Reintroduce compact vector types

This commit is contained in:
Sardelka9515 2023-03-26 12:03:06 +08:00
parent 3944d41e85
commit 826e80c5d8
3 changed files with 2211 additions and 0 deletions

View File

@ -0,0 +1,968 @@
using System;
using System.Collections.Generic;
using System.Globalization;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using GTA.Math;
namespace RageCoop.Core.CompactVectors
{
public struct LQuaternion : IEquatable<LQuaternion>
{
/// <summary>
/// Gets or sets the X component of the quaternion.
/// </summary>
/// <value>The X component of the quaternion.</value>
public float X;
/// <summary>
/// Gets or sets the Y component of the quaternion.
/// </summary>
/// <value>The Y component of the quaternion.</value>
public float Y;
/// <summary>
/// Gets or sets the Z component of the quaternion.
/// </summary>
/// <value>The Z component of the quaternion.</value>
public float Z;
/// <summary>
/// Gets or sets the W component of the quaternion.
/// </summary>
/// <value>The W component of the quaternion.</value>
public float W;
/// <summary>
/// Initializes a new instance of the <see cref="LQuaternion"/> structure.
/// </summary>
/// <param name="x">The X component of the quaternion.</param>
/// <param name="y">The Y component of the quaternion.</param>
/// <param name="z">The Z component of the quaternion.</param>
/// <param name="w">The W component of the quaternion.</param>
public LQuaternion(float x, float y, float z, float w) : this()
{
X = x;
Y = y;
Z = z;
W = w;
}
/// <summary>
/// Initializes a new instance of the <see cref="LQuaternion"/> structure.
/// </summary>
/// <param name="axis">The axis of rotation.</param>
/// <param name="angle">The angle of rotation in radians.</param>
public LQuaternion(Vector3 axis, float angle) : this()
{
axis = Vector3.Normalize(axis);
float half = angle * 0.5f;
float sin = (float)(System.Math.Sin((double)(half)));
float cos = (float)(System.Math.Cos((double)(half)));
X = axis.X * sin;
Y = axis.Y * sin;
Z = axis.Z * sin;
W = cos;
}
/// <summary>
/// A <see cref="LQuaternion"/> with all of its components set to zero.
/// </summary>
public static LQuaternion Zero => new LQuaternion();
/// <summary>
/// A <see cref="LQuaternion"/> with all of its components set to one.
/// </summary>
public static LQuaternion One => new LQuaternion(1.0f, 1.0f, 1.0f, 1.0f);
/// <summary>
/// The identity <see cref="LQuaternion"/> (0, 0, 0, 1).
/// </summary>
public static LQuaternion Identity => new LQuaternion(0.0f, 0.0f, 0.0f, 1.0f);
/// <summary>
/// Gets the axis components of the quaternion.
/// </summary>
public Vector3 Axis
{
get
{
if (Length() != 1.0f)
{
return Vector3.Zero;
}
float length = 1.0f - (W * W);
if (length == 0f)
{
return Vector3.UnitX;
}
float inv = 1.0f / (float)System.Math.Sqrt(length);
return new Vector3(X * inv, Y * inv, Z * inv);
}
}
/// <summary>
/// Gets the angle of the quaternion.
/// </summary>
public float Angle => ((System.Math.Abs(W) <= 1.0f) ? 2.0f * (float)(System.Math.Acos(W)) : 0.0f);
/// <summary>
/// Calculates the length of the quaternion.
/// </summary>
/// <returns>The length of the quaternion.</returns>
public float Length() => (float)System.Math.Sqrt((X * X) + (Y * Y) + (Z * Z) + (W * W));
/// <summary>
/// Calculates the squared length of the quaternion.
/// </summary>
/// <returns>The squared length of the quaternion.</returns>
public float LengthSquared() => (X * X) + (Y * Y) + (Z * Z) + (W * W);
/// <summary>
/// Converts the quaternion into a unit quaternion.
/// </summary>
public void Normalize()
{
float length = Length();
if (length != 0f)
{
float inverse = 1.0f / length;
X *= inverse;
Y *= inverse;
Z *= inverse;
W *= inverse;
}
}
/// <summary>
/// Conjugates the quaternion.
/// </summary>
public void Conjugate()
{
X = -X;
Y = -Y;
Z = -Z;
}
/// <summary>
/// Conjugates and renormalizes the quaternion.
/// </summary>
public void Invert()
{
float lengthSq = LengthSquared();
if (lengthSq != 0f)
{
lengthSq = 1.0f / lengthSq;
X = -X * lengthSq;
Y = -Y * lengthSq;
Z = -Z * lengthSq;
W = W * lengthSq;
}
}
/// <summary>
/// Reverses the direction of a given quaternion.
/// </summary>
/// <param name="quaternion">The quaternion to negate.</param>
/// <returns>A quaternion facing in the opposite direction.</returns>
public static LQuaternion Negate(LQuaternion quaternion)
{
LQuaternion result = Zero;
result.X = -quaternion.X;
result.Y = -quaternion.Y;
result.Z = -quaternion.Z;
result.W = -quaternion.W;
return result;
}
/// <summary>
/// Adds two quaternions.
/// </summary>
/// <param name="left">The first quaternion to add.</param>
/// <param name="right">The second quaternion to add.</param>
/// <returns>The sum of the two quaternions.</returns>
public static LQuaternion Add(LQuaternion left, LQuaternion right)
{
LQuaternion result = Zero;
result.X = left.X + right.X;
result.Y = left.Y + right.Y;
result.Z = left.Z + right.Z;
result.W = left.W + right.W;
return result;
}
/// <summary>
/// Subtracts two quaternions.
/// </summary>
/// <param name="left">The first quaternion to subtract.</param>
/// <param name="right">The second quaternion to subtract.</param>
/// <returns>The difference of the two quaternions.</returns>
public static LQuaternion Subtract(LQuaternion left, LQuaternion right)
{
LQuaternion result = Zero;
result.X = left.X - right.X;
result.Y = left.Y - right.Y;
result.Z = left.Z - right.Z;
result.W = left.W - right.W;
return result;
}
/// <summary>
/// Multiplies two Quaternions together.
/// </summary>
/// <param name="left">The Quaternion on the left side of the multiplication.</param>
/// <param name="right">The Quaternion on the right side of the multiplication.</param>
/// <returns>The result of the multiplication.</returns>
public static LQuaternion Multiply(LQuaternion left, LQuaternion right)
{
LQuaternion quaternion;
float lx = left.X;
float ly = left.Y;
float lz = left.Z;
float lw = left.W;
float rx = right.X;
float ry = right.Y;
float rz = right.Z;
float rw = right.W;
quaternion.X = (lx * rw + rx * lw) + (ly * rz) - (lz * ry);
quaternion.Y = (ly * rw + ry * lw) + (lz * rx) - (lx * rz);
quaternion.Z = (lz * rw + rz * lw) + (lx * ry) - (ly * rx);
quaternion.W = (lw * rw) - (lx * rx + ly * ry + lz * rz);
return quaternion;
}
/// <summary>
/// Scales a quaternion by the given value.
/// </summary>
/// <param name="quaternion">The quaternion to scale.</param>
/// <param name="scale">The amount by which to scale the quaternion.</param>
/// <returns>The scaled quaternion.</returns>
public static LQuaternion Multiply(LQuaternion quaternion, float scale)
{
LQuaternion result = Zero;
result.X = quaternion.X * scale;
result.Y = quaternion.Y * scale;
result.Z = quaternion.Z * scale;
result.W = quaternion.W * scale;
return result;
}
/// <summary>
/// Divides a quaternion by another.
/// </summary>
/// <param name="left">The first quaternion to divide.</param>
/// <param name="right">The second quaternion to divide.</param>
/// <returns>The divided quaternion.</returns>
public static LQuaternion Divide(LQuaternion left, LQuaternion right)
{
return Multiply(left, Invert(right));
}
/// <summary>
/// Converts the quaternion into a unit quaternion.
/// </summary>
/// <param name="quaternion">The quaternion to normalize.</param>
/// <returns>The normalized quaternion.</returns>
public static LQuaternion Normalize(LQuaternion quaternion)
{
quaternion.Normalize();
return quaternion;
}
/// <summary>
/// Creates the conjugate of a specified Quaternion.
/// </summary>
/// <param name="value">The Quaternion of which to return the conjugate.</param>
/// <returns>A new Quaternion that is the conjugate of the specified one.</returns>
public static LQuaternion Conjugate(LQuaternion value)
{
LQuaternion ans;
ans.X = -value.X;
ans.Y = -value.Y;
ans.Z = -value.Z;
ans.W = value.W;
return ans;
}
/// <summary>
/// Conjugates and renormalizes the quaternion.
/// </summary>
/// <param name="quaternion">The quaternion to conjugate and re-normalize.</param>
/// <returns>The conjugated and renormalized quaternion.</returns>
public static LQuaternion Invert(LQuaternion quaternion)
{
LQuaternion result = Zero;
float lengthSq = 1.0f / ((quaternion.X * quaternion.X) + (quaternion.Y * quaternion.Y) + (quaternion.Z * quaternion.Z) + (quaternion.W * quaternion.W));
result.X = -quaternion.X * lengthSq;
result.Y = -quaternion.Y * lengthSq;
result.Z = -quaternion.Z * lengthSq;
result.W = quaternion.W * lengthSq;
return result;
}
/// <summary>
/// Calculates the dot product of two quaternions.
/// </summary>
/// <param name="left">First source quaternion.</param>
/// <param name="right">Second source quaternion.</param>
/// <returns>The dot product of the two quaternions.</returns>
public static float Dot(LQuaternion left, LQuaternion right) => (left.X * right.X) + (left.Y * right.Y) + (left.Z * right.Z) + (left.W * right.W);
/// <summary>
/// Performs a linear interpolation between two quaternion.
/// </summary>
/// <param name="start">Start quaternion.</param>
/// <param name="end">End quaternion.</param>
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
/// <returns>The linear interpolation of the two quaternions.</returns>
/// <remarks>
/// This method performs the linear interpolation based on the following formula.
/// <code>start + (end - start) * amount</code>
/// Passing <paramref name="amount"/> a value of 0 will cause <paramref name="start"/> to be returned; a value of 1 will cause <paramref name="end"/> to be returned.
/// </remarks>
public static LQuaternion Lerp(LQuaternion start, LQuaternion end, float amount)
{
LQuaternion result = Zero;
float inverse = 1.0f - amount;
float dot = (start.X * end.X) + (start.Y * end.Y) + (start.Z * end.Z) + (start.W * end.W);
if (dot >= 0.0f)
{
result.X = (inverse * start.X) + (amount * end.X);
result.Y = (inverse * start.Y) + (amount * end.Y);
result.Z = (inverse * start.Z) + (amount * end.Z);
result.W = (inverse * start.W) + (amount * end.W);
}
else
{
result.X = (inverse * start.X) - (amount * end.X);
result.Y = (inverse * start.Y) - (amount * end.Y);
result.Z = (inverse * start.Z) - (amount * end.Z);
result.W = (inverse * start.W) - (amount * end.W);
}
float invLength = 1.0f / result.Length();
result.X *= invLength;
result.Y *= invLength;
result.Z *= invLength;
result.W *= invLength;
return result;
}
/// <summary>
/// Interpolates between two quaternions, using spherical linear interpolation..
/// </summary>
/// <param name="start">Start quaternion.</param>
/// <param name="end">End quaternion.</param>
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
/// <returns>The spherical linear interpolation of the two quaternions.</returns>
public static LQuaternion Slerp(LQuaternion start, LQuaternion end, float amount)
{
LQuaternion result = Zero;
float kEpsilon = (float)(1.192093E-07);
float opposite;
float inverse;
float dot = Dot(start, end);
if (System.Math.Abs(dot) > (1.0f - kEpsilon))
{
inverse = 1.0f - amount;
opposite = amount * System.Math.Sign(dot);
}
else
{
float acos = (float)System.Math.Acos(System.Math.Abs(dot));
float invSin = (float)(1.0 / System.Math.Sin(acos));
inverse = (float)(System.Math.Sin((1.0f - amount) * acos) * invSin);
opposite = (float)(System.Math.Sin(amount * acos) * invSin * System.Math.Sign(dot));
}
result.X = (inverse * start.X) + (opposite * end.X);
result.Y = (inverse * start.Y) + (opposite * end.Y);
result.Z = (inverse * start.Z) + (opposite * end.Z);
result.W = (inverse * start.W) + (opposite * end.W);
return result;
}
/// <summary>
/// Interpolates between two quaternions, using spherical linear interpolation. The parameter /t/ is not clamped.
/// </summary>
/// <param name="a"></param>
/// <param name="b"></param>
/// <param name="t"></param>
public static LQuaternion SlerpUnclamped(LQuaternion a, LQuaternion b, float t)
{
if (a.LengthSquared() == 0.0f)
{
if (b.LengthSquared() == 0.0f)
{
return Identity;
}
return b;
}
else if (b.LengthSquared() == 0.0f)
{
return a;
}
float cosHalfAngle = a.W * b.W + Vector3.Dot(a.Axis, b.Axis);
if (cosHalfAngle >= 1.0f || cosHalfAngle <= -1.0f)
{
return a;
}
else if (cosHalfAngle < 0.0f)
{
b.X = -b.X;
b.Y = -b.Y;
b.Z = -b.Z;
b.W = -b.W;
cosHalfAngle = -cosHalfAngle;
}
float blendA;
float blendB;
if (cosHalfAngle < 0.99f)
{
float halfAngle = (float)System.Math.Acos(cosHalfAngle);
float sinHalfAngle = (float)System.Math.Sin(halfAngle);
float oneOverSinHalfAngle = 1.0f / sinHalfAngle;
blendA = (float)System.Math.Sin(halfAngle * (1.0f - t)) * oneOverSinHalfAngle;
blendB = (float)System.Math.Sin(halfAngle * t) * oneOverSinHalfAngle;
}
else
{
blendA = 1.0f - t;
blendB = t;
}
LQuaternion result = new LQuaternion(blendA * a.Axis + blendB * b.Axis, blendA * a.W + blendB * b.W);
if (result.LengthSquared() > 0.0f)
{
return Normalize(result);
}
else
{
return Identity;
}
}
/// <summary>
/// Creates a rotation with the specified <paramref name="forward"/> and <see cref="Vector3.WorldUp"/> directions.
/// </summary>
public static LQuaternion LookRotation(Vector3 forward) => LookRotation(forward, Vector3.WorldUp);
/// <summary>
/// Creates a rotation with the specified <paramref name="forward"/> and <paramref name="up"/> directions.
/// </summary>
public static LQuaternion LookRotation(Vector3 forward, Vector3 up) => DirectionVectors(Vector3.Cross(forward, up), forward, up);
/// <summary>
/// Creates a rotation which rotates from fromDirection to toDirection.
/// </summary>
public static LQuaternion FromToRotation(Vector3 fromDirection, Vector3 toDirection)
{
float NormAB = (float)(System.Math.Sqrt(fromDirection.LengthSquared() * fromDirection.LengthSquared()));
float w = NormAB + Vector3.Dot(fromDirection, toDirection);
LQuaternion Result;
if (w >= 1e-6f * NormAB)
{
Result = new LQuaternion(Vector3.Cross(fromDirection, toDirection), w);
}
else
{
w = 0.0f;
Result = System.Math.Abs(fromDirection.X) > System.Math.Abs(fromDirection.Y)
? new LQuaternion(-fromDirection.Z, 0.0f, fromDirection.X, w)
: new LQuaternion(0.0f, -fromDirection.Z, fromDirection.Y, w);
}
Result.Normalize();
return Result;
}
/// <summary>
/// Rotates a rotation from towards to.
/// </summary>
/// <param name="from">From Quaternion.</param>
/// <param name="to">To Quaternion.</param>
/// <param name ="maxDegreesDelta"></param>
public static LQuaternion RotateTowards(LQuaternion from, LQuaternion to, float maxDegreesDelta)
{
float angle = AngleBetween(from, to);
if (angle == 0.0f)
{
return to;
}
float t = System.Math.Min(1.0f, maxDegreesDelta / angle);
return SlerpUnclamped(from, to, t);
}
/// <summary>
/// Returns the angle in degrees between two rotations a and b.
/// </summary>
/// <param name="a">The first quaternion to calculate angle.</param>
/// <param name="b">The second quaternion to calculate angle.</param>
/// <returns>The angle in degrees between two rotations a and b.</returns>
public static float AngleBetween(LQuaternion a, LQuaternion b)
{
float dot = Dot(a, b);
return (float)((System.Math.Acos(System.Math.Min(System.Math.Abs(dot), 1.0f)) * 2.0 * (180.0f / System.Math.PI)));
}
/// <summary>
/// Returns a rotation that rotates z degrees around the z axis, x degrees around the x axis, and y degrees around the y axis (in that order).
/// </summary>
/// <param name="zaxis">Z degrees.</param>
/// <param name ="xaxis">X degrees.</param>
/// <param name ="yaxis">Y degrees.</param>
public static LQuaternion Euler(float zaxis, float xaxis, float yaxis)
{
float Deg2Rad = (float)((System.Math.PI / 180.0));
return RotationYawPitchRoll(zaxis * Deg2Rad, xaxis * Deg2Rad, yaxis * Deg2Rad);
}
/// <summary>
/// Returns a rotation that rotates z degrees around the z axis, x degrees around the x axis, and y degrees around the y axis (in that order).
/// </summary>
/// <param name="euler">Euler angles in degrees. euler.X = around X axis, euler.Y = around Y axis, euler.Z = around Z axis</param>
public static LQuaternion Euler(Vector3 euler)
{
Vector3 eulerRad = euler * (float)((System.Math.PI / 180.0));
return RotationYawPitchRoll(eulerRad.Z, eulerRad.X, eulerRad.Y);
}
/// <summary>
/// Creates a quaternion given a rotation and an axis.
/// </summary>
/// <param name="axis">The axis of rotation.</param>
/// <param name="angle">The angle of rotation in radians.</param>
/// <returns>The newly created quaternion.</returns>
public static LQuaternion RotationAxis(Vector3 axis, float angle)
{
LQuaternion result = Zero;
axis = Vector3.Normalize(axis);
float half = angle * 0.5f;
float sin = (float)(System.Math.Sin((double)(half)));
float cos = (float)(System.Math.Cos((double)(half)));
result.X = axis.X * sin;
result.Y = axis.Y * sin;
result.Z = axis.Z * sin;
result.W = cos;
return result;
}
/// <summary>
/// Creates a quaternion given a rotation matrix.
/// </summary>
/// <param name="matrix">The rotation matrix.</param>
/// <returns>The newly created quaternion.</returns>
public static LQuaternion RotationMatrix(Matrix matrix)
{
LQuaternion result = Zero;
float sqrt;
float half;
float scale = matrix.M11 + matrix.M22 + matrix.M33;
if (scale > 0.0f)
{
sqrt = (float)System.Math.Sqrt(scale + 1.0f);
result.W = sqrt * 0.5f;
sqrt = 0.5f / sqrt;
result.X = (matrix.M23 - matrix.M32) * sqrt;
result.Y = (matrix.M31 - matrix.M13) * sqrt;
result.Z = (matrix.M12 - matrix.M21) * sqrt;
}
else if ((matrix.M11 >= matrix.M22) && (matrix.M11 >= matrix.M33))
{
sqrt = (float)System.Math.Sqrt(1.0f + matrix.M11 - matrix.M22 - matrix.M33);
half = 0.5f / sqrt;
result.X = 0.5f * sqrt;
result.Y = (matrix.M12 + matrix.M21) * half;
result.Z = (matrix.M13 + matrix.M31) * half;
result.W = (matrix.M23 - matrix.M32) * half;
}
else if (matrix.M22 > matrix.M33)
{
sqrt = (float)System.Math.Sqrt(1.0f + matrix.M22 - matrix.M11 - matrix.M33);
half = 0.5f / sqrt;
result.X = (matrix.M21 + matrix.M12) * half;
result.Y = 0.5f * sqrt;
result.Z = (matrix.M32 + matrix.M23) * half;
result.W = (matrix.M31 - matrix.M13) * half;
}
else
{
sqrt = (float)System.Math.Sqrt(1.0f + matrix.M33 - matrix.M11 - matrix.M22);
half = 0.5f / sqrt;
result.X = (matrix.M31 + matrix.M13) * half;
result.Y = (matrix.M32 + matrix.M23) * half;
result.Z = 0.5f * sqrt;
result.W = (matrix.M12 - matrix.M21) * half;
}
return result;
}
/// <summary>
/// Creates a Quaternion from the given yaw, pitch, and roll, in radians.
/// </summary>
/// <param name="yaw">The yaw angle, in radians, around the Z-axis.</param>
/// <param name="pitch">The pitch angle, in radians, around the X-axis.</param>
/// <param name="roll">The roll angle, in radians, around the Y-axis.</param>
/// <returns>The newly created quaternion.</returns>
public static LQuaternion RotationYawPitchRoll(float yaw, float pitch, float roll)
{
LQuaternion result = Zero;
float halfYaw = yaw * 0.5f;
float sinYaw = (float)(System.Math.Sin((double)(halfYaw)));
float cosYaw = (float)(System.Math.Cos((double)(halfYaw)));
float halfPitch = pitch * 0.5f;
float sinPitch = (float)(System.Math.Sin((double)(halfPitch)));
float cosPitch = (float)(System.Math.Cos((double)(halfPitch)));
float halfRoll = roll * 0.5f;
float sinRoll = (float)(System.Math.Sin((double)(halfRoll)));
float cosRoll = (float)(System.Math.Cos((double)(halfRoll)));
result.X = (cosRoll * sinPitch * cosYaw) + (sinRoll * cosPitch * sinYaw);
result.Y = (sinRoll * cosPitch * cosYaw) - (cosRoll * sinPitch * sinYaw);
result.Z = (cosRoll * cosPitch * sinYaw) - (sinRoll * sinPitch * cosYaw);
result.W = (cosRoll * cosPitch * cosYaw) + (sinRoll * sinPitch * sinYaw);
return result;
}
/// <summary>
/// Creates a Quaternion from the given relative x, y, z axis
/// </summary>
/// The Vectors need to be perpendicular to each other
/// <param name="rightVector">Relative X axis</param>
/// <param name="forwardVector">Relative Y axis</param>
/// <param name="upVector">Relative Z axis</param>
/// <returns>The newly created quaternion.</returns>
public static LQuaternion DirectionVectors(Vector3 rightVector, Vector3 forwardVector, Vector3 upVector)
{
rightVector.Normalize();
forwardVector.Normalize();
upVector.Normalize();
Matrix rotationMatrix = new Matrix();
rotationMatrix[0, 0] = rightVector.X;
rotationMatrix[0, 1] = rightVector.Y;
rotationMatrix[0, 2] = rightVector.Z;
rotationMatrix[1, 0] = forwardVector.X;
rotationMatrix[1, 1] = forwardVector.Y;
rotationMatrix[1, 2] = forwardVector.Z;
rotationMatrix[2, 0] = upVector.X;
rotationMatrix[2, 1] = upVector.Y;
rotationMatrix[2, 2] = upVector.Z;
return RotationMatrix(rotationMatrix);
}
/// <summary>
/// Get direction vectors from the given quaternion
/// </summary>
/// <param name="quaternion">The quaternion</param>
/// <param name="rightVector">RightVector = relative x axis</param>
/// <param name="forwardVector">ForwardVector = relative y axis</param>
/// <param name="upVector">UpVector = relative z axis</param>
public static void GetDirectionVectors(LQuaternion quaternion, out Vector3 rightVector, out Vector3 forwardVector, out Vector3 upVector)
{
quaternion.Normalize();
rightVector = quaternion * Vector3.WorldEast;
forwardVector = quaternion * Vector3.WorldNorth;
upVector = quaternion * Vector3.WorldUp;
}
/// <summary>
/// Reverses the direction of a given quaternion.
/// </summary>
/// <param name="quaternion">The quaternion to negate.</param>
/// <returns>A quaternion facing in the opposite direction.</returns>
public static LQuaternion operator -(LQuaternion quaternion)
{
LQuaternion result = Zero;
result.X = -quaternion.X;
result.Y = -quaternion.Y;
result.Z = -quaternion.Z;
result.W = -quaternion.W;
return result;
}
/// <summary>
/// Adds two quaternions.
/// </summary>
/// <param name="left">The first quaternion to add.</param>
/// <param name="right">The second quaternion to add.</param>
/// <returns>The sum of the two quaternions.</returns>
public static LQuaternion operator +(LQuaternion left, LQuaternion right)
{
LQuaternion result = Zero;
result.X = left.X + right.X;
result.Y = left.Y + right.Y;
result.Z = left.Z + right.Z;
result.W = left.W + right.W;
return result;
}
/// <summary>
/// Subtracts two quaternions.
/// </summary>
/// <param name="left">The first quaternion to subtract.</param>
/// <param name="right">The second quaternion to subtract.</param>
/// <returns>The difference of the two quaternions.</returns>
public static LQuaternion operator -(LQuaternion left, LQuaternion right)
{
LQuaternion result = Zero;
result.X = left.X - right.X;
result.Y = left.Y - right.Y;
result.Z = left.Z - right.Z;
result.W = left.W - right.W;
return result;
}
/// <summary>
/// Multiplies a quaternion by another.
/// </summary>
/// <param name="left">The first quaternion to multiply.</param>
/// <param name="right">The second quaternion to multiply.</param>
/// <returns>The multiplied quaternion.</returns>
public static LQuaternion operator *(LQuaternion left, LQuaternion right)
{
LQuaternion quaternion = Zero;
float lx = left.X;
float ly = left.Y;
float lz = left.Z;
float lw = left.W;
float rx = right.X;
float ry = right.Y;
float rz = right.Z;
float rw = right.W;
quaternion.X = (lx * rw + rx * lw) + (ly * rz) - (lz * ry);
quaternion.Y = (ly * rw + ry * lw) + (lz * rx) - (lx * rz);
quaternion.Z = (lz * rw + rz * lw) + (lx * ry) - (ly * rx);
quaternion.W = (lw * rw) - (lx * rx + ly * ry + lz * rz);
return quaternion;
}
/// <summary>
/// Scales a quaternion by the given value.
/// </summary>
/// <param name="quaternion">The quaternion to scale.</param>
/// <param name="scale">The amount by which to scale the quaternion.</param>
/// <returns>The scaled quaternion.</returns>
public static LQuaternion operator *(LQuaternion quaternion, float scale)
{
LQuaternion result = Zero;
result.X = quaternion.X * scale;
result.Y = quaternion.Y * scale;
result.Z = quaternion.Z * scale;
result.W = quaternion.W * scale;
return result;
}
/// <summary>
/// Scales a quaternion by the given value.
/// </summary>
/// <param name="quaternion">The quaternion to scale.</param>
/// <param name="scale">The amount by which to scale the quaternion.</param>
/// <returns>The scaled quaternion.</returns>
public static LQuaternion operator *(float scale, LQuaternion quaternion)
{
LQuaternion result = Zero;
result.X = quaternion.X * scale;
result.Y = quaternion.Y * scale;
result.Z = quaternion.Z * scale;
result.W = quaternion.W * scale;
return result;
}
/// <summary>
/// Divides a Quaternion by another Quaternion.
/// </summary>
/// <param name="left">The source Quaternion.</param>
/// <param name="right">The divisor.</param>
/// <returns>The result of the division.</returns>
public static LQuaternion operator /(LQuaternion left, LQuaternion right)
{
LQuaternion quaternion = Zero;
float lx = left.X;
float ly = left.Y;
float lz = left.Z;
float lw = left.W;
// Inverse part.
float ls = right.X * right.X + right.Y * right.Y +
right.Z * right.Z + right.W * right.W;
float invNorm = 1.0f / ls;
float rx = -right.X * invNorm;
float ry = -right.Y * invNorm;
float rz = -right.Z * invNorm;
float rw = right.W * invNorm;
// Multiply part.
quaternion.X = (lx * rw + rx * lw) + (ly * rz) - (lz * ry);
quaternion.Y = (ly * rw + ry * lw) + (lz * rx) - (lx * rz);
quaternion.Z = (lz * rw + rz * lw) + (lx * ry) - (ly * rx);
quaternion.W = (lw * rw) - (lx * rx + ly * ry + lz * rz);
return quaternion;
}
/// <summary>
/// Tests for equality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns><see langword="true" /> if <paramref name="left"/> has the same value as <paramref name="right"/>; otherwise, <see langword="false" />.</returns>
public static bool operator ==(LQuaternion left, LQuaternion right) => Equals(left, right);
/// <summary>
/// Tests for inequality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns><see langword="true" /> if <paramref name="left"/> has a different value than <paramref name="right"/>; otherwise, <see langword="false" />.</returns>
public static bool operator !=(LQuaternion left, LQuaternion right) => !Equals(left, right);
#region RotateTransformOperators
/// <summary>
/// Rotates the point with rotation.
/// </summary>
/// <param name="rotation">The quaternion to rotate the vector.</param>
/// <param name="point">The vector to be rotated.</param>
/// <returns>The vector after rotation.</returns>
public static Vector3 operator *(LQuaternion rotation, Vector3 point)
{
float q0 = rotation.W;
float q0Square = rotation.W * rotation.W;
Vector3 q = new Vector3(rotation.X, rotation.Y, rotation.Z);
return ((q0Square - q.LengthSquared()) * point) + (2 * Vector3.Dot(q, point) * q) + (2 * q0 * Vector3.Cross(q, point));
}
/// <summary>
/// Rotates the point with rotation.
/// </summary>
/// <param name="rotation">The quaternion to rotate the vector.</param>
/// <param name="point">The vector to be rotated.</param>
/// <returns>The vector after rotation.</returns>
public static Vector3 RotateTransform(LQuaternion rotation, Vector3 point) => rotation * point;
/// <summary>
/// Rotates the point with rotation.
/// </summary>
/// <param name="rotation">The quaternion to rotate the vector.</param>
/// <param name="point">The vector to be rotated.</param>
/// <param name="center">The vector representing the origin of the new coordinate system.</param>
/// <returns>The vector after rotation in the original coordinate system.</returns>
public static Vector3 RotateTransform(LQuaternion rotation, Vector3 point, Vector3 center)
{
Vector3 PointNewCenter = Vector3.Subtract(point, center);
Vector3 TransformedPoint = RotateTransform(rotation, PointNewCenter);
return Vector3.Add(TransformedPoint, center);
}
/// <summary>
/// Rotates the point with rotation.
/// </summary>
/// <param name="point">The vector to be rotated.</param>
/// <returns>The vector after rotation.</returns>
public Vector3 RotateTransform(Vector3 point) => RotateTransform(this, point);
/// <summary>
/// Rotates the point with rotation.
/// </summary>
/// <param name="point">The vector to be rotated.</param>
/// <param name="center">The vector representing the origin of the new coordinate system.</param>
/// <returns>The vector after rotation in the original coordinate system.</returns>
public Vector3 RotateTransform(Vector3 point, Vector3 center) => RotateTransform(this, point, center);
#endregion RotateTransformOperators
/// <summary>
/// Converts the value of the object to its equivalent string representation.
/// </summary>
/// <returns>The string representation of the value of this instance.</returns>
public override string ToString()
{
return String.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2} W:{3}", X.ToString(), Y.ToString(), Z.ToString(), W.ToString());
}
/// <summary>
/// Converts the value of the object to its equivalent string representation.
/// </summary>
/// <param name="format">The format.</param>
/// <returns>The string representation of the value of this instance.</returns>
public string ToString(string format)
{
return String.Format(CultureInfo.InvariantCulture, "X:{0} Y:{1} Z:{2} W:{3}", X.ToString(format), Y.ToString(format), Z.ToString(format), W.ToString(format));
}
/// <summary>
/// Returns the hash code for this instance.
/// </summary>
/// <returns>A 32-bit signed integer hash code.</returns>
public override int GetHashCode() => X.GetHashCode() + Y.GetHashCode() + Z.GetHashCode() + W.GetHashCode();
/// <summary>
/// Returns a value that indicates whether the current instance is equal to a specified object.
/// </summary>
/// <param name="obj">Object to make the comparison with.</param>
/// <returns><see langword="true" /> if the current instance is equal to the specified object; <see langword="false" /> otherwise.</returns>
public override bool Equals(object obj)
{
if (obj == null || obj.GetType() != GetType())
{
return false;
}
return Equals((LQuaternion)obj);
}
/// <summary>
/// Returns a value that indicates whether the current instance is equal to the specified object.
/// </summary>
/// <param name="other">Object to make the comparison with.</param>
/// <returns><see langword="true" /> if the current instance is equal to the specified object; <see langword="false" /> otherwise.</returns>
public bool Equals(LQuaternion other) => (X == other.X && Y == other.Y && Z == other.Z && W == other.W);
public static implicit operator Quaternion(LQuaternion q) => new(q.X, q.Y, q.Z, q.W);
public static implicit operator LQuaternion(Quaternion q) => new(q.X, q.Y, q.Z, q.W);
}
}

View File

@ -0,0 +1,512 @@
using System;
using System.Collections.Generic;
using System.Globalization;
using GTA.Math;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace RageCoop.Core
{
public struct LVector2 : IEquatable<LVector2>
{
/// <summary>
/// Gets or sets the X component of the vector.
/// </summary>
/// <value>The X component of the vector.</value>
public float X;
/// <summary>
/// Gets or sets the Y component of the vector.
/// </summary>
/// <value>The Y component of the vector.</value>
public float Y;
/// <summary>
/// Initializes a new instance of the <see cref="LVector2"/> class.
/// </summary>
/// <param name="x">Initial value for the X component of the vector.</param>
/// <param name="y">Initial value for the Y component of the vector.</param>
public LVector2(float x, float y)
{
X = x;
Y = y;
}
/// <summary>
/// Returns this vector with a magnitude of 1.
/// </summary>
public LVector2 Normalized => Normalize(new LVector2(X, Y));
/// <summary>
/// Returns a null vector. (0,0)
/// </summary>
public static LVector2 Zero => new LVector2(0.0f, 0.0f);
/// <summary>
/// The X unit <see cref="LVector2"/> (1, 0).
/// </summary>
public static LVector2 UnitX => new LVector2(1.0f, 0.0f);
/// <summary>
/// The Y unit <see cref="LVector2"/> (0, 1).
/// </summary>
public static LVector2 UnitY => new LVector2(0.0f, 1.0f);
/// <summary>
/// Returns the up vector. (0,1)
/// </summary>
public static LVector2 Up => new LVector2(0.0f, 1.0f);
/// <summary>
/// Returns the down vector. (0,-1)
/// </summary>
public static LVector2 Down => new LVector2(0.0f, -1.0f);
/// <summary>
/// Returns the right vector. (1,0)
/// </summary>
public static LVector2 Right => new LVector2(1.0f, 0.0f);
/// <summary>
/// Returns the left vector. (-1,0)
/// </summary>
public static LVector2 Left => new LVector2(-1.0f, 0.0f);
/// <summary>
/// Gets or sets the component at the specified index.
/// </summary>
/// <value>The value of the X or Y component, depending on the index.</value>
/// <param name="index">The index of the component to access. Use 0 for the X component and 1 for the Y component.</param>
/// <returns>The value of the component at the specified index.</returns>
/// <exception cref="System.ArgumentOutOfRangeException">Thrown when the <paramref name="index"/> is out of the range [0, 1].</exception>
public float this[int index]
{
get
{
switch (index)
{
case 0:
return X;
case 1:
return Y;
}
throw new ArgumentOutOfRangeException("index", "Indices for Vector2 run from 0 to 1, inclusive.");
}
set
{
switch (index)
{
case 0:
X = value;
break;
case 1:
Y = value;
break;
default:
throw new ArgumentOutOfRangeException("index", "Indices for Vector2 run from 0 to 1, inclusive.");
}
}
}
/// <summary>
/// Calculates the length of the vector.
/// </summary>
/// <returns>The length of the vector.</returns>
public float Length()
{
return (float)System.Math.Sqrt((X * X) + (Y * Y));
}
/// <summary>
/// Calculates the squared length of the vector.
/// </summary>
/// <returns>The squared length of the vector.</returns>
public float LengthSquared()
{
return (X * X) + (Y * Y);
}
/// <summary>
/// Converts the vector into a unit vector.
/// </summary>
public void Normalize()
{
float length = Length();
if (length == 0)
{
return;
}
float num = 1 / length;
X *= num;
Y *= num;
}
/// <summary>
/// Calculates the distance between two vectors.
/// </summary>
/// <param name="position">The second vector to calculate the distance to.</param>
/// <returns>The distance to the other vector.</returns>
public float DistanceTo(LVector2 position)
{
return (position - this).Length();
}
/// <summary>
/// Calculates the squared distance between two vectors.
/// </summary>
/// <param name="position">The second vector to calculate the squared distance to.</param>
/// <returns>The squared distance to the other vector.</returns>
public float DistanceToSquared(LVector2 position)
{
return DistanceSquared(position, this);
}
/// <summary>
/// Calculates the distance between two vectors.
/// </summary>
/// <param name="position1">The first vector to calculate the distance to the second vector.</param>
/// <param name="position2">The second vector to calculate the distance to the first vector.</param>
/// <returns>The distance between the two vectors.</returns>
public static float Distance(LVector2 position1, LVector2 position2)
{
return (position1 - position2).Length();
}
/// <summary>
/// Calculates the squared distance between two vectors.
/// </summary>
/// <param name="position1">The first vector to calculate the squared distance to the second vector.</param>
/// <param name="position2">The second vector to calculate the squared distance to the first vector.</param>
/// <returns>The squared distance between the two vectors.</returns>
public static float DistanceSquared(LVector2 position1, LVector2 position2)
{
return (position1 - position2).LengthSquared();
}
/// <summary>
/// Returns the angle in degrees between from and to.
/// The angle returned is always the acute angle between the two vectors.
/// </summary>
public static float Angle(LVector2 from, LVector2 to)
{
return System.Math.Abs(SignedAngle(from, to));
}
/// <summary>
/// Returns the signed angle in degrees between from and to.
/// </summary>
public static float SignedAngle(LVector2 from, LVector2 to)
{
return (float)((System.Math.Atan2(to.Y, to.X) - System.Math.Atan2(from.Y, from.X)) * (180.0 / System.Math.PI));
}
/// <summary>
/// Converts a vector to a heading.
/// </summary>
public float ToHeading()
{
return (float)((System.Math.Atan2(X, -Y) + System.Math.PI) * (180.0 / System.Math.PI));
}
/// <summary>
/// Returns a new normalized vector with random X and Y components.
/// </summary>
public static LVector2 RandomXY()
{
LVector2 v;
double radian = CoreUtils.SafeRandom.NextDouble() * 2 * System.Math.PI;
v.X = (float)(System.Math.Cos(radian));
v.Y = (float)(System.Math.Sin(radian));
v.Normalize();
return v;
}
/// <summary>
/// Adds two vectors.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static LVector2 Add(LVector2 left, LVector2 right) => new LVector2(left.X + right.X, left.Y + right.Y);
/// <summary>
/// Subtracts two vectors.
/// </summary>
/// <param name="left">The first vector to subtract.</param>
/// <param name="right">The second vector to subtract.</param>
/// <returns>The difference of the two vectors.</returns>
public static LVector2 Subtract(LVector2 left, LVector2 right) => new LVector2(left.X - right.X, left.Y - right.Y);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector2 Multiply(LVector2 value, float scale) => new LVector2(value.X * scale, value.Y * scale);
/// <summary>
/// Multiplies a vector with another by performing component-wise multiplication.
/// </summary>
/// <param name="left">The first vector to multiply.</param>
/// <param name="right">The second vector to multiply.</param>
/// <returns>The multiplied vector.</returns>
public static LVector2 Multiply(LVector2 left, LVector2 right) => new LVector2(left.X * right.X, left.Y * right.Y);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector2 Divide(LVector2 value, float scale) => new LVector2(value.X / scale, value.Y / scale);
/// <summary>
/// Reverses the direction of a given vector.
/// </summary>
/// <param name="value">The vector to negate.</param>
/// <returns>A vector facing in the opposite direction.</returns>
public static LVector2 Negate(LVector2 value) => new LVector2(-value.X, -value.Y);
/// <summary>
/// Restricts a value to be within a specified range.
/// </summary>
/// <param name="value">The value to clamp.</param>
/// <param name="min">The minimum value.</param>
/// <param name="max">The maximum value.</param>
/// <returns>The clamped value.</returns>
public static LVector2 Clamp(LVector2 value, LVector2 min, LVector2 max)
{
float x = value.X;
x = (x > max.X) ? max.X : x;
x = (x < min.X) ? min.X : x;
float y = value.Y;
y = (y > max.Y) ? max.Y : y;
y = (y < min.Y) ? min.Y : y;
return new LVector2(x, y);
}
/// <summary>
/// Performs a linear interpolation between two vectors.
/// </summary>
/// <param name="start">Start vector.</param>
/// <param name="end">End vector.</param>
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
/// <returns>The linear interpolation of the two vectors.</returns>
/// <remarks>
/// This method performs the linear interpolation based on the following formula.
/// <code>start + (end - start) * amount</code>
/// Passing <paramref name="amount"/> a value of 0 will cause <paramref name="start"/> to be returned; a value of 1 will cause <paramref name="end"/> to be returned.
/// </remarks>
public static LVector2 Lerp(LVector2 start, LVector2 end, float amount)
{
LVector2 vector;
vector.X = start.X + ((end.X - start.X) * amount);
vector.Y = start.Y + ((end.Y - start.Y) * amount);
return vector;
}
/// <summary>
/// Converts the vector into a unit vector.
/// </summary>
/// <param name="vector">The vector to normalize.</param>
/// <returns>The normalized vector.</returns>
public static LVector2 Normalize(LVector2 vector)
{
vector.Normalize();
return vector;
}
/// <summary>
/// Calculates the dot product of two vectors.
/// </summary>
/// <param name="left">First source vector.</param>
/// <param name="right">Second source vector.</param>
/// <returns>The dot product of the two vectors.</returns>
public static float Dot(LVector2 left, LVector2 right) => (left.X * right.X + left.Y * right.Y);
/// <summary>
/// Returns the reflection of a vector off a surface that has the specified normal.
/// </summary>
/// <param name="vector">The source vector.</param>
/// <param name="normal">Normal of the surface.</param>
/// <returns>The reflected vector.</returns>
/// <remarks>Reflect only gives the direction of a reflection off a surface, it does not determine
/// whether the original vector was close enough to the surface to hit it.</remarks>
public static LVector2 Reflect(LVector2 vector, LVector2 normal)
{
LVector2 result;
float dot = ((vector.X * normal.X) + (vector.Y * normal.Y));
result.X = vector.X - ((2.0f * dot) * normal.X);
result.Y = vector.Y - ((2.0f * dot) * normal.Y);
return result;
}
/// <summary>
/// Returns a vector containing the smallest components of the specified vectors.
/// </summary>
/// <param name="left">The first source vector.</param>
/// <param name="right">The second source vector.</param>
/// <returns>A vector containing the smallest components of the source vectors.</returns>
public static LVector2 Minimize(LVector2 left, LVector2 right)
{
LVector2 vector;
vector.X = (left.X < right.X) ? left.X : right.X;
vector.Y = (left.Y < right.Y) ? left.Y : right.Y;
return vector;
}
/// <summary>
/// Returns a vector containing the largest components of the specified vectors.
/// </summary>
/// <param name="left">The first source vector.</param>
/// <param name="right">The second source vector.</param>
/// <returns>A vector containing the largest components of the source vectors.</returns>
public static LVector2 Maximize(LVector2 left, LVector2 right)
{
LVector2 vector;
vector.X = (left.X > right.X) ? left.X : right.X;
vector.Y = (left.Y > right.Y) ? left.Y : right.Y;
return vector;
}
/// <summary>
/// Adds two vectors.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static LVector2 operator +(LVector2 left, LVector2 right) => new LVector2(left.X + right.X, left.Y + right.Y);
/// <summary>
/// Subtracts two vectors.
/// </summary>
/// <param name="left">The first vector to subtract.</param>
/// <param name="right">The second vector to subtract.</param>
/// <returns>The difference of the two vectors.</returns>
public static LVector2 operator -(LVector2 left, LVector2 right) => new LVector2(left.X - right.X, left.Y - right.Y);
/// <summary>
/// Reverses the direction of a given vector.
/// </summary>
/// <param name="value">The vector to negate.</param>
/// <returns>A vector facing in the opposite direction.</returns>
public static LVector2 operator -(LVector2 value) => new LVector2(-value.X, -value.Y);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="vector">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector2 operator *(LVector2 vector, float scale) => new LVector2(vector.X * scale, vector.Y * scale);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="vector">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector2 operator *(float scale, LVector2 vector) => new LVector2(vector.X * scale, vector.Y * scale);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="vector">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector2 operator /(LVector2 vector, float scale) => new LVector2(vector.X / scale, vector.Y / scale);
/// <summary>
/// Tests for equality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns><see langword="true" /> if <paramref name="left"/> has the same value as <paramref name="right"/>; otherwise, <see langword="false" />.</returns>
public static bool operator ==(LVector2 left, LVector2 right) => Equals(left, right);
/// <summary>
/// Tests for inequality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns><see langword="true" /> if <paramref name="left"/> has a different value than <paramref name="right"/>; otherwise, <see langword="false" />.</returns>
public static bool operator !=(LVector2 left, LVector2 right) => !Equals(left, right);
/// <summary>
/// Converts a Vector2 to a Vector3 implicitly.
/// </summary>
public static implicit operator LVector3(LVector2 vector) => new LVector3(vector.X, vector.Y, 0);
/// <summary>
/// Converts the value of the object to its equivalent string representation.
/// </summary>
/// <returns>The string representation of the value of this instance.</returns>
public override string ToString()
{
return string.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1}", X, Y);
}
/// <summary>
/// Converts the value of the object to its equivalent string representation.
/// </summary>
/// <param name="format">The format.</param>
/// <returns>The string representation of the value of this instance.</returns>
public string ToString(string format)
{
if (format == null)
{
return ToString();
}
return string.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1}", X.ToString(format, CultureInfo.CurrentCulture), Y.ToString(format, CultureInfo.CurrentCulture));
}
/// <summary>
/// Returns the hash code for this instance.
/// </summary>
/// <returns>A 32-bit signed integer hash code.</returns>
public override int GetHashCode()
{
unchecked
{
return (X.GetHashCode() * 397) ^ Y.GetHashCode();
}
}
/// <summary>
/// Returns a value that indicates whether the current instance is equal to a specified object.
/// </summary>
/// <param name="obj">Object to make the comparison with.</param>
/// <returns><see langword="true" /> if the current instance is equal to the specified object; otherwise, <see langword="false" />.</returns>
public override bool Equals(object obj)
{
if (obj == null || obj.GetType() != GetType())
{
return false;
}
return Equals((LVector2)obj);
}
/// <summary>
/// Returns a value that indicates whether the current instance is equal to the specified object.
/// </summary>
/// <param name="other">Object to make the comparison with.</param>
/// <returns><see langword="true" /> if the current instance is equal to the specified object; <see langword="false" /> otherwise.</returns>
public bool Equals(LVector2 other) => (X == other.X && Y == other.Y);
public static implicit operator LVector2(Vector2 v) => new(v.X, v.Y);
public static implicit operator Vector2(LVector2 v) => new(v.X, v.Y);
}
}

View File

@ -0,0 +1,731 @@
//
// Copyright (C) 2007-2010 SlimDX Group
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
// NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
using GTA.Math;
using System.Globalization;
using System.Runtime.InteropServices;
namespace RageCoop.Core
{
[Serializable]
public struct LVector3 : IEquatable<LVector3>
{
/// <summary>
/// Gets or sets the X component of the vector.
/// </summary>
/// <value>The X component of the vector.</value>
public float X;
/// <summary>
/// Gets or sets the Y component of the vector.
/// </summary>
/// <value>The Y component of the vector.</value>
public float Y;
/// <summary>
/// Gets or sets the Z component of the vector.
/// </summary>
/// <value>The Z component of the vector.</value>
public float Z;
/// <summary>
/// Initializes a new instance of the <see cref="LVector3"/> class.
/// </summary>
/// <param name="x">Initial value for the X component of the vector.</param>
/// <param name="y">Initial value for the Y component of the vector.</param>
/// <param name="z">Initial value for the Z component of the vector.</param>
public LVector3(float x, float y, float z)
{
X = x;
Y = y;
Z = z;
}
internal LVector3(float[] values) : this(values[0], values[1], values[2])
{
}
/// <summary>
/// Returns this vector with a magnitude of 1.
/// </summary>
public LVector3 Normalized => Normalize(new LVector3(X, Y, Z));
/// <summary>
/// Returns a null vector. (0,0,0)
/// </summary>
public static LVector3 Zero => new(0.0f, 0.0f, 0.0f);
/// <summary>
/// The X unit <see cref="LVector3"/> (1, 0, 0).
/// </summary>
public static LVector3 UnitX => new(1.0f, 0.0f, 0.0f);
/// <summary>
/// The Y unit <see cref="LVector3"/> (0, 1, 0).
/// </summary>
public static LVector3 UnitY => new(0.0f, 1.0f, 0.0f);
/// <summary>
/// The Z unit <see cref="LVector3"/> (0, 0, 1).
/// </summary>
public static LVector3 UnitZ => new(0.0f, 0.0f, 1.0f);
/// <summary>
/// Returns the world Up vector. (0,0,1)
/// </summary>
public static LVector3 WorldUp => new(0.0f, 0.0f, 1.0f);
/// <summary>
/// Returns the world Down vector. (0,0,-1)
/// </summary>
public static LVector3 WorldDown => new(0.0f, 0.0f, -1.0f);
/// <summary>
/// Returns the world North vector. (0,1,0)
/// </summary>
public static LVector3 WorldNorth => new(0.0f, 1.0f, 0.0f);
/// <summary>
/// Returns the world South vector. (0,-1,0)
/// </summary>
public static LVector3 WorldSouth => new(0.0f, -1.0f, 0.0f);
/// <summary>
/// Returns the world East vector. (1,0,0)
/// </summary>
public static LVector3 WorldEast => new(1.0f, 0.0f, 0.0f);
/// <summary>
/// Returns the world West vector. (-1,0,0)
/// </summary>
public static LVector3 WorldWest => new(-1.0f, 0.0f, 0.0f);
/// <summary>
/// Returns the relative Right vector. (1,0,0)
/// </summary>
public static LVector3 RelativeRight => new(1.0f, 0.0f, 0.0f);
/// <summary>
/// Returns the relative Left vector. (-1,0,0)
/// </summary>
public static LVector3 RelativeLeft => new(-1.0f, 0.0f, 0.0f);
/// <summary>
/// Returns the relative Front vector. (0,1,0)
/// </summary>
public static LVector3 RelativeFront => new(0.0f, 1.0f, 0.0f);
/// <summary>
/// Returns the relative Back vector. (0,-1,0)
/// </summary>
public static LVector3 RelativeBack => new(0.0f, -1.0f, 0.0f);
/// <summary>
/// Returns the relative Top vector. (0,0,1)
/// </summary>
public static LVector3 RelativeTop => new(0.0f, 0.0f, 1.0f);
/// <summary>
/// Returns the relative Bottom vector as used. (0,0,-1)
/// </summary>
public static LVector3 RelativeBottom => new(0.0f, 0.0f, -1.0f);
/// <summary>
/// Gets or sets the component at the specified index.
/// </summary>
/// <value>The value of the X, Y or Z component, depending on the index.</value>
/// <param name="index">The index of the component to access. Use 0 for the X component, 1 for the Y component and 2 for the Z component.</param>
/// <returns>The value of the component at the specified index.</returns>
/// <exception cref="System.ArgumentOutOfRangeException">Thrown when the <paramref name="index"/> is out of the range [0, 2].</exception>
public float this[int index]
{
get
{
switch (index)
{
case 0:
return X;
case 1:
return Y;
case 2:
return Z;
}
throw new ArgumentOutOfRangeException("index", "Indices for Vector3 run from 0 to 2, inclusive.");
}
set
{
switch (index)
{
case 0:
X = value;
break;
case 1:
Y = value;
break;
case 2:
Z = value;
break;
default:
throw new ArgumentOutOfRangeException("index",
"Indices for Vector3 run from 0 to 2, inclusive.");
}
}
}
/// <summary>
/// Calculates the length of the vector.
/// </summary>
/// <returns>The length of the vector.</returns>
public float Length() => (float)(System.Math.Sqrt((X * X) + (Y * Y) + (Z * Z)));
/// <summary>
/// Calculates the squared length of the vector.
/// </summary>
/// <returns>The squared length of the vector.</returns>
public float LengthSquared() => (X * X) + (Y * Y) + (Z * Z);
/// <summary>
/// Converts the vector into a unit vector.
/// </summary>
public void Normalize()
{
float length = Length();
if (length == 0)
{
return;
}
float num = 1 / length;
X *= num;
Y *= num;
Z *= num;
}
/// <summary>
/// Calculates the distance between two vectors.
/// </summary>
/// <param name="position">The second vector to calculate the distance to.</param>
/// <returns>The distance to the other vector.</returns>
public float DistanceTo(LVector3 position) => (position - this).Length();
/// <summary>
/// Calculates the squared distance between two vectors.
/// </summary>
/// <param name="position">The second vector to calculate the distance to.</param>
/// <returns>The distance to the other vector.</returns>
public float DistanceToSquared(LVector3 position) => DistanceSquared(position, this);
/// <summary>
/// Calculates the distance between two vectors, ignoring the Z-component.
/// </summary>
/// <param name="position">The second vector to calculate the distance to.</param>
/// <returns>The distance to the other vector.</returns>
public float DistanceTo2D(LVector3 position)
{
var lhs = new LVector3(X, Y, 0.0f);
var rhs = new LVector3(position.X, position.Y, 0.0f);
return Distance(lhs, rhs);
}
/// <summary>
/// Calculates the squared distance between two vectors, ignoring the Z-component.
/// </summary>
/// <param name="position">The second vector to calculate the squared distance to.</param>
/// <returns>The distance to the other vector.</returns>
public float DistanceToSquared2D(LVector3 position)
{
var lhs = new LVector3(X, Y, 0.0f);
var rhs = new LVector3(position.X, position.Y, 0.0f);
return DistanceSquared(lhs, rhs);
}
/// <summary>
/// Calculates the distance between two vectors.
/// </summary>
/// <param name="position1">The first vector to calculate the distance to the second vector.</param>
/// <param name="position2">The second vector to calculate the distance to the first vector.</param>
/// <returns>The distance between the two vectors.</returns>
public static float Distance(LVector3 position1, LVector3 position2) => (position1 - position2).Length();
/// <summary>
/// Calculates the squared distance between two vectors.
/// </summary>
/// <param name="position1">The first vector to calculate the squared distance to the second vector.</param>
/// <param name="position2">The second vector to calculate the squared distance to the first vector.</param>
/// <returns>The squared distance between the two vectors.</returns>
public static float DistanceSquared(LVector3 position1, LVector3 position2) =>
(position1 - position2).LengthSquared();
/// <summary>
/// Calculates the distance between two vectors, ignoring the Z-component.
/// </summary>
/// <param name="position1">The first vector to calculate the distance to the second vector.</param>
/// <param name="position2">The second vector to calculate the distance to the first vector.</param>
/// <returns>The distance between the two vectors.</returns>
public static float Distance2D(LVector3 position1, LVector3 position2)
{
var pos1 = new LVector3(position1.X, position1.Y, 0);
var pos2 = new LVector3(position2.X, position2.Y, 0);
return (pos1 - pos2).Length();
}
/// <summary>
/// Calculates the squared distance between two vectors, ignoring the Z-component.
/// </summary>
/// <param name="position1">The first vector to calculate the squared distance to the second vector.</param>
/// <param name="position2">The second vector to calculate the squared distance to the first vector.</param>
/// <returns>The squared distance between the two vectors.</returns>
public static float DistanceSquared2D(LVector3 position1, LVector3 position2)
{
var pos1 = new LVector3(position1.X, position1.Y, 0);
var pos2 = new LVector3(position2.X, position2.Y, 0);
return (pos1 - pos2).LengthSquared();
}
/// <summary>
/// Returns the angle in degrees between from and to.
/// The angle returned is always the acute angle between the two vectors.
/// </summary>
public static float Angle(LVector3 from, LVector3 to)
{
double dot = Dot(from.Normalized, to.Normalized);
return (float)(System.Math.Acos((dot)) * (180.0 / System.Math.PI));
}
/// <summary>
/// Returns the signed angle in degrees between from and to.
/// </summary>
public static float SignedAngle(LVector3 from, LVector3 to, LVector3 planeNormal)
{
LVector3 perpVector = Cross(planeNormal, from);
double angle = Angle(from, to);
double dot = Dot(perpVector, to);
if (dot < 0)
{
angle *= -1;
}
return (float)angle;
}
/// <summary>
/// Converts a vector to a heading.
/// </summary>
public float ToHeading() => (float)((System.Math.Atan2(X, -Y) + System.Math.PI) * (180.0 / System.Math.PI));
/// <summary>
/// Creates a random vector inside the circle around this position.
/// </summary>
public LVector3 Around(float distance) => this + (RandomXY() * distance);
/// <summary>
/// Rounds each float inside the vector to a select amount of decimal places (2 by default).
/// </summary>
/// <param name="decimalPlaces">Number of decimal places to round to</param>
/// <returns>The vector containing rounded values</returns>
public LVector3 Round(int decimalPlaces = 2)
{
return new LVector3((float)System.Math.Round(X, decimalPlaces), (float)System.Math.Round(Y, decimalPlaces),
(float)System.Math.Round(Z, decimalPlaces));
}
/// <summary>
/// Returns a new normalized vector with random X and Y components.
/// </summary>
public static LVector3 RandomXY()
{
LVector3 v = Zero;
double radian = CoreUtils.SafeRandom.NextDouble() * 2 * System.Math.PI;
v.X = (float)(System.Math.Cos(radian));
v.Y = (float)(System.Math.Sin(radian));
v.Normalize();
return v;
}
/// <summary>
/// Returns a new normalized vector with random X, Y and Z components.
/// </summary>
public static LVector3 RandomXYZ()
{
LVector3 v = Zero;
double radian = CoreUtils.SafeRandom.NextDouble() * 2.0 * System.Math.PI;
double cosTheta = (CoreUtils.SafeRandom.NextDouble() * 2.0) - 1.0;
double theta = System.Math.Acos(cosTheta);
v.X = (float)(System.Math.Sin(theta) * System.Math.Cos(radian));
v.Y = (float)(System.Math.Sin(theta) * System.Math.Sin(radian));
v.Z = (float)(System.Math.Cos(theta));
v.Normalize();
return v;
}
/// <summary>
/// Adds two vectors.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static LVector3 Add(LVector3 left, LVector3 right) =>
new(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
/// <summary>
/// Subtracts two vectors.
/// </summary>
/// <param name="left">The first vector to subtract.</param>
/// <param name="right">The second vector to subtract.</param>
/// <returns>The difference of the two vectors.</returns>
public static LVector3 Subtract(LVector3 left, LVector3 right) =>
new(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector3 Multiply(LVector3 value, float scale) =>
new(value.X * scale, value.Y * scale, value.Z * scale);
/// <summary>
/// Multiply a vector with another by performing component-wise multiplication.
/// </summary>
/// <param name="left">The first vector to multiply.</param>
/// <param name="right">The second vector to multiply.</param>
/// <returns>The multiplied vector.</returns>
public static LVector3 Multiply(LVector3 left, LVector3 right) =>
new(left.X * right.X, left.Y * right.Y, left.Z * right.Z);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="value">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector3 Divide(LVector3 value, float scale) =>
new(value.X / scale, value.Y / scale, value.Z / scale);
/// <summary>
/// Reverses the direction of a given vector.
/// </summary>
/// <param name="value">The vector to negate.</param>
/// <returns>A vector facing in the opposite direction.</returns>
public static LVector3 Negate(LVector3 value) => new(-value.X, -value.Y, -value.Z);
/// <summary>
/// Restricts a value to be within a specified range.
/// </summary>
/// <param name="value">The value to clamp.</param>
/// <param name="min">The minimum value.</param>
/// <param name="max">The maximum value.</param>
/// <returns>The clamped value.</returns>
public static LVector3 Clamp(LVector3 value, LVector3 min, LVector3 max)
{
float x = value.X;
x = (x > max.X) ? max.X : x;
x = (x < min.X) ? min.X : x;
float y = value.Y;
y = (y > max.Y) ? max.Y : y;
y = (y < min.Y) ? min.Y : y;
float z = value.Z;
z = (z > max.Z) ? max.Z : z;
z = (z < min.Z) ? min.Z : z;
return new LVector3(x, y, z);
}
/// <summary>
/// Performs a linear interpolation between two vectors.
/// </summary>
/// <param name="start">Start vector.</param>
/// <param name="end">End vector.</param>
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
/// <returns>The linear interpolation of the two vectors.</returns>
/// <remarks>
/// This method performs the linear interpolation based on the following formula.
/// <code>start + (end - start) * amount</code>
/// Passing <paramref name="amount"/> a value of 0 will cause <paramref name="start"/> to be returned; a value of 1 will cause <paramref name="end"/> to be returned.
/// </remarks>
public static LVector3 Lerp(LVector3 start, LVector3 end, float amount)
{
LVector3 vector = Zero;
vector.X = start.X + ((end.X - start.X) * amount);
vector.Y = start.Y + ((end.Y - start.Y) * amount);
vector.Z = start.Z + ((end.Z - start.Z) * amount);
return vector;
}
/// <summary>
/// Converts the vector into a unit vector.
/// </summary>
/// <param name="vector">The vector to normalize.</param>
/// <returns>The normalized vector.</returns>
public static LVector3 Normalize(LVector3 vector)
{
vector.Normalize();
return vector;
}
/// <summary>
/// Calculates the dot product of two vectors.
/// </summary>
/// <param name="left">First source vector.</param>
/// <param name="right">Second source vector.</param>
/// <returns>The dot product of the two vectors.</returns>
public static float Dot(LVector3 left, LVector3 right) =>
(left.X * right.X + left.Y * right.Y + left.Z * right.Z);
/// <summary>
/// Calculates the cross product of two vectors.
/// </summary>
/// <param name="left">First source vector.</param>
/// <param name="right">Second source vector.</param>
/// <returns>The cross product of the two vectors.</returns>
public static LVector3 Cross(LVector3 left, LVector3 right)
{
LVector3 result = Zero;
result.X = left.Y * right.Z - left.Z * right.Y;
result.Y = left.Z * right.X - left.X * right.Z;
result.Z = left.X * right.Y - left.Y * right.X;
return result;
}
/// <summary>
/// Projects a vector onto another vector.
/// </summary>
/// <param name="vector">The vector to project.</param>
/// <param name="onNormal">Vector to project onto, does not assume it is normalized.</param>
/// <returns>The projected vector.</returns>
public static LVector3 Project(LVector3 vector, LVector3 onNormal) =>
onNormal * Dot(vector, onNormal) / Dot(onNormal, onNormal);
/// <summary>
/// Projects a vector onto a plane defined by a normal orthogonal to the plane.
/// </summary>
/// <param name="vector">The vector to project.</param>
/// <param name="planeNormal">Normal of the plane, does not assume it is normalized.</param>
/// <returns>The Projection of vector onto plane.</returns>
public static LVector3 ProjectOnPlane(LVector3 vector, LVector3 planeNormal) =>
(vector - Project(vector, planeNormal));
/// <summary>
/// Returns the reflection of a vector off a surface that has the specified normal.
/// </summary>
/// <param name="vector">The vector to project onto the plane.</param>
/// <param name="normal">Normal of the surface.</param>
/// <returns>The reflected vector.</returns>
/// <remarks>Reflect only gives the direction of a reflection off a surface, it does not determine
/// whether the original vector was close enough to the surface to hit it.</remarks>
public static LVector3 Reflect(LVector3 vector, LVector3 normal)
{
LVector3 result = Zero;
float dot = ((vector.X * normal.X) + (vector.Y * normal.Y)) + (vector.Z * normal.Z);
result.X = vector.X - ((2.0f * dot) * normal.X);
result.Y = vector.Y - ((2.0f * dot) * normal.Y);
result.Z = vector.Z - ((2.0f * dot) * normal.Z);
return result;
}
/// <summary>
/// Returns a vector containing the smallest components of the specified vectors.
/// </summary>
/// <param name="left">The first source vector.</param>
/// <param name="right">The second source vector.</param>
/// <returns>A vector containing the smallest components of the source vectors.</returns>
public static LVector3 Minimize(LVector3 left, LVector3 right)
{
LVector3 vector = Zero;
vector.X = (left.X < right.X) ? left.X : right.X;
vector.Y = (left.Y < right.Y) ? left.Y : right.Y;
vector.Z = (left.Z < right.Z) ? left.Z : right.Z;
return vector;
}
/// <summary>
/// Returns a vector containing the largest components of the specified vectors.
/// </summary>
/// <param name="left">The first source vector.</param>
/// <param name="right">The second source vector.</param>
/// <returns>A vector containing the largest components of the source vectors.</returns>
public static LVector3 Maximize(LVector3 left, LVector3 right)
{
LVector3 vector = Zero;
vector.X = (left.X > right.X) ? left.X : right.X;
vector.Y = (left.Y > right.Y) ? left.Y : right.Y;
vector.Z = (left.Z > right.Z) ? left.Z : right.Z;
return vector;
}
/// <summary>
/// Adds two vectors.
/// </summary>
/// <param name="left">The first vector to add.</param>
/// <param name="right">The second vector to add.</param>
/// <returns>The sum of the two vectors.</returns>
public static LVector3 operator +(LVector3 left, LVector3 right) =>
new(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
/// <summary>
/// Subtracts two vectors.
/// </summary>
/// <param name="left">The first vector to subtract.</param>
/// <param name="right">The second vector to subtract.</param>
/// <returns>The difference of the two vectors.</returns>
public static LVector3 operator -(LVector3 left, LVector3 right) =>
new(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
/// <summary>
/// Reverses the direction of a given vector.
/// </summary>
/// <param name="vector">The vector to negate.</param>
/// <returns>A vector facing in the opposite direction.</returns>
public static LVector3 operator -(LVector3 vector) => new(-vector.X, -vector.Y, -vector.Z);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="vector">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector3 operator *(LVector3 vector, float scale) =>
new(vector.X * scale, vector.Y * scale, vector.Z * scale);
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="vector">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector3 operator *(float scale, LVector3 vector) => vector * scale;
/// <summary>
/// Scales a vector by the given value.
/// </summary>
/// <param name="vector">The vector to scale.</param>
/// <param name="scale">The amount by which to scale the vector.</param>
/// <returns>The scaled vector.</returns>
public static LVector3 operator /(LVector3 vector, float scale)
{
float invScale = 1.0f / scale;
return new LVector3(vector.X * invScale, vector.Y * invScale, vector.Z * invScale);
}
/// <summary>
/// Tests for equality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns><see langword="true" /> if <paramref name="left"/> has the same value as <paramref name="right"/>; otherwise, <see langword="false" />.</returns>
public static bool operator ==(LVector3 left, LVector3 right) => Equals(left, right);
/// <summary>
/// Tests for inequality between two objects.
/// </summary>
/// <param name="left">The first value to compare.</param>
/// <param name="right">The second value to compare.</param>
/// <returns><see langword="true" /> if <paramref name="left"/> has a different value than <paramref name="right"/>; otherwise, <see langword="false" />.</returns>
public static bool operator !=(LVector3 left, LVector3 right) => !Equals(left, right);
/// <summary>
/// Converts a Vector3 to a Vector2 implicitly.
/// </summary>
public static implicit operator LVector2(LVector3 vector) => new(vector.X, vector.Y);
/// <summary>
/// Converts the matrix to an array of floats.
/// </summary>
public float[] ToArray() => new[] { X, Y, Z };
/// <summary>
/// Converts the value of the object to its equivalent string representation.
/// </summary>
/// <returns>The string representation of the value of this instance.</returns>
public override string ToString() => string.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2}", X, Y, Z);
/// <summary>
/// Converts the value of the object to its equivalent string representation.
/// </summary>
/// <param name="format">The number format.</param>
/// <returns>The string representation of the value of this instance.</returns>
public string ToString(string format)
{
if (format == null)
{
return ToString();
}
return string.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2}",
X.ToString(format, CultureInfo.CurrentCulture),
Y.ToString(format, CultureInfo.CurrentCulture), Z.ToString(format, CultureInfo.CurrentCulture));
}
/// <summary>
/// Returns the hash code for this instance.
/// </summary>
/// <returns>A 32-bit signed integer hash code.</returns>
public override int GetHashCode()
{
unchecked
{
var hashCode = X.GetHashCode();
hashCode = (hashCode * 397) ^ Y.GetHashCode();
hashCode = (hashCode * 397) ^ Z.GetHashCode();
return hashCode;
}
}
/// <summary>
/// Returns a value that indicates whether the current instance is equal to a specified object.
/// </summary>
/// <param name="obj">Object to make the comparison with.</param>
/// <returns><see langword="true" /> if the current instance is equal to the specified object; <see langword="false" /> otherwise.</returns>
public override bool Equals(object obj)
{
if (obj == null || obj.GetType() != GetType())
{
return false;
}
return Equals((LVector3)obj);
}
/// <summary>
/// Returns a value that indicates whether the current instance is equal to the specified object.
/// </summary>
/// <param name="other">Object to make the comparison with.</param>
/// <returns><see langword="true" /> if the current instance is equal to the specified object; <see langword="false" /> otherwise.</returns>
public bool Equals(LVector3 other) => (X == other.X && Y == other.Y && Z == other.Z);
public static implicit operator LVector3(Vector3 v) => new(v.X, v.Y, v.Z);
public static implicit operator Vector3(LVector3 v) => new(v.X, v.Y, v.Z);
}
}