTCStageResult_t m_Result;
ECompositeResolveStatus m_ResolveStatus;
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
typedef void ( *ParseSingleKV )( KeyValues* _kv, void* _dest );
struct ParseTableEntry
{
const char* keyName;
ParseSingleKV parseFunc;
size_t structOffset;
};
// ------------------------------------------------------------------------------------------------
struct Range
{
float low;
float high;
Range( )
: low( 0 )
, high( 0 )
{ }
Range( float _l, float _h )
: low( _l )
, high( _h )
{ }
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
void ParseBoolFromKV( KeyValues* _kv, void* _pDest )
{
bool* realDest = ( bool* ) _pDest;
( *realDest ) = _kv->GetBool();
}
// ------------------------------------------------------------------------------------------------
template<int N>
void ParseIntVectorFromKV( KeyValues* _kv, void* _pDest )
{
CCopyableUtlVector<int>* realDest = ( CCopyableUtlVector<int>* ) _pDest;
const int parsedValue = _kv->GetInt();
if ( realDest->Size() < N )
{
realDest->AddToTail( parsedValue );
}
else
{
DevWarning( "Too many numbers (>%d), ignoring the value '%d'.\n", N, parsedValue );
}
}
// ------------------------------------------------------------------------------------------------
template< class T >
CUtlString AsStringT( const T& _val )
{
#ifdef _WIN32
// Not sure why linux is unhappy here. Error messages unhelpful. Thanks, GCC.
static_assert( false, "Must add specialization for typename T" );
#endif
return CUtlString( "" );
}
// ------------------------------------------------------------------------------------------------
template<>
CUtlString AsStringT< int >( const int& _val )
{
char buffer[ 12 ];
V_sprintf_safe( buffer, "%d", _val );
return CUtlString( buffer );
}
// ------------------------------------------------------------------------------------------------
template< class T >
void ParseTFromKV( KeyValues* _kv, void* _pDest )
{
#ifdef _WIN32
// Not sure why linux is unhappy here. Error messages unhelpful. Thanks, GCC.
static_assert( false, "Must add specialization for typename T" );
#endif
}
// ------------------------------------------------------------------------------------------------
template<>
void ParseTFromKV< int >( KeyValues* _kv, void* _pDest )
{
int* realDest = ( int* ) _pDest;
( *realDest ) = _kv->GetInt();
}
// ------------------------------------------------------------------------------------------------
template<>
void ParseTFromKV< Vector2D >( KeyValues* _kv, void* _pDest )
{
Vector2D* realDest = ( Vector2D* ) _pDest;
Vector2D tmpDest;
int count = sscanf_s( _kv->GetString(), "%f %f", &tmpDest.x, &tmpDest.y );
if ( count != 2 )
{
Error( "Expected exactly two values, %d were provided.\n", count );
return;
}
*realDest = tmpDest;
}
// ------------------------------------------------------------------------------------------------
template< class T, int N = INT_MAX >
void ParseVectorFromKV( KeyValues* _kv, void* _pDest )
{
CCopyableUtlVector< T >* realDest = ( CCopyableUtlVector< T >* ) _pDest;
T parsedValue = T();
ParseTFromKV<T>( _kv, &parsedValue );
if ( realDest->Size() < N )
{
realDest->AddToTail( parsedValue );
}
else
{
DevWarning( "Too many entries (>%d), ignoring the value '%s'.\n", N, AsStringT( parsedValue ).Get() );
}
}
// ------------------------------------------------------------------------------------------------
void ParseRangeFromKV( KeyValues* _kv, void* _pDest )
{
Range* realDest = ( Range* ) _pDest;
Range tmpDest;
int count = sscanf_s( _kv->GetString(), "%f %f", &tmpDest.low, &tmpDest.high );
switch (count)
{
case 1:
// If we parse one, use the same value for low and high.
( *realDest ).low = tmpDest.low;
( *realDest ).high = tmpDest.low;
break;
case 2:
// If we parse two, they're both correct.
( *realDest ).low = tmpDest.low;
( *realDest ).high = tmpDest.high;
break;
// error cases
case EOF:
case 0:
default:
Error( "Incorrect number of numbers while parsing, using defaults. This error message should be improved\n" );
};
}
// ------------------------------------------------------------------------------------------------
void ParseInverseRangeFromKV( KeyValues* _kv, void* _pDest )
{
const float kSubstValue = 0.00001;
ParseRangeFromKV( _kv, _pDest );
Range* realDest = ( Range* ) _pDest;
if ( realDest->low != 0.0f )
{
( *realDest ).low = 1.0f / realDest->low;
}
else
{
Error( "Specified 0.0 for low value, that is illegal in this field. Substituting %.5f\n", kSubstValue );
( *realDest ).low = kSubstValue;
}
if ( realDest->high != 0.0f )
{
( *realDest ).high = 1.0f / realDest->high;
}
else
{
Error( "Specified 0.0 for high value, that is illegal in this field. Substituting %.5f\n", kSubstValue );
( *realDest ).high = kSubstValue;
}
}
// ------------------------------------------------------------------------------------------------
template < int Div >
void ParseRangeThenDivideBy( KeyValues *_kv, void* _pDest )
{
static_assert( Div != 0, "Cannot specify a divisor of 0." );
float fDiv = (float) Div;
ParseRangeFromKV( _kv, _pDest );
Range* realDest = ( Range* ) _pDest;
( *realDest ).low = ( *realDest ).low / fDiv;
( *realDest ).high = ( *realDest ).high / fDiv;
}
// ------------------------------------------------------------------------------------------------
void ParseStringFromKV( KeyValues* _kv, void* _pDest )
{
CUtlString* realDest = ( CUtlString* ) _pDest;
(*realDest) = _kv->GetString();
}
// ------------------------------------------------------------------------------------------------
struct TextureStageParameters
{
CUtlString m_pTexFilename;
CUtlString m_pTexRedFilename;
CUtlString m_pTexBlueFilename;
Range m_AdjustBlack;
Range m_AdjustOffset;
Range m_AdjustGamma;
Range m_Rotation;
Range m_TranslateU;
Range m_TranslateV;
Range m_ScaleUV;
bool m_AllowFlipU;
bool m_AllowFlipV;
bool m_Evaluate;
TextureStageParameters()
: m_AdjustBlack( 0, 0 )
, m_AdjustOffset( 1, 1 )
, m_AdjustGamma( 1, 1 )
, m_Rotation( 0 , 0 )
, m_TranslateU( 0, 0 )
, m_TranslateV( 0, 0 )
, m_ScaleUV( 1, 1 )
, m_AllowFlipU( false )
, m_AllowFlipV( false )
, m_Evaluate( true )
{ }
};
// ------------------------------------------------------------------------------------------------
const ParseTableEntry cTextureStageParametersParseTable[] =
{
{ "texture", ParseStringFromKV, offsetof( TextureStageParameters, m_pTexFilename ) },
{ "texture_red", ParseStringFromKV, offsetof( TextureStageParameters, m_pTexRedFilename ) },
{ "texture_blue", ParseStringFromKV, offsetof( TextureStageParameters, m_pTexBlueFilename ) },
{ "adjust_black", ParseRangeThenDivideBy<255>, offsetof( TextureStageParameters, m_AdjustBlack ) },
{ "adjust_offset", ParseRangeThenDivideBy<255>, offsetof( TextureStageParameters, m_AdjustOffset ) },
{ "adjust_gamma", ParseInverseRangeFromKV, offsetof( TextureStageParameters, m_AdjustGamma ) },
{ "rotation", ParseRangeFromKV, offsetof( TextureStageParameters, m_Rotation ) },
{ "translate_u", ParseRangeFromKV, offsetof( TextureStageParameters, m_TranslateU ) },
{ "translate_v", ParseRangeFromKV, offsetof( TextureStageParameters, m_TranslateV ) },
{ "scale_uv", ParseRangeFromKV, offsetof( TextureStageParameters, m_ScaleUV ) },
{ "flip_u", ParseBoolFromKV, offsetof( TextureStageParameters, m_AllowFlipU ) },
{ "flip_v", ParseBoolFromKV, offsetof( TextureStageParameters, m_AllowFlipV ) },
{ "evaluate?", ParseBoolFromKV, offsetof( TextureStageParameters, m_Evaluate ) },
{ 0, 0 }
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
class CTCTextureStage : public CTCStage
{
public:
CTCTextureStage( const TextureStageParameters& _tsp, uint32 nTexCompositeCreateFlags )
: m_Parameters( _tsp )
, m_pTex( NULL )
, m_pTexRed( NULL )
, m_pTexBlue( NULL )
{
}
virtual ~CTCTextureStage()
{
SafeRelease( &m_pTex );
SafeRelease( &m_pTexBlue );
SafeRelease( &m_pTexRed );
}
virtual void OnAsyncFindComplete( ITexture* pTex, void* pExtraArgs )
{
switch ( ( int ) pExtraArgs )
{
case Neutral:
SafeAssign( &m_pTex, pTex );
break;
case Red:
SafeAssign( &m_pTexRed, pTex );
break;
case Blue:
SafeAssign( &m_pTexBlue, pTex );
break;
default:
Assert( !"Unexpected value passed to OnAsyncFindComplete" );
break;
};
}
virtual bool DoesTargetRenderTarget() const { return false; }
protected:
bool AreTexturesLoaded() const
{
if ( !m_Parameters.m_pTexFilename.IsEmpty() && !m_pTex )
return false;
if ( !m_Parameters.m_pTexRedFilename.IsEmpty() && !m_pTexRed )
return false;
if ( !m_Parameters.m_pTexBlueFilename.IsEmpty() && !m_pTexBlue )
return false;
return true;
}
ITexture* GetTeamSpecificTexture( int nTeam )
{
if ( nTeam == Red && m_pTexRed )
return m_pTexRed;
if ( nTeam == Blue && m_pTexBlue )
return m_pTexBlue;
return m_pTex;
}
virtual void RequestTextures()
{
if ( !m_Parameters.m_pTexFilename.IsEmpty() )
materials->AsyncFindTexture( m_Parameters.m_pTexFilename.Get(), TEXTURE_GROUP_RUNTIME_COMPOSITE, this, ( void* ) Neutral, false, TEXTUREFLAGS_IMMEDIATE_CLEANUP );
if ( !m_Parameters.m_pTexRedFilename.IsEmpty() )
materials->AsyncFindTexture( m_Parameters.m_pTexRedFilename.Get(), TEXTURE_GROUP_RUNTIME_COMPOSITE, this, ( void* ) Red, false, TEXTUREFLAGS_IMMEDIATE_CLEANUP );
if ( !m_Parameters.m_pTexBlueFilename.IsEmpty() )
materials->AsyncFindTexture( m_Parameters.m_pTexBlueFilename.Get(), TEXTURE_GROUP_RUNTIME_COMPOSITE, this, ( void* ) Blue, false, TEXTUREFLAGS_IMMEDIATE_CLEANUP );
}
virtual void ResolveThis( CTextureCompositor* _comp )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
// We shouldn't have any children, we're going to ignore them anyways.
Assert( GetFirstChild() == NULL );
ECompositeResolveStatus resolveStatus = GetResolveStatus();
// If we're done, we're done.
if ( resolveStatus == ECRS_Complete || resolveStatus == ECRS_Error )
return;
if ( resolveStatus == ECRS_Scheduled )
SetResolveStatus( ECRS_PendingTextureLoads );
// Someone is misusing this node if this assert fires.
Assert( GetResolveStatus() == ECRS_PendingTextureLoads );
// When the texture has finished loading, this will be set to the texture we should use.
if ( !AreTexturesLoaded() )
return;
if ( !m_pTex && !m_pTexRed && !m_pTexBlue )
{
_comp->Error( false, "Invalid texture_lookup node, must specify at least texture (or texture_red and texture_blue) or all of them.\n" );
return;
}
if ( m_pTex && m_pTex->IsError() )
{
_comp->Error( false, "Failed to load texture '%s', this is non-recoverable.\n", m_Parameters.m_pTexFilename.Get() );
return;
}
if ( m_pTexRed && m_pTexRed->IsError() )
{
_comp->Error( false, "Failed to load texture_red '%s', this is non-recoverable.\n", m_Parameters.m_pTexRedFilename.Get() );
return;
}
if ( m_pTexBlue && m_pTexBlue->IsError() )
{
_comp->Error( false, "Failed to load texture_blue '%s', this is non-recoverable.\n", m_Parameters.m_pTexBlueFilename.Get() );
return;
}
CTCStageResult_t res;
res.m_pTexture = GetTeamSpecificTexture( _comp->GetTeamNumber() );
res.m_fAdjustBlackPoint = m_fAdjustBlack;
res.m_fAdjustWhitePoint = m_fAdjustWhite;
res.m_fAdjustGamma = m_fAdjustGamma;
// Store the matrix into the uv adjustment matrix
m_mTextureAdjust.Set3x4( res.m_mUvAdjust );
SetResult( res );
CleanupChildResults( _comp );
tmMessage( TELEMETRY_LEVEL0, TMMF_ICON_NOTE, "Completed: %s", __FUNCTION__ );
}
virtual bool HasTeamSpecificsThis() const OVERRIDE
{
return !m_Parameters.m_pTexBlueFilename.IsEmpty();
}
virtual bool ComputeRandomValuesThis( CUniformRandomStream* pRNG ) OVERRIDE
{
// If you change the order of these random numbers being generated, or add new ones, you will
// change the look of existing players' weapons! Don't do that.
const bool shouldFlipU = m_Parameters.m_AllowFlipU ? pRNG->RandomInt( 0, 1 ) != 0 : false;
const bool shouldFlipV = m_Parameters.m_AllowFlipV ? pRNG->RandomInt( 0, 1 ) != 0 : false;
const float translateU = pRNG->RandomFloat( m_Parameters.m_TranslateU.low, m_Parameters.m_TranslateU.high );
const float translateV = pRNG->RandomFloat( m_Parameters.m_TranslateV.low, m_Parameters.m_TranslateV.high );
const float rotation = pRNG->RandomFloat( m_Parameters.m_Rotation.low, m_Parameters.m_Rotation.high );
const float scaleUV = pRNG->RandomFloat( m_Parameters.m_ScaleUV.low, m_Parameters.m_ScaleUV.high );
const float adjustBlack = pRNG->RandomFloat( m_Parameters.m_AdjustBlack.low, m_Parameters.m_AdjustBlack.high );
const float adjustOffset = pRNG->RandomFloat( m_Parameters.m_AdjustOffset.low, m_Parameters.m_AdjustOffset.high );
const float adjustGamma = pRNG->RandomFloat( m_Parameters.m_AdjustGamma.low, m_Parameters.m_AdjustGamma.high );
const float adjustWhite = adjustBlack + adjustOffset;
m_fAdjustBlack = adjustBlack;
m_fAdjustWhite = adjustWhite;
m_fAdjustGamma = adjustGamma;
const float finalScaleU = scaleUV * ( shouldFlipU ? -1.0f : 1.0f );
const float finalScaleV = scaleUV * ( shouldFlipV ? -1.0f : 1.0f );
MatrixBuildRotateZ( m_mTextureAdjust, rotation );
m_mTextureAdjust = m_mTextureAdjust.Scale( Vector( finalScaleU, finalScaleV, 1.0f ) );
MatrixTranslate( m_mTextureAdjust, Vector( translateU, translateV, 0 ) );
// Copy W into Z because we're doing a texture matrix.
m_mTextureAdjust[ 0 ][ 2 ] = m_mTextureAdjust[ 0 ][ 3 ];
m_mTextureAdjust[ 1 ][ 2 ] = m_mTextureAdjust[ 1 ][ 3 ];
m_mTextureAdjust[ 2 ][ 2 ] = 1.0f;
return true;
}
private:
TextureStageParameters m_Parameters;
ITexture* m_pTex;
ITexture* m_pTexRed;
ITexture* m_pTexBlue;
// Random values here
float m_fAdjustBlack;
float m_fAdjustWhite;
float m_fAdjustGamma;
VMatrix m_mTextureAdjust;
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// Keep in sync with CombineOperation
const char* cCombineMaterialName[] =
{
"dev/CompositorMultiply",
"dev/CompositorAdd",
"dev/CompositorLerp",
"dev/CompositorSelect",
"\0 ECO_Legacy_Lerp_FirstPass", // Procedural; starting with \0 will skip precaching
"\0 ECO_Legacy_Lerp_SecondPass", // Procedural; starting with \0 will skip precaching
"dev/CompositorBlend",
"\0 ECO_LastPrecacheMaterial", //
"CompositorError",
NULL
};
static_assert( ARRAYSIZE( cCombineMaterialName ) == ECO_COUNT + 1, "cCombineMaterialName and ECombineOperation are out of sync." );
// ------------------------------------------------------------------------------------------------
struct CombineStageParameters
{
ECombineOperation m_CombineOp;
Range m_AdjustBlack;
Range m_AdjustOffset;
Range m_AdjustGamma;
Range m_Rotation;
Range m_TranslateU;
Range m_TranslateV;
Range m_ScaleUV;
bool m_AllowFlipU;
bool m_AllowFlipV;
bool m_Evaluate;
CombineStageParameters()
: m_CombineOp( ECO_Error )
, m_AdjustBlack( 0, 0 )
, m_AdjustOffset( 1, 1 )
, m_AdjustGamma( 1, 1 )
, m_Rotation( 0 , 0 )
, m_TranslateU( 0, 0 )
, m_TranslateV( 0, 0 )
, m_ScaleUV( 1, 1 )
, m_AllowFlipU( false )
, m_AllowFlipV( false )
, m_Evaluate( true )
{ }
};
// ------------------------------------------------------------------------------------------------
void ParseOperationFromKV( KeyValues* _kv, void* _pDest )
{
ECombineOperation* realDest = ( ECombineOperation* ) _pDest;
const char* opStr = _kv->GetString();
if ( V_stricmp( "multiply", opStr ) == 0 )
(*realDest) = ECO_Multiply;
else if ( V_stricmp( "add", opStr ) == 0 )
(*realDest) = ECO_Add;
else if ( V_stricmp( "lerp", opStr) == 0 )
(*realDest) = ECO_Lerp;
else
(*realDest) = ECO_Error;
}
// ------------------------------------------------------------------------------------------------
const ParseTableEntry cCombineStageParametersParseTable[] =
{
{ "adjust_black", ParseRangeThenDivideBy<255>, offsetof( CombineStageParameters, m_AdjustBlack ) },
{ "adjust_offset", ParseRangeThenDivideBy<255>, offsetof( CombineStageParameters, m_AdjustOffset ) },
{ "adjust_gamma", ParseInverseRangeFromKV, offsetof( CombineStageParameters, m_AdjustGamma ) },
{ "rotation", ParseRangeFromKV, offsetof( CombineStageParameters, m_Rotation ) },
{ "translate_u", ParseRangeFromKV, offsetof( CombineStageParameters, m_TranslateU ) },
{ "translate_v", ParseRangeFromKV, offsetof( CombineStageParameters, m_TranslateV ) },
{ "scale_uv", ParseRangeFromKV, offsetof( CombineStageParameters, m_ScaleUV ) },
{ "flip_u", ParseBoolFromKV, offsetof( CombineStageParameters, m_AllowFlipU ) },
{ "flip_v", ParseBoolFromKV, offsetof( CombineStageParameters, m_AllowFlipV ) },
{ "evaluate?", ParseBoolFromKV, offsetof( CombineStageParameters, m_Evaluate ) },
{ 0, 0 }
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
class CTCCombineStage : public CTCStage
{
public:
CTCCombineStage( const CombineStageParameters& _csp, uint32 nTexCompositeCreateFlags )
: m_Parameters( _csp )
, m_pMaterial( NULL )
{
Assert( m_Parameters.m_CombineOp >= 0 && m_Parameters.m_CombineOp < ECO_COUNT );
SafeAssign( &m_pMaterial, materials->FindMaterial( cCombineMaterialName[ m_Parameters.m_CombineOp ], TEXTURE_GROUP_RUNTIME_COMPOSITE ) );
}
virtual ~CTCCombineStage()
{
SafeRelease( &m_pMaterial );
}
virtual bool DoesTargetRenderTarget() const { return true; }
protected:
virtual void RequestTextures() { /* No textures here */ }
virtual void ResolveThis( CTextureCompositor* _comp )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
ECompositeResolveStatus resolveStatus = GetResolveStatus();
// If we're done, we're done.
if ( resolveStatus == ECRS_Complete || resolveStatus == ECRS_Error )
return;
if ( resolveStatus == ECRS_Scheduled )
SetResolveStatus( ECRS_PendingTextureLoads );
// Someone is misusing this node if this assert fires.
Assert( GetResolveStatus() == ECRS_PendingTextureLoads );
for ( CTCStage* child = GetFirstChild(); child; child = child->GetNextSibling() )
{
// If any child isn't ready to go, we're not ready to go.
if ( child->GetResolveStatus() != ECRS_Complete )
return;
}
ITexture* pRenderTarget = _comp->AllocateCompositorRenderTarget();
CUtlVector<CTCStageResult_t> results;
uint childCount = 0;
for ( CTCStage* child = GetFirstChild(); child; child = child->GetNextSibling() )
{
results.AddToTail( child->GetResult() );
++childCount;
}
// TODO: If there are more than 8 children, need to split them into multiple groups here. Skip it for now.
Render( pRenderTarget, m_pMaterial, results, _comp, true );
CTCStageResult_t res;
res.m_pRenderTarget = pRenderTarget;
res.m_fAdjustBlackPoint = m_fAdjustBlack;
res.m_fAdjustWhitePoint = m_fAdjustWhite;
res.m_fAdjustGamma = m_fAdjustGamma;
SetResult( res );
// As soon as we have scheduled the read of a child render target, we can release that
// texture back to the pool for use by another stage. Everything is pipelined, so this just
// works.
CleanupChildResults( _comp );
tmMessage( TELEMETRY_LEVEL0, TMMF_ICON_NOTE, "Completed: %s", __FUNCTION__ );
}
virtual bool HasTeamSpecificsThis() const OVERRIDE{ return false; }
virtual bool ComputeRandomValuesThis( CUniformRandomStream* pRNG ) OVERRIDE
{
const float adjustBlack = pRNG->RandomFloat( m_Parameters.m_AdjustBlack.low, m_Parameters.m_AdjustBlack.high );
const float adjustOffset = pRNG->RandomFloat( m_Parameters.m_AdjustOffset.low, m_Parameters.m_AdjustOffset.high );
const float adjustGamma = pRNG->RandomFloat( m_Parameters.m_AdjustGamma.low, m_Parameters.m_AdjustGamma.high );
const float adjustWhite = adjustBlack + adjustOffset;
m_fAdjustBlack = adjustBlack;
m_fAdjustWhite = adjustWhite;
m_fAdjustGamma = adjustGamma;
return true;
}
private:
CombineStageParameters m_Parameters;
IMaterial* m_pMaterial;
float m_fAdjustBlack;
float m_fAdjustWhite;
float m_fAdjustGamma;
};
// ------------------------------------------------------------------------------------------------
struct SelectStageParameters
{
CUtlString m_pTexFilename;
CCopyableUtlVector<int> m_Select;
bool m_Evaluate;
SelectStageParameters()
: m_Evaluate( true )
{
}
};
// ------------------------------------------------------------------------------------------------
const ParseTableEntry cSelectStageParametersParseTable[] =
{
{ "groups", ParseStringFromKV, offsetof( SelectStageParameters, m_pTexFilename ) },
{ "select", ParseVectorFromKV< int, cMaxSelectors >, offsetof( SelectStageParameters, m_Select ) },
{ "evaluate?", ParseBoolFromKV, offsetof( SelectStageParameters, m_Evaluate ) },
{ 0, 0 }
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
class CTCSelectStage : public CTCStage
{
public:
CTCSelectStage( const SelectStageParameters& _ssp, uint32 nTexCompositeCreateFlags )
: m_Parameters( _ssp )
, m_pMaterial( NULL )
, m_pTex( NULL )
{
SafeAssign( &m_pMaterial, materials->FindMaterial( cCombineMaterialName[ ECO_Select ], TEXTURE_GROUP_RUNTIME_COMPOSITE ) );
}
virtual ~CTCSelectStage()
{
SafeRelease( &m_pMaterial );
SafeRelease( &m_pTex );
}
virtual void OnAsyncFindComplete( ITexture* pTex, void* pExtraArgs ) { SafeAssign( &m_pTex, pTex ); }
virtual bool DoesTargetRenderTarget() const { return true; }
protected:
virtual void RequestTextures()
{
materials->AsyncFindTexture( m_Parameters.m_pTexFilename.Get(), TEXTURE_GROUP_RUNTIME_COMPOSITE, this, NULL, false, TEXTUREFLAGS_IMMEDIATE_CLEANUP );
}
virtual void ResolveThis( CTextureCompositor* _comp )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
// We shouldn't have any children, we're going to ignore them anyways.
Assert( GetFirstChild() == NULL );
ECompositeResolveStatus resolveStatus = GetResolveStatus();
// If we're done, we're done.
if ( resolveStatus == ECRS_Complete || resolveStatus == ECRS_Error )
return;
if ( resolveStatus == ECRS_Scheduled )
SetResolveStatus( ECRS_PendingTextureLoads );
// Someone is misusing this node if this assert fires.
Assert( GetResolveStatus() == ECRS_PendingTextureLoads );
// When the texture has finished loading, this will be set to the texture we should use.
if ( m_pTex == NULL )
return;
if ( m_pTex->IsError() )
{
_comp->Error( false, "Failed to load texture %s, this is non-recoverable.\n", m_Parameters.m_pTexFilename.Get() );
return;
}
ITexture* pRenderTarget = _comp->AllocateCompositorRenderTarget();
char buffer[128];
for ( int i = 0; i < cMaxSelectors; ++i )
{
bool bFound = false;
V_snprintf( buffer, ARRAYSIZE( buffer ), "$selector%d", i );
IMaterialVar* pVar = m_pMaterial->FindVar( buffer, &bFound );
Assert(bFound);
if ( i < m_Parameters.m_Select.Size() )
pVar->SetIntValue( m_Parameters.m_Select[i] );
else
pVar->SetIntValue( 0 );
}
CTCStageResult_t inRes;
inRes.m_pTexture = m_pTex;
CUtlVector<CTCStageResult_t> fakeResults;
fakeResults.AddToTail( inRes );
Render( pRenderTarget, m_pMaterial, fakeResults, _comp, true );
CTCStageResult_t outRes;
outRes.m_pRenderTarget = pRenderTarget;
SetResult( outRes );
CleanupChildResults( _comp );
tmMessage( TELEMETRY_LEVEL0, TMMF_ICON_NOTE, "Completed: %s", __FUNCTION__ );
}
virtual bool HasTeamSpecificsThis() const OVERRIDE { return false; }
virtual bool ComputeRandomValuesThis( CUniformRandomStream* pRNG ) OVERRIDE
{
// No RNG here.
return false;
}
private:
SelectStageParameters m_Parameters;
IMaterial* m_pMaterial;
ITexture* m_pTex;
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
struct Sticker_t
{
float m_fWeight; // Random likelihood this one is to be selected
CUtlString m_baseFilename; // Name of the base file for the sticker (the albedo).
CUtlString m_specFilename; // Name of the specular file for the sticker, or if blank we will assume it is baseFilename + _spec + baseExtension
Sticker_t()
: m_fWeight( 1.0 )
{ }
};
// ------------------------------------------------------------------------------------------------
template<>
void ParseTFromKV< Sticker_t >( KeyValues* _kv, void* _pDest )
{
Sticker_t* realDest = ( Sticker_t* ) _pDest;
Sticker_t tmpDest;
tmpDest.m_fWeight = _kv->GetFloat( "weight", 1.0 );
tmpDest.m_baseFilename = _kv->GetString( "base" );
KeyValues* pSpec = _kv->FindKey( "spec" );
if ( pSpec )
tmpDest.m_specFilename = pSpec->GetString();
else
{
CUtlString specPath = tmpDest.m_baseFilename.StripExtension()
+ "_s"
+ tmpDest.m_baseFilename.GetExtension();
tmpDest.m_specFilename = specPath;
}
*realDest = tmpDest;
}
// ------------------------------------------------------------------------------------------------
template <>
CUtlString AsStringT< Sticker_t >( const Sticker_t& _val )
{
char buffer[ 80 ];
V_sprintf_safe( buffer, "[ weight %.2f; base \"%s\"; spec \"%s\" ]", _val.m_fWeight, _val.m_baseFilename.Get(), _val.m_specFilename.Get() );
return CUtlString( buffer );
}
// ------------------------------------------------------------------------------------------------
template< class T >
struct Settable_t
{
T m_val;
bool m_bSet;
Settable_t()
: m_val( T() )
, m_bSet( false )
{ }
};
// ------------------------------------------------------------------------------------------------
template < class T >
void ParseSettable( KeyValues *_kv, void* _pDest )
{
Settable_t<T> *pSettable = ( Settable_t<T>* )_pDest;
ParseTFromKV<T>( _kv, &pSettable->m_val );
( *pSettable ).m_bSet = true;
}
// ------------------------------------------------------------------------------------------------
struct ApplyStickerStageParameters
{
CCopyableUtlVector< Sticker_t > m_possibleStickers;
Settable_t< Vector2D > m_vDestBL;
Settable_t< Vector2D > m_vDestTL;
Settable_t< Vector2D > m_vDestTR;
Range m_AdjustBlack;
Range m_AdjustOffset;
Range m_AdjustGamma;
bool m_Evaluate;
ApplyStickerStageParameters()
: m_AdjustBlack( 0, 0 )
, m_AdjustOffset( 1, 1 )
, m_AdjustGamma( 1, 1 )
, m_Evaluate( true )
{ }
};
// ------------------------------------------------------------------------------------------------
const ParseTableEntry cApplyStickerStageParametersParseTable[] =
{
{ "sticker", ParseVectorFromKV< Sticker_t >, offsetof( ApplyStickerStageParameters, m_possibleStickers ) },
{ "dest_bl", ParseSettable< Vector2D >, offsetof( ApplyStickerStageParameters, m_vDestBL ) },
{ "dest_tl", ParseSettable< Vector2D >, offsetof( ApplyStickerStageParameters, m_vDestTL ) },
{ "dest_tr", ParseSettable< Vector2D >, offsetof( ApplyStickerStageParameters, m_vDestTR ) },
{ "adjust_black", ParseRangeThenDivideBy< 255 >, offsetof( ApplyStickerStageParameters, m_AdjustBlack ) },
{ "adjust_offset", ParseRangeThenDivideBy< 255 >, offsetof( ApplyStickerStageParameters, m_AdjustOffset ) },
{ "adjust_gamma", ParseInverseRangeFromKV, offsetof( ApplyStickerStageParameters, m_AdjustGamma ) },
{ "evaluate?", ParseBoolFromKV, offsetof( ApplyStickerStageParameters, m_Evaluate ) },
{ 0, 0 }
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
class CTCApplyStickerStage : public CTCStage
{
enum { Albedo = 0, Specular = 1 };
public:
CTCApplyStickerStage( const ApplyStickerStageParameters& _assp, uint32 nTexCompositeCreateFlags )
: m_Parameters( _assp )
, m_pMaterial( NULL )
, m_pTex( NULL )
, m_pTexSpecular( NULL )
, m_nChoice( 0 )
{
SafeAssign( &m_pMaterial, materials->FindMaterial( cCombineMaterialName[ ECO_Blend ], TEXTURE_GROUP_RUNTIME_COMPOSITE ) );
}
virtual ~CTCApplyStickerStage()
{
SafeRelease( &m_pTex );
SafeRelease( &m_pTexSpecular );
SafeRelease( &m_pMaterial );
}
virtual bool DoesTargetRenderTarget() const { return true; }
protected:
bool AreTexturesLoaded() const
{
if ( !m_Parameters.m_possibleStickers[ m_nChoice ].m_baseFilename.IsEmpty() && !m_pTex )
return false;
if ( !m_Parameters.m_possibleStickers[ m_nChoice ].m_specFilename.IsEmpty() && !m_pTexSpecular )
return false;
return true;
}
virtual void RequestTextures()
{
if ( !m_Parameters.m_possibleStickers[ m_nChoice ].m_baseFilename.IsEmpty() )
materials->AsyncFindTexture( m_Parameters.m_possibleStickers[ m_nChoice ].m_baseFilename.Get(), TEXTURE_GROUP_RUNTIME_COMPOSITE, this, ( void* ) Albedo, false, TEXTUREFLAGS_IMMEDIATE_CLEANUP );
if ( !m_Parameters.m_possibleStickers[ m_nChoice ].m_specFilename.IsEmpty() )
materials->AsyncFindTexture( m_Parameters.m_possibleStickers[ m_nChoice ].m_specFilename.Get(), TEXTURE_GROUP_RUNTIME_COMPOSITE, this, ( void* ) Specular, false, TEXTUREFLAGS_IMMEDIATE_CLEANUP );
}
virtual void ResolveThis( CTextureCompositor* _comp )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
ECompositeResolveStatus resolveStatus = GetResolveStatus();
// If we're done, we're done.
if ( resolveStatus == ECRS_Complete || resolveStatus == ECRS_Error )
return;
if ( resolveStatus == ECRS_Scheduled )
SetResolveStatus( ECRS_PendingTextureLoads );
// Someone is misusing this node if this assert fires.
Assert( GetResolveStatus() == ECRS_PendingTextureLoads );
CTCStage* pChild = GetFirstChild();
if ( pChild != NULL && pChild->GetResolveStatus() != ECRS_Complete )
return;
if ( !AreTexturesLoaded() )
return;
// Ensure we only have zero or one direct children.
Assert( !pChild || pChild->GetNextSibling() == NULL );
// We expect exactly one or zero children. If we have a child, use its render target to render to, otherwise
// Get one and use that.
ITexture* pRenderTarget = _comp->AllocateCompositorRenderTarget();
CUtlVector<CTCStageResult_t> results;
// If we have a child, great! Use it. If not,
if ( pChild )
results.AddToTail( pChild->GetResult() );
else
{
CTCStageResult_t fakeRes;
fakeRes.m_pTexture = materials->FindTexture( "black", TEXTURE_GROUP_RUNTIME_COMPOSITE );
}
CTCStageResult_t baseTex, specTex;
baseTex.m_pTexture = m_pTex;
m_mTextureAdjust.Set3x4( baseTex.m_mUvAdjust );
results.AddToTail( baseTex );
specTex.m_pTexture = m_pTexSpecular;
m_mTextureAdjust.Set3x4( specTex.m_mUvAdjust );
results.AddToTail( specTex );
Render( pRenderTarget, m_pMaterial, results, _comp, pChild == NULL );
CTCStageResult_t res;
res.m_pRenderTarget = pRenderTarget;
res.m_fAdjustBlackPoint = m_fAdjustBlack;
res.m_fAdjustWhitePoint = m_fAdjustWhite;
res.m_fAdjustGamma = m_fAdjustGamma;
SetResult( res );
// As soon as we have scheduled the read of a child render target, we can release that
// texture back to the pool for use by another stage. Everything is pipelined, so this just
// works.
CleanupChildResults( _comp );
tmMessage( TELEMETRY_LEVEL0, TMMF_ICON_NOTE, "Completed: %s", __FUNCTION__ );
}
virtual bool HasTeamSpecificsThis() const OVERRIDE{ return false; }
virtual bool ComputeRandomValuesThis( CUniformRandomStream* pRNG ) OVERRIDE
{
float m_fTotalWeight = 0;
FOR_EACH_VEC( m_Parameters.m_possibleStickers, i )
{
m_fTotalWeight += m_Parameters.m_possibleStickers[ i ].m_fWeight;
}
float fWeight = pRNG->RandomFloat( 0.0f, m_fTotalWeight );
FOR_EACH_VEC( m_Parameters.m_possibleStickers, i )
{
const float thisWeight = m_Parameters.m_possibleStickers[ i ].m_fWeight;
if ( fWeight < thisWeight )
{
m_nChoice = i;
break;
}
else
{
fWeight -= thisWeight;
}
}
const float adjustBlack = pRNG->RandomFloat( m_Parameters.m_AdjustBlack.low, m_Parameters.m_AdjustBlack.high );
const float adjustOffset = pRNG->RandomFloat( m_Parameters.m_AdjustOffset.low, m_Parameters.m_AdjustOffset.high );
const float adjustGamma = pRNG->RandomFloat( m_Parameters.m_AdjustGamma.low, m_Parameters.m_AdjustGamma.high );
const float adjustWhite = adjustBlack + adjustOffset;
m_fAdjustBlack = adjustBlack;
m_fAdjustWhite = adjustWhite;
m_fAdjustGamma = adjustGamma;
ComputeTextureMatrixFromRectangle( &m_mTextureAdjust, m_Parameters.m_vDestBL.m_val, m_Parameters.m_vDestTL.m_val, m_Parameters.m_vDestTR.m_val );
return true;
}
virtual void OnAsyncFindComplete( ITexture* pTex, void* pExtraArgs )
{
switch ( ( int ) pExtraArgs )
{
case Albedo:
SafeAssign( &m_pTex, pTex );
break;
case Specular:
// It's okay if this is the case, we just need to substitute with the black texture.
if ( pTex->IsError() )
{
pTex = materials->FindTexture( "black", TEXTURE_GROUP_RUNTIME_COMPOSITE );
}
SafeAssign( &m_pTexSpecular, pTex );
break;
default:
Assert( !"Unexpected value passed to OnAsyncFindComplete" );
break;
};
}
private:
ApplyStickerStageParameters m_Parameters;
IMaterial* m_pMaterial;
ITexture* m_pTex;
ITexture* m_pTexSpecular;
int m_nChoice;
float m_fAdjustBlack;
float m_fAdjustWhite;
float m_fAdjustGamma;
VMatrix m_mTextureAdjust;
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// This is a procedural stage we use to copy the results of a composite into a texture so we can
// release the render targets back to a pool to be used later.
class CTCCopyStage : public CTCStage
{
public:
CTCCopyStage()
: m_pTex( NULL )
{
}
~CTCCopyStage()
{
SafeRelease( &m_pTex );
}
virtual void OnAsyncCreateComplete( ITexture* pTex, void* pExtraArgs )
{
SafeAssign( &m_pTex, pTex );
tmMessage( TELEMETRY_LEVEL0, TMMF_ICON_NOTE, "Completed: %s", __FUNCTION__ );
}
virtual bool DoesTargetRenderTarget() const { return false; }
private:
virtual void RequestTextures() { /* No input textures */ }
virtual void ResolveThis( CTextureCompositor* _comp )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
ECompositeResolveStatus resolveStatus = GetResolveStatus();
// If we're done, we're done.
if ( resolveStatus == ECRS_Complete || resolveStatus == ECRS_Error )
return;
if ( resolveStatus == ECRS_Scheduled )
SetResolveStatus( ECRS_PendingTextureLoads );
Assert( GetFirstChild() != NULL );
// Can't move forward until the child is done.
if ( GetFirstChild()->GetResolveStatus() != ECRS_Complete )
return;
// Compositing has completed!
if ( m_pTex )
{
if ( m_pTex->IsError() )
{
_comp->Error( false, "Error occurred copying render target to texture. This is fatal." );
return;
}
CTCStageResult_t res;
res.m_pTexture = m_pTex;
#ifdef STAGING_ONLY
if ( r_texcomp_dump.GetInt() == 2 )
{
char buffer[128];
V_snprintf( buffer, ARRAYSIZE(buffer), "composite_%s_result_%02d.tga", _comp->GetName().Get(), s_nDumpCount++ );
GetFirstChild()->GetResult().m_pRenderTarget->SaveToFile( buffer );
}
#endif
SetResult( res );
return;
}
if ( resolveStatus == ECRS_PendingComposites )
return;
ImageFormat fmt = IMAGE_FORMAT_DXT5_RUNTIME;
if ( _comp->GetCreateFlags() & TEX_COMPOSITE_CREATE_FLAGS_NO_COMPRESSION )
fmt = IMAGE_FORMAT_RGBA8888;
bool bGenMipmaps = !( _comp->GetCreateFlags() & TEX_COMPOSITE_CREATE_FLAGS_NO_MIPMAPS );
// We want to do this once only.
char buffer[_MAX_PATH];
_comp->GetTextureName( buffer, ARRAYSIZE( buffer ) );
int nCreateFlags = TEXTUREFLAGS_IMMEDIATE_CLEANUP
| TEXTUREFLAGS_TRILINEAR
| TEXTUREFLAGS_ANISOTROPIC;
#if defined( STAGING_ONLY )
#if WITH_TEX_COMPOSITE_CACHE
if ( r_texcomp_dump.GetInt() == 0 && ( _comp->GetCreateFlags() & TEX_COMPOSITE_CREATE_FLAGS_FORCE ) == 0 )
nCreateFlags = 0;
#endif
#endif
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->AsyncCreateTextureFromRenderTarget( GetFirstChild()->GetResult().m_pRenderTarget, buffer, fmt, bGenMipmaps, nCreateFlags, this, NULL );
SetResolveStatus( ECRS_PendingComposites );
// Don't clean up here just yet, we'll get cleaned up when the composite is totally complete.
tmMessage( TELEMETRY_LEVEL0, TMMF_ICON_NOTE, "Begun: %s", __FUNCTION__ );
}
virtual bool HasTeamSpecificsThis() const OVERRIDE { return false; }
virtual bool ComputeRandomValuesThis( CUniformRandomStream* pRNG ) OVERRIDE
{
// No RNG here.
return false;
}
ITexture* m_pTex;
CUtlString m_FinalTextureName;
uint32 m_nTexCompositeCreateFlags;
};
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
CTextureCompositor::CTextureCompositor( int _width, int _height, int nTeam, const char* pCompositeName, uint64 nRandomSeed, uint32 nTexCompositeCreateFlags )
: m_nReferenceCount( 0 )
, m_nWidth( _width )
, m_nHeight( _height )
, m_nTeam( nTeam )
, m_nRandomSeed( nRandomSeed )
, m_pRootStage( NULL )
, m_ResolveStatus( ECRS_Idle )
, m_bError( false )
, m_bFatal( false )
, m_nRenderTargetsAllocated( 0 )
, m_CompositeName( pCompositeName )
, m_nTexCompositeCreateFlags( nTexCompositeCreateFlags )
, m_bHasTeamSpecifics( false )
, m_nCompositePaintKitId( 0 )
{
}
// ------------------------------------------------------------------------------------------------
CTextureCompositor::~CTextureCompositor()
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
Assert ( m_nReferenceCount == 0 );
// Have to clean up the stages before cleaning up the render target pool, because cleanup up
// stages will throw things back to the render target pool.
SafeRelease( &m_pRootStage );
FOR_EACH_VEC( m_RenderTargetPool, i )
{
RenderTarget_t& rt = m_RenderTargetPool[ i ];
SafeRelease( &rt.m_pRT );
}
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::Restart()
{
Assert(!"TODO! Need to clone the root node, then cleanup the old root and start the new work.");
// CTCStage* clone = m_pRootStage->Clone();
SafeRelease( &m_pRootStage );
// m_pRootStage = clone;
m_ResolveStatus = ECRS_Scheduled;
// Kick it off again
m_pRootStage->Resolve( true, this );
m_ResolveStatus = ECRS_PendingTextureLoads;
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::Shutdown()
{
// If this thing is a template, then it's a faker and doesn't have an m_pRootStage. This is
// only true during startup when we're just verifying that the templates look sane--later
// they should have real data.
if ( m_pRootStage )
m_pRootStage->Cleanup( this );
// These should match now.
Assert( m_nRenderTargetsAllocated == m_RenderTargetPool.Count() );
}
// ------------------------------------------------------------------------------------------------
int CTextureCompositor::AddRef()
{
return ++m_nReferenceCount;
}
// ------------------------------------------------------------------------------------------------
int CTextureCompositor::Release()
{
int retVal = --m_nReferenceCount;
Assert( retVal >= 0 );
if ( retVal == 0 )
{
Shutdown();
delete this;
}
return retVal;
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::Update()
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
Assert( m_pRootStage );
if ( m_bError )
{
if ( !m_bFatal )
{
m_bError = false;
Restart();
}
else
m_ResolveStatus = ECRS_Error;
return;
}
if ( m_pRootStage->GetResolveStatus() != ECRS_Complete )
m_pRootStage->Resolve( false, this );
if ( m_pRootStage->GetResolveStatus() == ECRS_Complete )
{
#ifdef STAGING_ONLY
// One time, go ahead and dump out the texture if we're supposed to right here, at completion time.
if ( ( r_texcomp_dump.GetInt() == 3 || r_texcomp_dump.GetInt() == 4 ) && m_ResolveStatus != ECRS_Complete )
{
char filename[_MAX_PATH];
V_sprintf_safe( filename, "%s.tga", m_CompositeName.Get() );
m_pRootStage->GetResult().m_pTexture->SaveToFile( filename );
}
#endif
m_ResolveStatus = ECRS_Complete;
#ifdef RAD_TELEMETRY_ENABLED
char buffer[ 256 ];
GetTextureName( buffer, ARRAYSIZE( buffer ) );
tmEndTimeSpan( TELEMETRY_LEVEL0, m_nCompositePaintKitId, 0, "Composite: %s", tmDynamicString( TELEMETRY_LEVEL0, buffer ) );
#endif
}
}
// ------------------------------------------------------------------------------------------------
ITexture* CTextureCompositor::GetResultTexture() const
{
Assert( m_pRootStage && m_pRootStage->GetResolveStatus() == ECRS_Complete );
Assert( m_pRootStage->GetResult().m_pTexture );
return m_pRootStage->GetResult().m_pTexture;
}
// ------------------------------------------------------------------------------------------------
ECompositeResolveStatus CTextureCompositor::GetResolveStatus() const
{
return m_ResolveStatus;
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::ScheduleResolve( )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
Assert( m_pRootStage );
Assert( m_ResolveStatus == ECRS_Idle );
#if WITH_TEX_COMPOSITE_CACHE
if ( ( GetCreateFlags() & TEX_COMPOSITE_CREATE_FLAGS_FORCE ) == 0)
{
char buffer[ _MAX_PATH ];
GetTextureName( buffer, ARRAYSIZE( buffer ) );
// I think there's a race condition here, add a flag to FindTexture that says only if loaded, and bumps ref?
if ( materials->IsTextureLoaded( buffer ) )
{
ITexture* resTexture = materials->FindTexture( buffer, TEXTURE_GROUP_RUNTIME_COMPOSITE, false, 0 );
if ( resTexture && resTexture->IsError() == false )
{
m_pRootStage->OnAsyncCreateComplete( resTexture, NULL );
CTCStageResult_t res;
res.m_pTexture = resTexture;
m_pRootStage->SetResult( res );
m_ResolveStatus = ECRS_Complete;
return;
}
}
}
#endif
#ifdef RAD_TELEMETRY_ENABLED
m_nCompositePaintKitId = ++s_nCompositeCount;
char buffer[256];
GetTextureName( buffer, ARRAYSIZE( buffer ) );
tmBeginTimeSpan( TELEMETRY_LEVEL0, m_nCompositePaintKitId, 0, "Composite: %s", tmDynamicString( TELEMETRY_LEVEL0, buffer ) );
#endif
m_ResolveStatus = ECRS_Scheduled;
// Naughty.
extern CMaterialSystem g_MaterialSystem;
g_MaterialSystem.ScheduleTextureComposite( this );
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::Resolve()
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
// We can actually get in multiply times for the same one because of the way EconItemView works.
// So if that's the case, bail.
if ( m_ResolveStatus != ECRS_Scheduled )
return;
m_pRootStage->Resolve( true, this );
// Update our resolve status
m_ResolveStatus = ECRS_PendingTextureLoads;
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::Error( bool _retry, const char* _debugDevMsg, ... )
{
m_bError = true;
m_bFatal = !_retry;
va_list args;
va_start( args, _debugDevMsg );
WarningV( _debugDevMsg, args );
va_end( args );
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::SetRootStage( CTCStage* rootStage )
{
SafeAssign( &m_pRootStage, rootStage );
// After we set a root, compute everyone's RNG values. Do this once, early, to ensure the values are stable.
uint32 seedhi = 0;
uint32 seedlo = 0;
GetSeed( &seedhi, &seedlo );
CUniformRandomStream streams[2];
streams[0].SetSeed( seedhi );
streams[1].SetSeed( seedlo );
int currentIndex = 0;
m_pRootStage->ComputeRandomValues( &currentIndex, streams, ARRAYSIZE( streams ) );
}
// ------------------------------------------------------------------------------------------------
// TODO: Need to accept format and depth status
ITexture* CTextureCompositor::AllocateCompositorRenderTarget( )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
FOR_EACH_VEC( m_RenderTargetPool, i )
{
const RenderTarget_t& rt = m_RenderTargetPool[ i ];
if ( rt.m_nWidth == m_nWidth && rt.m_nHeight == m_nHeight )
{
ITexture* retVal = rt.m_pRT;
m_RenderTargetPool.Remove( i );
return retVal;
}
}
// Lie to the material system that we are asking for this allocation way back at the beginning of time.
// This used to matter to GPUs for perf, but hasn't in a long time.
materials->OverrideRenderTargetAllocation( true );
ITexture* retVal = materials->CreateNamedRenderTargetTextureEx( "", m_nWidth, m_nHeight, RT_SIZE_LITERAL_PICMIP, IMAGE_FORMAT_RGBA8888, MATERIAL_RT_DEPTH_NONE, TEXTUREFLAGS_IMMEDIATE_CLEANUP );
Assert( retVal );
materials->OverrideRenderTargetAllocation( false );
// Used to count how many we actually allocated so we can verify we cleaned them all up at
// shutdown
++m_nRenderTargetsAllocated;
return retVal;
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::ReleaseCompositorRenderTarget( ITexture* _tex )
{
Assert( _tex );
int w = _tex->GetMappingWidth();
int h = _tex->GetMappingHeight();
RenderTarget_t rt = { w, h, _tex };
m_RenderTargetPool.AddToTail( rt );
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::GetTextureName( char* pOutBuffer, int nBufferLen ) const
{
uint32 seedhi = 0;
uint32 seedlo = 0;
GetSeed( &seedhi, &seedlo );
Assert( m_pRootStage != NULL );
if ( m_pRootStage->HasTeamSpecifics() )
V_snprintf( pOutBuffer, nBufferLen, "proc/texcomp/%s_flags%08x_seedhi%08x_seedlo%08x_team%d_w%d_h%d", GetName().Get(), GetCreateFlags(), seedhi, seedlo, m_nTeam, m_nWidth, m_nHeight );
else
V_snprintf( pOutBuffer, nBufferLen, "proc/texcomp/%s_flags%08x_seedhi%08x_seedlo%08x_w%d_h%d", GetName().Get(), GetCreateFlags(), seedhi, seedlo, m_nWidth, m_nHeight );
}
// ------------------------------------------------------------------------------------------------
void CTextureCompositor::GetSeed( uint32* pOutHi, uint32* pOutLo ) const
{
tmZone( TELEMETRY_LEVEL2, TMZF_NONE, "%s", __FUNCTION__ );
Assert( pOutHi && pOutLo );
( *pOutHi ) = 0;
( *pOutLo ) = 0;
// This is most definitely not the most efficient way to do this.
for ( int i = 0; i < 32; ++i )
{
( *pOutHi ) |= (uint32)( ( m_nRandomSeed & ( uint64( 1 ) << ( ( 2 * i ) + 0 ) ) ) >> i );
( *pOutLo ) |= (uint32)( ( m_nRandomSeed & ( uint64( 1 ) << ( ( 2 * i ) + 1 ) ) ) >> ( i + 1 ) );
}
}
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
CTCStage::CTCStage()
: m_nReferenceCount( 1 ) // This is 1 because the common case is to assign these as children, and we don't want to play with refs there.
, m_pFirstChild( NULL )
, m_pNextSibling( NULL )
, m_ResolveStatus( ECRS_Idle )
{ }
// ------------------------------------------------------------------------------------------------
CTCStage::~CTCStage()
{
Assert ( m_nReferenceCount == 0 );
SafeRelease( &m_pFirstChild );
SafeRelease( &m_pNextSibling );
}
// ------------------------------------------------------------------------------------------------
int CTCStage::AddRef()
{
return ++m_nReferenceCount;
}
// ------------------------------------------------------------------------------------------------
int CTCStage::Release()
{
int retVal = --m_nReferenceCount;
if ( retVal == 0 )
delete this;
return retVal;
}
// ------------------------------------------------------------------------------------------------
void CTCStage::Resolve( bool bFirstTime, CTextureCompositor* _comp )
{
if ( m_pFirstChild )
m_pFirstChild->Resolve( bFirstTime, _comp );
// Update our status, which may be updated below. Only do this the first time through.
if ( bFirstTime )
{
m_ResolveStatus = ECRS_Scheduled;
// Request textures here. We used to request in the constructor, but it caused us
// to potentially hold all paintkitted textures for all time. That's bad for Mac,
// where we are super memory constrained.
RequestTextures();
}
ResolveThis( _comp );
if ( m_pNextSibling )
m_pNextSibling->Resolve( bFirstTime, _comp );
}
// ------------------------------------------------------------------------------------------------
bool CTCStage::HasTeamSpecifics( ) const
{
if ( m_pFirstChild && m_pFirstChild->HasTeamSpecifics() )
return true;
if ( HasTeamSpecificsThis() )
return true;
return m_pNextSibling && m_pNextSibling->HasTeamSpecifics();
}
// ------------------------------------------------------------------------------------------------
void CTCStage::ComputeRandomValues( int* pCurIndex, CUniformRandomStream* pRNGs, int nRNGCount )
{
Assert( pCurIndex != NULL );
Assert( pRNGs != NULL );
Assert( nRNGCount != 0 );
// We do a depth-first traversal here, but we hit ourselves first.
if ( ComputeRandomValuesThis( &pRNGs[*pCurIndex] ) )
{
// Switch which RNG the next person will use.
( *pCurIndex ) = ( ( *pCurIndex ) + 1 ) % nRNGCount;
}
if ( m_pFirstChild )
m_pFirstChild->ComputeRandomValues( pCurIndex, pRNGs, nRNGCount );
if ( m_pNextSibling )
m_pNextSibling->ComputeRandomValues( pCurIndex, pRNGs, nRNGCount );
}
// ------------------------------------------------------------------------------------------------
void CTCStage::CleanupChildResults( CTextureCompositor* _comp )
{
// This does not recurse. We call it as we move through the tree to clean up our
// first-generation children.
for ( CTCStage* child = GetFirstChild(); child; child = child->GetNextSibling() )
{
child->m_Result.Cleanup( _comp );
child->m_Result = CTCStageResult_t();
}
}
// ------------------------------------------------------------------------------------------------
void CTCStage::Render( ITexture* _destRT, IMaterial* _mat, const CUtlVector<CTCStageResult_t>& _inputs, CTextureCompositor* _comp, bool bClear )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
CUtlVector< IMaterialVar* > varsToClean;
bool bFound = false;
char buffer[128];
FOR_EACH_VEC( _inputs, i )
{
const CTCStageResult_t& stageParams = _inputs[ i ];
Assert( stageParams.m_pTexture || stageParams.m_pRenderTarget );
ITexture* inTex = stageParams.m_pTexture
? stageParams.m_pTexture
: stageParams.m_pRenderTarget;
V_snprintf( buffer, ARRAYSIZE( buffer ), "$srctexture%d", i );
// Set the texture
IMaterialVar* var = _mat->FindVar( buffer, &bFound );
Assert( bFound );
var->SetTextureValue( inTex );
varsToClean.AddToTail( var );
// And the levels parameters
V_snprintf( buffer, ARRAYSIZE(buffer), "$texadjustlevels%d", i );
var = _mat->FindVar( buffer, &bFound );
Assert(bFound);
var->SetVecValue( stageParams.m_fAdjustBlackPoint, stageParams.m_fAdjustWhitePoint, stageParams.m_fAdjustGamma );
// And the expected transform
V_snprintf( buffer, ARRAYSIZE(buffer), "$textransform%d", i );
var = _mat->FindVar( buffer, &bFound );
Assert(bFound);
var->SetMatrixValue( stageParams.m_mUvAdjust );
}
IMaterialVar* var = _mat->FindVar( "$textureinputcount", &bFound );
Assert( bFound );
var->SetIntValue( _inputs.Count() );
CMatRenderContextPtr pRenderContext( materials );
int w = _destRT->GetActualWidth();
int h = _destRT->GetActualHeight();
pRenderContext->PushRenderTargetAndViewport( _destRT, 0, 0, w, h );
if ( bClear )
{
pRenderContext->ClearColor4ub( 0, 0, 0, 255 );
pRenderContext->ClearBuffers( true, false, false );
}
// Perform the render!
pRenderContext->DrawScreenSpaceQuad( _mat );
#ifdef STAGING_ONLY
if (r_texcomp_dump.GetInt() == 1)
{
FOR_EACH_VEC(_inputs, i)
{
if (_inputs[i].m_pTexture)
{
V_snprintf(buffer, ARRAYSIZE(buffer), "composite_%s_input_%02d_in%01d_%08x.tga", _comp->GetName().Get(), s_nDumpCount, i, (int) this);
_inputs[i].m_pTexture->SaveToFile(buffer);
}
}
V_snprintf(buffer, ARRAYSIZE(buffer), "composite_%s_result_%02d_%08x.tga", _comp->GetName().Get(), s_nDumpCount++, (int) this);
_destRT->SaveToFile(buffer);
}
#endif
// Restore previous state
pRenderContext->PopRenderTargetAndViewport();
// After rendering, clean up the leftover texture references or they will be there for a long
// time.
FOR_EACH_VEC( varsToClean, i )
{
varsToClean[ i ]->SetUndefined();
}
}
// ------------------------------------------------------------------------------------------------
void CTCStage::Cleanup( CTextureCompositor* _comp )
{
if ( m_pFirstChild )
m_pFirstChild->Cleanup( _comp );
m_Result.Cleanup( _comp );
if ( m_pNextSibling )
m_pNextSibling->Cleanup( _comp );
}
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
typedef bool ( *TBuildNodeFromKVFunc )( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags );
bool TexStageFromKV( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags );
template<int Type> bool CombineStageFromKV( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags );
bool SelectStageFromKV( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags );
bool ApplyStickerStageFromKV( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags );
struct NodeDefinitionEntry
{
const char* keyName;
TBuildNodeFromKVFunc buildFunc;
};
NodeDefinitionEntry cNodeParseTable[] =
{
{ "texture_lookup", TexStageFromKV },
{ "combine_add", CombineStageFromKV<ECO_Add> },
{ "combine_lerp", CombineStageFromKV<ECO_Lerp> },
{ "combine_multiply", CombineStageFromKV<ECO_Multiply> },
{ "select", SelectStageFromKV },
{ "apply_sticker", ApplyStickerStageFromKV },
{ 0, 0 }
};
// ------------------------------------------------------------------------------------------------
template<typename S>
void ParseIntoStruct( S* _outStruct, CUtlVector< KeyValues *>* _leftovers, KeyValues* _kv, uint32 nTexCompositeCreateFlags, const ParseTableEntry* _entries )
{
Assert( _leftovers );
const char* keyName = _kv->GetName();
keyName;
FOR_EACH_SUBKEY( _kv, thisKey )
{
bool parsed = false;
for ( int e = 0; _entries[e].keyName; ++e )
{
if ( V_stricmp( _entries[e].keyName, thisKey->GetName() ) == 0 )
{
// If we're instancing, go ahead and run the parse function. If we're just doing template verification
// then the right hand side may still have variables that need to be expanded, so just verify that the
// left hand side is sane.
if ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY ) == 0 )
{
void* pDest = ((unsigned char*)_outStruct) + _entries[e].structOffset;
_entries[e].parseFunc( thisKey, pDest );
}
parsed = true;
break;
}
}
if ( !parsed )
{
( *_leftovers ).AddToTail( thisKey );
}
}
}
// ------------------------------------------------------------------------------------------------
bool ParseNodes( CUtlVector< CTCStage* >* _outStages, const CUtlVector< KeyValues *>& _kvs, uint32 nTexCompositeCreateFlags )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
bool anyFails = false;
FOR_EACH_VEC( _kvs, thisKey )
{
KeyValues *thisKV = _kvs[ thisKey ];
bool parsed = false;
for ( int e = 0; cNodeParseTable[ e ].keyName; ++e )
{
if ( V_stricmp( cNodeParseTable[ e ].keyName, thisKV->GetName() ) == 0 )
{
CTCStage* pNewStage = NULL;
if ( !cNodeParseTable[ e ].buildFunc( &pNewStage, thisKV->GetName(), thisKV, nTexCompositeCreateFlags ) )
anyFails = true;
(*_outStages).AddToTail( pNewStage );
parsed = true;
break;
}
}
if (!parsed)
{
DevWarning( "Compositor Error: Unexpected key '%s' while parsing definition.\n", thisKV->GetName() );
anyFails = true;
}
}
return !anyFails;
}
// ------------------------------------------------------------------------------------------------
bool TexStageFromKV( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags )
{
Assert( ppOutStage != NULL );
TextureStageParameters tsp;
CUtlVector< KeyValues* > leftovers;
CUtlVector< CTCStage* > childNodes;
ParseIntoStruct( &tsp, &leftovers, _kv, nTexCompositeCreateFlags, cTextureStageParametersParseTable );
if ( !ParseNodes( &childNodes, leftovers, nTexCompositeCreateFlags ) )
return false;
if ( !( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_SCHEMA_ONLY ) )
{
( *ppOutStage ) = new CTCTextureStage( tsp, nTexCompositeCreateFlags );
( *ppOutStage )->AppendChildren( childNodes );
}
return true;
}
// ------------------------------------------------------------------------------------------------
template <int Type>
bool CombineStageFromKV( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags )
{
Assert( ppOutStage != NULL );
static_assert( Type >= 0 && Type < ECO_Error, "Invalid type, you need to update the enum." );
CombineStageParameters csp;
csp.m_CombineOp = (ECombineOperation) Type;
CUtlVector< KeyValues* > leftovers;
CUtlVector< CTCStage* > childNodes;
ParseIntoStruct( &csp, &leftovers, _kv, nTexCompositeCreateFlags, cCombineStageParametersParseTable );
if ( !ParseNodes( &childNodes, leftovers, nTexCompositeCreateFlags ) )
return false;
if ( !( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_SCHEMA_ONLY ) )
{
( *ppOutStage ) = new CTCCombineStage( csp, nTexCompositeCreateFlags );
( *ppOutStage )->AppendChildren( childNodes );
}
return true;
}
// ------------------------------------------------------------------------------------------------
bool SelectStageFromKV( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags )
{
Assert( ppOutStage != NULL );
SelectStageParameters ssp;
CUtlVector< KeyValues* > leftovers;
CUtlVector< CTCStage* > childNodes;
ParseIntoStruct( &ssp, &leftovers, _kv, nTexCompositeCreateFlags, cSelectStageParametersParseTable );
if ( !ParseNodes( &childNodes, leftovers, nTexCompositeCreateFlags ) )
return false;
if ( !( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_SCHEMA_ONLY ) )
{
( *ppOutStage ) = new CTCSelectStage( ssp, nTexCompositeCreateFlags );
( *ppOutStage )->AppendChildren( childNodes );
}
return true;
}
// ------------------------------------------------------------------------------------------------
bool ApplyStickerStageFromKV( CTCStage** ppOutStage, const char* _key, KeyValues* _kv, uint32 nTexCompositeCreateFlags )
{
Assert( ppOutStage != NULL );
ApplyStickerStageParameters assp;
CUtlVector< KeyValues* > leftovers;
CUtlVector< CTCStage* > childNodes;
ParseIntoStruct( &assp, &leftovers, _kv, nTexCompositeCreateFlags, cApplyStickerStageParametersParseTable );
if ( !ParseNodes( &childNodes, leftovers, nTexCompositeCreateFlags ) )
return false;
// These stages can have exactly one child.
if ( childNodes.Count() > 1 )
return false;
int setCount = 0;
if ( assp.m_vDestBL.m_bSet ) ++setCount;
if ( assp.m_vDestTL.m_bSet ) ++setCount;
if ( assp.m_vDestTR.m_bSet ) ++setCount;
if ( setCount != 3 )
return false;
if ( !( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_SCHEMA_ONLY ) )
{
( *ppOutStage ) = new CTCApplyStickerStage( assp, nTexCompositeCreateFlags );
( *ppOutStage )->AppendChildren( childNodes );
}
return true;
}
// ------------------------------------------------------------------------------------------------
const char *GetCombinedMaterialName( ECombineOperation eMaterial )
{
Assert( eMaterial >= ECO_FirstPrecacheMaterial && eMaterial < ECO_COUNT );
return cCombineMaterialName[eMaterial];
}
// ------------------------------------------------------------------------------------------------
KeyValues* ResolveTemplate( const char* pRootName, KeyValues* pValues, uint32 nTexCompositeCreateFlags, bool *pInOutAllocdNew )
{
Assert( pRootName != NULL && pValues != NULL && pInOutAllocdNew != NULL );
const char* pTemplateName = NULL;
bool bImplementsTemplate = false;
bool bHasOtherNodes = false;
// First, figure out if the tree is sensible.
FOR_EACH_SUBKEY( pValues, pChild )
{
const char* pChildName = pChild->GetName();
if ( V_stricmp( pChildName, "implements" ) == 0 )
{
if ( bImplementsTemplate )
{
Warning( "ERROR[%s]: implements field can only appear once, seen a second time as 'implements \"%s\"\n", pRootName, pChild->GetString() );
return NULL;
}
bImplementsTemplate = true;
pTemplateName = pChild->GetString();
}
else if ( pChildName && pChildName[0] != '$' )
{
bHasOtherNodes = true;
}
}
if ( bImplementsTemplate && bHasOtherNodes )
{
Warning( "ERROR[%s]: if using 'implements', can only have variable definitions--other fields not allowed.\n", pRootName );
return NULL;
}
// If we're not doing templates, we're all finished.
if ( !bImplementsTemplate )
return pValues;
KeyValues* pNewKV = NULL;
if ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY ) == 0 )
{
CTextureCompositorTemplate* pTmpl = TextureManager()->FindTextureCompositorTemplate( pTemplateName );
if ( !pTmpl )
{
Warning( "ERROR[%s]: Couldn't find template named '%s'.\n", pRootName, pTemplateName );
return NULL;
}
Assert( pTmpl->GetKV() );
// If the verify flag isn't set, we're instancing the template so do all the logic.
if ( pTmpl->ImplementsTemplate() )
{
pNewKV = ResolveTemplate( pRootName, pTmpl->GetKV(), nTexCompositeCreateFlags, pInOutAllocdNew );
}
else
{
// The root-most template will allocate the memory for all of us.
pNewKV = pTmpl->GetKV()->MakeCopy();
pNewKV->SetName( pRootName );
( *pInOutAllocdNew ) = true;
}
}
else
{
// Just return the original KV back to the caller, who just wants a success code here.
return pValues;
}
// Now, copy any child var definitions from pValues into pNewKV. Because of the recursive call stack,
// this has the net effect that more concrete templates will write their values later than more remote templates.
FOR_EACH_SUBKEY( pValues, pChild )
{
const char* pChildName = pChild->GetName();
if ( pChildName && pChildName[0] == '$' )
{
pNewKV->AddSubKey( pChild->MakeCopy() );
}
}
// Success!
return pNewKV;
}
// ------------------------------------------------------------------------------------------------
typedef CUtlDict< const char* > VariableDefs_t;
KeyValues* ExtractVariableDefinitions( VariableDefs_t* pOutVarDefs, const char* pRootName, KeyValues* pKeyValues )
{
Assert( pOutVarDefs );
FOR_EACH_SUBKEY( pKeyValues, pChild )
{
const char* pChildName = pChild->GetName();
if ( pChildName[0] == '$' )
{
if ( pChild->GetFirstTrueSubKey() )
{
Warning( "ERROR[%s]: All variable definitions must be simple strings, '%s' was a full subtree.\n", pRootName, pChildName );
return NULL;
}
int ndx = ( *pOutVarDefs ).Find( pChildName + 1 );
if ( pOutVarDefs->IsValidIndex( ndx ) )
( *pOutVarDefs )[ ndx ] = pChild->GetString();
else
( *pOutVarDefs ).Insert( pChildName + 1, pChild->GetString() );
}
}
return pKeyValues;
}
// ------------------------------------------------------------------------------------------------
CUtlString GetErrorTrail( CUtlVector< const char* >& errorStack )
{
if ( errorStack.Count() == 0 )
return CUtlString( "" );
const int stackLength = errorStack.Count();
const int stackLengthMinusOne = stackLength - 1;
const char* cStageSep = " -> ";
const int cStageSepStrLen = V_strlen( cStageSep );
int totalStrLength = 0;
for ( int i = 0; i < stackLength; ++i )
{
totalStrLength += V_strlen( errorStack[ i ] );
}
totalStrLength += stackLengthMinusOne * cStageSepStrLen;
CUtlString retStr;
retStr.SetLength( totalStrLength );
char* pDstOrig = retStr.GetForModify(); pDstOrig;
char* pDst = retStr.GetForModify();
int destPos = 0;
for ( int i = 0; i < stackLength; ++i )
{
// Copy the string
const char* pSrc = errorStack[ i ];
while ( ( *pDst++ = *pSrc++ ) != 0 )
++destPos;
--pDst;
if ( i < stackLengthMinusOne )
{
// Now copy our separator
pSrc = cStageSep;
while ( ( *pDst++ = *pSrc++ ) != 0 )
++destPos;
--pDst;
}
}
Assert( destPos == totalStrLength );
Assert( pDst - retStr.Get() == totalStrLength );
// SetLength above already included the +1 to length for the null terminator.
*pDst = '\0';
return retStr;
}
// ------------------------------------------------------------------------------------------------
enum ParseMode
{
Copy,
DetermineStringForReplace,
};
// ------------------------------------------------------------------------------------------------
// Returns the number of characters written into pOutBuffer or -1 if there was an error.
int SubstituteVarsRecursive( char* pOutBuffer, int* pOutSubsts, CUtlVector< const char* >& errorStack, const char* pStr, uint32 nTexCompositeCreateFlags, const VariableDefs_t& varDefs )
{
ParseMode mode = Copy;
char* pCurVariable = NULL;
char* pDst = pOutBuffer;
int srcPos = 0;
int dstPos = 0;
while ( pStr[ srcPos ] != 0 )
{
const char* srcC = pStr + srcPos;
switch ( mode )
{
case Copy:
if ( srcC[ 0 ] == '$' && srcC[ 1 ] == '[' )
{
mode = DetermineStringForReplace;
srcPos += 2;
pCurVariable = const_cast< char* >( pStr + srcPos );
continue;
}
else if ( pOutBuffer )
{
pDst[ dstPos++ ] = pStr[ srcPos++ ];
}
else
{
++dstPos;
++srcPos;
}
break;
case DetermineStringForReplace:
if ( srcC[ 0 ] == ']' )
{
// Make a modification so we can just do the lookup from this buffer.
pCurVariable[ srcC - pCurVariable ] = 0;
// Lookup our substitution value.
int ndx = varDefs.Find( pCurVariable );
const char* pSubstText = NULL;
if ( ndx != varDefs.InvalidIndex() )
{
pSubstText = varDefs[ ndx ];
}
else if ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY ) != 0 )
{
pSubstText = ""; // It's fine to run into these when verifying the template only.
}
else
{
Warning( "ERROR[%s]: Couldn't find variable named $%s that was requested to be substituted.\n", ( const char* ) GetErrorTrail( errorStack ), pCurVariable );
// Restore the string first.
pCurVariable[ srcC - pCurVariable ] = ']';
return -1;
}
// Put it back.
pCurVariable[ srcC - pCurVariable ] = ']';
int charsWritten = SubstituteVarsRecursive( pOutBuffer ? &pDst[ dstPos ] : NULL, pOutSubsts, errorStack, pSubstText, nTexCompositeCreateFlags, varDefs );
if ( charsWritten < 0 )
return -1;
++( *pOutSubsts );
dstPos += charsWritten;
++srcPos;
mode = Copy;
}
else
{
++srcPos;
}
break;
}
}
if ( mode == DetermineStringForReplace )
{
Warning( "ERROR[%s]: Variable $[%s missing closing bracket ].\n", ( const char* ) GetErrorTrail( errorStack ), pCurVariable );
return -1;
}
return dstPos;
}
// ------------------------------------------------------------------------------------------------
// Returns true if successful, false otherwise.
bool SubstituteVars( CUtlString* pOutStr, int* pOutSubsts, CUtlVector< const char* >& errorStack, const char* pStr, uint32 nTexCompositeCreateFlags, const VariableDefs_t& varDefs )
{
Assert( pOutStr != NULL && pOutSubsts != NULL && pStr != NULL );
( *pOutSubsts ) = 0;
// Even though this involves a traversal, we're saving a malloc by walking this thing once looking for the start token.
const char* pFirstRepl = V_strstr( pStr, "$[" );
// No substitutions, so bail out now.
if ( pFirstRepl == NULL )
{
( *pOutStr ) = pStr;
return true;
}
// We could do this as we go, but we're trying to avoid re-mallocing memory repeatedly in here so process once
// to find out what the size is.
int expectedLen = SubstituteVarsRecursive( NULL, pOutSubsts, errorStack, pStr, nTexCompositeCreateFlags, varDefs );
if ( expectedLen < 0 )
return false;
// We don't need to actually write the string, and we shouldn't. If we're just verifying, exit now with success.
if ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY ) != 0 )
return true;
CUtlString& outStr = ( *pOutStr );
outStr.SetLength( expectedLen ); // SetLength does +1 to the length for us.
int finalLen = SubstituteVarsRecursive( outStr.GetForModify(), pOutSubsts, errorStack, pStr, nTexCompositeCreateFlags, varDefs );
if ( finalLen < 0 )
return false;
// Otherwise things have gone horribly wrong.
Assert( outStr.Length() == expectedLen );
Assert( expectedLen == finalLen );
// Success!
return true;
}
// ------------------------------------------------------------------------------------------------
bool ResolveAllVariablesRecursive( CUtlVector< const char* >& errorStack, const VariableDefs_t& varDefs, KeyValues* pKeyValues, uint32 nTexCompositeCreateFlags, CUtlString& tmpStr )
{
// hope for the best
bool success = true;
FOR_EACH_SUBKEY( pKeyValues, pChild )
{
if ( pChild->GetName()[ 0 ] == '$' )
continue;
errorStack.AddToTail( pChild->GetName() );
if ( pChild->GetFirstSubKey() )
{
if ( !ResolveAllVariablesRecursive( errorStack, varDefs, pChild, nTexCompositeCreateFlags, tmpStr ) )
success = false;
}
else
{
int nSubsts = 0;
if ( !SubstituteVars( &tmpStr, &nSubsts, errorStack, pChild->GetString(), nTexCompositeCreateFlags, varDefs ) )
success = false;
// Did we do any substitutions?
if ( nSubsts > 0 && ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY ) == 0 ) )
pChild->SetStringValue( tmpStr );
}
errorStack.RemoveMultipleFromTail( 1 );
}
return success;
}
// ------------------------------------------------------------------------------------------------
KeyValues* ResolveAllVariables( const char* pRootName, const VariableDefs_t& varDefs, KeyValues* pKeyValues, uint32 nTexCompositeCreateFlags, bool *pInOutAllocdNew )
{
KeyValuesAD kvad_onError( ( KeyValues* ) nullptr );
// Let's just assume first that if we have any vars, we will need to substitute them.
// But if we're just verifying the template, no need.
if ( !( *pInOutAllocdNew ) && varDefs.Count() > 0 && ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY ) == 0 ) )
{
pKeyValues = pKeyValues->MakeCopy();
kvad_onError.Assign( pKeyValues );
( *pInOutAllocdNew ) = true;
}
CUtlString str;
CUtlVector< const char* > errorStack;
errorStack.AddToHead( pRootName );
if ( !ResolveAllVariablesRecursive( errorStack, varDefs, pKeyValues, nTexCompositeCreateFlags, str ) )
return NULL;
kvad_onError.Assign( NULL );
return pKeyValues;
}
// ------------------------------------------------------------------------------------------------
// Perform all template expansion and variable substitution here. What should be output
// should look like v1.0 paintkits without templates or variables. Return NULL
// if var substitution fails or if we can't resolve a template or something
// (after outputting a meaningful error message, of course).
KeyValues* ParseTopLevelIntoKV( const char* pRootName, KeyValues* pValues, uint32 nTexCompositeCreateFlags, bool *pOutAllocdNew )
{
Assert( pRootName != NULL );
Assert( pOutAllocdNew != NULL );
if ( !pValues )
return NULL;
bool bRequiresCleanup = false;
KeyValues* pExpandedKV = NULL;
KeyValuesAD autoCleanup_pExpandedKV( pExpandedKV );
VariableDefs_t varDefs;
pExpandedKV = ResolveTemplate( pRootName, pValues, nTexCompositeCreateFlags, &bRequiresCleanup );
if ( pExpandedKV == NULL )
return NULL;
if ( bRequiresCleanup )
{
Assert( autoCleanup_pExpandedKV == nullptr || autoCleanup_pExpandedKV == pExpandedKV );
autoCleanup_pExpandedKV.Assign( pExpandedKV );
}
pExpandedKV = ExtractVariableDefinitions( &varDefs, pRootName, pExpandedKV );
if ( pExpandedKV == NULL )
return NULL;
// Only resolve the variables if we're instantiating. During verification time, we'll
// just check that the keys are sensible and we can skip this.
pExpandedKV = ResolveAllVariables( pRootName, varDefs, pExpandedKV, nTexCompositeCreateFlags, &bRequiresCleanup);
if ( pExpandedKV == NULL )
return NULL;
Assert( bRequiresCleanup || varDefs.Count() == 0 || ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY ) != 0 ) );
varDefs.RemoveAll(); // These won't be valid after we cleanup the tree to remove variable definitions.
if ( bRequiresCleanup )
{
KeyValues* pChild = pExpandedKV->GetFirstSubKey();
while ( pChild )
{
const char* pChildName = pChild->GetName();
if ( pChildName[ 0 ] == '$' )
{
KeyValues* pNext = pChild->GetNextKey();
pExpandedKV->RemoveSubKey( pChild );
pChild->deleteThis();
pChild = pNext;
}
else
pChild = pChild->GetNextKey();
}
}
// We don't need to clean up the KeyValues we created, so clear the AD.
autoCleanup_pExpandedKV.Assign( NULL );
( *pOutAllocdNew ) = bRequiresCleanup;
return pExpandedKV;
}
// ------------------------------------------------------------------------------------------------
bool HasTemplateOrVariables( const char** ppOutTemplateName, KeyValues* pKV)
{
Assert( ppOutTemplateName );
bool retVal = false;
( *ppOutTemplateName ) = NULL;
FOR_EACH_SUBKEY( pKV, pChild )
{
const char* pName = pChild->GetName();
if ( V_stricmp( pName, "implements" ) == 0 )
{
( *ppOutTemplateName ) = pChild->GetString();
retVal = true;
}
if ( pName[ 0 ] == '$' )
retVal = true;
}
return retVal;
}
// ------------------------------------------------------------------------------------------------
CTextureCompositor* CreateTextureCompositor( int _w, int _h, const char* pCompositeName, int nTeamNum, uint64 nRandomSeed, KeyValues* _stageDesc, uint32 nTexCompositeCreateFlags )
{
TM_ZONE_DEFAULT( TELEMETRY_LEVEL0 );
#ifdef STAGING_ONLY
if ( r_texcomp_dump.GetInt() == 3 || r_texcomp_dump.GetInt() == 4 )
{
// Skip compression because it breaks saving render targets out
// Also don't pollute the cache (or use it)
nTexCompositeCreateFlags |= ( TEX_COMPOSITE_CREATE_FLAGS_NO_COMPRESSION | TEX_COMPOSITE_CREATE_FLAGS_FORCE );
}
#endif
CUtlVector< CTCStage* > vecStage;
CUtlVector< KeyValues* > kvs;
KeyValuesAD kvAutoCleanup( (KeyValues*) nullptr );
bool bRequiresCleanup = false;
if ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_LOG_NODES_ONLY ) != 0 )
{
DevMsg( 0, "%s\n{\n", pCompositeName );
KeyValuesDumpAsDevMsg( _stageDesc, 1, 0 );
DevMsg( 0, "}\n" );
}
_stageDesc = ParseTopLevelIntoKV( pCompositeName, _stageDesc, nTexCompositeCreateFlags, &bRequiresCleanup );
if ( !_stageDesc )
{
if ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_LOG_NODES_ONLY ) != 0 )
Msg( "ERROR[%s]: Failed to create compositor, errors above.\n", pCompositeName );
return NULL;
}
// Set ourselves up for future cleanup.
if ( bRequiresCleanup )
kvAutoCleanup.Assign( _stageDesc );
if ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_LOG_NODES_ONLY )
{
if ( bRequiresCleanup )
{
DevMsg( 0, "With expansion:\n%s\n{\n", pCompositeName );
KeyValuesDumpAsDevMsg( _stageDesc, 1, 0 );
DevMsg( 0, "}\n" );
}
return NULL;
}
const char* pTemplateName = NULL;
// If we're just doing a template verification, and we still have keys or values that look like template stuff, bail out now.
if ( HasTemplateOrVariables( &pTemplateName, _stageDesc ) && ( ( nTexCompositeCreateFlags & TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY ) != 0 ) )
{
CTextureCompositor* pComp = new CTextureCompositor( _w, _h, nTeamNum, pCompositeName, nRandomSeed, nTexCompositeCreateFlags );
if ( pTemplateName )
pComp->SetTemplate( pTemplateName );
return pComp;
}
KeyValues* kv = _stageDesc->GetFirstTrueSubKey();
if ( !kv )
return NULL;
kvs.AddToTail( kv );
if ( !ParseNodes( &vecStage, kvs, nTexCompositeCreateFlags ) )
{
FOR_EACH_VEC( vecStage, i )
{
SafeRelease( &vecStage[ i ] );
}
return NULL;
}
// Should only get 1 here.
Assert( vecStage.Count() == 1 );
CTCStage* rootStage = vecStage[ 0 ];
// Need to add a copy as the new root.
CTCStage* copyStage = new CTCCopyStage;
copyStage->SetFirstChild( rootStage );
rootStage = copyStage;
CTextureCompositor* texCompositor = new CTextureCompositor( _w, _h, nTeamNum, pCompositeName, nRandomSeed, nTexCompositeCreateFlags );
if ( pTemplateName )
texCompositor->SetTemplate( pTemplateName );
texCompositor->SetRootStage( rootStage );
SafeRelease( &rootStage );
return texCompositor;
}
// ------------------------------------------------------------------------------------------------
CTextureCompositorTemplate* CTextureCompositorTemplate::Create( const char* pName, KeyValues* pTmplDesc )
{
if ( !pName || !pTmplDesc )
return NULL;
CTextureCompositor* texCompositor = CreateTextureCompositor( 1, 1, pName, 2, 0, pTmplDesc, TEX_COMPOSITE_CREATE_FLAGS_VERIFY_SCHEMA_ONLY | TEX_COMPOSITE_CREATE_FLAGS_VERIFY_TEMPLATE_ONLY );
if ( texCompositor )
{
CTextureCompositorTemplate* pTemplate = new CTextureCompositorTemplate( pName, pTmplDesc );
if ( texCompositor->UsesTemplate() )
{
pTemplate->SetImplementsName( texCompositor->GetTemplateName() );
}
// Bump then release the ref.
texCompositor->AddRef();
texCompositor->Release();
return pTemplate;
}
return NULL;
}
// ------------------------------------------------------------------------------------------------
CTextureCompositorTemplate::~CTextureCompositorTemplate()
{
// We don't own the KV we were created with--don't delete it.
}
// ------------------------------------------------------------------------------------------------
bool CTextureCompositorTemplate::ResolveDependencies() const
{
// If we don't reference another template, then our verification was validated at construction
// time.
if ( m_ImplementsName.IsEmpty() )
return true;
CTextureCompositorTemplate* pImplementsTmpl = TextureManager()->FindTextureCompositorTemplate( m_ImplementsName );
// If we couldn't find our child, then we are not okay.
if ( pImplementsTmpl == NULL )
{
Warning( "ERROR[paintkit_template %s]: Couldn't find template '%s' which we claim to implement.\n", (const char*) m_Name, (const char*)m_ImplementsName );
return false;
}
return true;
}
// ------------------------------------------------------------------------------------------------
bool CTextureCompositorTemplate::HasDependencyCycles()
{
// Uses Floyd's algorithm to determine if there's a cycle.
TM_ZONE_DEFAULT( TELEMETRY_LEVEL1 );
if ( HasCycle( this ) )
{
// Print the cycle. This also marks the nodes as having been tested for cycles.
PrintMinimumCycle( this );
return true;
}
else
{
// Mark everything in this lineage as having been tested for cycles.
CTextureCompositorTemplate* pTmpl = this;
while ( pTmpl != NULL )
{
if ( pTmpl->HasCheckedForCycles() )
break;
pTmpl->SetCheckedForCycles( true );
pTmpl = Advance( pTmpl, 1 );
}
}
return false;
}
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
void ComputeTextureMatrixFromRectangle( VMatrix* pOutMat, const Vector2D& bl, const Vector2D& tl, const Vector2D& tr )
{
Assert( pOutMat != NULL );
Vector2D leftEdge = bl - tl;
Vector2D topEdge = tr - tl;
Vector2D topEdgePerpLeft( -topEdge.y, topEdge.x );
float magLeftEdge = leftEdge.Length();
float magTopEdge = topEdge.Length();
float xScalar = ( topEdgePerpLeft.Dot( leftEdge ) > 0 ) ? 1 : -1;
// Simplification of acos( ( A . L ) / ( mag( A ) * mag( L ) )
// Because A is ( 0, 1), which means A . L is just L.y
// and mag( A ) * mag( L ) is just mag( L )
float rotationD = RAD2DEG( acos( leftEdge.y / magLeftEdge ) )
* ( leftEdge.x < 0 ? 1 : -1 );
VMatrix tmpMat;
tmpMat.Identity();
MatrixTranslate( tmpMat, Vector( tl.x, tl.y, 0 ) );
MatrixRotate( tmpMat, Vector( 0, 0, 1 ), rotationD );
tmpMat = tmpMat.Scale( Vector( xScalar * magTopEdge, magLeftEdge, 1.0f ) );
MatrixInverseGeneral( tmpMat, *pOutMat );
// Copy W into Z because this is a 2-D matrix.
( *pOutMat )[ 0 ][ 2 ] = ( *pOutMat )[ 0 ][ 3 ];
( *pOutMat )[ 1 ][ 2 ] = ( *pOutMat )[ 1 ][ 3 ];
( *pOutMat )[ 2 ][ 2 ] = 1.0f;
}
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------
CTextureCompositorTemplate* Advance( CTextureCompositorTemplate* pTmpl, int nSteps )
{
Assert( pTmpl != NULL );
for ( int i = 0; i < nSteps; ++i )
{
if ( pTmpl->ImplementsTemplate() )
{
pTmpl = TextureManager()->FindTextureCompositorTemplate( pTmpl->GetImplementsName() );
}
else
return NULL;
}
return pTmpl;
}
// ------------------------------------------------------------------------------------------------
bool HasCycle( CTextureCompositorTemplate* pStartTempl )
{
Assert( pStartTempl != NULL );
CTextureCompositorTemplate* pTortoise = pStartTempl;
CTextureCompositorTemplate* pHare = Advance( pStartTempl, 1 );
while ( pHare != NULL )
{
Assert( pTortoise != NULL ); // pTortoise should never be NULL unless pHare already is.
if ( pTortoise == pHare )
return true;
// There may still actually be a cycle here, but we've already reported it if so,
// so go ahead and bail out and say "no cycle found."
if ( pTortoise->HasCheckedForCycles() || pHare->HasCheckedForCycles() )
return false;
pTortoise = Advance( pTortoise, 1 );
pHare = Advance( pHare, 1 );
}
return false;
}
// ------------------------------------------------------------------------------------------------
void PrintMinimumCycle( CTextureCompositorTemplate* pTmpl )
{
TM_ZONE_DEFAULT( TELEMETRY_LEVEL1 );
const char* pFirstNodeName = pTmpl->GetName();
// Also mark the nodes as having been cycle-tested to save execution of retesting the same templates.
// Finding a minimum cycle is O( n log n ) using a map, but we only do this when there's an error.
CUtlMap< CTextureCompositorTemplate*, int > cycles( DefLessFunc( CTextureCompositorTemplate* ) );
CUtlLinkedList< const char* > cycleBuilder;
while ( pTmpl != NULL)
{
// Add before we bail so that the first looping element is in the list twice.
cycleBuilder.AddToTail( pTmpl->GetName() );
if ( cycles.IsValidIndex( cycles.Find( pTmpl ) ) )
break;
pTmpl->SetCheckedForCycles( true );
cycles.Insert( pTmpl );
pTmpl = Advance( pTmpl, 1 );
}
// If this hits, we didn't actually have a cycle. What?
Assert( pTmpl );
Warning( "ERROR[paintkit_template %s]: Detected cycle in paintkit template dependency chain: ", pFirstNodeName );
FOR_EACH_LL( cycleBuilder, i )
{
Warning( "%s -> ", cycleBuilder[ i ] );
}
Warning( "...\n" );
}