source-engine-2018-hl2_src/game/server/ai_planesolver.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

905 lines
26 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include <float.h> // for FLT_MAX
#include "ai_planesolver.h"
#include "ai_moveprobe.h"
#include "ai_motor.h"
#include "ai_basenpc.h"
#include "ai_route.h"
#include "ndebugoverlay.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
const float PLANE_SOLVER_THINK_FREQUENCY[2] = { 0.0f, 0.2f };
const float MAX_PROBE_DIST[2] = { (10.0f*12.0f), (8.0f*12.0f) };
//#define PROFILE_PLANESOLVER 1
#ifdef PROFILE_PLANESOLVER
#define PLANESOLVER_PROFILE_SCOPE( tag ) AI_PROFILE_SCOPE( tag )
#else
#define PLANESOLVER_PROFILE_SCOPE( tag ) ((void)0)
#endif
#define ProbeForNpcs() 0
//#define TESTING_SUGGESTIONS
//-----------------------------------------------------------------------------
inline float sq( float f )
{
return ( f * f );
}
inline float cube( float f )
{
return ( f * f * f );
}
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CAI_PlaneSolver::CAI_PlaneSolver( CAI_BaseNPC *pNpc )
: m_pNpc( pNpc ),
m_fSolvedPrev( false ),
m_PrevTarget( FLT_MAX, FLT_MAX, FLT_MAX ),
m_PrevSolution( 0 ),
m_ClosestHaveBeenToCurrent( FLT_MAX ),
m_TimeLastProgress( FLT_MAX ),
m_fCannotSolveCurrent( false ),
m_RefreshSamplesTimer( PLANE_SOLVER_THINK_FREQUENCY[AIStrongOpt()] - 0.05 )
{
}
//-----------------------------------------------------------------------------
// Convenience accessors
//-----------------------------------------------------------------------------
inline CAI_BaseNPC *CAI_PlaneSolver::GetNpc()
{
return m_pNpc;
}
inline CAI_Motor *CAI_PlaneSolver::GetMotor()
{
return m_pNpc->GetMotor();
}
inline const Vector &CAI_PlaneSolver::GetLocalOrigin()
{
return m_pNpc->GetLocalOrigin();
}
//-----------------------------------------------------------------------------
// class CAI_PlaneSolver
//-----------------------------------------------------------------------------
bool CAI_PlaneSolver::MoveLimit( Navigation_t navType, const Vector &target, bool ignoreTransients, bool fCheckStep, int contents, AIMoveTrace_t *pMoveTrace )
{
AI_PROFILE_SCOPE( CAI_PlaneSolver_MoveLimit );
int flags = ( navType == NAV_GROUND ) ? AIMLF_2D : AIMLF_DEFAULT;
if ( ignoreTransients )
{
Assert( !ProbeForNpcs() );
flags |= AIMLF_IGNORE_TRANSIENTS;
}
CAI_MoveProbe *pProbe = m_pNpc->GetMoveProbe();
return pProbe->MoveLimit( navType, GetLocalOrigin(), target, contents,
m_pNpc->GetNavTargetEntity(), (fCheckStep) ? 100 : 0,
flags,
pMoveTrace );
}
bool CAI_PlaneSolver::MoveLimit( Navigation_t navType, const Vector &target, bool ignoreTransients, bool fCheckStep, AIMoveTrace_t *pMoveTrace )
{
return MoveLimit( navType, target, ignoreTransients, fCheckStep, MASK_NPCSOLID, pMoveTrace );
}
//-----------------------------------------------------------------------------
bool CAI_PlaneSolver::DetectUnsolvable( const AILocalMoveGoal_t &goal )
{
#ifndef TESTING_SUGGESTIONS
float curDistance = ( goal.target.AsVector2D() - GetLocalOrigin().AsVector2D() ).Length();
if ( m_PrevTarget != goal.target )
{
m_TimeLastProgress = gpGlobals->curtime;
m_ClosestHaveBeenToCurrent = curDistance;
m_fCannotSolveCurrent = false;
}
else
{
if ( m_fCannotSolveCurrent )
{
return true;
}
if ( m_ClosestHaveBeenToCurrent - curDistance > 0 )
{
m_TimeLastProgress = gpGlobals->curtime;
m_ClosestHaveBeenToCurrent = curDistance;
}
else
{
if ( gpGlobals->curtime - m_TimeLastProgress > 0.75 )
{
m_fCannotSolveCurrent = true;
return true;
}
}
}
#endif
return false;
}
//-----------------------------------------------------------------------------
float CAI_PlaneSolver::AdjustRegulationWeight( CBaseEntity *pEntity, float weight )
{
if ( pEntity->MyNPCPointer() != NULL )
{
// @TODO (toml 10-03-02): How to do this with non-NPC entities. Should be using intended solve velocity...
Vector2D velOwner = GetNpc()->GetMotor()->GetCurVel().AsVector2D();
Vector2D velBlocker = ((CAI_BaseNPC *)pEntity)->GetMotor()->GetCurVel().AsVector2D();
Vector2D velOwnerNorm = velOwner;
Vector2D velBlockerNorm = velBlocker;
float speedOwner = Vector2DNormalize( velOwnerNorm );
float speedBlocker = Vector2DNormalize( velBlockerNorm );
float dot = velOwnerNorm.Dot( velBlockerNorm );
if ( speedBlocker > 0 )
{
if ( dot > 0 && speedBlocker >= speedOwner * 0.9 )
{
if ( dot > 0.86 )
{
// @Note (toml 10-10-02): Even in the case of no obstacle, we generate
// a suggestion in because we still want to continue sweeping the
// search
weight = 0;
}
else if ( dot > 0.7 )
{
weight *= sq( weight );
}
else
weight *= weight;
}
}
}
return weight;
}
//-----------------------------------------------------------------------------
float CAI_PlaneSolver::CalculateRegulationWeight( const AIMoveTrace_t &moveTrace, float pctBlocked )
{
float weight = 0;
if ( pctBlocked > 0.9)
weight = 1;
else if ( pctBlocked < 0.1)
weight = 0;
else
{
weight = sq( ( pctBlocked - 0.1 ) / 0.8 );
weight = AdjustRegulationWeight( moveTrace.pObstruction, weight );
}
return weight;
}
//-----------------------------------------------------------------------------
void CAI_PlaneSolver::GenerateSuggestionFromTrace( const AILocalMoveGoal_t &goal,
const AIMoveTrace_t &moveTrace, float probeDist,
float arcCenter, float arcSpan, int probeOffset )
{
AI_MoveSuggestion_t suggestion;
AI_MoveSuggType_t type;
switch ( moveTrace.fStatus )
{
case AIMR_BLOCKED_ENTITY: type = AIMST_AVOID_OBJECT; break;
case AIMR_BLOCKED_WORLD: type = AIMST_AVOID_WORLD; break;
case AIMR_BLOCKED_NPC: type = AIMST_AVOID_NPC; break;
case AIMR_ILLEGAL: type = AIMST_AVOID_DANGER; break;
default: type = AIMST_NO_KNOWLEDGE; AssertMsg( 0, "Unexpected mode status" ); break;
}
if ( goal.pMoveTarget != NULL && goal.pMoveTarget == moveTrace.pObstruction )
{
suggestion.Set( type, 0,
arcCenter, arcSpan,
moveTrace.pObstruction );
m_Solver.AddRegulation( suggestion );
return;
}
float clearDist = probeDist - moveTrace.flDistObstructed;
float pctBlocked = 1.0 - ( clearDist / probeDist );
float weight = CalculateRegulationWeight( moveTrace, pctBlocked );
if ( weight < 0.001 )
return;
if ( pctBlocked < 0.5 )
{
arcSpan *= pctBlocked * 2.0;
}
Vector vecToEnd = moveTrace.vEndPosition - GetLocalOrigin();
Vector crossProduct;
bool favorLeft = false, favorRight = false;
if ( moveTrace.fStatus == AIMR_BLOCKED_NPC )
{
Vector vecToOther = moveTrace.pObstruction->GetLocalOrigin() - GetLocalOrigin();
CrossProduct(vecToEnd, vecToOther, crossProduct);
favorLeft = ( crossProduct.z < 0 );
favorRight = ( crossProduct.z > 0 );
}
else if ( moveTrace.vHitNormal != vec3_origin )
{
CrossProduct(vecToEnd, moveTrace.vHitNormal, crossProduct);
favorLeft = ( crossProduct.z > 0 );
favorRight = ( crossProduct.z < 0 );
}
float thirdSpan = arcSpan / 3.0;
float favoredWeight = weight * pctBlocked;
suggestion.Set( type, weight,
arcCenter, thirdSpan,
moveTrace.pObstruction );
m_Solver.AddRegulation( suggestion );
suggestion.Set( type, ( favorRight ) ? favoredWeight : weight,
arcCenter - thirdSpan, thirdSpan,
moveTrace.pObstruction );
m_Solver.AddRegulation( suggestion );
suggestion.Set( type, ( favorLeft ) ? favoredWeight : weight,
arcCenter + thirdSpan, thirdSpan,
moveTrace.pObstruction );
m_Solver.AddRegulation( suggestion );
}
//-----------------------------------------------------------------------------
void CAI_PlaneSolver::CalcYawsFromOffset( float yawScanCenter, float spanPerProbe, int probeOffset,
float *pYawTest, float *pYawCenter )
{
if ( probeOffset != 0 )
{
float sign = ( probeOffset > 0 ) ? 1 : -1;
*pYawCenter = yawScanCenter + probeOffset * spanPerProbe;
if ( *pYawCenter < 0 )
*pYawCenter += 360;
else if ( *pYawCenter >= 360 )
*pYawCenter -= 360;
*pYawTest = *pYawCenter - ( sign * spanPerProbe * 0.5 );
if ( *pYawTest < 0 )
*pYawTest += 360;
else if ( *pYawTest >= 360 )
*pYawTest -= 360;
}
else
{
*pYawCenter = *pYawTest = yawScanCenter;
}
}
//-----------------------------------------------------------------------------
void CAI_PlaneSolver::GenerateObstacleNpcs( const AILocalMoveGoal_t &goal, float probeDist )
{
if ( !ProbeForNpcs() )
{
CAI_BaseNPC **ppAIs = g_AI_Manager.AccessAIs();
Vector minsSelf, maxsSelf;
m_pNpc->CollisionProp()->WorldSpaceSurroundingBounds( &minsSelf, &maxsSelf );
float radiusSelf = (minsSelf.AsVector2D() - maxsSelf.AsVector2D()).Length() * 0.5;
for ( int i = 0; i < g_AI_Manager.NumAIs(); i++ )
{
CAI_BaseNPC *pAI = ppAIs[i];
if ( pAI != m_pNpc && pAI->IsAlive() && ( !goal.pPath || pAI != goal.pPath->GetTarget() ) )
{
Vector mins, maxs;
pAI->CollisionProp()->WorldSpaceSurroundingBounds( &mins, &maxs );
if ( mins.z < maxsSelf.z + 12.0 && maxs.z > minsSelf.z - 12.0 )
{
float radius = (mins.AsVector2D() - maxs.AsVector2D()).Length() * 0.5;
float distance = ( pAI->GetAbsOrigin().AsVector2D() - m_pNpc->GetAbsOrigin().AsVector2D() ).Length();
if ( distance - radius < radiusSelf + probeDist )
{
AddObstacle( pAI->WorldSpaceCenter(), radius, pAI, AIMST_AVOID_NPC );
}
}
}
}
CBaseEntity *pPlayer = UTIL_PlayerByIndex( 1 );
if ( pPlayer )
{
Vector mins, maxs;
pPlayer->CollisionProp()->WorldSpaceSurroundingBounds( &mins, &maxs );
if ( mins.z < maxsSelf.z + 12.0 && maxs.z > minsSelf.z - 12.0 )
{
float radius = (mins.AsVector2D() - maxs.AsVector2D()).Length();
float distance = ( pPlayer->GetAbsOrigin().AsVector2D() - m_pNpc->GetAbsOrigin().AsVector2D() ).Length();
if ( distance - radius < radiusSelf + probeDist )
{
AddObstacle( pPlayer->WorldSpaceCenter(), radius, pPlayer, AIMST_AVOID_NPC );
}
}
}
}
}
//-----------------------------------------------------------------------------
AI_SuggestorResult_t CAI_PlaneSolver::GenerateObstacleSuggestion( const AILocalMoveGoal_t &goal, float yawScanCenter,
float probeDist, float spanPerProbe, int probeOffset)
{
AIMoveTrace_t moveTrace;
float yawTest;
float arcCenter;
CalcYawsFromOffset( yawScanCenter, spanPerProbe, probeOffset, &yawTest, &arcCenter );
Vector probeDir = UTIL_YawToVector( yawTest );
float requiredMovement = goal.speed * GetMotor()->GetMoveInterval();
// Probe immediate move with footing, then look further out ignoring footing
bool fTraceClear = true;
if ( probeDist > requiredMovement )
{
if ( !MoveLimit( goal.navType, GetLocalOrigin() + probeDir * requiredMovement, !ProbeForNpcs(), true, &moveTrace ) )
{
fTraceClear = false;
moveTrace.flDistObstructed = (probeDist - requiredMovement) + moveTrace.flDistObstructed;
}
}
if ( fTraceClear )
{
fTraceClear = MoveLimit( goal.navType, GetLocalOrigin() + probeDir * probeDist, !ProbeForNpcs(), false, &moveTrace );
}
if ( !fTraceClear )
{
GenerateSuggestionFromTrace( goal, moveTrace, probeDist, arcCenter, spanPerProbe, probeOffset );
return SR_OK;
}
return SR_NONE;
}
//-----------------------------------------------------------------------------
AI_SuggestorResult_t CAI_PlaneSolver::GenerateObstacleSuggestions( const AILocalMoveGoal_t &goal, const AIMoveTrace_t &directTrace,
float distClear, float probeDist, float degreesToProbe, int nProbes )
{
Assert( nProbes % 2 == 1 );
PLANESOLVER_PROFILE_SCOPE( CAI_PlaneSolver_GenerateObstacleSuggestions );
AI_SuggestorResult_t seekResult = SR_NONE;
bool fNewTarget = ( !m_fSolvedPrev || m_PrevTarget != goal.target );
if ( fNewTarget )
m_RefreshSamplesTimer.Force();
if ( PLANE_SOLVER_THINK_FREQUENCY[AIStrongOpt()] == 0.0 || m_RefreshSamplesTimer.Expired() )
{
m_Solver.ClearRegulations();
if ( !ProbeForNpcs() )
GenerateObstacleNpcs( goal, probeDist );
if ( GenerateCircleObstacleSuggestions( goal, probeDist ) )
seekResult = SR_OK;
float spanPerProbe = degreesToProbe / nProbes;
int nSideProbes = (nProbes - 1) / 2;
float yawGoalDir = UTIL_VecToYaw( goal.dir );
Vector probeTarget;
AIMoveTrace_t moveTrace;
int i;
// Generate suggestion from direct trace, or probe if direct trace doesn't match
if ( fabs( probeDist - ( distClear + directTrace.flDistObstructed ) ) < 0.1 &&
( ProbeForNpcs() || directTrace.fStatus != AIMR_BLOCKED_NPC ) )
{
if ( directTrace.fStatus != AIMR_OK )
{
seekResult = SR_OK;
GenerateSuggestionFromTrace( goal, directTrace, probeDist, yawGoalDir, spanPerProbe, 0 );
}
}
else if ( GenerateObstacleSuggestion( goal, yawGoalDir, probeDist, spanPerProbe, 0 ) == SR_OK )
{
seekResult = SR_OK;
}
// Scan left. Note that in the left and right scan, the algorithm stops as soon
// as there is a clear path. This is an optimization in anticipation of the
// behavior of the underlying solver. This will break more often the higher
// PLANE_SOLVER_THINK_FREQUENCY becomes
bool foundClear = false;
for ( i = 1; i <= nSideProbes; i++ )
{
if ( !foundClear )
{
AI_SuggestorResult_t curSeekResult = GenerateObstacleSuggestion( goal, yawGoalDir, probeDist,
spanPerProbe, i );
if ( curSeekResult == SR_OK )
{
seekResult = SR_OK;
}
else
foundClear = true;
}
else
{
float ignored;
float arcCenter;
CalcYawsFromOffset( yawGoalDir, spanPerProbe, i, &ignored, &arcCenter );
m_Solver.AddRegulation( AI_MoveSuggestion_t( AIMST_NO_KNOWLEDGE, 1, arcCenter, spanPerProbe ) );
}
}
// Scan right
foundClear = false;
for ( i = -1; i >= -nSideProbes; i-- )
{
if ( !foundClear )
{
AI_SuggestorResult_t curSeekResult = GenerateObstacleSuggestion( goal, yawGoalDir, probeDist,
spanPerProbe, i );
if ( curSeekResult == SR_OK )
{
seekResult = SR_OK;
}
else
foundClear = true;
}
else
{
float ignored;
float arcCenter;
CalcYawsFromOffset( yawGoalDir, spanPerProbe, i, &ignored, &arcCenter );
m_Solver.AddRegulation( AI_MoveSuggestion_t( AIMST_NO_KNOWLEDGE, 1, arcCenter, spanPerProbe ) );
}
}
if ( seekResult == SR_OK )
{
float arcCenter = yawGoalDir - 180;
if ( arcCenter < 0 )
arcCenter += 360;
// Since these are not sampled every think, place a negative arc in all directions not sampled
m_Solver.AddRegulation( AI_MoveSuggestion_t( AIMST_NO_KNOWLEDGE, 1, arcCenter, 360 - degreesToProbe ) );
}
m_RefreshSamplesTimer.Reset( PLANE_SOLVER_THINK_FREQUENCY[AIStrongOpt()] );
}
else if ( m_Solver.HaveRegulations() )
seekResult = SR_OK;
return seekResult;
}
//-----------------------------------------------------------------------------
// Visualizes the regulations for debugging purposes
//-----------------------------------------------------------------------------
void CAI_PlaneSolver::VisualizeRegulations()
{
// Visualization of regulations
if ((GetNpc()->m_debugOverlays & OVERLAY_NPC_STEERING_REGULATIONS) != 0)
{
m_Solver.VisualizeRegulations( GetNpc()->WorldSpaceCenter() );
}
}
void CAI_PlaneSolver::VisualizeSolution( const Vector &vecGoal, const Vector& vecActual )
{
if ((GetNpc()->m_debugOverlays & OVERLAY_NPC_STEERING_REGULATIONS) != 0)
{
// Compute centroid...
Vector centroid = GetNpc()->WorldSpaceCenter();
Vector goalPt, actualPt;
VectorMA( centroid, 20, vecGoal, goalPt );
VectorMA( centroid, 20, vecActual, actualPt );
NDebugOverlay::Line(centroid, goalPt, 255, 255, 255, true, 0.1f );
NDebugOverlay::Line(centroid, actualPt, 255, 255, 0, true, 0.1f );
}
}
//-----------------------------------------------------------------------------
// Adjust the solution for fliers
//-----------------------------------------------------------------------------
#define MIN_ZDIR_TO_RADIUS 0.1f
void CAI_PlaneSolver::AdjustSolutionForFliers( const AILocalMoveGoal_t &goal, float flSolutionYaw, Vector *pSolution )
{
// Fliers should move up if there are local obstructions...
// A hacky solution, but the bigger the angle of deflection, the more likely
// we're close to a problem and the higher we should go up.
Assert( pSolution->z == 0.0f );
// If we're largely needing to move down, then blow off the upward motion...
Vector vecDelta, vecDir;
VectorSubtract( goal.target, GetLocalOrigin(), vecDelta );
vecDir = vecDelta;
VectorNormalize( vecDir );
float flRadius = sqrt( vecDir.x * vecDir.x + vecDir.y * vecDir.y );
*pSolution *= flRadius;
pSolution->z = vecDir.z;
AssertFloatEquals( pSolution->LengthSqr(), 1.0f, 1e-3 );
// Move up 0 when we have to move forward as much as we have to move down z (45 degree angle)
// Move up max when we have to move forward 5x as much as we have to move down z,
// or if we have to move up z.
float flUpAmount = 0.0f;
if ( vecDir.z >= -flRadius * MIN_ZDIR_TO_RADIUS)
{
flUpAmount = 1.0f;
}
else if ((vecDir.z <= -flRadius) || (fabs(vecDir.z) < 1e-3))
{
flUpAmount = 0.0f;
}
else
{
flUpAmount = (-flRadius / vecDir.z) - 1.0f;
flUpAmount *= MIN_ZDIR_TO_RADIUS;
Assert( (flUpAmount >= 0.0f) && (flUpAmount <= 1.0f) );
}
// Check the deflection amount...
pSolution->z += flUpAmount * 5.0f;
// FIXME: Also, if we've got a bunch of regulations, we may
// also wish to raise up a little bit..because this indicates
// that we've got a bunch of stuff to avoid
VectorNormalize( *pSolution );
}
//-----------------------------------------------------------------------------
unsigned CAI_PlaneSolver::ComputeTurnBiasFlags( const AILocalMoveGoal_t &goal, const AIMoveTrace_t &directTrace )
{
if ( directTrace.fStatus == AIMR_BLOCKED_WORLD )
{
// @TODO (toml 11-11-02): stuff plane normal of hit into trace Use here to compute a bias?
//
return 0;
}
if ( directTrace.fStatus == AIMR_BLOCKED_NPC )
{
return AIMS_FAVOR_LEFT;
}
return 0;
}
//-----------------------------------------------------------------------------
bool CAI_PlaneSolver::RunMoveSolver( const AILocalMoveGoal_t &goal, const AIMoveTrace_t &directTrace, float degreesPositiveArc,
bool fDeterOscillation, Vector *pResult )
{
PLANESOLVER_PROFILE_SCOPE( CAI_PlaneSolver_RunMoveSolver );
AI_MoveSolution_t solution;
if ( m_Solver.HaveRegulations() )
{
// @TODO (toml 07-19-02): add a movement threshhold here (the target may be the same,
// but the ai is nowhere near where the last solution was derived)
bool fNewTarget = ( !m_fSolvedPrev || m_PrevTarget != goal.target );
// For debugging, visualize our regulations
VisualizeRegulations();
AI_MoveSuggestion_t moveSuggestions[2];
int nSuggestions = 1;
moveSuggestions[0].Set( AIMST_MOVE, 1, UTIL_VecToYaw( goal.dir ), degreesPositiveArc );
moveSuggestions[0].flags |= ComputeTurnBiasFlags( goal, directTrace );
if ( fDeterOscillation && !fNewTarget )
{
#ifndef TESTING_SUGGESTIONS
moveSuggestions[nSuggestions++].Set( AIMST_OSCILLATION_DETERRANCE, 1, m_PrevSolution - 180, 180 );
#endif
}
if ( m_Solver.Solve( moveSuggestions, nSuggestions, &solution ) )
{
*pResult = UTIL_YawToVector( solution.dir );
if (goal.navType == NAV_FLY)
{
// FIXME: Does the z component have to occur during the goal
// setting because it's there & only there where MoveLimit
// will report contact with the world if we move up?
AdjustSolutionForFliers( goal, solution.dir, pResult );
}
// A crude attempt at oscillation detection: if we solved last time, and this time, and the same target is
// involved, and we resulted in nearly a 180, we are probably oscillating
#ifndef TESTING_SUGGESTIONS
if ( !fNewTarget )
{
float delta = solution.dir - m_PrevSolution;
if ( delta < 0 )
delta += 360;
if ( delta > 165 && delta < 195 )
return false;
}
#endif
m_PrevSolution = solution.dir;
m_PrevSolutionVector = *pResult;
Vector curVelocity = m_pNpc->GetSmoothedVelocity();
if ( curVelocity != vec3_origin )
{
VectorNormalize( curVelocity );
if ( !fNewTarget )
{
*pResult = curVelocity * 0.1 + m_PrevSolutionVector * 0.1 + *pResult * 0.8;
}
else
{
*pResult = curVelocity * 0.2 + *pResult * 0.8;
}
}
return true;
}
}
else
{
if (goal.navType != NAV_FLY)
{
*pResult = goal.dir;
}
else
{
VectorSubtract( goal.target, GetLocalOrigin(), *pResult );
VectorNormalize( *pResult );
}
return true;
}
return false;
}
//-----------------------------------------------------------------------------
float CAI_PlaneSolver::CalcProbeDist( float speed )
{
// one second or one hull
float result = GetLookaheadTime() * speed;
if ( result < m_pNpc->GetMoveProbe()->GetHullWidth() )
return m_pNpc->GetMoveProbe()->GetHullWidth();
if ( result > MAX_PROBE_DIST[AIStrongOpt()] )
return MAX_PROBE_DIST[AIStrongOpt()];
return result;
}
//-----------------------------------------------------------------------------
void CAI_PlaneSolver::AddObstacle( const Vector &center, float radius, CBaseEntity *pEntity, AI_MoveSuggType_t type )
{
m_Obstacles.AddToTail( CircleObstacles_t( center, radius, pEntity, type ) );
}
//-----------------------------------------------------------------------------
bool CAI_PlaneSolver::GenerateCircleObstacleSuggestions( const AILocalMoveGoal_t &moveGoal, float probeDist )
{
bool result = false;
Vector npcLoc = m_pNpc->WorldSpaceCenter();
Vector mins, maxs;
m_pNpc->CollisionProp()->WorldSpaceSurroundingBounds( &mins, &maxs );
float radiusNpc = (mins.AsVector2D() - maxs.AsVector2D()).Length() * 0.5;
for ( int i = 0; i < m_Obstacles.Count(); i++ )
{
CBaseEntity *pObstacleEntity = NULL;
float zDistTooFar;
if ( m_Obstacles[i].hEntity && m_Obstacles[i].hEntity->CollisionProp() )
{
pObstacleEntity = m_Obstacles[i].hEntity.Get();
if( pObstacleEntity == moveGoal.pMoveTarget && (pObstacleEntity->IsNPC() || pObstacleEntity->IsPlayer()) )
{
// HEY! I'm trying to avoid the very thing I'm trying to get to. This will make we wobble like a drunk as I approach. Don't do it.
continue;
}
pObstacleEntity->CollisionProp()->WorldSpaceSurroundingBounds( &mins, &maxs );
zDistTooFar = ( maxs.z - mins.z ) * 0.5 + GetNpc()->GetHullHeight() * 0.5;
}
else
zDistTooFar = GetNpc()->GetHullHeight();
if ( fabs( m_Obstacles[i].center.z - npcLoc.z ) > zDistTooFar )
continue;
Vector vecToNpc = npcLoc - m_Obstacles[i].center;
vecToNpc.z = 0;
float distToObstacleSq = sq(vecToNpc.x) + sq(vecToNpc.y);
float radius = m_Obstacles[i].radius + radiusNpc;
if ( distToObstacleSq > 0.001 && distToObstacleSq < sq( radius + probeDist ) )
{
Vector vecToObstacle = vecToNpc * -1;
float distToObstacle = VectorNormalize( vecToObstacle );
float weight;
float arc;
float radiusSq = sq(radius);
float flDot = DotProduct( vecToObstacle, moveGoal.dir );
// Don't steer around to avoid obstacles we've already passed, unless we're right up against them.
// That is, do this computation without the probeDist added in.
if( flDot < 0.0f && distToObstacleSq > radiusSq )
{
continue;
}
if ( radiusSq < distToObstacleSq )
{
Vector vecTangent;
float distToTangent = FastSqrt( distToObstacleSq - radiusSq );
float oneOverDistToObstacleSq = 1 / distToObstacleSq;
vecTangent.x = ( -distToTangent * vecToNpc.x + radius * vecToNpc.y ) * oneOverDistToObstacleSq;
vecTangent.y = ( -distToTangent * vecToNpc.y - radius * vecToNpc.x ) * oneOverDistToObstacleSq;
vecTangent.z = 0;
float cosHalfArc = vecToObstacle.Dot( vecTangent );
arc = RAD2DEG(acosf( cosHalfArc )) * 2.0;
weight = 1.0 - (distToObstacle - radius) / probeDist;
if ( weight > 0.75 )
arc += (arc * 0.5) * (weight - 0.75) / 0.25;
Assert( weight >= 0.0 && weight <= 1.0 );
#if DEBUG_OBSTACLES
// -------------------------
Msg( "Adding arc %f, w %f\n", arc, weight );
Vector pointTangent = npcLoc + ( vecTangent * distToTangent );
NDebugOverlay::Line( npcLoc - Vector( 0, 0, 64 ), npcLoc + Vector(0,0,64), 0,255,0, false, 0.1 );
NDebugOverlay::Line( center - Vector( 0, 0, 64 ), center + Vector(0,0,64), 0,255,0, false, 0.1 );
NDebugOverlay::Line( pointTangent - Vector( 0, 0, 64 ), pointTangent + Vector(0,0,64), 0,255,0, false, 0.1 );
NDebugOverlay::Line( npcLoc + Vector(0,0,64), center + Vector(0,0,64), 0,0,255, false, 0.1 );
NDebugOverlay::Line( center + Vector(0,0,64), pointTangent + Vector(0,0,64), 0,0,255, false, 0.1 );
NDebugOverlay::Line( pointTangent + Vector(0,0,64), npcLoc + Vector(0,0,64), 0,0,255, false, 0.1 );
#endif
}
else
{
arc = 210;
weight = 1.0;
}
if ( m_Obstacles[i].hEntity != NULL )
{
weight = AdjustRegulationWeight( m_Obstacles[i].hEntity, weight );
}
AI_MoveSuggestion_t suggestion( m_Obstacles[i].type, weight, UTIL_VecToYaw(vecToObstacle), arc );
m_Solver.AddRegulation( suggestion );
result = true;
}
}
m_Obstacles.RemoveAll();
return result;
}
//-----------------------------------------------------------------------------
bool CAI_PlaneSolver::Solve( const AILocalMoveGoal_t &goal, float distClear, Vector *pSolution )
{
bool solved = false;
//---------------------------------
if ( goal.speed == 0 )
return false;
if ( DetectUnsolvable( goal ) )
return false;
//---------------------------------
bool fVeryClose = ( distClear < 1.0 );
float degreesPositiveArc = ( !fVeryClose ) ? DEGREES_POSITIVE_ARC : DEGREES_POSITIVE_ARC_CLOSE_OBSTRUCTION;
float probeDist = CalcProbeDist( goal.speed );
if ( goal.flags & ( AILMG_TARGET_IS_TRANSITION | AILMG_TARGET_IS_GOAL ) )
{
probeDist = MIN( goal.maxDist, probeDist );
}
if ( GenerateObstacleSuggestions( goal, goal.directTrace, distClear, probeDist, degreesPositiveArc, NUM_PROBES ) != SR_FAIL )
{
if ( RunMoveSolver( goal, goal.directTrace, degreesPositiveArc, !fVeryClose, pSolution ) )
{
// Visualize desired + actual directions
VisualizeSolution( goal.dir, *pSolution );
AIMoveTrace_t moveTrace;
float requiredMovement = goal.speed * GetMotor()->GetMoveInterval();
MoveLimit( goal.navType, GetLocalOrigin() + *pSolution * requiredMovement, false, true, &moveTrace );
if ( !IsMoveBlocked( moveTrace ) )
solved = true;
else
solved = false;
}
}
m_fSolvedPrev = ( solved && goal.speed != 0 ); // a solution found when speed is zero is not meaningful
m_PrevTarget = goal.target;
return solved;
}
//=============================================================================