// dear imgui, v1.90.0 // (drawing and font code) /* Index of this file: // [SECTION] STB libraries implementation // [SECTION] Style functions // [SECTION] ImDrawList // [SECTION] ImDrawList Shadow Primitives // [SECTION] ImDrawListSplitter // [SECTION] ImDrawData // [SECTION] Helpers ShadeVertsXXX functions // [SECTION] ImFontAtlasShadowTexConfig // [SECTION] ImFontConfig // [SECTION] ImFontAtlas // [SECTION] ImFontAtlas glyph ranges helpers // [SECTION] ImFontGlyphRangesBuilder // [SECTION] ImFont // [SECTION] ImGui Internal Render Helpers // [SECTION] Decompression code // [SECTION] Default font data (ProggyClean.ttf) */ #if defined(_MSC_VER) && !defined(_CRT_SECURE_NO_WARNINGS) #define _CRT_SECURE_NO_WARNINGS #endif #ifndef IMGUI_DEFINE_MATH_OPERATORS #define IMGUI_DEFINE_MATH_OPERATORS #endif #include "imgui.h" #ifndef IMGUI_DISABLE #include "imgui_internal.h" #ifdef IMGUI_ENABLE_FREETYPE #include "misc/freetype/imgui_freetype.h" #endif #include // vsnprintf, sscanf, printf // Visual Studio warnings #ifdef _MSC_VER #pragma warning (disable: 4127) // condition expression is constant #pragma warning (disable: 4505) // unreferenced local function has been removed (stb stuff) #pragma warning (disable: 4996) // 'This function or variable may be unsafe': strcpy, strdup, sprintf, vsnprintf, sscanf, fopen #pragma warning (disable: 26451) // [Static Analyzer] Arithmetic overflow : Using operator 'xxx' on a 4 byte value and then casting the result to a 8 byte value. Cast the value to the wider type before calling operator 'xxx' to avoid overflow(io.2). #pragma warning (disable: 26812) // [Static Analyzer] The enum type 'xxx' is unscoped. Prefer 'enum class' over 'enum' (Enum.3). [MSVC Static Analyzer) #endif // Clang/GCC warnings with -Weverything #if defined(__clang__) #if __has_warning("-Wunknown-warning-option") #pragma clang diagnostic ignored "-Wunknown-warning-option" // warning: unknown warning group 'xxx' // not all warnings are known by all Clang versions and they tend to be rename-happy.. so ignoring warnings triggers new warnings on some configuration. Great! #endif #pragma clang diagnostic ignored "-Wunknown-pragmas" // warning: unknown warning group 'xxx' #pragma clang diagnostic ignored "-Wold-style-cast" // warning: use of old-style cast // yes, they are more terse. #pragma clang diagnostic ignored "-Wfloat-equal" // warning: comparing floating point with == or != is unsafe // storing and comparing against same constants ok. #pragma clang diagnostic ignored "-Wglobal-constructors" // warning: declaration requires a global destructor // similar to above, not sure what the exact difference is. #pragma clang diagnostic ignored "-Wsign-conversion" // warning: implicit conversion changes signedness #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" // warning: zero as null pointer constant // some standard header variations use #define NULL 0 #pragma clang diagnostic ignored "-Wcomma" // warning: possible misuse of comma operator here #pragma clang diagnostic ignored "-Wreserved-id-macro" // warning: macro name is a reserved identifier #pragma clang diagnostic ignored "-Wdouble-promotion" // warning: implicit conversion from 'float' to 'double' when passing argument to function // using printf() is a misery with this as C++ va_arg ellipsis changes float to double. #pragma clang diagnostic ignored "-Wimplicit-int-float-conversion" // warning: implicit conversion from 'xxx' to 'float' may lose precision #pragma clang diagnostic ignored "-Wreserved-identifier" // warning: identifier '_Xxx' is reserved because it starts with '_' followed by a capital letter #elif defined(__GNUC__) #pragma GCC diagnostic ignored "-Wpragmas" // warning: unknown option after '#pragma GCC diagnostic' kind #pragma GCC diagnostic ignored "-Wunused-function" // warning: 'xxxx' defined but not used #pragma GCC diagnostic ignored "-Wdouble-promotion" // warning: implicit conversion from 'float' to 'double' when passing argument to function #pragma GCC diagnostic ignored "-Wconversion" // warning: conversion to 'xxxx' from 'xxxx' may alter its value #pragma GCC diagnostic ignored "-Wstack-protector" // warning: stack protector not protecting local variables: variable length buffer #pragma GCC diagnostic ignored "-Wclass-memaccess" // [__GNUC__ >= 8] warning: 'memset/memcpy' clearing/writing an object of type 'xxxx' with no trivial copy-assignment; use assignment or value-initialization instead #endif //------------------------------------------------------------------------- // [SECTION] STB libraries implementation (for stb_truetype and stb_rect_pack) //------------------------------------------------------------------------- // Compile time options: //#define IMGUI_STB_NAMESPACE ImStb //#define IMGUI_STB_TRUETYPE_FILENAME "my_folder/stb_truetype.h" //#define IMGUI_STB_RECT_PACK_FILENAME "my_folder/stb_rect_pack.h" //#define IMGUI_DISABLE_STB_TRUETYPE_IMPLEMENTATION //#define IMGUI_DISABLE_STB_RECT_PACK_IMPLEMENTATION #ifdef IMGUI_STB_NAMESPACE namespace IMGUI_STB_NAMESPACE { #endif #ifdef _MSC_VER #pragma warning (push) #pragma warning (disable: 4456) // declaration of 'xx' hides previous local declaration #pragma warning (disable: 6011) // (stb_rectpack) Dereferencing NULL pointer 'cur->next'. #pragma warning (disable: 6385) // (stb_truetype) Reading invalid data from 'buffer': the readable size is '_Old_3`kernel_width' bytes, but '3' bytes may be read. #pragma warning (disable: 28182) // (stb_rectpack) Dereferencing NULL pointer. 'cur' contains the same NULL value as 'cur->next' did. #endif #if defined(__clang__) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-function" #pragma clang diagnostic ignored "-Wmissing-prototypes" #pragma clang diagnostic ignored "-Wimplicit-fallthrough" #pragma clang diagnostic ignored "-Wcast-qual" // warning: cast from 'const xxxx *' to 'xxx *' drops const qualifier #endif #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wtype-limits" // warning: comparison is always true due to limited range of data type [-Wtype-limits] #pragma GCC diagnostic ignored "-Wcast-qual" // warning: cast from type 'const xxxx *' to type 'xxxx *' casts away qualifiers #endif #ifndef STB_RECT_PACK_IMPLEMENTATION // in case the user already have an implementation in the _same_ compilation unit (e.g. unity builds) #ifndef IMGUI_DISABLE_STB_RECT_PACK_IMPLEMENTATION // in case the user already have an implementation in another compilation unit #define STBRP_STATIC #define STBRP_ASSERT(x) do { IM_ASSERT(x); } while (0) #define STBRP_SORT ImQsort #define STB_RECT_PACK_IMPLEMENTATION #endif #ifdef IMGUI_STB_RECT_PACK_FILENAME #include IMGUI_STB_RECT_PACK_FILENAME #else #include "imstb_rectpack.h" #endif #endif #ifdef IMGUI_ENABLE_STB_TRUETYPE #ifndef STB_TRUETYPE_IMPLEMENTATION // in case the user already have an implementation in the _same_ compilation unit (e.g. unity builds) #ifndef IMGUI_DISABLE_STB_TRUETYPE_IMPLEMENTATION // in case the user already have an implementation in another compilation unit #define STBTT_malloc(x,u) ((void)(u), IM_ALLOC(x)) #define STBTT_free(x,u) ((void)(u), IM_FREE(x)) #define STBTT_assert(x) do { IM_ASSERT(x); } while(0) #define STBTT_fmod(x,y) ImFmod(x,y) #define STBTT_sqrt(x) ImSqrt(x) #define STBTT_pow(x,y) ImPow(x,y) #define STBTT_fabs(x) ImFabs(x) #define STBTT_ifloor(x) ((int)ImFloor(x)) #define STBTT_iceil(x) ((int)ImCeil(x)) #define STBTT_STATIC #define STB_TRUETYPE_IMPLEMENTATION #else #define STBTT_DEF extern #endif #ifdef IMGUI_STB_TRUETYPE_FILENAME #include IMGUI_STB_TRUETYPE_FILENAME #else #include "imstb_truetype.h" #endif #endif #endif // IMGUI_ENABLE_STB_TRUETYPE #if defined(__GNUC__) #pragma GCC diagnostic pop #endif #if defined(__clang__) #pragma clang diagnostic pop #endif #if defined(_MSC_VER) #pragma warning (pop) #endif #ifdef IMGUI_STB_NAMESPACE } // namespace ImStb using namespace IMGUI_STB_NAMESPACE; #endif //----------------------------------------------------------------------------- // [SECTION] Style functions //----------------------------------------------------------------------------- void ImGui::StyleColorsDark(ImGuiStyle* dst) { ImGuiStyle* style = dst ? dst : &ImGui::GetStyle(); ImVec4* colors = style->Colors; colors[ImGuiCol_Text] = ImVec4(ImColor(105, 105, 105, 255)); colors[ImGuiCol_TextDisabled] = ImVec4(ImColor(255, 255, 255, 179)); colors[ImGuiCol_WindowBg] = ImVec4(ImColor(15, 15, 15)); colors[ImGuiCol_ChildBg] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_PopupBg] = ImVec4(ImColor(28, 28, 28)); colors[ImGuiCol_Border] = ImVec4(ImColor(50, 50, 50)); colors[ImGuiCol_BorderShadow] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_FrameBg] = ImVec4(ImColor(32, 32, 32)); colors[ImGuiCol_FrameBgHovered] = ImVec4(ImColor(23, 23, 23)); colors[ImGuiCol_FrameBgActive] = ImVec4(ImColor(173, 57, 57)); colors[ImGuiCol_TitleBg] = ImVec4(0.04f, 0.04f, 0.04f, 1.00f); colors[ImGuiCol_TitleBgActive] = ImVec4(0.16f, 0.29f, 0.48f, 1.00f); colors[ImGuiCol_TitleBgCollapsed] = ImVec4(0.00f, 0.00f, 0.00f, 0.51f); colors[ImGuiCol_MenuBarBg] = ImVec4(0.14f, 0.14f, 0.14f, 1.00f); colors[ImGuiCol_ScrollbarBg] = ImVec4(0.02f, 0.02f, 0.02f, 0.00f); colors[ImGuiCol_ScrollbarGrab] = ImVec4(ImColor(20, 20, 20)); colors[ImGuiCol_ScrollbarGrabHovered] = ImVec4(ImColor(20, 20, 20)); colors[ImGuiCol_ScrollbarGrabActive] = ImVec4(ImColor(20, 20, 20)); colors[ImGuiCol_CheckMark] = ImVec4(0.26f, 0.59f, 0.98f, 1.00f); colors[ImGuiCol_SliderGrab] = ImVec4(0.24f, 0.52f, 0.88f, 1.00f); colors[ImGuiCol_SliderGrabActive] = ImVec4(0.26f, 0.59f, 0.98f, 1.00f); colors[ImGuiCol_Button] = ImVec4(ImColor(173, 57, 57)); colors[ImGuiCol_ButtonHovered] = ImVec4(ImColor(196, 71, 71)); colors[ImGuiCol_ButtonActive] = ImVec4(ImColor(145, 47, 47)); colors[ImGuiCol_Header] = ImVec4(0.26f, 0.59f, 0.98f, 0.31f); colors[ImGuiCol_HeaderHovered] = ImVec4(0.26f, 0.59f, 0.98f, 0.80f); colors[ImGuiCol_HeaderActive] = ImVec4(0.26f, 0.59f, 0.98f, 1.00f); colors[ImGuiCol_Separator] = colors[ImGuiCol_Border]; colors[ImGuiCol_SeparatorHovered] = ImVec4(0.10f, 0.40f, 0.75f, 0.78f); colors[ImGuiCol_SeparatorActive] = ImVec4(0.10f, 0.40f, 0.75f, 1.00f); colors[ImGuiCol_ResizeGrip] = ImVec4(0.26f, 0.59f, 0.98f, 0.20f); colors[ImGuiCol_ResizeGripHovered] = ImVec4(0.26f, 0.59f, 0.98f, 0.67f); colors[ImGuiCol_ResizeGripActive] = ImVec4(0.26f, 0.59f, 0.98f, 0.95f); colors[ImGuiCol_Tab] = ImLerp(colors[ImGuiCol_Header], colors[ImGuiCol_TitleBgActive], 0.80f); colors[ImGuiCol_TabHovered] = colors[ImGuiCol_HeaderHovered]; colors[ImGuiCol_TabActive] = ImLerp(colors[ImGuiCol_HeaderActive], colors[ImGuiCol_TitleBgActive], 0.60f); colors[ImGuiCol_TabUnfocused] = ImLerp(colors[ImGuiCol_Tab], colors[ImGuiCol_TitleBg], 0.80f); colors[ImGuiCol_TabUnfocusedActive] = ImLerp(colors[ImGuiCol_TabActive], colors[ImGuiCol_TitleBg], 0.40f); colors[ImGuiCol_PlotLines] = ImVec4(0.61f, 0.61f, 0.61f, 1.00f); colors[ImGuiCol_PlotLinesHovered] = ImVec4(1.00f, 0.43f, 0.35f, 1.00f); colors[ImGuiCol_PlotHistogram] = ImVec4(0.90f, 0.70f, 0.00f, 1.00f); colors[ImGuiCol_PlotHistogramHovered] = ImVec4(1.00f, 0.60f, 0.00f, 1.00f); colors[ImGuiCol_TableHeaderBg] = ImVec4(0.19f, 0.19f, 0.20f, 1.00f); colors[ImGuiCol_TableBorderStrong] = ImVec4(0.31f, 0.31f, 0.35f, 1.00f); // Prefer using Alpha=1.0 here colors[ImGuiCol_TableBorderLight] = ImVec4(0.23f, 0.23f, 0.25f, 1.00f); // Prefer using Alpha=1.0 here colors[ImGuiCol_TableRowBg] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_TableRowBgAlt] = ImVec4(1.00f, 1.00f, 1.00f, 0.06f); colors[ImGuiCol_TextSelectedBg] = ImVec4(0.26f, 0.59f, 0.98f, 0.35f); colors[ImGuiCol_DragDropTarget] = ImVec4(1.00f, 1.00f, 0.00f, 0.90f); colors[ImGuiCol_NavHighlight] = ImVec4(0.26f, 0.59f, 0.98f, 1.00f); colors[ImGuiCol_NavWindowingHighlight] = ImVec4(1.00f, 1.00f, 1.00f, 0.70f); colors[ImGuiCol_NavWindowingDimBg] = ImVec4(0.80f, 0.80f, 0.80f, 0.20f); colors[ImGuiCol_ModalWindowDimBg] = ImVec4(0.80f, 0.80f, 0.80f, 0.35f); colors[ImGuiCol_WindowShadow] = ImColor(87, 87, 87, 160); } void ImGui::StyleColorsClassic(ImGuiStyle* dst) { ImGuiStyle* style = dst ? dst : &ImGui::GetStyle(); ImVec4* colors = style->Colors; colors[ImGuiCol_Text] = ImVec4(0.90f, 0.90f, 0.90f, 1.00f); colors[ImGuiCol_TextDisabled] = ImVec4(0.60f, 0.60f, 0.60f, 1.00f); colors[ImGuiCol_WindowBg] = ImVec4(0.00f, 0.00f, 0.00f, 0.85f); colors[ImGuiCol_ChildBg] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_PopupBg] = ImVec4(0.11f, 0.11f, 0.14f, 0.92f); colors[ImGuiCol_Border] = ImVec4(0.50f, 0.50f, 0.50f, 0.50f); colors[ImGuiCol_BorderShadow] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_FrameBg] = ImVec4(0.43f, 0.43f, 0.43f, 0.39f); colors[ImGuiCol_FrameBgHovered] = ImVec4(0.47f, 0.47f, 0.69f, 0.40f); colors[ImGuiCol_FrameBgActive] = ImVec4(0.42f, 0.41f, 0.64f, 0.69f); colors[ImGuiCol_TitleBg] = ImVec4(0.27f, 0.27f, 0.54f, 0.83f); colors[ImGuiCol_TitleBgActive] = ImVec4(0.32f, 0.32f, 0.63f, 0.87f); colors[ImGuiCol_TitleBgCollapsed] = ImVec4(0.40f, 0.40f, 0.80f, 0.20f); colors[ImGuiCol_MenuBarBg] = ImVec4(0.40f, 0.40f, 0.55f, 0.80f); colors[ImGuiCol_ScrollbarBg] = ImVec4(0.20f, 0.25f, 0.30f, 0.60f); colors[ImGuiCol_ScrollbarGrab] = ImVec4(0.40f, 0.40f, 0.80f, 0.30f); colors[ImGuiCol_ScrollbarGrabHovered] = ImVec4(0.40f, 0.40f, 0.80f, 0.40f); colors[ImGuiCol_ScrollbarGrabActive] = ImVec4(0.41f, 0.39f, 0.80f, 0.60f); colors[ImGuiCol_CheckMark] = ImVec4(0.90f, 0.90f, 0.90f, 0.50f); colors[ImGuiCol_SliderGrab] = ImVec4(1.00f, 1.00f, 1.00f, 0.30f); colors[ImGuiCol_SliderGrabActive] = ImVec4(0.41f, 0.39f, 0.80f, 0.60f); colors[ImGuiCol_Button] = ImVec4(0.35f, 0.40f, 0.61f, 0.62f); colors[ImGuiCol_ButtonHovered] = ImVec4(0.40f, 0.48f, 0.71f, 0.79f); colors[ImGuiCol_ButtonActive] = ImVec4(0.46f, 0.54f, 0.80f, 1.00f); colors[ImGuiCol_Header] = ImVec4(0.40f, 0.40f, 0.90f, 0.45f); colors[ImGuiCol_HeaderHovered] = ImVec4(0.45f, 0.45f, 0.90f, 0.80f); colors[ImGuiCol_HeaderActive] = ImVec4(0.53f, 0.53f, 0.87f, 0.80f); colors[ImGuiCol_Separator] = ImVec4(0.50f, 0.50f, 0.50f, 0.60f); colors[ImGuiCol_SeparatorHovered] = ImVec4(0.60f, 0.60f, 0.70f, 1.00f); colors[ImGuiCol_SeparatorActive] = ImVec4(0.70f, 0.70f, 0.90f, 1.00f); colors[ImGuiCol_ResizeGrip] = ImVec4(1.00f, 1.00f, 1.00f, 0.10f); colors[ImGuiCol_ResizeGripHovered] = ImVec4(0.78f, 0.82f, 1.00f, 0.60f); colors[ImGuiCol_ResizeGripActive] = ImVec4(0.78f, 0.82f, 1.00f, 0.90f); colors[ImGuiCol_Tab] = ImLerp(colors[ImGuiCol_Header], colors[ImGuiCol_TitleBgActive], 0.80f); colors[ImGuiCol_TabHovered] = colors[ImGuiCol_HeaderHovered]; colors[ImGuiCol_TabActive] = ImLerp(colors[ImGuiCol_HeaderActive], colors[ImGuiCol_TitleBgActive], 0.60f); colors[ImGuiCol_TabUnfocused] = ImLerp(colors[ImGuiCol_Tab], colors[ImGuiCol_TitleBg], 0.80f); colors[ImGuiCol_TabUnfocusedActive] = ImLerp(colors[ImGuiCol_TabActive], colors[ImGuiCol_TitleBg], 0.40f); colors[ImGuiCol_PlotLines] = ImVec4(1.00f, 1.00f, 1.00f, 1.00f); colors[ImGuiCol_PlotLinesHovered] = ImVec4(0.90f, 0.70f, 0.00f, 1.00f); colors[ImGuiCol_PlotHistogram] = ImVec4(0.90f, 0.70f, 0.00f, 1.00f); colors[ImGuiCol_PlotHistogramHovered] = ImVec4(1.00f, 0.60f, 0.00f, 1.00f); colors[ImGuiCol_TableHeaderBg] = ImVec4(0.27f, 0.27f, 0.38f, 1.00f); colors[ImGuiCol_TableBorderStrong] = ImVec4(0.31f, 0.31f, 0.45f, 1.00f); // Prefer using Alpha=1.0 here colors[ImGuiCol_TableBorderLight] = ImVec4(0.26f, 0.26f, 0.28f, 1.00f); // Prefer using Alpha=1.0 here colors[ImGuiCol_TableRowBg] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_TableRowBgAlt] = ImVec4(1.00f, 1.00f, 1.00f, 0.07f); colors[ImGuiCol_TextSelectedBg] = ImVec4(0.00f, 0.00f, 1.00f, 0.35f); colors[ImGuiCol_DragDropTarget] = ImVec4(1.00f, 1.00f, 0.00f, 0.90f); colors[ImGuiCol_NavHighlight] = colors[ImGuiCol_HeaderHovered]; colors[ImGuiCol_NavWindowingHighlight] = ImVec4(1.00f, 1.00f, 1.00f, 0.70f); colors[ImGuiCol_NavWindowingDimBg] = ImVec4(0.80f, 0.80f, 0.80f, 0.20f); colors[ImGuiCol_ModalWindowDimBg] = ImVec4(0.20f, 0.20f, 0.20f, 0.35f); colors[ImGuiCol_WindowShadow] = ImVec4(0.08f, 0.08f, 0.08f, 0.35f); } // Those light colors are better suited with a thicker font than the default one + FrameBorder void ImGui::StyleColorsLight(ImGuiStyle* dst) { ImGuiStyle* style = dst ? dst : &ImGui::GetStyle(); ImVec4* colors = style->Colors; colors[ImGuiCol_Text] = ImVec4(0.00f, 0.00f, 0.00f, 1.00f); colors[ImGuiCol_TextDisabled] = ImVec4(0.60f, 0.60f, 0.60f, 1.00f); colors[ImGuiCol_WindowBg] = ImVec4(0.94f, 0.94f, 0.94f, 1.00f); colors[ImGuiCol_ChildBg] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_PopupBg] = ImVec4(1.00f, 1.00f, 1.00f, 0.98f); colors[ImGuiCol_Border] = ImVec4(0.00f, 0.00f, 0.00f, 0.30f); colors[ImGuiCol_BorderShadow] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_FrameBg] = ImVec4(1.00f, 1.00f, 1.00f, 1.00f); colors[ImGuiCol_FrameBgHovered] = ImVec4(0.26f, 0.59f, 0.98f, 0.40f); colors[ImGuiCol_FrameBgActive] = ImVec4(0.26f, 0.59f, 0.98f, 0.67f); colors[ImGuiCol_TitleBg] = ImVec4(0.96f, 0.96f, 0.96f, 1.00f); colors[ImGuiCol_TitleBgActive] = ImVec4(0.82f, 0.82f, 0.82f, 1.00f); colors[ImGuiCol_TitleBgCollapsed] = ImVec4(1.00f, 1.00f, 1.00f, 0.51f); colors[ImGuiCol_MenuBarBg] = ImVec4(0.86f, 0.86f, 0.86f, 1.00f); colors[ImGuiCol_ScrollbarBg] = ImVec4(0.98f, 0.98f, 0.98f, 0.53f); colors[ImGuiCol_ScrollbarGrab] = ImVec4(0.69f, 0.69f, 0.69f, 0.80f); colors[ImGuiCol_ScrollbarGrabHovered] = ImVec4(0.49f, 0.49f, 0.49f, 0.80f); colors[ImGuiCol_ScrollbarGrabActive] = ImVec4(0.49f, 0.49f, 0.49f, 1.00f); colors[ImGuiCol_CheckMark] = ImVec4(0.26f, 0.59f, 0.98f, 1.00f); colors[ImGuiCol_SliderGrab] = ImVec4(0.26f, 0.59f, 0.98f, 0.78f); colors[ImGuiCol_SliderGrabActive] = ImVec4(0.46f, 0.54f, 0.80f, 0.60f); colors[ImGuiCol_Button] = ImVec4(0.26f, 0.59f, 0.98f, 0.40f); colors[ImGuiCol_ButtonHovered] = ImVec4(0.26f, 0.59f, 0.98f, 1.00f); colors[ImGuiCol_ButtonActive] = ImVec4(0.06f, 0.53f, 0.98f, 1.00f); colors[ImGuiCol_Header] = ImVec4(0.26f, 0.59f, 0.98f, 0.31f); colors[ImGuiCol_HeaderHovered] = ImVec4(0.26f, 0.59f, 0.98f, 0.80f); colors[ImGuiCol_HeaderActive] = ImVec4(0.26f, 0.59f, 0.98f, 1.00f); colors[ImGuiCol_Separator] = ImVec4(0.39f, 0.39f, 0.39f, 0.62f); colors[ImGuiCol_SeparatorHovered] = ImVec4(0.14f, 0.44f, 0.80f, 0.78f); colors[ImGuiCol_SeparatorActive] = ImVec4(0.14f, 0.44f, 0.80f, 1.00f); colors[ImGuiCol_ResizeGrip] = ImVec4(0.35f, 0.35f, 0.35f, 0.17f); colors[ImGuiCol_ResizeGripHovered] = ImVec4(0.26f, 0.59f, 0.98f, 0.67f); colors[ImGuiCol_ResizeGripActive] = ImVec4(0.26f, 0.59f, 0.98f, 0.95f); colors[ImGuiCol_Tab] = ImLerp(colors[ImGuiCol_Header], colors[ImGuiCol_TitleBgActive], 0.90f); colors[ImGuiCol_TabHovered] = colors[ImGuiCol_HeaderHovered]; colors[ImGuiCol_TabActive] = ImLerp(colors[ImGuiCol_HeaderActive], colors[ImGuiCol_TitleBgActive], 0.60f); colors[ImGuiCol_TabUnfocused] = ImLerp(colors[ImGuiCol_Tab], colors[ImGuiCol_TitleBg], 0.80f); colors[ImGuiCol_TabUnfocusedActive] = ImLerp(colors[ImGuiCol_TabActive], colors[ImGuiCol_TitleBg], 0.40f); colors[ImGuiCol_PlotLines] = ImVec4(0.39f, 0.39f, 0.39f, 1.00f); colors[ImGuiCol_PlotLinesHovered] = ImVec4(1.00f, 0.43f, 0.35f, 1.00f); colors[ImGuiCol_PlotHistogram] = ImVec4(0.90f, 0.70f, 0.00f, 1.00f); colors[ImGuiCol_PlotHistogramHovered] = ImVec4(1.00f, 0.45f, 0.00f, 1.00f); colors[ImGuiCol_TableHeaderBg] = ImVec4(0.78f, 0.87f, 0.98f, 1.00f); colors[ImGuiCol_TableBorderStrong] = ImVec4(0.57f, 0.57f, 0.64f, 1.00f); // Prefer using Alpha=1.0 here colors[ImGuiCol_TableBorderLight] = ImVec4(0.68f, 0.68f, 0.74f, 1.00f); // Prefer using Alpha=1.0 here colors[ImGuiCol_TableRowBg] = ImVec4(0.00f, 0.00f, 0.00f, 0.00f); colors[ImGuiCol_TableRowBgAlt] = ImVec4(0.30f, 0.30f, 0.30f, 0.09f); colors[ImGuiCol_TextSelectedBg] = ImVec4(0.26f, 0.59f, 0.98f, 0.35f); colors[ImGuiCol_DragDropTarget] = ImVec4(0.26f, 0.59f, 0.98f, 0.95f); colors[ImGuiCol_NavHighlight] = colors[ImGuiCol_HeaderHovered]; colors[ImGuiCol_NavWindowingHighlight] = ImVec4(0.70f, 0.70f, 0.70f, 0.70f); colors[ImGuiCol_NavWindowingDimBg] = ImVec4(0.20f, 0.20f, 0.20f, 0.20f); colors[ImGuiCol_ModalWindowDimBg] = ImVec4(0.20f, 0.20f, 0.20f, 0.35f); colors[ImGuiCol_WindowShadow] = ImVec4(0.08f, 0.08f, 0.08f, 0.35f); } //----------------------------------------------------------------------------- // [SECTION] ImFontAtlasShadowTexConfig //----------------------------------------------------------------------------- void ImFontAtlasShadowTexConfig::SetupDefaults() { TexCornerSize = 16; TexEdgeSize = 1; TexFalloffPower = 4.8f; TexDistanceFieldOffset = 3.8f; TexBlur = true; } int ImFontAtlasShadowTexConfig::CalcConvexTexWidth() const { // We have to pad the texture enough that we don't go off the edges when we expand the corner triangles return (int)((TexCornerSize / ImCos(IM_PI * 0.25f)) + (GetConvexTexPadding() * 2)); } int ImFontAtlasShadowTexConfig::CalcConvexTexHeight() const { return CalcConvexTexWidth(); // Same value } //----------------------------------------------------------------------------- // [SECTION] ImDrawList //----------------------------------------------------------------------------- ImDrawListSharedData::ImDrawListSharedData() { memset(this, 0, sizeof(*this)); for (int i = 0; i < IM_ARRAYSIZE(ArcFastVtx); i++) { const float a = ((float)i * 2 * IM_PI) / (float)IM_ARRAYSIZE(ArcFastVtx); ArcFastVtx[i] = ImVec2(ImCos(a), ImSin(a)); } ArcFastRadiusCutoff = IM_DRAWLIST_CIRCLE_AUTO_SEGMENT_CALC_R(IM_DRAWLIST_ARCFAST_SAMPLE_MAX, CircleSegmentMaxError); } void ImDrawListSharedData::SetCircleTessellationMaxError(float max_error) { if (CircleSegmentMaxError == max_error) return; IM_ASSERT(max_error > 0.0f); CircleSegmentMaxError = max_error; for (int i = 0; i < IM_ARRAYSIZE(CircleSegmentCounts); i++) { const float radius = (float)i; CircleSegmentCounts[i] = (ImU8)((i > 0) ? IM_DRAWLIST_CIRCLE_AUTO_SEGMENT_CALC(radius, CircleSegmentMaxError) : IM_DRAWLIST_ARCFAST_SAMPLE_MAX); } ArcFastRadiusCutoff = IM_DRAWLIST_CIRCLE_AUTO_SEGMENT_CALC_R(IM_DRAWLIST_ARCFAST_SAMPLE_MAX, CircleSegmentMaxError); } // Initialize before use in a new frame. We always have a command ready in the buffer. void ImDrawList::_ResetForNewFrame() { // Verify that the ImDrawCmd fields we want to memcmp() are contiguous in memory. IM_STATIC_ASSERT(offsetof(ImDrawCmd, ClipRect) == 0); IM_STATIC_ASSERT(offsetof(ImDrawCmd, TextureId) == sizeof(ImVec4)); IM_STATIC_ASSERT(offsetof(ImDrawCmd, VtxOffset) == sizeof(ImVec4) + sizeof(ImTextureID)); if (_Splitter._Count > 1) _Splitter.Merge(this); CmdBuffer.resize(0); IdxBuffer.resize(0); VtxBuffer.resize(0); Flags = _Data->InitialFlags; memset(&_CmdHeader, 0, sizeof(_CmdHeader)); _VtxCurrentIdx = 0; _VtxWritePtr = NULL; _IdxWritePtr = NULL; _ClipRectStack.resize(0); _TextureIdStack.resize(0); _Path.resize(0); _Splitter.Clear(); CmdBuffer.push_back(ImDrawCmd()); _FringeScale = 1.0f; } void ImDrawList::_ClearFreeMemory() { CmdBuffer.clear(); IdxBuffer.clear(); VtxBuffer.clear(); Flags = ImDrawListFlags_None; _VtxCurrentIdx = 0; _VtxWritePtr = NULL; _IdxWritePtr = NULL; _ClipRectStack.clear(); _TextureIdStack.clear(); _Path.clear(); _Splitter.ClearFreeMemory(); } ImDrawList* ImDrawList::CloneOutput() const { ImDrawList* dst = IM_NEW(ImDrawList(_Data)); dst->CmdBuffer = CmdBuffer; dst->IdxBuffer = IdxBuffer; dst->VtxBuffer = VtxBuffer; dst->Flags = Flags; return dst; } void ImDrawList::AddDrawCmd() { ImDrawCmd draw_cmd; draw_cmd.ClipRect = _CmdHeader.ClipRect; // Same as calling ImDrawCmd_HeaderCopy() draw_cmd.TextureId = _CmdHeader.TextureId; draw_cmd.VtxOffset = _CmdHeader.VtxOffset; draw_cmd.IdxOffset = IdxBuffer.Size; IM_ASSERT(draw_cmd.ClipRect.x <= draw_cmd.ClipRect.z && draw_cmd.ClipRect.y <= draw_cmd.ClipRect.w); CmdBuffer.push_back(draw_cmd); } // Pop trailing draw command (used before merging or presenting to user) // Note that this leaves the ImDrawList in a state unfit for further commands, as most code assume that CmdBuffer.Size > 0 && CmdBuffer.back().UserCallback == NULL void ImDrawList::_PopUnusedDrawCmd() { while (CmdBuffer.Size > 0) { ImDrawCmd* curr_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; if (curr_cmd->ElemCount != 0 || curr_cmd->UserCallback != NULL) return;// break; CmdBuffer.pop_back(); } } void ImDrawList::AddCallback(ImDrawCallback callback, void* callback_data) { IM_ASSERT_PARANOID(CmdBuffer.Size > 0); ImDrawCmd* curr_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; IM_ASSERT(curr_cmd->UserCallback == NULL); if (curr_cmd->ElemCount != 0) { AddDrawCmd(); curr_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; } curr_cmd->UserCallback = callback; curr_cmd->UserCallbackData = callback_data; AddDrawCmd(); // Force a new command after us (see comment below) } // Compare ClipRect, TextureId and VtxOffset with a single memcmp() #define ImDrawCmd_HeaderSize (offsetof(ImDrawCmd, VtxOffset) + sizeof(unsigned int)) #define ImDrawCmd_HeaderCompare(CMD_LHS, CMD_RHS) (memcmp(CMD_LHS, CMD_RHS, ImDrawCmd_HeaderSize)) // Compare ClipRect, TextureId, VtxOffset #define ImDrawCmd_HeaderCopy(CMD_DST, CMD_SRC) (memcpy(CMD_DST, CMD_SRC, ImDrawCmd_HeaderSize)) // Copy ClipRect, TextureId, VtxOffset #define ImDrawCmd_AreSequentialIdxOffset(CMD_0, CMD_1) (CMD_0->IdxOffset + CMD_0->ElemCount == CMD_1->IdxOffset) // Try to merge two last draw commands void ImDrawList::_TryMergeDrawCmds() { IM_ASSERT_PARANOID(CmdBuffer.Size > 0); ImDrawCmd* curr_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; ImDrawCmd* prev_cmd = curr_cmd - 1; if (ImDrawCmd_HeaderCompare(curr_cmd, prev_cmd) == 0 && ImDrawCmd_AreSequentialIdxOffset(prev_cmd, curr_cmd) && curr_cmd->UserCallback == NULL && prev_cmd->UserCallback == NULL) { prev_cmd->ElemCount += curr_cmd->ElemCount; CmdBuffer.pop_back(); } } // Our scheme may appears a bit unusual, basically we want the most-common calls AddLine AddRect etc. to not have to perform any check so we always have a command ready in the stack. // The cost of figuring out if a new command has to be added or if we can merge is paid in those Update** functions only. void ImDrawList::_OnChangedClipRect() { // If current command is used with different settings we need to add a new command IM_ASSERT_PARANOID(CmdBuffer.Size > 0); ImDrawCmd* curr_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; if (curr_cmd->ElemCount != 0 && memcmp(&curr_cmd->ClipRect, &_CmdHeader.ClipRect, sizeof(ImVec4)) != 0) { AddDrawCmd(); return; } IM_ASSERT(curr_cmd->UserCallback == NULL); // Try to merge with previous command if it matches, else use current command ImDrawCmd* prev_cmd = curr_cmd - 1; if (curr_cmd->ElemCount == 0 && CmdBuffer.Size > 1 && ImDrawCmd_HeaderCompare(&_CmdHeader, prev_cmd) == 0 && ImDrawCmd_AreSequentialIdxOffset(prev_cmd, curr_cmd) && prev_cmd->UserCallback == NULL) { CmdBuffer.pop_back(); return; } curr_cmd->ClipRect = _CmdHeader.ClipRect; } void ImDrawList::_OnChangedTextureID() { // If current command is used with different settings we need to add a new command IM_ASSERT_PARANOID(CmdBuffer.Size > 0); ImDrawCmd* curr_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; if (curr_cmd->ElemCount != 0 && curr_cmd->TextureId != _CmdHeader.TextureId) { AddDrawCmd(); return; } IM_ASSERT(curr_cmd->UserCallback == NULL); // Try to merge with previous command if it matches, else use current command ImDrawCmd* prev_cmd = curr_cmd - 1; if (curr_cmd->ElemCount == 0 && CmdBuffer.Size > 1 && ImDrawCmd_HeaderCompare(&_CmdHeader, prev_cmd) == 0 && ImDrawCmd_AreSequentialIdxOffset(prev_cmd, curr_cmd) && prev_cmd->UserCallback == NULL) { CmdBuffer.pop_back(); return; } curr_cmd->TextureId = _CmdHeader.TextureId; } void ImDrawList::_OnChangedVtxOffset() { // We don't need to compare curr_cmd->VtxOffset != _CmdHeader.VtxOffset because we know it'll be different at the time we call this. _VtxCurrentIdx = 0; IM_ASSERT_PARANOID(CmdBuffer.Size > 0); ImDrawCmd* curr_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; //IM_ASSERT(curr_cmd->VtxOffset != _CmdHeader.VtxOffset); // See #3349 if (curr_cmd->ElemCount != 0) { AddDrawCmd(); return; } IM_ASSERT(curr_cmd->UserCallback == NULL); curr_cmd->VtxOffset = _CmdHeader.VtxOffset; } int ImDrawList::_CalcCircleAutoSegmentCount(float radius) const { // Automatic segment count const int radius_idx = (int)(radius + 0.999999f); // ceil to never reduce accuracy if (radius_idx >= 0 && radius_idx < IM_ARRAYSIZE(_Data->CircleSegmentCounts)) return _Data->CircleSegmentCounts[radius_idx]; // Use cached value else return IM_DRAWLIST_CIRCLE_AUTO_SEGMENT_CALC(radius, _Data->CircleSegmentMaxError); } // Render-level scissoring. This is passed down to your render function but not used for CPU-side coarse clipping. Prefer using higher-level ImGui::PushClipRect() to affect logic (hit-testing and widget culling) void ImDrawList::PushClipRect(const ImVec2& cr_min, const ImVec2& cr_max, bool intersect_with_current_clip_rect) { ImVec4 cr(cr_min.x, cr_min.y, cr_max.x, cr_max.y); if (intersect_with_current_clip_rect) { ImVec4 current = _CmdHeader.ClipRect; if (cr.x < current.x) cr.x = current.x; if (cr.y < current.y) cr.y = current.y; if (cr.z > current.z) cr.z = current.z; if (cr.w > current.w) cr.w = current.w; } cr.z = ImMax(cr.x, cr.z); cr.w = ImMax(cr.y, cr.w); _ClipRectStack.push_back(cr); _CmdHeader.ClipRect = cr; _OnChangedClipRect(); } void ImDrawList::PushClipRectFullScreen() { PushClipRect(ImVec2(_Data->ClipRectFullscreen.x, _Data->ClipRectFullscreen.y), ImVec2(_Data->ClipRectFullscreen.z, _Data->ClipRectFullscreen.w)); } void ImDrawList::PopClipRect() { _ClipRectStack.pop_back(); _CmdHeader.ClipRect = (_ClipRectStack.Size == 0) ? _Data->ClipRectFullscreen : _ClipRectStack.Data[_ClipRectStack.Size - 1]; _OnChangedClipRect(); } void ImDrawList::PushTextureID(ImTextureID texture_id) { _TextureIdStack.push_back(texture_id); _CmdHeader.TextureId = texture_id; _OnChangedTextureID(); } void ImDrawList::PopTextureID() { _TextureIdStack.pop_back(); _CmdHeader.TextureId = (_TextureIdStack.Size == 0) ? (ImTextureID)NULL : _TextureIdStack.Data[_TextureIdStack.Size - 1]; _OnChangedTextureID(); } // Reserve space for a number of vertices and indices. // You must finish filling your reserved data before calling PrimReserve() again, as it may reallocate or // submit the intermediate results. PrimUnreserve() can be used to release unused allocations. void ImDrawList::PrimReserve(int idx_count, int vtx_count) { // Large mesh support (when enabled) IM_ASSERT_PARANOID(idx_count >= 0 && vtx_count >= 0); if (sizeof(ImDrawIdx) == 2 && (_VtxCurrentIdx + vtx_count >= (1 << 16)) && (Flags & ImDrawListFlags_AllowVtxOffset)) { // FIXME: In theory we should be testing that vtx_count <64k here. // In practice, RenderText() relies on reserving ahead for a worst case scenario so it is currently useful for us // to not make that check until we rework the text functions to handle clipping and large horizontal lines better. _CmdHeader.VtxOffset = VtxBuffer.Size; _OnChangedVtxOffset(); } ImDrawCmd* draw_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; draw_cmd->ElemCount += idx_count; int vtx_buffer_old_size = VtxBuffer.Size; VtxBuffer.resize(vtx_buffer_old_size + vtx_count); _VtxWritePtr = VtxBuffer.Data + vtx_buffer_old_size; int idx_buffer_old_size = IdxBuffer.Size; IdxBuffer.resize(idx_buffer_old_size + idx_count); _IdxWritePtr = IdxBuffer.Data + idx_buffer_old_size; } // Release the a number of reserved vertices/indices from the end of the last reservation made with PrimReserve(). void ImDrawList::PrimUnreserve(int idx_count, int vtx_count) { IM_ASSERT_PARANOID(idx_count >= 0 && vtx_count >= 0); ImDrawCmd* draw_cmd = &CmdBuffer.Data[CmdBuffer.Size - 1]; draw_cmd->ElemCount -= idx_count; VtxBuffer.shrink(VtxBuffer.Size - vtx_count); IdxBuffer.shrink(IdxBuffer.Size - idx_count); } // Fully unrolled with inline call to keep our debug builds decently fast. void ImDrawList::PrimRect(const ImVec2& a, const ImVec2& c, ImU32 col) { ImVec2 b(c.x, a.y), d(a.x, c.y), uv(_Data->TexUvWhitePixel); ImDrawIdx idx = (ImDrawIdx)_VtxCurrentIdx; _IdxWritePtr[0] = idx; _IdxWritePtr[1] = (ImDrawIdx)(idx+1); _IdxWritePtr[2] = (ImDrawIdx)(idx+2); _IdxWritePtr[3] = idx; _IdxWritePtr[4] = (ImDrawIdx)(idx+2); _IdxWritePtr[5] = (ImDrawIdx)(idx+3); _VtxWritePtr[0].pos = a; _VtxWritePtr[0].uv = uv; _VtxWritePtr[0].col = col; _VtxWritePtr[1].pos = b; _VtxWritePtr[1].uv = uv; _VtxWritePtr[1].col = col; _VtxWritePtr[2].pos = c; _VtxWritePtr[2].uv = uv; _VtxWritePtr[2].col = col; _VtxWritePtr[3].pos = d; _VtxWritePtr[3].uv = uv; _VtxWritePtr[3].col = col; _VtxWritePtr += 4; _VtxCurrentIdx += 4; _IdxWritePtr += 6; } void ImDrawList::PrimRectUV(const ImVec2& a, const ImVec2& c, const ImVec2& uv_a, const ImVec2& uv_c, ImU32 col) { ImVec2 b(c.x, a.y), d(a.x, c.y), uv_b(uv_c.x, uv_a.y), uv_d(uv_a.x, uv_c.y); ImDrawIdx idx = (ImDrawIdx)_VtxCurrentIdx; _IdxWritePtr[0] = idx; _IdxWritePtr[1] = (ImDrawIdx)(idx+1); _IdxWritePtr[2] = (ImDrawIdx)(idx+2); _IdxWritePtr[3] = idx; _IdxWritePtr[4] = (ImDrawIdx)(idx+2); _IdxWritePtr[5] = (ImDrawIdx)(idx+3); _VtxWritePtr[0].pos = a; _VtxWritePtr[0].uv = uv_a; _VtxWritePtr[0].col = col; _VtxWritePtr[1].pos = b; _VtxWritePtr[1].uv = uv_b; _VtxWritePtr[1].col = col; _VtxWritePtr[2].pos = c; _VtxWritePtr[2].uv = uv_c; _VtxWritePtr[2].col = col; _VtxWritePtr[3].pos = d; _VtxWritePtr[3].uv = uv_d; _VtxWritePtr[3].col = col; _VtxWritePtr += 4; _VtxCurrentIdx += 4; _IdxWritePtr += 6; } void ImDrawList::PrimQuadUV(const ImVec2& a, const ImVec2& b, const ImVec2& c, const ImVec2& d, const ImVec2& uv_a, const ImVec2& uv_b, const ImVec2& uv_c, const ImVec2& uv_d, ImU32 col) { ImDrawIdx idx = (ImDrawIdx)_VtxCurrentIdx; _IdxWritePtr[0] = idx; _IdxWritePtr[1] = (ImDrawIdx)(idx+1); _IdxWritePtr[2] = (ImDrawIdx)(idx+2); _IdxWritePtr[3] = idx; _IdxWritePtr[4] = (ImDrawIdx)(idx+2); _IdxWritePtr[5] = (ImDrawIdx)(idx+3); _VtxWritePtr[0].pos = a; _VtxWritePtr[0].uv = uv_a; _VtxWritePtr[0].col = col; _VtxWritePtr[1].pos = b; _VtxWritePtr[1].uv = uv_b; _VtxWritePtr[1].col = col; _VtxWritePtr[2].pos = c; _VtxWritePtr[2].uv = uv_c; _VtxWritePtr[2].col = col; _VtxWritePtr[3].pos = d; _VtxWritePtr[3].uv = uv_d; _VtxWritePtr[3].col = col; _VtxWritePtr += 4; _VtxCurrentIdx += 4; _IdxWritePtr += 6; } // On AddPolyline() and AddConvexPolyFilled() we intentionally avoid using ImVec2 and superfluous function calls to optimize debug/non-inlined builds. // - Those macros expects l-values and need to be used as their own statement. // - Those macros are intentionally not surrounded by the 'do {} while (0)' idiom because even that translates to runtime with debug compilers. #define IM_NORMALIZE2F_OVER_ZERO(VX,VY) { float d2 = VX*VX + VY*VY; if (d2 > 0.0f) { float inv_len = ImRsqrt(d2); VX *= inv_len; VY *= inv_len; } } (void)0 #define IM_FIXNORMAL2F_MAX_INVLEN2 100.0f // 500.0f (see #4053, #3366) #define IM_FIXNORMAL2F(VX,VY) { float d2 = VX*VX + VY*VY; if (d2 > 0.000001f) { float inv_len2 = 1.0f / d2; if (inv_len2 > IM_FIXNORMAL2F_MAX_INVLEN2) inv_len2 = IM_FIXNORMAL2F_MAX_INVLEN2; VX *= inv_len2; VY *= inv_len2; } } (void)0 // TODO: Thickness anti-aliased lines cap are missing their AA fringe. // We avoid using the ImVec2 math operators here to reduce cost to a minimum for debug/non-inlined builds. void ImDrawList::AddPolyline(const ImVec2* points, const int points_count, ImU32 col, ImDrawFlags flags, float thickness) { if (points_count < 2 || (col & IM_COL32_A_MASK) == 0) return; const bool closed = (flags & ImDrawFlags_Closed) != 0; const ImVec2 opaque_uv = _Data->TexUvWhitePixel; const int count = closed ? points_count : points_count - 1; // The number of line segments we need to draw const bool thick_line = (thickness > _FringeScale); if (Flags & ImDrawListFlags_AntiAliasedLines) { // Anti-aliased stroke const float AA_SIZE = _FringeScale; const ImU32 col_trans = col & ~IM_COL32_A_MASK; // Thicknesses <1.0 should behave like thickness 1.0 thickness = ImMax(thickness, 1.0f); const int integer_thickness = (int)thickness; const float fractional_thickness = thickness - integer_thickness; // Do we want to draw this line using a texture? // - For now, only draw integer-width lines using textures to avoid issues with the way scaling occurs, could be improved. // - If AA_SIZE is not 1.0f we cannot use the texture path. const bool use_texture = (Flags & ImDrawListFlags_AntiAliasedLinesUseTex) && (integer_thickness < IM_DRAWLIST_TEX_LINES_WIDTH_MAX) && (fractional_thickness <= 0.00001f) && (AA_SIZE == 1.0f); // We should never hit this, because NewFrame() doesn't set ImDrawListFlags_AntiAliasedLinesUseTex unless ImFontAtlasFlags_NoBakedLines is off IM_ASSERT_PARANOID(!use_texture || !(_Data->Font->ContainerAtlas->Flags & ImFontAtlasFlags_NoBakedLines)); const int idx_count = use_texture ? (count * 6) : (thick_line ? count * 18 : count * 12); const int vtx_count = use_texture ? (points_count * 2) : (thick_line ? points_count * 4 : points_count * 3); PrimReserve(idx_count, vtx_count); // Temporary buffer // The first items are normals at each line point, then after that there are either 2 or 4 temp points for each line point _Data->TempBuffer.reserve_discard(points_count * ((use_texture || !thick_line) ? 3 : 5)); ImVec2* temp_normals = _Data->TempBuffer.Data; ImVec2* temp_points = temp_normals + points_count; // Calculate normals (tangents) for each line segment for (int i1 = 0; i1 < count; i1++) { const int i2 = (i1 + 1) == points_count ? 0 : i1 + 1; float dx = points[i2].x - points[i1].x; float dy = points[i2].y - points[i1].y; IM_NORMALIZE2F_OVER_ZERO(dx, dy); temp_normals[i1].x = dy; temp_normals[i1].y = -dx; } if (!closed) temp_normals[points_count - 1] = temp_normals[points_count - 2]; // If we are drawing a one-pixel-wide line without a texture, or a textured line of any width, we only need 2 or 3 vertices per point if (use_texture || !thick_line) { // [PATH 1] Texture-based lines (thick or non-thick) // [PATH 2] Non texture-based lines (non-thick) // The width of the geometry we need to draw - this is essentially pixels for the line itself, plus "one pixel" for AA. // - In the texture-based path, we don't use AA_SIZE here because the +1 is tied to the generated texture // (see ImFontAtlasBuildRenderLinesTexData() function), and so alternate values won't work without changes to that code. // - In the non texture-based paths, we would allow AA_SIZE to potentially be != 1.0f with a patch (e.g. fringe_scale patch to // allow scaling geometry while preserving one-screen-pixel AA fringe). const float half_draw_size = use_texture ? ((thickness * 0.5f) + 1) : AA_SIZE; // If line is not closed, the first and last points need to be generated differently as there are no normals to blend if (!closed) { temp_points[0] = points[0] + temp_normals[0] * half_draw_size; temp_points[1] = points[0] - temp_normals[0] * half_draw_size; temp_points[(points_count-1)*2+0] = points[points_count-1] + temp_normals[points_count-1] * half_draw_size; temp_points[(points_count-1)*2+1] = points[points_count-1] - temp_normals[points_count-1] * half_draw_size; } // Generate the indices to form a number of triangles for each line segment, and the vertices for the line edges // This takes points n and n+1 and writes into n+1, with the first point in a closed line being generated from the final one (as n+1 wraps) // FIXME-OPT: Merge the different loops, possibly remove the temporary buffer. unsigned int idx1 = _VtxCurrentIdx; // Vertex index for start of line segment for (int i1 = 0; i1 < count; i1++) // i1 is the first point of the line segment { const int i2 = (i1 + 1) == points_count ? 0 : i1 + 1; // i2 is the second point of the line segment const unsigned int idx2 = ((i1 + 1) == points_count) ? _VtxCurrentIdx : (idx1 + (use_texture ? 2 : 3)); // Vertex index for end of segment // Average normals float dm_x = (temp_normals[i1].x + temp_normals[i2].x) * 0.5f; float dm_y = (temp_normals[i1].y + temp_normals[i2].y) * 0.5f; IM_FIXNORMAL2F(dm_x, dm_y); dm_x *= half_draw_size; // dm_x, dm_y are offset to the outer edge of the AA area dm_y *= half_draw_size; // Add temporary vertexes for the outer edges ImVec2* out_vtx = &temp_points[i2 * 2]; out_vtx[0].x = points[i2].x + dm_x; out_vtx[0].y = points[i2].y + dm_y; out_vtx[1].x = points[i2].x - dm_x; out_vtx[1].y = points[i2].y - dm_y; if (use_texture) { // Add indices for two triangles _IdxWritePtr[0] = (ImDrawIdx)(idx2 + 0); _IdxWritePtr[1] = (ImDrawIdx)(idx1 + 0); _IdxWritePtr[2] = (ImDrawIdx)(idx1 + 1); // Right tri _IdxWritePtr[3] = (ImDrawIdx)(idx2 + 1); _IdxWritePtr[4] = (ImDrawIdx)(idx1 + 1); _IdxWritePtr[5] = (ImDrawIdx)(idx2 + 0); // Left tri _IdxWritePtr += 6; } else { // Add indexes for four triangles _IdxWritePtr[0] = (ImDrawIdx)(idx2 + 0); _IdxWritePtr[1] = (ImDrawIdx)(idx1 + 0); _IdxWritePtr[2] = (ImDrawIdx)(idx1 + 2); // Right tri 1 _IdxWritePtr[3] = (ImDrawIdx)(idx1 + 2); _IdxWritePtr[4] = (ImDrawIdx)(idx2 + 2); _IdxWritePtr[5] = (ImDrawIdx)(idx2 + 0); // Right tri 2 _IdxWritePtr[6] = (ImDrawIdx)(idx2 + 1); _IdxWritePtr[7] = (ImDrawIdx)(idx1 + 1); _IdxWritePtr[8] = (ImDrawIdx)(idx1 + 0); // Left tri 1 _IdxWritePtr[9] = (ImDrawIdx)(idx1 + 0); _IdxWritePtr[10] = (ImDrawIdx)(idx2 + 0); _IdxWritePtr[11] = (ImDrawIdx)(idx2 + 1); // Left tri 2 _IdxWritePtr += 12; } idx1 = idx2; } // Add vertexes for each point on the line if (use_texture) { // If we're using textures we only need to emit the left/right edge vertices ImVec4 tex_uvs = _Data->TexUvLines[integer_thickness]; /*if (fractional_thickness != 0.0f) // Currently always zero when use_texture==false! { const ImVec4 tex_uvs_1 = _Data->TexUvLines[integer_thickness + 1]; tex_uvs.x = tex_uvs.x + (tex_uvs_1.x - tex_uvs.x) * fractional_thickness; // inlined ImLerp() tex_uvs.y = tex_uvs.y + (tex_uvs_1.y - tex_uvs.y) * fractional_thickness; tex_uvs.z = tex_uvs.z + (tex_uvs_1.z - tex_uvs.z) * fractional_thickness; tex_uvs.w = tex_uvs.w + (tex_uvs_1.w - tex_uvs.w) * fractional_thickness; }*/ ImVec2 tex_uv0(tex_uvs.x, tex_uvs.y); ImVec2 tex_uv1(tex_uvs.z, tex_uvs.w); for (int i = 0; i < points_count; i++) { _VtxWritePtr[0].pos = temp_points[i * 2 + 0]; _VtxWritePtr[0].uv = tex_uv0; _VtxWritePtr[0].col = col; // Left-side outer edge _VtxWritePtr[1].pos = temp_points[i * 2 + 1]; _VtxWritePtr[1].uv = tex_uv1; _VtxWritePtr[1].col = col; // Right-side outer edge _VtxWritePtr += 2; } } else { // If we're not using a texture, we need the center vertex as well for (int i = 0; i < points_count; i++) { _VtxWritePtr[0].pos = points[i]; _VtxWritePtr[0].uv = opaque_uv; _VtxWritePtr[0].col = col; // Center of line _VtxWritePtr[1].pos = temp_points[i * 2 + 0]; _VtxWritePtr[1].uv = opaque_uv; _VtxWritePtr[1].col = col_trans; // Left-side outer edge _VtxWritePtr[2].pos = temp_points[i * 2 + 1]; _VtxWritePtr[2].uv = opaque_uv; _VtxWritePtr[2].col = col_trans; // Right-side outer edge _VtxWritePtr += 3; } } } else { // [PATH 2] Non texture-based lines (thick): we need to draw the solid line core and thus require four vertices per point const float half_inner_thickness = (thickness - AA_SIZE) * 0.5f; // If line is not closed, the first and last points need to be generated differently as there are no normals to blend if (!closed) { const int points_last = points_count - 1; temp_points[0] = points[0] + temp_normals[0] * (half_inner_thickness + AA_SIZE); temp_points[1] = points[0] + temp_normals[0] * (half_inner_thickness); temp_points[2] = points[0] - temp_normals[0] * (half_inner_thickness); temp_points[3] = points[0] - temp_normals[0] * (half_inner_thickness + AA_SIZE); temp_points[points_last * 4 + 0] = points[points_last] + temp_normals[points_last] * (half_inner_thickness + AA_SIZE); temp_points[points_last * 4 + 1] = points[points_last] + temp_normals[points_last] * (half_inner_thickness); temp_points[points_last * 4 + 2] = points[points_last] - temp_normals[points_last] * (half_inner_thickness); temp_points[points_last * 4 + 3] = points[points_last] - temp_normals[points_last] * (half_inner_thickness + AA_SIZE); } // Generate the indices to form a number of triangles for each line segment, and the vertices for the line edges // This takes points n and n+1 and writes into n+1, with the first point in a closed line being generated from the final one (as n+1 wraps) // FIXME-OPT: Merge the different loops, possibly remove the temporary buffer. unsigned int idx1 = _VtxCurrentIdx; // Vertex index for start of line segment for (int i1 = 0; i1 < count; i1++) // i1 is the first point of the line segment { const int i2 = (i1 + 1) == points_count ? 0 : (i1 + 1); // i2 is the second point of the line segment const unsigned int idx2 = (i1 + 1) == points_count ? _VtxCurrentIdx : (idx1 + 4); // Vertex index for end of segment // Average normals float dm_x = (temp_normals[i1].x + temp_normals[i2].x) * 0.5f; float dm_y = (temp_normals[i1].y + temp_normals[i2].y) * 0.5f; IM_FIXNORMAL2F(dm_x, dm_y); float dm_out_x = dm_x * (half_inner_thickness + AA_SIZE); float dm_out_y = dm_y * (half_inner_thickness + AA_SIZE); float dm_in_x = dm_x * half_inner_thickness; float dm_in_y = dm_y * half_inner_thickness; // Add temporary vertices ImVec2* out_vtx = &temp_points[i2 * 4]; out_vtx[0].x = points[i2].x + dm_out_x; out_vtx[0].y = points[i2].y + dm_out_y; out_vtx[1].x = points[i2].x + dm_in_x; out_vtx[1].y = points[i2].y + dm_in_y; out_vtx[2].x = points[i2].x - dm_in_x; out_vtx[2].y = points[i2].y - dm_in_y; out_vtx[3].x = points[i2].x - dm_out_x; out_vtx[3].y = points[i2].y - dm_out_y; // Add indexes _IdxWritePtr[0] = (ImDrawIdx)(idx2 + 1); _IdxWritePtr[1] = (ImDrawIdx)(idx1 + 1); _IdxWritePtr[2] = (ImDrawIdx)(idx1 + 2); _IdxWritePtr[3] = (ImDrawIdx)(idx1 + 2); _IdxWritePtr[4] = (ImDrawIdx)(idx2 + 2); _IdxWritePtr[5] = (ImDrawIdx)(idx2 + 1); _IdxWritePtr[6] = (ImDrawIdx)(idx2 + 1); _IdxWritePtr[7] = (ImDrawIdx)(idx1 + 1); _IdxWritePtr[8] = (ImDrawIdx)(idx1 + 0); _IdxWritePtr[9] = (ImDrawIdx)(idx1 + 0); _IdxWritePtr[10] = (ImDrawIdx)(idx2 + 0); _IdxWritePtr[11] = (ImDrawIdx)(idx2 + 1); _IdxWritePtr[12] = (ImDrawIdx)(idx2 + 2); _IdxWritePtr[13] = (ImDrawIdx)(idx1 + 2); _IdxWritePtr[14] = (ImDrawIdx)(idx1 + 3); _IdxWritePtr[15] = (ImDrawIdx)(idx1 + 3); _IdxWritePtr[16] = (ImDrawIdx)(idx2 + 3); _IdxWritePtr[17] = (ImDrawIdx)(idx2 + 2); _IdxWritePtr += 18; idx1 = idx2; } // Add vertices for (int i = 0; i < points_count; i++) { _VtxWritePtr[0].pos = temp_points[i * 4 + 0]; _VtxWritePtr[0].uv = opaque_uv; _VtxWritePtr[0].col = col_trans; _VtxWritePtr[1].pos = temp_points[i * 4 + 1]; _VtxWritePtr[1].uv = opaque_uv; _VtxWritePtr[1].col = col; _VtxWritePtr[2].pos = temp_points[i * 4 + 2]; _VtxWritePtr[2].uv = opaque_uv; _VtxWritePtr[2].col = col; _VtxWritePtr[3].pos = temp_points[i * 4 + 3]; _VtxWritePtr[3].uv = opaque_uv; _VtxWritePtr[3].col = col_trans; _VtxWritePtr += 4; } } _VtxCurrentIdx += (ImDrawIdx)vtx_count; } else { // [PATH 4] Non texture-based, Non anti-aliased lines const int idx_count = count * 6; const int vtx_count = count * 4; // FIXME-OPT: Not sharing edges PrimReserve(idx_count, vtx_count); for (int i1 = 0; i1 < count; i1++) { const int i2 = (i1 + 1) == points_count ? 0 : i1 + 1; const ImVec2& p1 = points[i1]; const ImVec2& p2 = points[i2]; float dx = p2.x - p1.x; float dy = p2.y - p1.y; IM_NORMALIZE2F_OVER_ZERO(dx, dy); dx *= (thickness * 0.5f); dy *= (thickness * 0.5f); _VtxWritePtr[0].pos.x = p1.x + dy; _VtxWritePtr[0].pos.y = p1.y - dx; _VtxWritePtr[0].uv = opaque_uv; _VtxWritePtr[0].col = col; _VtxWritePtr[1].pos.x = p2.x + dy; _VtxWritePtr[1].pos.y = p2.y - dx; _VtxWritePtr[1].uv = opaque_uv; _VtxWritePtr[1].col = col; _VtxWritePtr[2].pos.x = p2.x - dy; _VtxWritePtr[2].pos.y = p2.y + dx; _VtxWritePtr[2].uv = opaque_uv; _VtxWritePtr[2].col = col; _VtxWritePtr[3].pos.x = p1.x - dy; _VtxWritePtr[3].pos.y = p1.y + dx; _VtxWritePtr[3].uv = opaque_uv; _VtxWritePtr[3].col = col; _VtxWritePtr += 4; _IdxWritePtr[0] = (ImDrawIdx)(_VtxCurrentIdx); _IdxWritePtr[1] = (ImDrawIdx)(_VtxCurrentIdx + 1); _IdxWritePtr[2] = (ImDrawIdx)(_VtxCurrentIdx + 2); _IdxWritePtr[3] = (ImDrawIdx)(_VtxCurrentIdx); _IdxWritePtr[4] = (ImDrawIdx)(_VtxCurrentIdx + 2); _IdxWritePtr[5] = (ImDrawIdx)(_VtxCurrentIdx + 3); _IdxWritePtr += 6; _VtxCurrentIdx += 4; } } } // - We intentionally avoid using ImVec2 and its math operators here to reduce cost to a minimum for debug/non-inlined builds. // - Filled shapes must always use clockwise winding order. The anti-aliasing fringe depends on it. Counter-clockwise shapes will have "inward" anti-aliasing. void ImDrawList::AddConvexPolyFilled(const ImVec2* points, const int points_count, ImU32 col) { if (points_count < 3 || (col & IM_COL32_A_MASK) == 0) return; const ImVec2 uv = _Data->TexUvWhitePixel; if (Flags & ImDrawListFlags_AntiAliasedFill) { // Anti-aliased Fill const float AA_SIZE = _FringeScale; const ImU32 col_trans = col & ~IM_COL32_A_MASK; const int idx_count = (points_count - 2)*3 + points_count * 6; const int vtx_count = (points_count * 2); PrimReserve(idx_count, vtx_count); // Add indexes for fill unsigned int vtx_inner_idx = _VtxCurrentIdx; unsigned int vtx_outer_idx = _VtxCurrentIdx + 1; for (int i = 2; i < points_count; i++) { _IdxWritePtr[0] = (ImDrawIdx)(vtx_inner_idx); _IdxWritePtr[1] = (ImDrawIdx)(vtx_inner_idx + ((i - 1) << 1)); _IdxWritePtr[2] = (ImDrawIdx)(vtx_inner_idx + (i << 1)); _IdxWritePtr += 3; } // Compute normals _Data->TempBuffer.reserve_discard(points_count); ImVec2* temp_normals = _Data->TempBuffer.Data; for (int i0 = points_count - 1, i1 = 0; i1 < points_count; i0 = i1++) { const ImVec2& p0 = points[i0]; const ImVec2& p1 = points[i1]; float dx = p1.x - p0.x; float dy = p1.y - p0.y; IM_NORMALIZE2F_OVER_ZERO(dx, dy); temp_normals[i0].x = dy; temp_normals[i0].y = -dx; } for (int i0 = points_count - 1, i1 = 0; i1 < points_count; i0 = i1++) { // Average normals const ImVec2& n0 = temp_normals[i0]; const ImVec2& n1 = temp_normals[i1]; float dm_x = (n0.x + n1.x) * 0.5f; float dm_y = (n0.y + n1.y) * 0.5f; IM_FIXNORMAL2F(dm_x, dm_y); dm_x *= AA_SIZE * 0.5f; dm_y *= AA_SIZE * 0.5f; // Add vertices _VtxWritePtr[0].pos.x = (points[i1].x - dm_x); _VtxWritePtr[0].pos.y = (points[i1].y - dm_y); _VtxWritePtr[0].uv = uv; _VtxWritePtr[0].col = col; // Inner _VtxWritePtr[1].pos.x = (points[i1].x + dm_x); _VtxWritePtr[1].pos.y = (points[i1].y + dm_y); _VtxWritePtr[1].uv = uv; _VtxWritePtr[1].col = col_trans; // Outer _VtxWritePtr += 2; // Add indexes for fringes _IdxWritePtr[0] = (ImDrawIdx)(vtx_inner_idx + (i1 << 1)); _IdxWritePtr[1] = (ImDrawIdx)(vtx_inner_idx + (i0 << 1)); _IdxWritePtr[2] = (ImDrawIdx)(vtx_outer_idx + (i0 << 1)); _IdxWritePtr[3] = (ImDrawIdx)(vtx_outer_idx + (i0 << 1)); _IdxWritePtr[4] = (ImDrawIdx)(vtx_outer_idx + (i1 << 1)); _IdxWritePtr[5] = (ImDrawIdx)(vtx_inner_idx + (i1 << 1)); _IdxWritePtr += 6; } _VtxCurrentIdx += (ImDrawIdx)vtx_count; } else { // Non Anti-aliased Fill const int idx_count = (points_count - 2)*3; const int vtx_count = points_count; PrimReserve(idx_count, vtx_count); for (int i = 0; i < vtx_count; i++) { _VtxWritePtr[0].pos = points[i]; _VtxWritePtr[0].uv = uv; _VtxWritePtr[0].col = col; _VtxWritePtr++; } for (int i = 2; i < points_count; i++) { _IdxWritePtr[0] = (ImDrawIdx)(_VtxCurrentIdx); _IdxWritePtr[1] = (ImDrawIdx)(_VtxCurrentIdx + i - 1); _IdxWritePtr[2] = (ImDrawIdx)(_VtxCurrentIdx + i); _IdxWritePtr += 3; } _VtxCurrentIdx += (ImDrawIdx)vtx_count; } } void ImDrawList::_PathArcToFastEx(const ImVec2& center, float radius, int a_min_sample, int a_max_sample, int a_step) { if (radius < 0.5f) { _Path.push_back(center); return; } // Calculate arc auto segment step size if (a_step <= 0) a_step = IM_DRAWLIST_ARCFAST_SAMPLE_MAX / _CalcCircleAutoSegmentCount(radius); // Make sure we never do steps larger than one quarter of the circle a_step = ImClamp(a_step, 1, IM_DRAWLIST_ARCFAST_TABLE_SIZE / 4); const int sample_range = ImAbs(a_max_sample - a_min_sample); const int a_next_step = a_step; int samples = sample_range + 1; bool extra_max_sample = false; if (a_step > 1) { samples = sample_range / a_step + 1; const int overstep = sample_range % a_step; if (overstep > 0) { extra_max_sample = true; samples++; // When we have overstep to avoid awkwardly looking one long line and one tiny one at the end, // distribute first step range evenly between them by reducing first step size. if (sample_range > 0) a_step -= (a_step - overstep) / 2; } } _Path.resize(_Path.Size + samples); ImVec2* out_ptr = _Path.Data + (_Path.Size - samples); int sample_index = a_min_sample; if (sample_index < 0 || sample_index >= IM_DRAWLIST_ARCFAST_SAMPLE_MAX) { sample_index = sample_index % IM_DRAWLIST_ARCFAST_SAMPLE_MAX; if (sample_index < 0) sample_index += IM_DRAWLIST_ARCFAST_SAMPLE_MAX; } if (a_max_sample >= a_min_sample) { for (int a = a_min_sample; a <= a_max_sample; a += a_step, sample_index += a_step, a_step = a_next_step) { // a_step is clamped to IM_DRAWLIST_ARCFAST_SAMPLE_MAX, so we have guaranteed that it will not wrap over range twice or more if (sample_index >= IM_DRAWLIST_ARCFAST_SAMPLE_MAX) sample_index -= IM_DRAWLIST_ARCFAST_SAMPLE_MAX; const ImVec2 s = _Data->ArcFastVtx[sample_index]; out_ptr->x = center.x + s.x * radius; out_ptr->y = center.y + s.y * radius; out_ptr++; } } else { for (int a = a_min_sample; a >= a_max_sample; a -= a_step, sample_index -= a_step, a_step = a_next_step) { // a_step is clamped to IM_DRAWLIST_ARCFAST_SAMPLE_MAX, so we have guaranteed that it will not wrap over range twice or more if (sample_index < 0) sample_index += IM_DRAWLIST_ARCFAST_SAMPLE_MAX; const ImVec2 s = _Data->ArcFastVtx[sample_index]; out_ptr->x = center.x + s.x * radius; out_ptr->y = center.y + s.y * radius; out_ptr++; } } if (extra_max_sample) { int normalized_max_sample = a_max_sample % IM_DRAWLIST_ARCFAST_SAMPLE_MAX; if (normalized_max_sample < 0) normalized_max_sample += IM_DRAWLIST_ARCFAST_SAMPLE_MAX; const ImVec2 s = _Data->ArcFastVtx[normalized_max_sample]; out_ptr->x = center.x + s.x * radius; out_ptr->y = center.y + s.y * radius; out_ptr++; } IM_ASSERT_PARANOID(_Path.Data + _Path.Size == out_ptr); } void ImDrawList::_PathArcToN(const ImVec2& center, float radius, float a_min, float a_max, int num_segments) { if (radius < 0.5f) { _Path.push_back(center); return; } // Note that we are adding a point at both a_min and a_max. // If you are trying to draw a full closed circle you don't want the overlapping points! _Path.reserve(_Path.Size + (num_segments + 1)); for (int i = 0; i <= num_segments; i++) { const float a = a_min + ((float)i / (float)num_segments) * (a_max - a_min); _Path.push_back(ImVec2(center.x + ImCos(a) * radius, center.y + ImSin(a) * radius)); } } // 0: East, 3: South, 6: West, 9: North, 12: East void ImDrawList::PathArcToFast(const ImVec2& center, float radius, int a_min_of_12, int a_max_of_12) { if (radius < 0.5f) { _Path.push_back(center); return; } _PathArcToFastEx(center, radius, a_min_of_12 * IM_DRAWLIST_ARCFAST_SAMPLE_MAX / 12, a_max_of_12 * IM_DRAWLIST_ARCFAST_SAMPLE_MAX / 12, 0); } void ImDrawList::PathArcTo(const ImVec2& center, float radius, float a_min, float a_max, int num_segments) { if (radius < 0.5f) { _Path.push_back(center); return; } if (num_segments > 0) { _PathArcToN(center, radius, a_min, a_max, num_segments); return; } // Automatic segment count if (radius <= _Data->ArcFastRadiusCutoff) { const bool a_is_reverse = a_max < a_min; // We are going to use precomputed values for mid samples. // Determine first and last sample in lookup table that belong to the arc. const float a_min_sample_f = IM_DRAWLIST_ARCFAST_SAMPLE_MAX * a_min / (IM_PI * 2.0f); const float a_max_sample_f = IM_DRAWLIST_ARCFAST_SAMPLE_MAX * a_max / (IM_PI * 2.0f); const int a_min_sample = a_is_reverse ? (int)ImFloor(a_min_sample_f) : (int)ImCeil(a_min_sample_f); const int a_max_sample = a_is_reverse ? (int)ImCeil(a_max_sample_f) : (int)ImFloor(a_max_sample_f); const int a_mid_samples = a_is_reverse ? ImMax(a_min_sample - a_max_sample, 0) : ImMax(a_max_sample - a_min_sample, 0); const float a_min_segment_angle = a_min_sample * IM_PI * 2.0f / IM_DRAWLIST_ARCFAST_SAMPLE_MAX; const float a_max_segment_angle = a_max_sample * IM_PI * 2.0f / IM_DRAWLIST_ARCFAST_SAMPLE_MAX; const bool a_emit_start = ImAbs(a_min_segment_angle - a_min) >= 1e-5f; const bool a_emit_end = ImAbs(a_max - a_max_segment_angle) >= 1e-5f; _Path.reserve(_Path.Size + (a_mid_samples + 1 + (a_emit_start ? 1 : 0) + (a_emit_end ? 1 : 0))); if (a_emit_start) _Path.push_back(ImVec2(center.x + ImCos(a_min) * radius, center.y + ImSin(a_min) * radius)); if (a_mid_samples > 0) _PathArcToFastEx(center, radius, a_min_sample, a_max_sample, 0); if (a_emit_end) _Path.push_back(ImVec2(center.x + ImCos(a_max) * radius, center.y + ImSin(a_max) * radius)); } else { const float arc_length = ImAbs(a_max - a_min); const int circle_segment_count = _CalcCircleAutoSegmentCount(radius); const int arc_segment_count = ImMax((int)ImCeil(circle_segment_count * arc_length / (IM_PI * 2.0f)), (int)(2.0f * IM_PI / arc_length)); _PathArcToN(center, radius, a_min, a_max, arc_segment_count); } } void ImDrawList::PathEllipticalArcTo(const ImVec2& center, float radius_x, float radius_y, float rot, float a_min, float a_max, int num_segments) { if (num_segments <= 0) num_segments = _CalcCircleAutoSegmentCount(ImMax(radius_x, radius_y)); // A bit pessimistic, maybe there's a better computation to do here. _Path.reserve(_Path.Size + (num_segments + 1)); const float cos_rot = ImCos(rot); const float sin_rot = ImSin(rot); for (int i = 0; i <= num_segments; i++) { const float a = a_min + ((float)i / (float)num_segments) * (a_max - a_min); ImVec2 point(ImCos(a) * radius_x, ImSin(a) * radius_y); const float rel_x = (point.x * cos_rot) - (point.y * sin_rot); const float rel_y = (point.x * sin_rot) + (point.y * cos_rot); point.x = rel_x + center.x; point.y = rel_y + center.y; _Path.push_back(point); } } ImVec2 ImBezierCubicCalc(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const ImVec2& p4, float t) { float u = 1.0f - t; float w1 = u * u * u; float w2 = 3 * u * u * t; float w3 = 3 * u * t * t; float w4 = t * t * t; return ImVec2(w1 * p1.x + w2 * p2.x + w3 * p3.x + w4 * p4.x, w1 * p1.y + w2 * p2.y + w3 * p3.y + w4 * p4.y); } ImVec2 ImBezierQuadraticCalc(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float t) { float u = 1.0f - t; float w1 = u * u; float w2 = 2 * u * t; float w3 = t * t; return ImVec2(w1 * p1.x + w2 * p2.x + w3 * p3.x, w1 * p1.y + w2 * p2.y + w3 * p3.y); } // Closely mimics ImBezierCubicClosestPointCasteljau() in imgui.cpp static void PathBezierCubicCurveToCasteljau(ImVector* path, float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4, float tess_tol, int level) { float dx = x4 - x1; float dy = y4 - y1; float d2 = (x2 - x4) * dy - (y2 - y4) * dx; float d3 = (x3 - x4) * dy - (y3 - y4) * dx; d2 = (d2 >= 0) ? d2 : -d2; d3 = (d3 >= 0) ? d3 : -d3; if ((d2 + d3) * (d2 + d3) < tess_tol * (dx * dx + dy * dy)) { path->push_back(ImVec2(x4, y4)); } else if (level < 10) { float x12 = (x1 + x2) * 0.5f, y12 = (y1 + y2) * 0.5f; float x23 = (x2 + x3) * 0.5f, y23 = (y2 + y3) * 0.5f; float x34 = (x3 + x4) * 0.5f, y34 = (y3 + y4) * 0.5f; float x123 = (x12 + x23) * 0.5f, y123 = (y12 + y23) * 0.5f; float x234 = (x23 + x34) * 0.5f, y234 = (y23 + y34) * 0.5f; float x1234 = (x123 + x234) * 0.5f, y1234 = (y123 + y234) * 0.5f; PathBezierCubicCurveToCasteljau(path, x1, y1, x12, y12, x123, y123, x1234, y1234, tess_tol, level + 1); PathBezierCubicCurveToCasteljau(path, x1234, y1234, x234, y234, x34, y34, x4, y4, tess_tol, level + 1); } } static void PathBezierQuadraticCurveToCasteljau(ImVector* path, float x1, float y1, float x2, float y2, float x3, float y3, float tess_tol, int level) { float dx = x3 - x1, dy = y3 - y1; float det = (x2 - x3) * dy - (y2 - y3) * dx; if (det * det * 4.0f < tess_tol * (dx * dx + dy * dy)) { path->push_back(ImVec2(x3, y3)); } else if (level < 10) { float x12 = (x1 + x2) * 0.5f, y12 = (y1 + y2) * 0.5f; float x23 = (x2 + x3) * 0.5f, y23 = (y2 + y3) * 0.5f; float x123 = (x12 + x23) * 0.5f, y123 = (y12 + y23) * 0.5f; PathBezierQuadraticCurveToCasteljau(path, x1, y1, x12, y12, x123, y123, tess_tol, level + 1); PathBezierQuadraticCurveToCasteljau(path, x123, y123, x23, y23, x3, y3, tess_tol, level + 1); } } void ImDrawList::PathBezierCubicCurveTo(const ImVec2& p2, const ImVec2& p3, const ImVec2& p4, int num_segments) { ImVec2 p1 = _Path.back(); if (num_segments == 0) { IM_ASSERT(_Data->CurveTessellationTol > 0.0f); PathBezierCubicCurveToCasteljau(&_Path, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y, _Data->CurveTessellationTol, 0); // Auto-tessellated } else { float t_step = 1.0f / (float)num_segments; for (int i_step = 1; i_step <= num_segments; i_step++) _Path.push_back(ImBezierCubicCalc(p1, p2, p3, p4, t_step * i_step)); } } void ImDrawList::PathBezierQuadraticCurveTo(const ImVec2& p2, const ImVec2& p3, int num_segments) { ImVec2 p1 = _Path.back(); if (num_segments == 0) { IM_ASSERT(_Data->CurveTessellationTol > 0.0f); PathBezierQuadraticCurveToCasteljau(&_Path, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, _Data->CurveTessellationTol, 0);// Auto-tessellated } else { float t_step = 1.0f / (float)num_segments; for (int i_step = 1; i_step <= num_segments; i_step++) _Path.push_back(ImBezierQuadraticCalc(p1, p2, p3, t_step * i_step)); } } static inline ImDrawFlags FixRectCornerFlags(ImDrawFlags flags) { /* IM_STATIC_ASSERT(ImDrawFlags_RoundCornersTopLeft == (1 << 4)); #ifndef IMGUI_DISABLE_OBSOLETE_FUNCTIONS // Obsoleted in 1.82 (from February 2021). This code was stripped/simplified and mostly commented in 1.90 (from September 2023) // - Legacy Support for hard coded ~0 (used to be a suggested equivalent to ImDrawCornerFlags_All) if (flags == ~0) { return ImDrawFlags_RoundCornersAll; } // - Legacy Support for hard coded 0x01 to 0x0F (matching 15 out of 16 old flags combinations). Read details in older version of this code. if (flags >= 0x01 && flags <= 0x0F) { return (flags << 4); } // We cannot support hard coded 0x00 with 'float rounding > 0.0f' --> replace with ImDrawFlags_RoundCornersNone or use 'float rounding = 0.0f' #endif */ // If this assert triggers, please update your code replacing hardcoded values with new ImDrawFlags_RoundCorners* values. // Note that ImDrawFlags_Closed (== 0x01) is an invalid flag for AddRect(), AddRectFilled(), PathRect() etc. anyway. // See details in 1.82 Changelog as well as 2021/03/12 and 2023/09/08 entries in "API BREAKING CHANGES" section. IM_ASSERT((flags & 0x0F) == 0 && "Misuse of legacy hardcoded ImDrawCornerFlags values!"); if ((flags & ImDrawFlags_RoundCornersMask_) == 0) flags |= ImDrawFlags_RoundCornersAll; return flags; } void ImDrawList::PathRect(const ImVec2& a, const ImVec2& b, float rounding, ImDrawFlags flags) { if (rounding >= 0.5f) { flags = FixRectCornerFlags(flags); rounding = ImMin(rounding, ImFabs(b.x - a.x) * (((flags & ImDrawFlags_RoundCornersTop) == ImDrawFlags_RoundCornersTop) || ((flags & ImDrawFlags_RoundCornersBottom) == ImDrawFlags_RoundCornersBottom) ? 0.5f : 1.0f) - 1.0f); rounding = ImMin(rounding, ImFabs(b.y - a.y) * (((flags & ImDrawFlags_RoundCornersLeft) == ImDrawFlags_RoundCornersLeft) || ((flags & ImDrawFlags_RoundCornersRight) == ImDrawFlags_RoundCornersRight) ? 0.5f : 1.0f) - 1.0f); } if (rounding < 0.5f || (flags & ImDrawFlags_RoundCornersMask_) == ImDrawFlags_RoundCornersNone) { PathLineTo(a); PathLineTo(ImVec2(b.x, a.y)); PathLineTo(b); PathLineTo(ImVec2(a.x, b.y)); } else { const float rounding_tl = (flags & ImDrawFlags_RoundCornersTopLeft) ? rounding : 0.0f; const float rounding_tr = (flags & ImDrawFlags_RoundCornersTopRight) ? rounding : 0.0f; const float rounding_br = (flags & ImDrawFlags_RoundCornersBottomRight) ? rounding : 0.0f; const float rounding_bl = (flags & ImDrawFlags_RoundCornersBottomLeft) ? rounding : 0.0f; PathArcToFast(ImVec2(a.x + rounding_tl, a.y + rounding_tl), rounding_tl, 6, 9); PathArcToFast(ImVec2(b.x - rounding_tr, a.y + rounding_tr), rounding_tr, 9, 12); PathArcToFast(ImVec2(b.x - rounding_br, b.y - rounding_br), rounding_br, 0, 3); PathArcToFast(ImVec2(a.x + rounding_bl, b.y - rounding_bl), rounding_bl, 3, 6); } } void ImDrawList::AddLine(const ImVec2& p1, const ImVec2& p2, ImU32 col, float thickness) { if ((col & IM_COL32_A_MASK) == 0) return; PathLineTo(p1 + ImVec2(0.5f, 0.5f)); PathLineTo(p2 + ImVec2(0.5f, 0.5f)); PathStroke(col, 0, thickness); } // p_min = upper-left, p_max = lower-right // Note we don't render 1 pixels sized rectangles properly. void ImDrawList::AddRect(const ImVec2& p_min, const ImVec2& p_max, ImU32 col, float rounding, ImDrawFlags flags, float thickness) { if ((col & IM_COL32_A_MASK) == 0) return; if (Flags & ImDrawListFlags_AntiAliasedLines) PathRect(p_min + ImVec2(0.50f, 0.50f), p_max - ImVec2(0.50f, 0.50f), rounding, flags); else PathRect(p_min + ImVec2(0.50f, 0.50f), p_max - ImVec2(0.49f, 0.49f), rounding, flags); // Better looking lower-right corner and rounded non-AA shapes. PathStroke(col, ImDrawFlags_Closed, thickness); } void ImDrawList::AddRectFilled(const ImVec2& p_min, const ImVec2& p_max, ImU32 col, float rounding, ImDrawFlags flags) { if ((col & IM_COL32_A_MASK) == 0) return; if (rounding < 0.5f || (flags & ImDrawFlags_RoundCornersMask_) == ImDrawFlags_RoundCornersNone) { PrimReserve(6, 4); PrimRect(p_min, p_max, col); } else { PathRect(p_min, p_max, rounding, flags); PathFillConvex(col); } } void ImDrawList::AddColoredText(const ImVec2& pos, ImU32 color1, ImU32 color2, const char* text) { const char* start = text; const char* end = text; float totalWidth = 0.0f; while (*end) { if (*end == '[' || *end == ']') { totalWidth += ImGui::CalcTextSize(start, end).x; start = end + 1; } ++end; } totalWidth += ImGui::CalcTextSize(start, end).x; ImVec2 currentPos = pos; start = text; end = text; while (*end) { if (*end == '(') { if (start != end) { float partWidth = ImGui::CalcTextSize(start, end).x; ImGui::GetWindowDrawList()->AddText(currentPos, color1, start, end); currentPos.x += partWidth; } start = end + 1; } else if (*end == ')') { if (start != end) { float partWidth = ImGui::CalcTextSize(start, end).x; ImGui::GetWindowDrawList()->AddText(currentPos, color1, start, end); currentPos.x += partWidth; } float partWidth = ImGui::CalcTextSize(start, end).x; currentPos.x -= partWidth; ImGui::GetWindowDrawList()->AddText(currentPos, color2, start, end); currentPos.x += partWidth; start = end + 1; } ++end; } if (start != end) { float partWidth = ImGui::CalcTextSize(start, end).x; ImGui::GetWindowDrawList()->AddText(currentPos, color1, start, end); } } // p_min = upper-left, p_max = lower-right void ImDrawList::AddRectFilledMultiColor(const ImVec2& p_min, const ImVec2& p_max, ImU32 col_upr_left, ImU32 col_upr_right, ImU32 col_bot_right, ImU32 col_bot_left, float rounding, ImDrawFlags flags) { if (((col_upr_left | col_upr_right | col_bot_right | col_bot_left) & IM_COL32_A_MASK) == 0) return; flags = FixRectCornerFlags(flags); rounding = ImMin(rounding, ImFabs(p_max.x - p_min.x) * (((flags & ImDrawFlags_RoundCornersTop) == ImDrawFlags_RoundCornersTop) || ((flags & ImDrawFlags_RoundCornersBottom) == ImDrawFlags_RoundCornersBottom) ? 0.5f : 1.0f) - 1.0f); rounding = ImMin(rounding, ImFabs(p_max.y - p_min.y) * (((flags & ImDrawFlags_RoundCornersLeft) == ImDrawFlags_RoundCornersLeft) || ((flags & ImDrawFlags_RoundCornersRight) == ImDrawFlags_RoundCornersRight) ? 0.5f : 1.0f) - 1.0f); // https://github.com/ocornut/imgui/issues/3710#issuecomment-758555966 if (rounding > 0.0f) { const int size_before = VtxBuffer.Size; AddRectFilled(p_min, p_max, IM_COL32_WHITE, rounding, flags); const int size_after = VtxBuffer.Size; for (int i = size_before; i < size_after; i++) { ImDrawVert* vert = VtxBuffer.Data + i; ImVec4 upr_left = ImGui::ColorConvertU32ToFloat4(col_upr_left); ImVec4 bot_left = ImGui::ColorConvertU32ToFloat4(col_bot_left); ImVec4 up_right = ImGui::ColorConvertU32ToFloat4(col_upr_right); ImVec4 bot_right = ImGui::ColorConvertU32ToFloat4(col_bot_right); float X = ImClamp((vert->pos.x - p_min.x) / (p_max.x - p_min.x), 0.0f, 1.0f); // 4 colors - 8 deltas float r1 = upr_left.x + (up_right.x - upr_left.x) * X; float r2 = bot_left.x + (bot_right.x - bot_left.x) * X; float g1 = upr_left.y + (up_right.y - upr_left.y) * X; float g2 = bot_left.y + (bot_right.y - bot_left.y) * X; float b1 = upr_left.z + (up_right.z - upr_left.z) * X; float b2 = bot_left.z + (bot_right.z - bot_left.z) * X; float a1 = upr_left.w + (up_right.w - upr_left.w) * X; float a2 = bot_left.w + (bot_right.w - bot_left.w) * X; float Y = ImClamp((vert->pos.y - p_min.y) / (p_max.y - p_min.y), 0.0f, 1.0f); float r = r1 + (r2 - r1) * Y; float g = g1 + (g2 - g1) * Y; float b = b1 + (b2 - b1) * Y; float a = a1 + (a2 - a1) * Y; ImVec4 RGBA(r, g, b, a); RGBA = RGBA * ImGui::ColorConvertU32ToFloat4(vert->col); vert->col = ImColor(RGBA); } return; } const ImVec2 uv = _Data->TexUvWhitePixel; PrimReserve(6, 4); PrimWriteIdx((ImDrawIdx)(_VtxCurrentIdx)); PrimWriteIdx((ImDrawIdx)(_VtxCurrentIdx + 1)); PrimWriteIdx((ImDrawIdx)(_VtxCurrentIdx + 2)); PrimWriteIdx((ImDrawIdx)(_VtxCurrentIdx)); PrimWriteIdx((ImDrawIdx)(_VtxCurrentIdx + 2)); PrimWriteIdx((ImDrawIdx)(_VtxCurrentIdx + 3)); PrimWriteVtx(p_min, uv, col_upr_left); PrimWriteVtx(ImVec2(p_max.x, p_min.y), uv, col_upr_right); PrimWriteVtx(p_max, uv, col_bot_right); PrimWriteVtx(ImVec2(p_min.x, p_max.y), uv, col_bot_left); } void ImDrawList::AddQuad(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const ImVec2& p4, ImU32 col, float thickness) { if ((col & IM_COL32_A_MASK) == 0) return; PathLineTo(p1); PathLineTo(p2); PathLineTo(p3); PathLineTo(p4); PathStroke(col, ImDrawFlags_Closed, thickness); } void ImDrawList::AddQuadFilled(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const ImVec2& p4, ImU32 col) { if ((col & IM_COL32_A_MASK) == 0) return; PathLineTo(p1); PathLineTo(p2); PathLineTo(p3); PathLineTo(p4); PathFillConvex(col); } void ImDrawList::AddTriangle(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, ImU32 col, float thickness) { if ((col & IM_COL32_A_MASK) == 0) return; PathLineTo(p1); PathLineTo(p2); PathLineTo(p3); PathStroke(col, ImDrawFlags_Closed, thickness); } void ImDrawList::AddTriangleFilled(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, ImU32 col) { if ((col & IM_COL32_A_MASK) == 0) return; PathLineTo(p1); PathLineTo(p2); PathLineTo(p3); PathFillConvex(col); } void ImDrawList::AddCircle(const ImVec2& center, float radius, ImU32 col, int num_segments, float thickness) { if ((col & IM_COL32_A_MASK) == 0 || radius < 0.5f) return; if (num_segments <= 0) { // Use arc with automatic segment count _PathArcToFastEx(center, radius - 0.5f, 0, IM_DRAWLIST_ARCFAST_SAMPLE_MAX, 0); _Path.Size--; } else { // Explicit segment count (still clamp to avoid drawing insanely tessellated shapes) num_segments = ImClamp(num_segments, 3, IM_DRAWLIST_CIRCLE_AUTO_SEGMENT_MAX); // Because we are filling a closed shape we remove 1 from the count of segments/points const float a_max = (IM_PI * 2.0f) * ((float)num_segments - 1.0f) / (float)num_segments; PathArcTo(center, radius - 0.5f, 0.0f, a_max, num_segments - 1); } PathStroke(col, ImDrawFlags_Closed, thickness); } void ImDrawList::AddCircleFilled(const ImVec2& center, float radius, ImU32 col, int num_segments) { if ((col & IM_COL32_A_MASK) == 0 || radius < 0.5f) return; if (num_segments <= 0) { // Use arc with automatic segment count _PathArcToFastEx(center, radius, 0, IM_DRAWLIST_ARCFAST_SAMPLE_MAX, 0); _Path.Size--; } else { // Explicit segment count (still clamp to avoid drawing insanely tessellated shapes) num_segments = ImClamp(num_segments, 3, IM_DRAWLIST_CIRCLE_AUTO_SEGMENT_MAX); // Because we are filling a closed shape we remove 1 from the count of segments/points const float a_max = (IM_PI * 2.0f) * ((float)num_segments - 1.0f) / (float)num_segments; PathArcTo(center, radius, 0.0f, a_max, num_segments - 1); } PathFillConvex(col); } // Guaranteed to honor 'num_segments' void ImDrawList::AddNgon(const ImVec2& center, float radius, ImU32 col, int num_segments, float thickness) { if ((col & IM_COL32_A_MASK) == 0 || num_segments <= 2) return; // Because we are filling a closed shape we remove 1 from the count of segments/points const float a_max = (IM_PI * 2.0f) * ((float)num_segments - 1.0f) / (float)num_segments; PathArcTo(center, radius - 0.5f, 0.0f, a_max, num_segments - 1); PathStroke(col, ImDrawFlags_Closed, thickness); } // Guaranteed to honor 'num_segments' void ImDrawList::AddNgonFilled(const ImVec2& center, float radius, ImU32 col, int num_segments) { if ((col & IM_COL32_A_MASK) == 0 || num_segments <= 2) return; // Because we are filling a closed shape we remove 1 from the count of segments/points const float a_max = (IM_PI * 2.0f) * ((float)num_segments - 1.0f) / (float)num_segments; PathArcTo(center, radius, 0.0f, a_max, num_segments - 1); PathFillConvex(col); } // Ellipse void ImDrawList::AddEllipse(const ImVec2& center, float radius_x, float radius_y, ImU32 col, float rot, int num_segments, float thickness) { if ((col & IM_COL32_A_MASK) == 0) return; if (num_segments <= 0) num_segments = _CalcCircleAutoSegmentCount(ImMax(radius_x, radius_y)); // A bit pessimistic, maybe there's a better computation to do here. // Because we are filling a closed shape we remove 1 from the count of segments/points const float a_max = IM_PI * 2.0f * ((float)num_segments - 1.0f) / (float)num_segments; PathEllipticalArcTo(center, radius_x, radius_y, rot, 0.0f, a_max, num_segments - 1); PathStroke(col, true, thickness); } void ImDrawList::AddEllipseFilled(const ImVec2& center, float radius_x, float radius_y, ImU32 col, float rot, int num_segments) { if ((col & IM_COL32_A_MASK) == 0) return; if (num_segments <= 0) num_segments = _CalcCircleAutoSegmentCount(ImMax(radius_x, radius_y)); // A bit pessimistic, maybe there's a better computation to do here. // Because we are filling a closed shape we remove 1 from the count of segments/points const float a_max = IM_PI * 2.0f * ((float)num_segments - 1.0f) / (float)num_segments; PathEllipticalArcTo(center, radius_x, radius_y, rot, 0.0f, a_max, num_segments - 1); PathFillConvex(col); } // Cubic Bezier takes 4 controls points void ImDrawList::AddBezierCubic(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const ImVec2& p4, ImU32 col, float thickness, int num_segments) { if ((col & IM_COL32_A_MASK) == 0) return; PathLineTo(p1); PathBezierCubicCurveTo(p2, p3, p4, num_segments); PathStroke(col, 0, thickness); } // Quadratic Bezier takes 3 controls points void ImDrawList::AddBezierQuadratic(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, ImU32 col, float thickness, int num_segments) { if ((col & IM_COL32_A_MASK) == 0) return; PathLineTo(p1); PathBezierQuadraticCurveTo(p2, p3, num_segments); PathStroke(col, 0, thickness); } void ImDrawList::AddText(const ImFont* font, float font_size, const ImVec2& pos, ImU32 col, const char* text_begin, const char* text_end, float wrap_width, const ImVec4* cpu_fine_clip_rect) { if ((col & IM_COL32_A_MASK) == 0) return; if (text_end == NULL) text_end = text_begin + strlen(text_begin); if (text_begin == text_end) return; // Pull default font/size from the shared ImDrawListSharedData instance if (font == NULL) font = _Data->Font; if (font_size == 0.0f) font_size = _Data->FontSize; IM_ASSERT(font->ContainerAtlas->TexID == _CmdHeader.TextureId); // Use high-level ImGui::PushFont() or low-level ImDrawList::PushTextureId() to change font. ImVec4 clip_rect = _CmdHeader.ClipRect; if (cpu_fine_clip_rect) { clip_rect.x = ImMax(clip_rect.x, cpu_fine_clip_rect->x); clip_rect.y = ImMax(clip_rect.y, cpu_fine_clip_rect->y); clip_rect.z = ImMin(clip_rect.z, cpu_fine_clip_rect->z); clip_rect.w = ImMin(clip_rect.w, cpu_fine_clip_rect->w); } font->RenderText(this, font_size, pos, col, clip_rect, text_begin, text_end, wrap_width, cpu_fine_clip_rect != NULL); } void ImDrawList::AddText(const ImVec2& pos, ImU32 col, const char* text_begin, const char* text_end) { AddText(NULL, 0.0f, pos, col, text_begin, text_end); } void ImDrawList::AddImage(ImTextureID user_texture_id, const ImVec2& p_min, const ImVec2& p_max, const ImVec2& uv_min, const ImVec2& uv_max, ImU32 col) { if ((col & IM_COL32_A_MASK) == 0) return; const bool push_texture_id = user_texture_id != _CmdHeader.TextureId; if (push_texture_id) PushTextureID(user_texture_id); PrimReserve(6, 4); PrimRectUV(p_min, p_max, uv_min, uv_max, col); if (push_texture_id) PopTextureID(); } void ImDrawList::AddImageQuad(ImTextureID user_texture_id, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const ImVec2& p4, const ImVec2& uv1, const ImVec2& uv2, const ImVec2& uv3, const ImVec2& uv4, ImU32 col) { if ((col & IM_COL32_A_MASK) == 0) return; const bool push_texture_id = user_texture_id != _CmdHeader.TextureId; if (push_texture_id) PushTextureID(user_texture_id); PrimReserve(6, 4); PrimQuadUV(p1, p2, p3, p4, uv1, uv2, uv3, uv4, col); if (push_texture_id) PopTextureID(); } void ImDrawList::AddImageRounded(ImTextureID user_texture_id, const ImVec2& p_min, const ImVec2& p_max, const ImVec2& uv_min, const ImVec2& uv_max, ImU32 col, float rounding, ImDrawFlags flags) { if ((col & IM_COL32_A_MASK) == 0) return; flags = FixRectCornerFlags(flags); if (rounding < 0.5f || (flags & ImDrawFlags_RoundCornersMask_) == ImDrawFlags_RoundCornersNone) { AddImage(user_texture_id, p_min, p_max, uv_min, uv_max, col); return; } const bool push_texture_id = user_texture_id != _CmdHeader.TextureId; if (push_texture_id) PushTextureID(user_texture_id); int vert_start_idx = VtxBuffer.Size; PathRect(p_min, p_max, rounding, flags); PathFillConvex(col); int vert_end_idx = VtxBuffer.Size; ImGui::ShadeVertsLinearUV(this, vert_start_idx, vert_end_idx, p_min, p_max, uv_min, uv_max, true); if (push_texture_id) PopTextureID(); } //----------------------------------------------------------------------------- // [SECTION] ImDrawList Shadow Primitives //----------------------------------------------------------------------------- // - AddSubtractedRect() [Internal] // - ClipPolygonShape() [Internal] // - AddSubtractedRect() [Internal] // - AddRectShadow() //----------------------------------------------------------------------------- // Adds a rectangle (A) with another rectangle (B) subtracted from it (i.e. the portion of A covered by B is not drawn). Does not handle rounded corners (use the version that takes a convex polygon for that). static void AddSubtractedRect(ImDrawList* draw_list, const ImVec2& a_min, const ImVec2& a_max, const ImVec2& a_min_uv, const ImVec2& a_max_uv, ImVec2 b_min, ImVec2 b_max, ImU32 col) { // Early out without drawing anything if A is zero-size if (a_min.x >= a_max.x || a_min.y >= a_max.y) return; // Early out without drawing anything if B covers A entirely if (a_min.x >= b_min.x && a_max.x <= b_max.x && a_min.y >= b_min.y && a_max.y <= b_max.y) return; // First clip the extents of B to A b_min = ImMax(b_min, a_min); b_max = ImMin(b_max, a_max); if (b_min.x >= b_max.x || b_min.y >= b_max.y) { // B is entirely outside A, so just draw A as-is draw_list->PrimReserve(6, 4); draw_list->PrimRectUV(a_min, a_max, a_min_uv, a_max_uv, col); return; } // Otherwise we need to emit (up to) four quads to cover the visible area... // Our layout looks like this (numbers are vertex indices, letters are quads): // // 0---8------9-----1 // | | B | | // + 4------5 + // | A |xxxxxx| C | // | |xxxxxx| | // + 7------6 + // | | D | | // 3---11-----10----2 const int max_verts = 12; const int max_indices = 6 * 4; // At most four quads draw_list->PrimReserve(max_indices, max_verts); ImDrawIdx* idx_write = draw_list->_IdxWritePtr; ImDrawVert* vtx_write = draw_list->_VtxWritePtr; ImDrawIdx idx = (ImDrawIdx)draw_list->_VtxCurrentIdx; // Write vertices vtx_write[0].pos = ImVec2(a_min.x, a_min.y); vtx_write[0].uv = ImVec2(a_min_uv.x, a_min_uv.y); vtx_write[0].col = col; vtx_write[1].pos = ImVec2(a_max.x, a_min.y); vtx_write[1].uv = ImVec2(a_max_uv.x, a_min_uv.y); vtx_write[1].col = col; vtx_write[2].pos = ImVec2(a_max.x, a_max.y); vtx_write[2].uv = ImVec2(a_max_uv.x, a_max_uv.y); vtx_write[2].col = col; vtx_write[3].pos = ImVec2(a_min.x, a_max.y); vtx_write[3].uv = ImVec2(a_min_uv.x, a_max_uv.y); vtx_write[3].col = col; const ImVec2 pos_to_uv_scale = (a_max_uv - a_min_uv) / (a_max - a_min); // Guaranteed never to be a /0 because we check for zero-size A above const ImVec2 pos_to_uv_offset = (a_min_uv / pos_to_uv_scale) - a_min; // Helper that generates an interpolated UV based on position #define LERP_UV(x_pos, y_pos) (ImVec2(((x_pos) + pos_to_uv_offset.x) * pos_to_uv_scale.x, ((y_pos) + pos_to_uv_offset.y) * pos_to_uv_scale.y)) vtx_write[4].pos = ImVec2(b_min.x, b_min.y); vtx_write[4].uv = LERP_UV(b_min.x, b_min.y); vtx_write[4].col = col; vtx_write[5].pos = ImVec2(b_max.x, b_min.y); vtx_write[5].uv = LERP_UV(b_max.x, b_min.y); vtx_write[5].col = col; vtx_write[6].pos = ImVec2(b_max.x, b_max.y); vtx_write[6].uv = LERP_UV(b_max.x, b_max.y); vtx_write[6].col = col; vtx_write[7].pos = ImVec2(b_min.x, b_max.y); vtx_write[7].uv = LERP_UV(b_min.x, b_max.y); vtx_write[7].col = col; vtx_write[8].pos = ImVec2(b_min.x, a_min.y); vtx_write[8].uv = LERP_UV(b_min.x, a_min.y); vtx_write[8].col = col; vtx_write[9].pos = ImVec2(b_max.x, a_min.y); vtx_write[9].uv = LERP_UV(b_max.x, a_min.y); vtx_write[9].col = col; vtx_write[10].pos = ImVec2(b_max.x, a_max.y); vtx_write[10].uv = LERP_UV(b_max.x, a_max.y); vtx_write[10].col = col; vtx_write[11].pos = ImVec2(b_min.x, a_max.y); vtx_write[11].uv = LERP_UV(b_min.x, a_max.y); vtx_write[11].col = col; #undef LERP_UV draw_list->_VtxWritePtr += 12; draw_list->_VtxCurrentIdx += 12; // Write indices for each quad (if it is visible) if (b_min.x > a_min.x) // A { idx_write[0] = (ImDrawIdx)(idx + 0); idx_write[1] = (ImDrawIdx)(idx + 8); idx_write[2] = (ImDrawIdx)(idx + 11); idx_write[3] = (ImDrawIdx)(idx + 0); idx_write[4] = (ImDrawIdx)(idx + 11); idx_write[5] = (ImDrawIdx)(idx + 3); idx_write += 6; } if (b_min.y > a_min.y) // B { idx_write[0] = (ImDrawIdx)(idx + 8); idx_write[1] = (ImDrawIdx)(idx + 9); idx_write[2] = (ImDrawIdx)(idx + 5); idx_write[3] = (ImDrawIdx)(idx + 8); idx_write[4] = (ImDrawIdx)(idx + 5); idx_write[5] = (ImDrawIdx)(idx + 4); idx_write += 6; } if (a_max.x > b_max.x) // C { idx_write[0] = (ImDrawIdx)(idx + 9); idx_write[1] = (ImDrawIdx)(idx + 1); idx_write[2] = (ImDrawIdx)(idx + 2); idx_write[3] = (ImDrawIdx)(idx + 9); idx_write[4] = (ImDrawIdx)(idx + 2); idx_write[5] = (ImDrawIdx)(idx + 10); idx_write += 6; } if (a_max.y > b_max.y) // D { idx_write[0] = (ImDrawIdx)(idx + 7); idx_write[1] = (ImDrawIdx)(idx + 6); idx_write[2] = (ImDrawIdx)(idx + 10); idx_write[3] = (ImDrawIdx)(idx + 7); idx_write[4] = (ImDrawIdx)(idx + 10); idx_write[5] = (ImDrawIdx)(idx + 11); idx_write += 6; } const int used_indices = (int)(idx_write - draw_list->_IdxWritePtr); draw_list->_IdxWritePtr = idx_write; draw_list->PrimUnreserve(max_indices - used_indices, 0); } // Clip a polygonal shape to a rectangle, writing the results into dest_points. The number of points emitted is returned (may be zero if the polygon was entirely outside the rectangle, or the source polygon was not valid). dest_points may still be written to even if zero was returned. // allocated_dest_points should contain the number of allocated points in dest_points - in general this should be the number of source points + 4 to accommodate the worst case. If this is exceeded data will be truncated and -1 returned. Stack space work area is allocated based on this value so it shouldn't be too large. static int ClipPolygonShape(ImVec2* src_points, int num_src_points, ImVec2* dest_points, int allocated_dest_points, ImVec2 clip_rect_min, ImVec2 clip_rect_max) { // Early-out with an empty result if clipping region is zero-sized if (clip_rect_max.x <= clip_rect_min.x || clip_rect_max.y <= clip_rect_min.y) return 0; // Early-out if there is no source geometry if (num_src_points < 3) return 0; // The four clip planes here are indexed as: // 0 = X-, 1 = X+, 2 = Y-, 3 = Y+ ImU8* outflags[2]; // Double-buffered flags for each vertex indicating which of the four clip planes it is outside of outflags[0] = (ImU8*)alloca(2 * allocated_dest_points * sizeof(ImU8)); outflags[1] = outflags[0] + allocated_dest_points; // Calculate initial outflags ImU8 outflags_anded = 0xFF; ImU8 outflags_ored = 0; for (int point_idx = 0; point_idx < num_src_points; point_idx++) { const ImVec2 pos = src_points[point_idx]; const ImU8 point_outflags = (pos.x < clip_rect_min.x ? 1 : 0) | (pos.x > clip_rect_max.x ? 2 : 0) | (pos.y < clip_rect_min.y ? 4 : 0) | (pos.y > clip_rect_max.y ? 8 : 0); outflags[0][point_idx] = point_outflags; // Writing to buffer 0 outflags_anded &= point_outflags; outflags_ored |= point_outflags; } if (outflags_anded != 0) // Entirely clipped by any one plane, so nothing remains return 0; if (outflags_ored == 0) // Entirely within bounds, so trivial accept { if (allocated_dest_points < num_src_points) return -1; // Not sure what the caller was thinking if this happens, but we should handle it gracefully memcpy(dest_points, src_points, num_src_points * sizeof(ImVec2)); return num_src_points; } // Shape needs clipping ImVec2* clip_buf[2]; // Double-buffered work area clip_buf[0] = (ImVec2*)alloca(2 * allocated_dest_points * sizeof(ImVec2)); //-V630 clip_buf[1] = clip_buf[0] + allocated_dest_points; memcpy(clip_buf[0], src_points, num_src_points * sizeof(ImVec2)); int clip_buf_size = num_src_points; // Number of vertices currently in the clip buffer int read_buffer_idx = 0; // The index of the clip buffer/out-flags we are reading (0 or 1) for (int clip_plane = 0; clip_plane < 4; clip_plane++) // 0 = X-, 1 = X+, 2 = Y-, 3 = Y+ { const int clip_plane_bit = 1 << clip_plane; // Bit mask for our current plane in out-flags if ((outflags_ored & clip_plane_bit) == 0) continue; // All vertices are inside this plane, so no need to clip ImVec2* read_vert = &clip_buf[read_buffer_idx][0]; // Clip buffer vertex we are currently reading ImVec2* write_vert = &clip_buf[1 - read_buffer_idx][0]; // Clip buffer vertex we are currently writing ImVec2* write_vert_end = write_vert + allocated_dest_points; // End of the write buffer ImU8* read_outflags = &outflags[read_buffer_idx][0]; // Out-flag we are currently reading ImU8* write_outflags = &outflags[1 - read_buffer_idx][0]; // Out-flag we are currently writing // Keep track of the last vertex visited, initially the last in the list ImVec2* last_vert = &read_vert[clip_buf_size - 1]; ImU8 last_outflags = read_outflags[clip_buf_size - 1]; for (int vert = 0; vert < clip_buf_size; vert++) { ImU8 current_outflags = *(read_outflags++); bool out = (current_outflags & clip_plane_bit) != 0; if (((current_outflags ^ last_outflags) & clip_plane_bit) == 0) // We haven't crossed the clip plane { if (!out) { // Emit vertex as-is if (write_vert >= write_vert_end) return -1; // Ran out of buffer space, so abort *(write_vert++) = *read_vert; *(write_outflags++) = current_outflags; } } else { // Emit a vertex at the intersection point float t = 0.0f; ImVec2 pos0 = *last_vert; ImVec2 pos1 = *read_vert; ImVec2 intersect_pos; switch (clip_plane) { case 0: t = (clip_rect_min.x - pos0.x) / (pos1.x - pos0.x); intersect_pos = ImVec2(clip_rect_min.x, pos0.y + ((pos1.y - pos0.y) * t)); break; // X- case 1: t = (clip_rect_max.x - pos0.x) / (pos1.x - pos0.x); intersect_pos = ImVec2(clip_rect_max.x, pos0.y + ((pos1.y - pos0.y) * t)); break; // X+ case 2: t = (clip_rect_min.y - pos0.y) / (pos1.y - pos0.y); intersect_pos = ImVec2(pos0.x + ((pos1.x - pos0.x) * t), clip_rect_min.y); break; // Y- case 3: t = (clip_rect_max.y - pos0.y) / (pos1.y - pos0.y); intersect_pos = ImVec2(pos0.x + ((pos1.x - pos0.x) * t), clip_rect_max.y); break; // Y+ } if (write_vert >= write_vert_end) return -1; // Ran out of buffer space, so abort // Write new out-flags for the vertex we just emitted *(write_vert++) = intersect_pos; *(write_outflags++) = (intersect_pos.x < clip_rect_min.x ? 1 : 0) | (intersect_pos.x > clip_rect_max.x ? 2 : 0) | (intersect_pos.y < clip_rect_min.y ? 4 : 0) | (intersect_pos.y > clip_rect_max.y ? 8 : 0); if (!out) { // When coming back in, also emit the actual vertex if (write_vert >= write_vert_end) return -1; // Ran out of buffer space, so abort *(write_vert++) = *read_vert; *(write_outflags++) = current_outflags; } last_outflags = current_outflags; } last_vert = read_vert; read_vert++; // Advance to next vertex } clip_buf_size = (int)(write_vert - &clip_buf[1 - read_buffer_idx][0]); // Update buffer size read_buffer_idx = 1 - read_buffer_idx; // Swap buffers } if (clip_buf_size < 3) return 0; // Nothing to return // Copy results to output buffer, removing any redundant vertices int num_out_verts = 0; ImVec2 last_vert = clip_buf[read_buffer_idx][clip_buf_size - 1]; for (int i = 0; i < clip_buf_size; i++) { ImVec2 vert = clip_buf[read_buffer_idx][i]; if (ImLengthSqr(vert - last_vert) <= 0.00001f) continue; dest_points[num_out_verts++] = vert; last_vert = vert; } // Return size (IF this is still a valid shape) return (num_out_verts > 2) ? num_out_verts : 0; } // Adds a rectangle (A) with a convex shape (B) subtracted from it (i.e. the portion of A covered by B is not drawn). static void AddSubtractedRect(ImDrawList* draw_list, const ImVec2& a_min, const ImVec2& a_max, const ImVec2& a_min_uv, const ImVec2& a_max_uv, ImVec2* b_points, int num_b_points, ImU32 col) { // Early out without drawing anything if A is zero-size if (a_min.x >= a_max.x || a_min.y >= a_max.y) return; // First clip B to A const int max_clipped_points = num_b_points + 4; ImVec2* clipped_b_points = (ImVec2*)alloca(max_clipped_points * sizeof(ImVec2)); //-V630 const int num_clipped_points = ClipPolygonShape(b_points, num_b_points, clipped_b_points, max_clipped_points, a_min, a_max); IM_ASSERT(num_clipped_points >= 0); // -1 would indicate max_clipped_points was too small, which shouldn't happen b_points = clipped_b_points; num_b_points = num_clipped_points; if (num_clipped_points == 0) { // B is entirely outside A, so just draw A as-is draw_list->PrimReserve(6, 4); draw_list->PrimRectUV(a_min, a_max, a_min_uv, a_max_uv, col); } else { // We need to generate clipped geometry // To do this we walk the inner polygon and connect each edge to one of the four corners of our rectangle based on the quadrant their normal points at const int max_verts = num_b_points + 4; // Inner points plus the four corners const int max_indices = (num_b_points * 3) + (4 * 3); // Worst case is one triangle per inner edge and then four filler triangles draw_list->PrimReserve(max_indices, max_verts); ImDrawIdx* idx_write = draw_list->_IdxWritePtr; ImDrawVert* vtx_write = draw_list->_VtxWritePtr; ImDrawIdx inner_idx = (ImDrawIdx)draw_list->_VtxCurrentIdx; // Starting index for inner vertices // Write inner vertices const ImVec2 pos_to_uv_scale = (a_max_uv - a_min_uv) / (a_max - a_min); // Guaranteed never to be a /0 because we check for zero-size A above const ImVec2 pos_to_uv_offset = (a_min_uv / pos_to_uv_scale) - a_min; // Helper that generates an interpolated UV based on position #define LERP_UV(x_pos, y_pos) (ImVec2(((x_pos) + pos_to_uv_offset.x) * pos_to_uv_scale.x, ((y_pos) + pos_to_uv_offset.y) * pos_to_uv_scale.y)) for (int i = 0; i < num_b_points; i++) { vtx_write[i].pos = b_points[i]; vtx_write[i].uv = LERP_UV(b_points[i].x, b_points[i].y); vtx_write[i].col = col; } #undef LERP_UV vtx_write += num_b_points; // Write outer vertices ImDrawIdx outer_idx = (ImDrawIdx)(inner_idx + num_b_points); // Starting index for outer vertices ImVec2 outer_verts[4]; outer_verts[0] = ImVec2(a_min.x, a_min.y); // X- Y- (quadrant 0, top left) outer_verts[1] = ImVec2(a_max.x, a_min.y); // X+ Y- (quadrant 1, top right) outer_verts[2] = ImVec2(a_max.x, a_max.y); // X+ Y+ (quadrant 2, bottom right) outer_verts[3] = ImVec2(a_min.x, a_max.y); // X- Y+ (quadrant 3, bottom left) vtx_write[0].pos = outer_verts[0]; vtx_write[0].uv = ImVec2(a_min_uv.x, a_min_uv.y); vtx_write[0].col = col; vtx_write[1].pos = outer_verts[1]; vtx_write[1].uv = ImVec2(a_max_uv.x, a_min_uv.y); vtx_write[1].col = col; vtx_write[2].pos = outer_verts[2]; vtx_write[2].uv = ImVec2(a_max_uv.x, a_max_uv.y); vtx_write[2].col = col; vtx_write[3].pos = outer_verts[3]; vtx_write[3].uv = ImVec2(a_min_uv.x, a_max_uv.y); vtx_write[3].col = col; draw_list->_VtxCurrentIdx += num_b_points + 4; draw_list->_VtxWritePtr += num_b_points + 4; // Now walk the inner vertices in order ImVec2 last_inner_vert = b_points[num_b_points - 1]; int last_inner_vert_idx = num_b_points - 1; int last_outer_vert_idx = -1; int first_outer_vert_idx = -1; // Triangle-area based check for degenerate triangles // Min area (0.1f) is doubled (* 2.0f) because we're calculating (area * 2) here #define IS_DEGENERATE(a, b, c) (ImFabs((((a).x * ((b).y - (c).y)) + ((b).x * ((c).y - (a).y)) + ((c).x * ((a).y - (b).y)))) < (0.1f * 2.0f)) // Check the winding order of the inner vertices using the sign of the triangle area, and set the outer vertex winding to match int outer_vertex_winding = (((b_points[0].x * (b_points[1].y - b_points[2].y)) + (b_points[1].x * (b_points[2].y - b_points[0].y)) + (b_points[2].x * (b_points[0].y - b_points[1].y))) < 0.0f) ? -1 : 1; for (int inner_vert_idx = 0; inner_vert_idx < num_b_points; inner_vert_idx++) { ImVec2 current_inner_vert = b_points[inner_vert_idx]; // Calculate normal (not actually normalized, as for our purposes here it doesn't need to be) ImVec2 normal(current_inner_vert.y - last_inner_vert.y, -(current_inner_vert.x - last_inner_vert.x)); // Calculate the outer vertex index based on the quadrant the normal points at (0=top left, 1=top right, 2=bottom right, 3=bottom left) int outer_vert_idx = (ImFabs(normal.x) > ImFabs(normal.y)) ? ((normal.x >= 0.0f) ? ((normal.y > 0.0f) ? 2 : 1) : ((normal.y > 0.0f) ? 3 : 0)) : ((normal.y >= 0.0f) ? ((normal.x > 0.0f) ? 2 : 3) : ((normal.x > 0.0f) ? 1 : 0)); ImVec2 outer_vert = outer_verts[outer_vert_idx]; // Write the main triangle (connecting the inner edge to the corner) if (!IS_DEGENERATE(last_inner_vert, current_inner_vert, outer_vert)) { idx_write[0] = (ImDrawIdx)(inner_idx + last_inner_vert_idx); idx_write[1] = (ImDrawIdx)(inner_idx + inner_vert_idx); idx_write[2] = (ImDrawIdx)(outer_idx + outer_vert_idx); idx_write += 3; } // We don't initially know which outer vertex we are going to start from, so set that here when processing the first inner vertex if (first_outer_vert_idx == -1) { first_outer_vert_idx = outer_vert_idx; last_outer_vert_idx = outer_vert_idx; } // Now walk the outer edge and write any filler triangles needed (connecting outer edges to the inner vertex) while (outer_vert_idx != last_outer_vert_idx) { int next_outer_vert_idx = (last_outer_vert_idx + outer_vertex_winding) & 3; if (!IS_DEGENERATE(outer_verts[last_outer_vert_idx], outer_verts[next_outer_vert_idx], last_inner_vert)) { idx_write[0] = (ImDrawIdx)(outer_idx + last_outer_vert_idx); idx_write[1] = (ImDrawIdx)(outer_idx + next_outer_vert_idx); idx_write[2] = (ImDrawIdx)(inner_idx + last_inner_vert_idx); idx_write += 3; } last_outer_vert_idx = next_outer_vert_idx; } last_inner_vert = current_inner_vert; last_inner_vert_idx = inner_vert_idx; } // Write remaining filler triangles for any un-traversed outer edges if (first_outer_vert_idx != -1) { while (first_outer_vert_idx != last_outer_vert_idx) { int next_outer_vert_idx = (last_outer_vert_idx + outer_vertex_winding) & 3; if (!IS_DEGENERATE(outer_verts[last_outer_vert_idx], outer_verts[next_outer_vert_idx], last_inner_vert)) { idx_write[0] = (ImDrawIdx)(outer_idx + last_outer_vert_idx); idx_write[1] = (ImDrawIdx)(outer_idx + next_outer_vert_idx); idx_write[2] = (ImDrawIdx)(inner_idx + last_inner_vert_idx); idx_write += 3; } last_outer_vert_idx = next_outer_vert_idx; } } #undef IS_DEGENERATE int used_indices = (int)(idx_write - draw_list->_IdxWritePtr); draw_list->_IdxWritePtr = idx_write; draw_list->PrimUnreserve(max_indices - used_indices, 0); } } void ImDrawList::AddShadowRect(const ImVec2& obj_min, const ImVec2& obj_max, ImU32 shadow_col, float shadow_thickness, const ImVec2& shadow_offset, ImDrawFlags flags, float obj_rounding) { if ((shadow_col & IM_COL32_A_MASK) == 0) return; ImVec2* inner_rect_points = NULL; // Points that make up the shape of the inner rectangle (used when it has rounded corners) int inner_rect_points_count = 0; // Generate a path describing the inner rectangle and copy it to our buffer const bool is_filled = (flags & ImDrawFlags_ShadowCutOutShapeBackground) == 0; const bool is_rounded = (obj_rounding > 0.0f) && ((flags & ImDrawFlags_RoundCornersMask_) != ImDrawFlags_RoundCornersNone); // Do we have rounded corners? if (is_rounded && !is_filled) { IM_ASSERT(_Path.Size == 0); PathRect(obj_min, obj_max, obj_rounding, flags); inner_rect_points_count = _Path.Size; inner_rect_points = (ImVec2*)alloca(inner_rect_points_count * sizeof(ImVec2)); //-V630 memcpy(inner_rect_points, _Path.Data, inner_rect_points_count * sizeof(ImVec2)); _Path.Size = 0; } if (is_filled) PrimReserve(6 * 9, 4 * 9); // Reserve space for adding unclipped chunks // Draw the relevant chunks of the texture (the texture is split into a 3x3 grid) // FIXME-OPT: Might make sense to optimize/unroll for the fast paths (filled or not rounded) for (int x = 0; x < 3; x++) { for (int y = 0; y < 3; y++) { const int uv_index = x + (y + y + y); // y*3 formatted so as to ensure the compiler avoids an actual multiply const ImVec4 uvs = _Data->ShadowRectUvs[uv_index]; ImVec2 draw_min, draw_max; switch (x) { case 0: draw_min.x = obj_min.x - shadow_thickness; draw_max.x = obj_min.x; break; case 1: draw_min.x = obj_min.x; draw_max.x = obj_max.x; break; case 2: draw_min.x = obj_max.x; draw_max.x = obj_max.x + shadow_thickness; break; } switch (y) { case 0: draw_min.y = obj_min.y - shadow_thickness; draw_max.y = obj_min.y; break; case 1: draw_min.y = obj_min.y; draw_max.y = obj_max.y; break; case 2: draw_min.y = obj_max.y; draw_max.y = obj_max.y + shadow_thickness; break; } ImVec2 uv_min(uvs.x, uvs.y); ImVec2 uv_max(uvs.z, uvs.w); if (is_filled) PrimRectUV(draw_min + shadow_offset, draw_max + shadow_offset, uv_min, uv_max, shadow_col); // No clipping path (draw entire shadow) else if (is_rounded) AddSubtractedRect(this, draw_min + shadow_offset, draw_max + shadow_offset, uv_min, uv_max, inner_rect_points, inner_rect_points_count, shadow_col); // Complex path for rounded rectangles else AddSubtractedRect(this, draw_min + shadow_offset, draw_max + shadow_offset, uv_min, uv_max, obj_min, obj_max, shadow_col); // Simple fast path for non-rounded rectangles } } } // Add a shadow for a convex shape described by points and num_points void ImDrawList::AddShadowConvexPoly(const ImVec2* points, int points_count, ImU32 shadow_col, float shadow_thickness, const ImVec2& shadow_offset, ImDrawFlags flags) { const bool is_filled = (flags & ImDrawFlags_ShadowCutOutShapeBackground) == 0; IM_ASSERT((is_filled || (ImLengthSqr(shadow_offset) < 0.00001f)) && "Drawing circle/convex shape shadows with no center fill and an offset is not currently supported"); IM_ASSERT(points_count >= 3); // Calculate poly vertex order const int vertex_winding = (((points[0].x * (points[1].y - points[2].y)) + (points[1].x * (points[2].y - points[0].y)) + (points[2].x * (points[0].y - points[1].y))) < 0.0f) ? -1 : 1; // If we're using anti-aliasing, then inset the shadow by 0.5 pixels to avoid unpleasant fringing artifacts const bool use_inset_distance = (Flags & ImDrawListFlags_AntiAliasedFill) && (!is_filled); const float inset_distance = 0.5f; const ImVec4 uvs = _Data->ShadowRectUvs[9]; int tex_width = _Data->Font->ContainerAtlas->TexWidth; int tex_height = _Data->Font->ContainerAtlas->TexHeight; float inv_tex_width = 1.0f / (float)tex_width; float inv_tex_height = 1.0f / (float)tex_height; ImVec2 solid_uv = ImVec2(uvs.z, uvs.w); // UV at the inside of an edge ImVec2 edge_uv = ImVec2(uvs.x, uvs.w); // UV at the outside of an edge ImVec2 solid_to_edge_delta_texels = edge_uv - solid_uv; // Delta between the solid/edge points in texel-space (we need this in pixels - or, to be more precise, to be at a 1:1 aspect ratio - for the rotation to work) solid_to_edge_delta_texels.x *= (float)tex_width; solid_to_edge_delta_texels.y *= (float)tex_height; // Our basic algorithm here is that we generate a straight section along each edge, and then either one or two curved corner triangles at the corners, // which use an appropriate chunk of the texture to generate a smooth curve. const int num_edges = points_count; // Normalize a vector #define NORMALIZE(vec) ((vec) / ImLength((vec), 0.001f)) const int required_stack_mem = (num_edges * sizeof(ImVec2)) + (num_edges * sizeof(float)); ImU8* base_mem_for_normals_and_edges = (ImU8*)alloca(required_stack_mem); ImU8* mem_for_normals_and_edges = (ImU8*)base_mem_for_normals_and_edges; // Calculate edge normals ImVec2* edge_normals = (ImVec2*)(void*)mem_for_normals_and_edges; mem_for_normals_and_edges += num_edges * sizeof(ImVec2); for (int edge_index = 0; edge_index < num_edges; edge_index++) { ImVec2 edge_start = points[edge_index]; // No need to apply offset here because the normal is unaffected ImVec2 edge_end = points[(edge_index + 1) % num_edges]; ImVec2 edge_normal = NORMALIZE(ImVec2(edge_end.y - edge_start.y, -(edge_end.x - edge_start.x))); edge_normals[edge_index] = edge_normal * (float)vertex_winding; // Flip normals for reverse winding } // Pre-calculate edge scales // We need to do this because we need the edge strips to have widths that match up with the corner sections, otherwise pixel cracking can occur along the boundaries float* edge_size_scales = (float*)(void*)mem_for_normals_and_edges; mem_for_normals_and_edges += num_edges * sizeof(float); IM_ASSERT_PARANOID(mem_for_normals_and_edges == (base_mem_for_normals_and_edges + required_stack_mem)); // Check we used exactly what we allocated { ImVec2 prev_edge_normal = edge_normals[num_edges - 1]; for (int edge_index = 0; edge_index < num_edges; edge_index++) { ImVec2 edge_normal = edge_normals[edge_index]; float cos_angle_coverage = ImDot(edge_normal, prev_edge_normal); if (cos_angle_coverage < 0.999999f) { // If we are covering more than 90 degrees we need an intermediate vertex to stop the required expansion tending towards infinity. // And thus the effective angle will be halved (matches the similar code in loop below) float angle_coverage = ImAcos(cos_angle_coverage); if (cos_angle_coverage <= 0.0f) // -V1051 angle_coverage *= 0.5f; edge_size_scales[edge_index] = 1.0f / ImCos(angle_coverage * 0.5f); // How much we need to expand our size by to avoid clipping the corner of the texture off } else { edge_size_scales[edge_index] = 1.0f; // No corner, thus default scale } prev_edge_normal = edge_normal; } } const int max_vertices = (4 + (3 * 2) + (is_filled ? 1 : 0)) * num_edges; // 4 vertices per edge plus 3*2 for potentially two corner triangles, plus one per vertex for fill const int max_indices = ((6 + (3 * 2)) * num_edges) + (is_filled ? ((num_edges - 2) * 3) : 0); // 2 tris per edge plus up to two corner triangles, plus fill triangles PrimReserve(max_indices, max_vertices); ImDrawIdx* idx_write = _IdxWritePtr; ImDrawVert* vtx_write = _VtxWritePtr; ImDrawIdx current_idx = (ImDrawIdx)_VtxCurrentIdx; //ImVec2 previous_edge_start = points[0] + offset; ImVec2 prev_edge_normal = edge_normals[num_edges - 1]; ImVec2 edge_start = points[0] + shadow_offset; if (use_inset_distance) edge_start -= NORMALIZE(edge_normals[0] + prev_edge_normal) * inset_distance; for (int edge_index = 0; edge_index < num_edges; edge_index++) { ImVec2 edge_end = points[(edge_index + 1) % num_edges] + shadow_offset; ImVec2 edge_normal = edge_normals[edge_index]; const float size_scale_start = edge_size_scales[edge_index]; const float size_scale_end = edge_size_scales[(edge_index + 1) % num_edges]; if (use_inset_distance) edge_end -= NORMALIZE(edge_normals[(edge_index + 1) % num_edges] + edge_normal) * inset_distance; // Add corner section float cos_angle_coverage = ImDot(edge_normal, prev_edge_normal); if (cos_angle_coverage < 0.999999f) // Don't fill if the corner is actually straight { // If we are covering more than 90 degrees we need an intermediate vertex to stop the required expansion tending towards infinity. // And thus the effective angle has been halved (matches the similar code in loop above) int num_steps = (cos_angle_coverage <= 0.0f) ? 2 : 1; for (int step = 0; step < num_steps; step++) { if (num_steps > 1) { if (step == 0) edge_normal = NORMALIZE(edge_normal + prev_edge_normal); // Use half-way normal for first step else edge_normal = edge_normals[edge_index]; // Then use the "real" next edge normal for the second cos_angle_coverage = ImDot(edge_normal, prev_edge_normal); // Recalculate angle } // Calculate UV for the section of the curved texture const float angle_coverage = ImAcos(cos_angle_coverage); const float sin_angle_coverage = ImSin(angle_coverage); ImVec2 edge_delta = solid_to_edge_delta_texels; edge_delta *= size_scale_start; ImVec2 rotated_edge_delta = ImVec2((edge_delta.x * cos_angle_coverage) + (edge_delta.y * sin_angle_coverage), (edge_delta.x * sin_angle_coverage) + (edge_delta.y * cos_angle_coverage)); // Convert from texels back into UV space edge_delta.x *= inv_tex_width; edge_delta.y *= inv_tex_height; rotated_edge_delta.x *= inv_tex_width; rotated_edge_delta.y *= inv_tex_height; ImVec2 expanded_edge_uv = solid_uv + edge_delta; ImVec2 other_edge_uv = solid_uv + rotated_edge_delta; // Rotated UV to encompass the necessary section of the curve float expanded_thickness = shadow_thickness * size_scale_start; // Add a triangle to fill the corner ImVec2 outer_edge_start = edge_start + (prev_edge_normal * expanded_thickness); ImVec2 outer_edge_end = edge_start + (edge_normal * expanded_thickness); vtx_write->pos = edge_start; vtx_write->col = shadow_col; vtx_write->uv = solid_uv; vtx_write++; vtx_write->pos = outer_edge_end; vtx_write->col = shadow_col; vtx_write->uv = expanded_edge_uv; vtx_write++; vtx_write->pos = outer_edge_start; vtx_write->col = shadow_col; vtx_write->uv = other_edge_uv; vtx_write++; *(idx_write++) = current_idx; *(idx_write++) = current_idx + 1; *(idx_write++) = current_idx + 2; current_idx += 3; prev_edge_normal = edge_normal; } } // Add section along edge const float edge_length = ImLength(edge_end - edge_start, 0.0f); if (edge_length > 0.00001f) // Don't try and process degenerate edges { ImVec2 outer_edge_start = edge_start + (edge_normal * shadow_thickness * size_scale_start); ImVec2 outer_edge_end = edge_end + (edge_normal * shadow_thickness * size_scale_end); ImVec2 scaled_edge_uv_start = solid_uv + ((edge_uv - solid_uv) * size_scale_start); ImVec2 scaled_edge_uv_end = solid_uv + ((edge_uv - solid_uv) * size_scale_end); // Write vertices, inner first, then outer vtx_write->pos = edge_start; vtx_write->col = shadow_col; vtx_write->uv = solid_uv; vtx_write++; vtx_write->pos = edge_end; vtx_write->col = shadow_col; vtx_write->uv = solid_uv; vtx_write++; vtx_write->pos = outer_edge_end; vtx_write->col = shadow_col; vtx_write->uv = scaled_edge_uv_end; vtx_write++; vtx_write->pos = outer_edge_start; vtx_write->col = shadow_col; vtx_write->uv = scaled_edge_uv_start; vtx_write++; *(idx_write++) = current_idx; *(idx_write++) = current_idx + 1; *(idx_write++) = current_idx + 2; *(idx_write++) = current_idx; *(idx_write++) = current_idx + 2; *(idx_write++) = current_idx + 3; current_idx += 4; } edge_start = edge_end; } // Fill if requested if (is_filled) { // Add vertices for (int edge_index = 0; edge_index < num_edges; edge_index++) { vtx_write->pos = points[edge_index] + shadow_offset; vtx_write->col = shadow_col; vtx_write->uv = solid_uv; vtx_write++; } // Add triangles for (int edge_index = 2; edge_index < num_edges; edge_index++) { *(idx_write++) = current_idx; *(idx_write++) = (ImDrawIdx)(current_idx + edge_index - 1); *(idx_write++) = (ImDrawIdx)(current_idx + edge_index); } current_idx += (ImDrawIdx)num_edges; } // Release any unused vertices/indices int used_indices = (int)(idx_write - _IdxWritePtr); int used_vertices = (int)(vtx_write - _VtxWritePtr); _IdxWritePtr = idx_write; _VtxWritePtr = vtx_write; _VtxCurrentIdx = current_idx; PrimUnreserve(max_indices - used_indices, max_vertices - used_vertices); #undef NORMALIZE } // Draw a shadow for a circular object // Uses the draw path and so wipes any existing data there void ImDrawList::AddShadowCircle(const ImVec2& obj_center, float obj_radius, ImU32 shadow_col, float shadow_thickness, const ImVec2& shadow_offset, ImDrawFlags flags, int num_segments) { // Obtain segment count if (num_segments <= 0) { // Automatic segment count const int radius_idx = (int)obj_radius - 1; if (radius_idx < IM_ARRAYSIZE(_Data->CircleSegmentCounts)) num_segments = _Data->CircleSegmentCounts[radius_idx]; // Use cached value else num_segments = IM_DRAWLIST_CIRCLE_AUTO_SEGMENT_CALC(obj_radius, _Data->CircleSegmentMaxError); } else { // Explicit segment count (still clamp to avoid drawing insanely tessellated shapes) num_segments = ImClamp(num_segments, 3, IM_DRAWLIST_CIRCLE_AUTO_SEGMENT_MAX); } // Generate a path describing the inner circle and copy it to our buffer IM_ASSERT(_Path.Size == 0); const float a_max = (IM_PI * 2.0f) * ((float)num_segments - 1.0f) / (float)num_segments; if (num_segments == 12) PathArcToFast(obj_center, obj_radius, 0, 12 - 1); else PathArcTo(obj_center, obj_radius, 0.0f, a_max, num_segments - 1); // Draw the shadow using the convex shape code AddShadowConvexPoly(_Path.Data, _Path.Size, shadow_col, shadow_thickness, shadow_offset, flags); _Path.Size = 0; } void ImDrawList::AddShadowNGon(const ImVec2& obj_center, float obj_radius, ImU32 shadow_col, float shadow_thickness, const ImVec2& shadow_offset, ImDrawFlags flags, int num_segments) { IM_ASSERT(num_segments != 0); AddShadowCircle(obj_center, obj_radius, shadow_col, shadow_thickness, shadow_offset, flags, num_segments); } //----------------------------------------------------------------------------- // [SECTION] ImDrawListSplitter //----------------------------------------------------------------------------- // FIXME: This may be a little confusing, trying to be a little too low-level/optimal instead of just doing vector swap.. //----------------------------------------------------------------------------- void ImDrawListSplitter::ClearFreeMemory() { for (int i = 0; i < _Channels.Size; i++) { if (i == _Current) memset(&_Channels[i], 0, sizeof(_Channels[i])); // Current channel is a copy of CmdBuffer/IdxBuffer, don't destruct again _Channels[i]._CmdBuffer.clear(); _Channels[i]._IdxBuffer.clear(); } _Current = 0; _Count = 1; _Channels.clear(); } void ImDrawListSplitter::Split(ImDrawList* draw_list, int channels_count) { IM_UNUSED(draw_list); IM_ASSERT(_Current == 0 && _Count <= 1 && "Nested channel splitting is not supported. Please use separate instances of ImDrawListSplitter."); int old_channels_count = _Channels.Size; if (old_channels_count < channels_count) { _Channels.reserve(channels_count); // Avoid over reserving since this is likely to stay stable _Channels.resize(channels_count); } _Count = channels_count; // Channels[] (24/32 bytes each) hold storage that we'll swap with draw_list->_CmdBuffer/_IdxBuffer // The content of Channels[0] at this point doesn't matter. We clear it to make state tidy in a debugger but we don't strictly need to. // When we switch to the next channel, we'll copy draw_list->_CmdBuffer/_IdxBuffer into Channels[0] and then Channels[1] into draw_list->CmdBuffer/_IdxBuffer memset(&_Channels[0], 0, sizeof(ImDrawChannel)); for (int i = 1; i < channels_count; i++) { if (i >= old_channels_count) { IM_PLACEMENT_NEW(&_Channels[i]) ImDrawChannel(); } else { _Channels[i]._CmdBuffer.resize(0); _Channels[i]._IdxBuffer.resize(0); } } } void ImDrawListSplitter::Merge(ImDrawList* draw_list) { // Note that we never use or rely on _Channels.Size because it is merely a buffer that we never shrink back to 0 to keep all sub-buffers ready for use. if (_Count <= 1) return; SetCurrentChannel(draw_list, 0); draw_list->_PopUnusedDrawCmd(); // Calculate our final buffer sizes. Also fix the incorrect IdxOffset values in each command. int new_cmd_buffer_count = 0; int new_idx_buffer_count = 0; ImDrawCmd* last_cmd = (_Count > 0 && draw_list->CmdBuffer.Size > 0) ? &draw_list->CmdBuffer.back() : NULL; int idx_offset = last_cmd ? last_cmd->IdxOffset + last_cmd->ElemCount : 0; for (int i = 1; i < _Count; i++) { ImDrawChannel& ch = _Channels[i]; if (ch._CmdBuffer.Size > 0 && ch._CmdBuffer.back().ElemCount == 0 && ch._CmdBuffer.back().UserCallback == NULL) // Equivalent of PopUnusedDrawCmd() ch._CmdBuffer.pop_back(); if (ch._CmdBuffer.Size > 0 && last_cmd != NULL) { // Do not include ImDrawCmd_AreSequentialIdxOffset() in the compare as we rebuild IdxOffset values ourselves. // Manipulating IdxOffset (e.g. by reordering draw commands like done by RenderDimmedBackgroundBehindWindow()) is not supported within a splitter. ImDrawCmd* next_cmd = &ch._CmdBuffer[0]; if (ImDrawCmd_HeaderCompare(last_cmd, next_cmd) == 0 && last_cmd->UserCallback == NULL && next_cmd->UserCallback == NULL) { // Merge previous channel last draw command with current channel first draw command if matching. last_cmd->ElemCount += next_cmd->ElemCount; idx_offset += next_cmd->ElemCount; ch._CmdBuffer.erase(ch._CmdBuffer.Data); // FIXME-OPT: Improve for multiple merges. } } if (ch._CmdBuffer.Size > 0) last_cmd = &ch._CmdBuffer.back(); new_cmd_buffer_count += ch._CmdBuffer.Size; new_idx_buffer_count += ch._IdxBuffer.Size; for (int cmd_n = 0; cmd_n < ch._CmdBuffer.Size; cmd_n++) { ch._CmdBuffer.Data[cmd_n].IdxOffset = idx_offset; idx_offset += ch._CmdBuffer.Data[cmd_n].ElemCount; } } draw_list->CmdBuffer.resize(draw_list->CmdBuffer.Size + new_cmd_buffer_count); draw_list->IdxBuffer.resize(draw_list->IdxBuffer.Size + new_idx_buffer_count); // Write commands and indices in order (they are fairly small structures, we don't copy vertices only indices) ImDrawCmd* cmd_write = draw_list->CmdBuffer.Data + draw_list->CmdBuffer.Size - new_cmd_buffer_count; ImDrawIdx* idx_write = draw_list->IdxBuffer.Data + draw_list->IdxBuffer.Size - new_idx_buffer_count; for (int i = 1; i < _Count; i++) { ImDrawChannel& ch = _Channels[i]; if (int sz = ch._CmdBuffer.Size) { memcpy(cmd_write, ch._CmdBuffer.Data, sz * sizeof(ImDrawCmd)); cmd_write += sz; } if (int sz = ch._IdxBuffer.Size) { memcpy(idx_write, ch._IdxBuffer.Data, sz * sizeof(ImDrawIdx)); idx_write += sz; } } draw_list->_IdxWritePtr = idx_write; // Ensure there's always a non-callback draw command trailing the command-buffer if (draw_list->CmdBuffer.Size == 0 || draw_list->CmdBuffer.back().UserCallback != NULL) draw_list->AddDrawCmd(); // If current command is used with different settings we need to add a new command ImDrawCmd* curr_cmd = &draw_list->CmdBuffer.Data[draw_list->CmdBuffer.Size - 1]; if (curr_cmd->ElemCount == 0) ImDrawCmd_HeaderCopy(curr_cmd, &draw_list->_CmdHeader); // Copy ClipRect, TextureId, VtxOffset else if (ImDrawCmd_HeaderCompare(curr_cmd, &draw_list->_CmdHeader) != 0) draw_list->AddDrawCmd(); _Count = 1; } void ImDrawListSplitter::SetCurrentChannel(ImDrawList* draw_list, int idx) { IM_ASSERT(idx >= 0 && idx < _Count); if (_Current == idx) return; // Overwrite ImVector (12/16 bytes), four times. This is merely a silly optimization instead of doing .swap() memcpy(&_Channels.Data[_Current]._CmdBuffer, &draw_list->CmdBuffer, sizeof(draw_list->CmdBuffer)); memcpy(&_Channels.Data[_Current]._IdxBuffer, &draw_list->IdxBuffer, sizeof(draw_list->IdxBuffer)); _Current = idx; memcpy(&draw_list->CmdBuffer, &_Channels.Data[idx]._CmdBuffer, sizeof(draw_list->CmdBuffer)); memcpy(&draw_list->IdxBuffer, &_Channels.Data[idx]._IdxBuffer, sizeof(draw_list->IdxBuffer)); draw_list->_IdxWritePtr = draw_list->IdxBuffer.Data + draw_list->IdxBuffer.Size; // If current command is used with different settings we need to add a new command ImDrawCmd* curr_cmd = (draw_list->CmdBuffer.Size == 0) ? NULL : &draw_list->CmdBuffer.Data[draw_list->CmdBuffer.Size - 1]; if (curr_cmd == NULL) draw_list->AddDrawCmd(); else if (curr_cmd->ElemCount == 0) ImDrawCmd_HeaderCopy(curr_cmd, &draw_list->_CmdHeader); // Copy ClipRect, TextureId, VtxOffset else if (ImDrawCmd_HeaderCompare(curr_cmd, &draw_list->_CmdHeader) != 0) draw_list->AddDrawCmd(); } //----------------------------------------------------------------------------- // [SECTION] ImDrawData //----------------------------------------------------------------------------- void ImDrawData::Clear() { Valid = false; CmdListsCount = TotalIdxCount = TotalVtxCount = 0; CmdLists.resize(0); // The ImDrawList are NOT owned by ImDrawData but e.g. by ImGuiContext, so we don't clear them. DisplayPos = DisplaySize = FramebufferScale = ImVec2(0.0f, 0.0f); OwnerViewport = NULL; } // Important: 'out_list' is generally going to be draw_data->CmdLists, but may be another temporary list // as long at it is expected that the result will be later merged into draw_data->CmdLists[]. void ImGui::AddDrawListToDrawDataEx(ImDrawData* draw_data, ImVector* out_list, ImDrawList* draw_list) { if (draw_list->CmdBuffer.Size == 0) return; if (draw_list->CmdBuffer.Size == 1 && draw_list->CmdBuffer[0].ElemCount == 0 && draw_list->CmdBuffer[0].UserCallback == NULL) return; // Draw list sanity check. Detect mismatch between PrimReserve() calls and incrementing _VtxCurrentIdx, _VtxWritePtr etc. // May trigger for you if you are using PrimXXX functions incorrectly. IM_ASSERT(draw_list->VtxBuffer.Size == 0 || draw_list->_VtxWritePtr == draw_list->VtxBuffer.Data + draw_list->VtxBuffer.Size); IM_ASSERT(draw_list->IdxBuffer.Size == 0 || draw_list->_IdxWritePtr == draw_list->IdxBuffer.Data + draw_list->IdxBuffer.Size); if (!(draw_list->Flags & ImDrawListFlags_AllowVtxOffset)) IM_ASSERT((int)draw_list->_VtxCurrentIdx == draw_list->VtxBuffer.Size); // Check that draw_list doesn't use more vertices than indexable (default ImDrawIdx = unsigned short = 2 bytes = 64K vertices per ImDrawList = per window) // If this assert triggers because you are drawing lots of stuff manually: // - First, make sure you are coarse clipping yourself and not trying to draw many things outside visible bounds. // Be mindful that the lower-level ImDrawList API doesn't filter vertices. Use the Metrics/Debugger window to inspect draw list contents. // - If you want large meshes with more than 64K vertices, you can either: // (A) Handle the ImDrawCmd::VtxOffset value in your renderer backend, and set 'io.BackendFlags |= ImGuiBackendFlags_RendererHasVtxOffset'. // Most example backends already support this from 1.71. Pre-1.71 backends won't. // Some graphics API such as GL ES 1/2 don't have a way to offset the starting vertex so it is not supported for them. // (B) Or handle 32-bit indices in your renderer backend, and uncomment '#define ImDrawIdx unsigned int' line in imconfig.h. // Most example backends already support this. For example, the OpenGL example code detect index size at compile-time: // glDrawElements(GL_TRIANGLES, (GLsizei)pcmd->ElemCount, sizeof(ImDrawIdx) == 2 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT, idx_buffer_offset); // Your own engine or render API may use different parameters or function calls to specify index sizes. // 2 and 4 bytes indices are generally supported by most graphics API. // - If for some reason neither of those solutions works for you, a workaround is to call BeginChild()/EndChild() before reaching // the 64K limit to split your draw commands in multiple draw lists. if (sizeof(ImDrawIdx) == 2) IM_ASSERT(draw_list->_VtxCurrentIdx < (1 << 16) && "Too many vertices in ImDrawList using 16-bit indices. Read comment above"); // Add to output list + records state in ImDrawData out_list->push_back(draw_list); draw_data->CmdListsCount++; draw_data->TotalVtxCount += draw_list->VtxBuffer.Size; draw_data->TotalIdxCount += draw_list->IdxBuffer.Size; } void ImDrawData::AddDrawList(ImDrawList* draw_list) { IM_ASSERT(CmdLists.Size == CmdListsCount); draw_list->_PopUnusedDrawCmd(); ImGui::AddDrawListToDrawDataEx(this, &CmdLists, draw_list); } // For backward compatibility: convert all buffers from indexed to de-indexed, in case you cannot render indexed. Note: this is slow and most likely a waste of resources. Always prefer indexed rendering! void ImDrawData::DeIndexAllBuffers() { ImVector new_vtx_buffer; TotalVtxCount = TotalIdxCount = 0; for (int i = 0; i < CmdListsCount; i++) { ImDrawList* cmd_list = CmdLists[i]; if (cmd_list->IdxBuffer.empty()) continue; new_vtx_buffer.resize(cmd_list->IdxBuffer.Size); for (int j = 0; j < cmd_list->IdxBuffer.Size; j++) new_vtx_buffer[j] = cmd_list->VtxBuffer[cmd_list->IdxBuffer[j]]; cmd_list->VtxBuffer.swap(new_vtx_buffer); cmd_list->IdxBuffer.resize(0); TotalVtxCount += cmd_list->VtxBuffer.Size; } } // Helper to scale the ClipRect field of each ImDrawCmd. // Use if your final output buffer is at a different scale than draw_data->DisplaySize, // or if there is a difference between your window resolution and framebuffer resolution. void ImDrawData::ScaleClipRects(const ImVec2& fb_scale) { for (ImDrawList* draw_list : CmdLists) for (ImDrawCmd& cmd : draw_list->CmdBuffer) cmd.ClipRect = ImVec4(cmd.ClipRect.x * fb_scale.x, cmd.ClipRect.y * fb_scale.y, cmd.ClipRect.z * fb_scale.x, cmd.ClipRect.w * fb_scale.y); } //----------------------------------------------------------------------------- // [SECTION] Helpers ShadeVertsXXX functions //----------------------------------------------------------------------------- // Generic linear color gradient, write to RGB fields, leave A untouched. void ImGui::ShadeVertsLinearColorGradientKeepAlpha(ImDrawList* draw_list, int vert_start_idx, int vert_end_idx, ImVec2 gradient_p0, ImVec2 gradient_p1, ImU32 col0, ImU32 col1) { ImVec2 gradient_extent = gradient_p1 - gradient_p0; float gradient_inv_length2 = 1.0f / ImLengthSqr(gradient_extent); ImDrawVert* vert_start = draw_list->VtxBuffer.Data + vert_start_idx; ImDrawVert* vert_end = draw_list->VtxBuffer.Data + vert_end_idx; const int col0_r = (int)(col0 >> IM_COL32_R_SHIFT) & 0xFF; const int col0_g = (int)(col0 >> IM_COL32_G_SHIFT) & 0xFF; const int col0_b = (int)(col0 >> IM_COL32_B_SHIFT) & 0xFF; const int col_delta_r = ((int)(col1 >> IM_COL32_R_SHIFT) & 0xFF) - col0_r; const int col_delta_g = ((int)(col1 >> IM_COL32_G_SHIFT) & 0xFF) - col0_g; const int col_delta_b = ((int)(col1 >> IM_COL32_B_SHIFT) & 0xFF) - col0_b; for (ImDrawVert* vert = vert_start; vert < vert_end; vert++) { float d = ImDot(vert->pos - gradient_p0, gradient_extent); float t = ImClamp(d * gradient_inv_length2, 0.0f, 1.0f); int r = (int)(col0_r + col_delta_r * t); int g = (int)(col0_g + col_delta_g * t); int b = (int)(col0_b + col_delta_b * t); vert->col = (r << IM_COL32_R_SHIFT) | (g << IM_COL32_G_SHIFT) | (b << IM_COL32_B_SHIFT) | (vert->col & IM_COL32_A_MASK); } } // Distribute UV over (a, b) rectangle void ImGui::ShadeVertsLinearUV(ImDrawList* draw_list, int vert_start_idx, int vert_end_idx, const ImVec2& a, const ImVec2& b, const ImVec2& uv_a, const ImVec2& uv_b, bool clamp) { const ImVec2 size = b - a; const ImVec2 uv_size = uv_b - uv_a; const ImVec2 scale = ImVec2( size.x != 0.0f ? (uv_size.x / size.x) : 0.0f, size.y != 0.0f ? (uv_size.y / size.y) : 0.0f); ImDrawVert* vert_start = draw_list->VtxBuffer.Data + vert_start_idx; ImDrawVert* vert_end = draw_list->VtxBuffer.Data + vert_end_idx; if (clamp) { const ImVec2 min = ImMin(uv_a, uv_b); const ImVec2 max = ImMax(uv_a, uv_b); for (ImDrawVert* vertex = vert_start; vertex < vert_end; ++vertex) vertex->uv = ImClamp(uv_a + ImMul(ImVec2(vertex->pos.x, vertex->pos.y) - a, scale), min, max); } else { for (ImDrawVert* vertex = vert_start; vertex < vert_end; ++vertex) vertex->uv = uv_a + ImMul(ImVec2(vertex->pos.x, vertex->pos.y) - a, scale); } } void ImGui::ShadeVertsTransformPos(ImDrawList* draw_list, int vert_start_idx, int vert_end_idx, const ImVec2& pivot_in, float cos_a, float sin_a, const ImVec2& pivot_out) { ImDrawVert* vert_start = draw_list->VtxBuffer.Data + vert_start_idx; ImDrawVert* vert_end = draw_list->VtxBuffer.Data + vert_end_idx; for (ImDrawVert* vertex = vert_start; vertex < vert_end; ++vertex) vertex->pos = ImRotate(vertex->pos- pivot_in, cos_a, sin_a) + pivot_out; } //----------------------------------------------------------------------------- // [SECTION] ImFontConfig //----------------------------------------------------------------------------- ImFontConfig::ImFontConfig() { memset(this, 0, sizeof(*this)); FontDataOwnedByAtlas = true; OversampleH = 2; OversampleV = 1; GlyphMaxAdvanceX = FLT_MAX; RasterizerMultiply = 1.0f; RasterizerDensity = 1.0f; EllipsisChar = (ImWchar)-1; } //----------------------------------------------------------------------------- // [SECTION] ImFontAtlas //----------------------------------------------------------------------------- // A work of art lies ahead! (. = white layer, X = black layer, others are blank) // The 2x2 white texels on the top left are the ones we'll use everywhere in Dear ImGui to render filled shapes. // (This is used when io.MouseDrawCursor = true) const int FONT_ATLAS_DEFAULT_TEX_DATA_W = 122; // Actual texture will be 2 times that + 1 spacing. const int FONT_ATLAS_DEFAULT_TEX_DATA_H = 27; static const char FONT_ATLAS_DEFAULT_TEX_DATA_PIXELS[FONT_ATLAS_DEFAULT_TEX_DATA_W * FONT_ATLAS_DEFAULT_TEX_DATA_H + 1] = { "..- -XXXXXXX- X - X -XXXXXXX - XXXXXXX- XX - XX XX " "..- -X.....X- X.X - X.X -X.....X - X.....X- X..X -X..X X..X" "--- -XXX.XXX- X...X - X...X -X....X - X....X- X..X -X...X X...X" "X - X.X - X.....X - X.....X -X...X - X...X- X..X - X...X X...X " "XX - X.X -X.......X- X.......X -X..X.X - X.X..X- X..X - X...X...X " "X.X - X.X -XXXX.XXXX- XXXX.XXXX -X.X X.X - X.X X.X- X..XXX - X.....X " "X..X - X.X - X.X - X.X -XX X.X - X.X XX- X..X..XXX - X...X " "X...X - X.X - X.X - XX X.X XX - X.X - X.X - X..X..X..XX - X.X " "X....X - X.X - X.X - X.X X.X X.X - X.X - X.X - X..X..X..X.X - X...X " "X.....X - X.X - X.X - X..X X.X X..X - X.X - X.X -XXX X..X..X..X..X- X.....X " "X......X - X.X - X.X - X...XXXXXX.XXXXXX...X - X.X XX-XX X.X -X..XX........X..X- X...X...X " "X.......X - X.X - X.X -X.....................X- X.X X.X-X.X X.X -X...X...........X- X...X X...X " "X........X - X.X - X.X - X...XXXXXX.XXXXXX...X - X.X..X-X..X.X - X..............X-X...X X...X" "X.........X -XXX.XXX- X.X - X..X X.X X..X - X...X-X...X - X.............X-X..X X..X" "X..........X-X.....X- X.X - X.X X.X X.X - X....X-X....X - X.............X- XX XX " "X......XXXXX-XXXXXXX- X.X - XX X.X XX - X.....X-X.....X - X............X--------------" "X...X..X --------- X.X - X.X - XXXXXXX-XXXXXXX - X...........X - " "X..X X..X - -XXXX.XXXX- XXXX.XXXX ------------------------------------- X..........X - " "X.X X..X - -X.......X- X.......X - XX XX - - X..........X - " "XX X..X - - X.....X - X.....X - X.X X.X - - X........X - " " X..X - - X...X - X...X - X..X X..X - - X........X - " " XX - - X.X - X.X - X...XXXXXXXXXXXXX...X - - XXXXXXXXXX - " "------------- - X - X -X.....................X- ------------------- " " ----------------------------------- X...XXXXXXXXXXXXX...X - " " - X..X X..X - " " - X.X X.X - " " - XX XX - " }; static const ImVec2 FONT_ATLAS_DEFAULT_TEX_CURSOR_DATA[ImGuiMouseCursor_COUNT][3] = { // Pos ........ Size ......... Offset ...... { ImVec2( 0,3), ImVec2(12,19), ImVec2( 0, 0) }, // ImGuiMouseCursor_Arrow { ImVec2(13,0), ImVec2( 7,16), ImVec2( 1, 8) }, // ImGuiMouseCursor_TextInput { ImVec2(31,0), ImVec2(23,23), ImVec2(11,11) }, // ImGuiMouseCursor_ResizeAll { ImVec2(21,0), ImVec2( 9,23), ImVec2( 4,11) }, // ImGuiMouseCursor_ResizeNS { ImVec2(55,18),ImVec2(23, 9), ImVec2(11, 4) }, // ImGuiMouseCursor_ResizeEW { ImVec2(73,0), ImVec2(17,17), ImVec2( 8, 8) }, // ImGuiMouseCursor_ResizeNESW { ImVec2(55,0), ImVec2(17,17), ImVec2( 8, 8) }, // ImGuiMouseCursor_ResizeNWSE { ImVec2(91,0), ImVec2(17,22), ImVec2( 5, 0) }, // ImGuiMouseCursor_Hand { ImVec2(109,0),ImVec2(13,15), ImVec2( 6, 7) }, // ImGuiMouseCursor_NotAllowed }; ImFontAtlas::ImFontAtlas() { memset(this, 0, sizeof(*this)); TexGlyphPadding = 1; PackIdMouseCursors = PackIdLines = -1; ShadowRectIds[0] = ShadowRectIds[1] = -1; ShadowTexConfig.SetupDefaults(); } ImFontAtlas::~ImFontAtlas() { IM_ASSERT(!Locked && "Cannot modify a locked ImFontAtlas between NewFrame() and EndFrame/Render()!"); Clear(); } void ImFontAtlas::ClearInputData() { IM_ASSERT(!Locked && "Cannot modify a locked ImFontAtlas between NewFrame() and EndFrame/Render()!"); for (ImFontConfig& font_cfg : ConfigData) if (font_cfg.FontData && font_cfg.FontDataOwnedByAtlas) { IM_FREE(font_cfg.FontData); font_cfg.FontData = NULL; } // When clearing this we lose access to the font name and other information used to build the font. for (ImFont* font : Fonts) if (font->ConfigData >= ConfigData.Data && font->ConfigData < ConfigData.Data + ConfigData.Size) { font->ConfigData = NULL; font->ConfigDataCount = 0; } ConfigData.clear(); CustomRects.clear(); PackIdMouseCursors = PackIdLines = -1; ShadowRectIds[0] = ShadowRectIds[1] = -1; // Important: we leave TexReady untouched } void ImFontAtlas::ClearTexData() { IM_ASSERT(!Locked && "Cannot modify a locked ImFontAtlas between NewFrame() and EndFrame/Render()!"); if (TexPixelsAlpha8) IM_FREE(TexPixelsAlpha8); if (TexPixelsRGBA32) IM_FREE(TexPixelsRGBA32); TexPixelsAlpha8 = NULL; TexPixelsRGBA32 = NULL; TexPixelsUseColors = false; // Important: we leave TexReady untouched } void ImFontAtlas::ClearFonts() { IM_ASSERT(!Locked && "Cannot modify a locked ImFontAtlas between NewFrame() and EndFrame/Render()!"); Fonts.clear_delete(); TexReady = false; } void ImFontAtlas::Clear() { ClearInputData(); ClearTexData(); ClearFonts(); } void ImFontAtlas::GetTexDataAsAlpha8(unsigned char** out_pixels, int* out_width, int* out_height, int* out_bytes_per_pixel) { // Build atlas on demand if (TexPixelsAlpha8 == NULL) Build(); *out_pixels = TexPixelsAlpha8; if (out_width) *out_width = TexWidth; if (out_height) *out_height = TexHeight; if (out_bytes_per_pixel) *out_bytes_per_pixel = 1; } void ImFontAtlas::GetTexDataAsRGBA32(unsigned char** out_pixels, int* out_width, int* out_height, int* out_bytes_per_pixel) { // Convert to RGBA32 format on demand // Although it is likely to be the most commonly used format, our font rendering is 1 channel / 8 bpp if (!TexPixelsRGBA32) { unsigned char* pixels = NULL; GetTexDataAsAlpha8(&pixels, NULL, NULL); if (pixels) { TexPixelsRGBA32 = (unsigned int*)IM_ALLOC((size_t)TexWidth * (size_t)TexHeight * 4); const unsigned char* src = pixels; unsigned int* dst = TexPixelsRGBA32; for (int n = TexWidth * TexHeight; n > 0; n--) *dst++ = IM_COL32(255, 255, 255, (unsigned int)(*src++)); } } *out_pixels = (unsigned char*)TexPixelsRGBA32; if (out_width) *out_width = TexWidth; if (out_height) *out_height = TexHeight; if (out_bytes_per_pixel) *out_bytes_per_pixel = 4; } ImFont* ImFontAtlas::AddFont(const ImFontConfig* font_cfg) { IM_ASSERT(!Locked && "Cannot modify a locked ImFontAtlas between NewFrame() and EndFrame/Render()!"); IM_ASSERT(font_cfg->FontData != NULL && font_cfg->FontDataSize > 0); IM_ASSERT(font_cfg->SizePixels > 0.0f); // Create new font if (!font_cfg->MergeMode) Fonts.push_back(IM_NEW(ImFont)); else IM_ASSERT(!Fonts.empty() && "Cannot use MergeMode for the first font"); // When using MergeMode make sure that a font has already been added before. You can use ImGui::GetIO().Fonts->AddFontDefault() to add the default imgui font. ConfigData.push_back(*font_cfg); ImFontConfig& new_font_cfg = ConfigData.back(); if (new_font_cfg.DstFont == NULL) new_font_cfg.DstFont = Fonts.back(); if (!new_font_cfg.FontDataOwnedByAtlas) { new_font_cfg.FontData = IM_ALLOC(new_font_cfg.FontDataSize); new_font_cfg.FontDataOwnedByAtlas = true; memcpy(new_font_cfg.FontData, font_cfg->FontData, (size_t)new_font_cfg.FontDataSize); } if (new_font_cfg.DstFont->EllipsisChar == (ImWchar)-1) new_font_cfg.DstFont->EllipsisChar = font_cfg->EllipsisChar; ImFontAtlasUpdateConfigDataPointers(this); // Invalidate texture TexReady = false; ClearTexData(); return new_font_cfg.DstFont; } // Default font TTF is compressed with stb_compress then base85 encoded (see misc/fonts/binary_to_compressed_c.cpp for encoder) static unsigned int stb_decompress_length(const unsigned char* input); static unsigned int stb_decompress(unsigned char* output, const unsigned char* input, unsigned int length); static const char* GetDefaultCompressedFontDataTTFBase85(); static unsigned int Decode85Byte(char c) { return c >= '\\' ? c-36 : c-35; } static void Decode85(const unsigned char* src, unsigned char* dst) { while (*src) { unsigned int tmp = Decode85Byte(src[0]) + 85 * (Decode85Byte(src[1]) + 85 * (Decode85Byte(src[2]) + 85 * (Decode85Byte(src[3]) + 85 * Decode85Byte(src[4])))); dst[0] = ((tmp >> 0) & 0xFF); dst[1] = ((tmp >> 8) & 0xFF); dst[2] = ((tmp >> 16) & 0xFF); dst[3] = ((tmp >> 24) & 0xFF); // We can't assume little-endianness. src += 5; dst += 4; } } // Load embedded ProggyClean.ttf at size 13, disable oversampling ImFont* ImFontAtlas::AddFontDefault(const ImFontConfig* font_cfg_template) { ImFontConfig font_cfg = font_cfg_template ? *font_cfg_template : ImFontConfig(); if (!font_cfg_template) { font_cfg.OversampleH = font_cfg.OversampleV = 1; font_cfg.PixelSnapH = true; } if (font_cfg.SizePixels <= 0.0f) font_cfg.SizePixels = 13.0f * 1.0f; if (font_cfg.Name[0] == '\0') ImFormatString(font_cfg.Name, IM_ARRAYSIZE(font_cfg.Name), "ProggyClean.ttf, %dpx", (int)font_cfg.SizePixels); font_cfg.EllipsisChar = (ImWchar)0x0085; font_cfg.GlyphOffset.y = 1.0f * IM_TRUNC(font_cfg.SizePixels / 13.0f); // Add +1 offset per 13 units const char* ttf_compressed_base85 = GetDefaultCompressedFontDataTTFBase85(); const ImWchar* glyph_ranges = font_cfg.GlyphRanges != NULL ? font_cfg.GlyphRanges : GetGlyphRangesDefault(); ImFont* font = AddFontFromMemoryCompressedBase85TTF(ttf_compressed_base85, font_cfg.SizePixels, &font_cfg, glyph_ranges); return font; } ImFont* ImFontAtlas::AddFontFromFileTTF(const char* filename, float size_pixels, const ImFontConfig* font_cfg_template, const ImWchar* glyph_ranges) { IM_ASSERT(!Locked && "Cannot modify a locked ImFontAtlas between NewFrame() and EndFrame/Render()!"); size_t data_size = 0; void* data = ImFileLoadToMemory(filename, "rb", &data_size, 0); if (!data) { IM_ASSERT_USER_ERROR(0, "Could not load font file!"); return NULL; } ImFontConfig font_cfg = font_cfg_template ? *font_cfg_template : ImFontConfig(); if (font_cfg.Name[0] == '\0') { // Store a short copy of filename into into the font name for convenience const char* p; for (p = filename + strlen(filename); p > filename && p[-1] != '/' && p[-1] != '\\'; p--) {} ImFormatString(font_cfg.Name, IM_ARRAYSIZE(font_cfg.Name), "%s, %.0fpx", p, size_pixels); } return AddFontFromMemoryTTF(data, (int)data_size, size_pixels, &font_cfg, glyph_ranges); } // NB: Transfer ownership of 'ttf_data' to ImFontAtlas, unless font_cfg_template->FontDataOwnedByAtlas == false. Owned TTF buffer will be deleted after Build(). ImFont* ImFontAtlas::AddFontFromMemoryTTF(void* font_data, int font_data_size, float size_pixels, const ImFontConfig* font_cfg_template, const ImWchar* glyph_ranges) { IM_ASSERT(!Locked && "Cannot modify a locked ImFontAtlas between NewFrame() and EndFrame/Render()!"); ImFontConfig font_cfg = font_cfg_template ? *font_cfg_template : ImFontConfig(); IM_ASSERT(font_cfg.FontData == NULL); IM_ASSERT(font_data_size > 100 && "Incorrect value for font_data_size!"); // Heuristic to prevent accidentally passing a wrong value to font_data_size. font_cfg.FontData = font_data; font_cfg.FontDataSize = font_data_size; font_cfg.SizePixels = size_pixels > 0.0f ? size_pixels : font_cfg.SizePixels; if (glyph_ranges) font_cfg.GlyphRanges = glyph_ranges; return AddFont(&font_cfg); } ImFont* ImFontAtlas::AddFontFromMemoryCompressedTTF(const void* compressed_ttf_data, int compressed_ttf_size, float size_pixels, const ImFontConfig* font_cfg_template, const ImWchar* glyph_ranges) { const unsigned int buf_decompressed_size = stb_decompress_length((const unsigned char*)compressed_ttf_data); unsigned char* buf_decompressed_data = (unsigned char*)IM_ALLOC(buf_decompressed_size); stb_decompress(buf_decompressed_data, (const unsigned char*)compressed_ttf_data, (unsigned int)compressed_ttf_size); ImFontConfig font_cfg = font_cfg_template ? *font_cfg_template : ImFontConfig(); IM_ASSERT(font_cfg.FontData == NULL); font_cfg.FontDataOwnedByAtlas = true; return AddFontFromMemoryTTF(buf_decompressed_data, (int)buf_decompressed_size, size_pixels, &font_cfg, glyph_ranges); } ImFont* ImFontAtlas::AddFontFromMemoryCompressedBase85TTF(const char* compressed_ttf_data_base85, float size_pixels, const ImFontConfig* font_cfg, const ImWchar* glyph_ranges) { int compressed_ttf_size = (((int)strlen(compressed_ttf_data_base85) + 4) / 5) * 4; void* compressed_ttf = IM_ALLOC((size_t)compressed_ttf_size); Decode85((const unsigned char*)compressed_ttf_data_base85, (unsigned char*)compressed_ttf); ImFont* font = AddFontFromMemoryCompressedTTF(compressed_ttf, compressed_ttf_size, size_pixels, font_cfg, glyph_ranges); IM_FREE(compressed_ttf); return font; } int ImFontAtlas::AddCustomRectRegular(int width, int height) { IM_ASSERT(width > 0 && width <= 0xFFFF); IM_ASSERT(height > 0 && height <= 0xFFFF); ImFontAtlasCustomRect r; r.Width = (unsigned short)width; r.Height = (unsigned short)height; CustomRects.push_back(r); return CustomRects.Size - 1; // Return index } int ImFontAtlas::AddCustomRectFontGlyph(ImFont* font, ImWchar id, int width, int height, float advance_x, const ImVec2& offset) { #ifdef IMGUI_USE_WCHAR32 IM_ASSERT(id <= IM_UNICODE_CODEPOINT_MAX); #endif IM_ASSERT(font != NULL); IM_ASSERT(width > 0 && width <= 0xFFFF); IM_ASSERT(height > 0 && height <= 0xFFFF); ImFontAtlasCustomRect r; r.Width = (unsigned short)width; r.Height = (unsigned short)height; r.GlyphID = id; r.GlyphAdvanceX = advance_x; r.GlyphOffset = offset; r.Font = font; CustomRects.push_back(r); return CustomRects.Size - 1; // Return index } void ImFontAtlas::CalcCustomRectUV(const ImFontAtlasCustomRect* rect, ImVec2* out_uv_min, ImVec2* out_uv_max) const { IM_ASSERT(TexWidth > 0 && TexHeight > 0); // Font atlas needs to be built before we can calculate UV coordinates IM_ASSERT(rect->IsPacked()); // Make sure the rectangle has been packed *out_uv_min = ImVec2((float)rect->X * TexUvScale.x, (float)rect->Y * TexUvScale.y); *out_uv_max = ImVec2((float)(rect->X + rect->Width) * TexUvScale.x, (float)(rect->Y + rect->Height) * TexUvScale.y); } bool ImFontAtlas::GetMouseCursorTexData(ImGuiMouseCursor cursor_type, ImVec2* out_offset, ImVec2* out_size, ImVec2 out_uv_border[2], ImVec2 out_uv_fill[2]) { if (cursor_type <= ImGuiMouseCursor_None || cursor_type >= ImGuiMouseCursor_COUNT) return false; if (Flags & ImFontAtlasFlags_NoMouseCursors) return false; IM_ASSERT(PackIdMouseCursors != -1); ImFontAtlasCustomRect* r = GetCustomRectByIndex(PackIdMouseCursors); ImVec2 pos = FONT_ATLAS_DEFAULT_TEX_CURSOR_DATA[cursor_type][0] + ImVec2((float)r->X, (float)r->Y); ImVec2 size = FONT_ATLAS_DEFAULT_TEX_CURSOR_DATA[cursor_type][1]; *out_size = size; *out_offset = FONT_ATLAS_DEFAULT_TEX_CURSOR_DATA[cursor_type][2]; out_uv_border[0] = (pos) * TexUvScale; out_uv_border[1] = (pos + size) * TexUvScale; pos.x += FONT_ATLAS_DEFAULT_TEX_DATA_W + 1; out_uv_fill[0] = (pos) * TexUvScale; out_uv_fill[1] = (pos + size) * TexUvScale; return true; } bool ImFontAtlas::Build() { IM_ASSERT(!Locked && "Cannot modify a locked ImFontAtlas between NewFrame() and EndFrame/Render()!"); // Default font is none are specified if (ConfigData.Size == 0) AddFontDefault(); // Select builder // - Note that we do not reassign to atlas->FontBuilderIO, since it is likely to point to static data which // may mess with some hot-reloading schemes. If you need to assign to this (for dynamic selection) AND are // using a hot-reloading scheme that messes up static data, store your own instance of ImFontBuilderIO somewhere // and point to it instead of pointing directly to return value of the GetBuilderXXX functions. const ImFontBuilderIO* builder_io = FontBuilderIO; if (builder_io == NULL) { #ifdef IMGUI_ENABLE_FREETYPE builder_io = ImGuiFreeType::GetBuilderForFreeType(); #elif defined(IMGUI_ENABLE_STB_TRUETYPE) builder_io = ImFontAtlasGetBuilderForStbTruetype(); #else IM_ASSERT(0); // Invalid Build function #endif } // Build return builder_io->FontBuilder_Build(this); } void ImFontAtlasBuildMultiplyCalcLookupTable(unsigned char out_table[256], float in_brighten_factor) { for (unsigned int i = 0; i < 256; i++) { unsigned int value = (unsigned int)(i * in_brighten_factor); out_table[i] = value > 255 ? 255 : (value & 0xFF); } } void ImFontAtlasBuildMultiplyRectAlpha8(const unsigned char table[256], unsigned char* pixels, int x, int y, int w, int h, int stride) { IM_ASSERT_PARANOID(w <= stride); unsigned char* data = pixels + x + y * stride; for (int j = h; j > 0; j--, data += stride - w) for (int i = w; i > 0; i--, data++) *data = table[*data]; } #ifdef IMGUI_ENABLE_STB_TRUETYPE // Temporary data for one source font (multiple source fonts can be merged into one destination ImFont) // (C++03 doesn't allow instancing ImVector<> with function-local types so we declare the type here.) struct ImFontBuildSrcData { stbtt_fontinfo FontInfo; stbtt_pack_range PackRange; // Hold the list of codepoints to pack (essentially points to Codepoints.Data) stbrp_rect* Rects; // Rectangle to pack. We first fill in their size and the packer will give us their position. stbtt_packedchar* PackedChars; // Output glyphs const ImWchar* SrcRanges; // Ranges as requested by user (user is allowed to request too much, e.g. 0x0020..0xFFFF) int DstIndex; // Index into atlas->Fonts[] and dst_tmp_array[] int GlyphsHighest; // Highest requested codepoint int GlyphsCount; // Glyph count (excluding missing glyphs and glyphs already set by an earlier source font) ImBitVector GlyphsSet; // Glyph bit map (random access, 1-bit per codepoint. This will be a maximum of 8KB) ImVector GlyphsList; // Glyph codepoints list (flattened version of GlyphsSet) }; // Temporary data for one destination ImFont* (multiple source fonts can be merged into one destination ImFont) struct ImFontBuildDstData { int SrcCount; // Number of source fonts targeting this destination font. int GlyphsHighest; int GlyphsCount; ImBitVector GlyphsSet; // This is used to resolve collision when multiple sources are merged into a same destination font. }; static void UnpackBitVectorToFlatIndexList(const ImBitVector* in, ImVector* out) { IM_ASSERT(sizeof(in->Storage.Data[0]) == sizeof(int)); const ImU32* it_begin = in->Storage.begin(); const ImU32* it_end = in->Storage.end(); for (const ImU32* it = it_begin; it < it_end; it++) if (ImU32 entries_32 = *it) for (ImU32 bit_n = 0; bit_n < 32; bit_n++) if (entries_32 & ((ImU32)1 << bit_n)) out->push_back((int)(((it - it_begin) << 5) + bit_n)); } static bool ImFontAtlasBuildWithStbTruetype(ImFontAtlas* atlas) { IM_ASSERT(atlas->ConfigData.Size > 0); ImFontAtlasBuildInit(atlas); // Clear atlas atlas->TexID = (ImTextureID)NULL; atlas->TexWidth = atlas->TexHeight = 0; atlas->TexUvScale = ImVec2(0.0f, 0.0f); atlas->TexUvWhitePixel = ImVec2(0.0f, 0.0f); atlas->ClearTexData(); // Temporary storage for building ImVector src_tmp_array; ImVector dst_tmp_array; src_tmp_array.resize(atlas->ConfigData.Size); dst_tmp_array.resize(atlas->Fonts.Size); memset(src_tmp_array.Data, 0, (size_t)src_tmp_array.size_in_bytes()); memset(dst_tmp_array.Data, 0, (size_t)dst_tmp_array.size_in_bytes()); // 1. Initialize font loading structure, check font data validity for (int src_i = 0; src_i < atlas->ConfigData.Size; src_i++) { ImFontBuildSrcData& src_tmp = src_tmp_array[src_i]; ImFontConfig& cfg = atlas->ConfigData[src_i]; IM_ASSERT(cfg.DstFont && (!cfg.DstFont->IsLoaded() || cfg.DstFont->ContainerAtlas == atlas)); // Find index from cfg.DstFont (we allow the user to set cfg.DstFont. Also it makes casual debugging nicer than when storing indices) src_tmp.DstIndex = -1; for (int output_i = 0; output_i < atlas->Fonts.Size && src_tmp.DstIndex == -1; output_i++) if (cfg.DstFont == atlas->Fonts[output_i]) src_tmp.DstIndex = output_i; if (src_tmp.DstIndex == -1) { IM_ASSERT(src_tmp.DstIndex != -1); // cfg.DstFont not pointing within atlas->Fonts[] array? return false; } // Initialize helper structure for font loading and verify that the TTF/OTF data is correct const int font_offset = stbtt_GetFontOffsetForIndex((unsigned char*)cfg.FontData, cfg.FontNo); IM_ASSERT(font_offset >= 0 && "FontData is incorrect, or FontNo cannot be found."); if (!stbtt_InitFont(&src_tmp.FontInfo, (unsigned char*)cfg.FontData, font_offset)) { IM_ASSERT(0 && "stbtt_InitFont(): failed to parse FontData. It is correct and complete? Check FontDataSize."); return false; } // Measure highest codepoints ImFontBuildDstData& dst_tmp = dst_tmp_array[src_tmp.DstIndex]; src_tmp.SrcRanges = cfg.GlyphRanges ? cfg.GlyphRanges : atlas->GetGlyphRangesDefault(); for (const ImWchar* src_range = src_tmp.SrcRanges; src_range[0] && src_range[1]; src_range += 2) { // Check for valid range. This may also help detect *some* dangling pointers, because a common // user error is to setup ImFontConfig::GlyphRanges with a pointer to data that isn't persistent. IM_ASSERT(src_range[0] <= src_range[1]); src_tmp.GlyphsHighest = ImMax(src_tmp.GlyphsHighest, (int)src_range[1]); } dst_tmp.SrcCount++; dst_tmp.GlyphsHighest = ImMax(dst_tmp.GlyphsHighest, src_tmp.GlyphsHighest); } // 2. For every requested codepoint, check for their presence in the font data, and handle redundancy or overlaps between source fonts to avoid unused glyphs. int total_glyphs_count = 0; for (int src_i = 0; src_i < src_tmp_array.Size; src_i++) { ImFontBuildSrcData& src_tmp = src_tmp_array[src_i]; ImFontBuildDstData& dst_tmp = dst_tmp_array[src_tmp.DstIndex]; src_tmp.GlyphsSet.Create(src_tmp.GlyphsHighest + 1); if (dst_tmp.GlyphsSet.Storage.empty()) dst_tmp.GlyphsSet.Create(dst_tmp.GlyphsHighest + 1); for (const ImWchar* src_range = src_tmp.SrcRanges; src_range[0] && src_range[1]; src_range += 2) for (unsigned int codepoint = src_range[0]; codepoint <= src_range[1]; codepoint++) { if (dst_tmp.GlyphsSet.TestBit(codepoint)) // Don't overwrite existing glyphs. We could make this an option for MergeMode (e.g. MergeOverwrite==true) continue; if (!stbtt_FindGlyphIndex(&src_tmp.FontInfo, codepoint)) // It is actually in the font? continue; // Add to avail set/counters src_tmp.GlyphsCount++; dst_tmp.GlyphsCount++; src_tmp.GlyphsSet.SetBit(codepoint); dst_tmp.GlyphsSet.SetBit(codepoint); total_glyphs_count++; } } // 3. Unpack our bit map into a flat list (we now have all the Unicode points that we know are requested _and_ available _and_ not overlapping another) for (int src_i = 0; src_i < src_tmp_array.Size; src_i++) { ImFontBuildSrcData& src_tmp = src_tmp_array[src_i]; src_tmp.GlyphsList.reserve(src_tmp.GlyphsCount); UnpackBitVectorToFlatIndexList(&src_tmp.GlyphsSet, &src_tmp.GlyphsList); src_tmp.GlyphsSet.Clear(); IM_ASSERT(src_tmp.GlyphsList.Size == src_tmp.GlyphsCount); } for (int dst_i = 0; dst_i < dst_tmp_array.Size; dst_i++) dst_tmp_array[dst_i].GlyphsSet.Clear(); dst_tmp_array.clear(); // Allocate packing character data and flag packed characters buffer as non-packed (x0=y0=x1=y1=0) // (We technically don't need to zero-clear buf_rects, but let's do it for the sake of sanity) ImVector buf_rects; ImVector buf_packedchars; buf_rects.resize(total_glyphs_count); buf_packedchars.resize(total_glyphs_count); memset(buf_rects.Data, 0, (size_t)buf_rects.size_in_bytes()); memset(buf_packedchars.Data, 0, (size_t)buf_packedchars.size_in_bytes()); // 4. Gather glyphs sizes so we can pack them in our virtual canvas. int total_surface = 0; int buf_rects_out_n = 0; int buf_packedchars_out_n = 0; for (int src_i = 0; src_i < src_tmp_array.Size; src_i++) { ImFontBuildSrcData& src_tmp = src_tmp_array[src_i]; if (src_tmp.GlyphsCount == 0) continue; src_tmp.Rects = &buf_rects[buf_rects_out_n]; src_tmp.PackedChars = &buf_packedchars[buf_packedchars_out_n]; buf_rects_out_n += src_tmp.GlyphsCount; buf_packedchars_out_n += src_tmp.GlyphsCount; // Convert our ranges in the format stb_truetype wants ImFontConfig& cfg = atlas->ConfigData[src_i]; src_tmp.PackRange.font_size = cfg.SizePixels * cfg.RasterizerDensity; src_tmp.PackRange.first_unicode_codepoint_in_range = 0; src_tmp.PackRange.array_of_unicode_codepoints = src_tmp.GlyphsList.Data; src_tmp.PackRange.num_chars = src_tmp.GlyphsList.Size; src_tmp.PackRange.chardata_for_range = src_tmp.PackedChars; src_tmp.PackRange.h_oversample = (unsigned char)cfg.OversampleH; src_tmp.PackRange.v_oversample = (unsigned char)cfg.OversampleV; // Gather the sizes of all rectangles we will need to pack (this loop is based on stbtt_PackFontRangesGatherRects) const float scale = (cfg.SizePixels > 0.0f) ? stbtt_ScaleForPixelHeight(&src_tmp.FontInfo, cfg.SizePixels * cfg.RasterizerDensity) : stbtt_ScaleForMappingEmToPixels(&src_tmp.FontInfo, -cfg.SizePixels * cfg.RasterizerDensity); const int padding = atlas->TexGlyphPadding; for (int glyph_i = 0; glyph_i < src_tmp.GlyphsList.Size; glyph_i++) { int x0, y0, x1, y1; const int glyph_index_in_font = stbtt_FindGlyphIndex(&src_tmp.FontInfo, src_tmp.GlyphsList[glyph_i]); IM_ASSERT(glyph_index_in_font != 0); stbtt_GetGlyphBitmapBoxSubpixel(&src_tmp.FontInfo, glyph_index_in_font, scale * cfg.OversampleH, scale * cfg.OversampleV, 0, 0, &x0, &y0, &x1, &y1); src_tmp.Rects[glyph_i].w = (stbrp_coord)(x1 - x0 + padding + cfg.OversampleH - 1); src_tmp.Rects[glyph_i].h = (stbrp_coord)(y1 - y0 + padding + cfg.OversampleV - 1); total_surface += src_tmp.Rects[glyph_i].w * src_tmp.Rects[glyph_i].h; } } // We need a width for the skyline algorithm, any width! // The exact width doesn't really matter much, but some API/GPU have texture size limitations and increasing width can decrease height. // User can override TexDesiredWidth and TexGlyphPadding if they wish, otherwise we use a simple heuristic to select the width based on expected surface. const int surface_sqrt = (int)ImSqrt((float)total_surface) + 1; atlas->TexHeight = 0; if (atlas->TexDesiredWidth > 0) atlas->TexWidth = atlas->TexDesiredWidth; else atlas->TexWidth = (surface_sqrt >= 4096 * 0.7f) ? 4096 : (surface_sqrt >= 2048 * 0.7f) ? 2048 : (surface_sqrt >= 1024 * 0.7f) ? 1024 : 512; // 5. Start packing // Pack our extra data rectangles first, so it will be on the upper-left corner of our texture (UV will have small values). const int TEX_HEIGHT_MAX = 1024 * 32; stbtt_pack_context spc = {}; stbtt_PackBegin(&spc, NULL, atlas->TexWidth, TEX_HEIGHT_MAX, 0, atlas->TexGlyphPadding, NULL); ImFontAtlasBuildPackCustomRects(atlas, spc.pack_info); // 6. Pack each source font. No rendering yet, we are working with rectangles in an infinitely tall texture at this point. for (int src_i = 0; src_i < src_tmp_array.Size; src_i++) { ImFontBuildSrcData& src_tmp = src_tmp_array[src_i]; if (src_tmp.GlyphsCount == 0) continue; stbrp_pack_rects((stbrp_context*)spc.pack_info, src_tmp.Rects, src_tmp.GlyphsCount); // Extend texture height and mark missing glyphs as non-packed so we won't render them. // FIXME: We are not handling packing failure here (would happen if we got off TEX_HEIGHT_MAX or if a single if larger than TexWidth?) for (int glyph_i = 0; glyph_i < src_tmp.GlyphsCount; glyph_i++) if (src_tmp.Rects[glyph_i].was_packed) atlas->TexHeight = ImMax(atlas->TexHeight, src_tmp.Rects[glyph_i].y + src_tmp.Rects[glyph_i].h); } // 7. Allocate texture atlas->TexHeight = (atlas->Flags & ImFontAtlasFlags_NoPowerOfTwoHeight) ? (atlas->TexHeight + 1) : ImUpperPowerOfTwo(atlas->TexHeight); atlas->TexUvScale = ImVec2(1.0f / atlas->TexWidth, 1.0f / atlas->TexHeight); atlas->TexPixelsAlpha8 = (unsigned char*)IM_ALLOC(atlas->TexWidth * atlas->TexHeight); memset(atlas->TexPixelsAlpha8, 0, atlas->TexWidth * atlas->TexHeight); spc.pixels = atlas->TexPixelsAlpha8; spc.height = atlas->TexHeight; // 8. Render/rasterize font characters into the texture for (int src_i = 0; src_i < src_tmp_array.Size; src_i++) { ImFontConfig& cfg = atlas->ConfigData[src_i]; ImFontBuildSrcData& src_tmp = src_tmp_array[src_i]; if (src_tmp.GlyphsCount == 0) continue; stbtt_PackFontRangesRenderIntoRects(&spc, &src_tmp.FontInfo, &src_tmp.PackRange, 1, src_tmp.Rects); // Apply multiply operator if (cfg.RasterizerMultiply != 1.0f) { unsigned char multiply_table[256]; ImFontAtlasBuildMultiplyCalcLookupTable(multiply_table, cfg.RasterizerMultiply); stbrp_rect* r = &src_tmp.Rects[0]; for (int glyph_i = 0; glyph_i < src_tmp.GlyphsCount; glyph_i++, r++) if (r->was_packed) ImFontAtlasBuildMultiplyRectAlpha8(multiply_table, atlas->TexPixelsAlpha8, r->x, r->y, r->w, r->h, atlas->TexWidth * 1); } src_tmp.Rects = NULL; } // End packing stbtt_PackEnd(&spc); buf_rects.clear(); // 9. Setup ImFont and glyphs for runtime for (int src_i = 0; src_i < src_tmp_array.Size; src_i++) { // When merging fonts with MergeMode=true: // - We can have multiple input fonts writing into a same destination font. // - dst_font->ConfigData is != from cfg which is our source configuration. ImFontBuildSrcData& src_tmp = src_tmp_array[src_i]; ImFontConfig& cfg = atlas->ConfigData[src_i]; ImFont* dst_font = cfg.DstFont; const float font_scale = stbtt_ScaleForPixelHeight(&src_tmp.FontInfo, cfg.SizePixels); int unscaled_ascent, unscaled_descent, unscaled_line_gap; stbtt_GetFontVMetrics(&src_tmp.FontInfo, &unscaled_ascent, &unscaled_descent, &unscaled_line_gap); const float ascent = ImTrunc(unscaled_ascent * font_scale + ((unscaled_ascent > 0.0f) ? +1 : -1)); const float descent = ImTrunc(unscaled_descent * font_scale + ((unscaled_descent > 0.0f) ? +1 : -1)); ImFontAtlasBuildSetupFont(atlas, dst_font, &cfg, ascent, descent); const float font_off_x = cfg.GlyphOffset.x; const float font_off_y = cfg.GlyphOffset.y + IM_ROUND(dst_font->Ascent); const float inv_rasterization_scale = 1.0f / cfg.RasterizerDensity; for (int glyph_i = 0; glyph_i < src_tmp.GlyphsCount; glyph_i++) { // Register glyph const int codepoint = src_tmp.GlyphsList[glyph_i]; const stbtt_packedchar& pc = src_tmp.PackedChars[glyph_i]; stbtt_aligned_quad q; float unused_x = 0.0f, unused_y = 0.0f; stbtt_GetPackedQuad(src_tmp.PackedChars, atlas->TexWidth, atlas->TexHeight, glyph_i, &unused_x, &unused_y, &q, 0); float x0 = q.x0 * inv_rasterization_scale + font_off_x; float y0 = q.y0 * inv_rasterization_scale + font_off_y; float x1 = q.x1 * inv_rasterization_scale + font_off_x; float y1 = q.y1 * inv_rasterization_scale + font_off_y; dst_font->AddGlyph(&cfg, (ImWchar)codepoint, x0, y0, x1, y1, q.s0, q.t0, q.s1, q.t1, pc.xadvance * inv_rasterization_scale); } } // Cleanup src_tmp_array.clear_destruct(); ImFontAtlasBuildFinish(atlas); return true; } const ImFontBuilderIO* ImFontAtlasGetBuilderForStbTruetype() { static ImFontBuilderIO io; io.FontBuilder_Build = ImFontAtlasBuildWithStbTruetype; return &io; } #endif // IMGUI_ENABLE_STB_TRUETYPE void ImFontAtlasUpdateConfigDataPointers(ImFontAtlas* atlas) { for (ImFontConfig& font_cfg : atlas->ConfigData) { ImFont* font = font_cfg.DstFont; if (!font_cfg.MergeMode) { font->ConfigData = &font_cfg; font->ConfigDataCount = 0; } font->ConfigDataCount++; } } void ImFontAtlasBuildSetupFont(ImFontAtlas* atlas, ImFont* font, ImFontConfig* font_config, float ascent, float descent) { if (!font_config->MergeMode) { font->ClearOutputData(); font->FontSize = font_config->SizePixels; IM_ASSERT(font->ConfigData == font_config); font->ContainerAtlas = atlas; font->Ascent = ascent; font->Descent = descent; } } void ImFontAtlasBuildPackCustomRects(ImFontAtlas* atlas, void* stbrp_context_opaque) { stbrp_context* pack_context = (stbrp_context*)stbrp_context_opaque; IM_ASSERT(pack_context != NULL); ImVector& user_rects = atlas->CustomRects; IM_ASSERT(user_rects.Size >= 1); // We expect at least the default custom rects to be registered, else something went wrong. #ifdef __GNUC__ if (user_rects.Size < 1) { __builtin_unreachable(); } // Workaround for GCC bug if IM_ASSERT() is defined to conditionally throw (see #5343) #endif ImVector pack_rects; pack_rects.resize(user_rects.Size); memset(pack_rects.Data, 0, (size_t)pack_rects.size_in_bytes()); for (int i = 0; i < user_rects.Size; i++) { pack_rects[i].w = user_rects[i].Width; pack_rects[i].h = user_rects[i].Height; } stbrp_pack_rects(pack_context, &pack_rects[0], pack_rects.Size); for (int i = 0; i < pack_rects.Size; i++) if (pack_rects[i].was_packed) { user_rects[i].X = (unsigned short)pack_rects[i].x; user_rects[i].Y = (unsigned short)pack_rects[i].y; IM_ASSERT(pack_rects[i].w == user_rects[i].Width && pack_rects[i].h == user_rects[i].Height); atlas->TexHeight = ImMax(atlas->TexHeight, pack_rects[i].y + pack_rects[i].h); } } void ImFontAtlasBuildRender8bppRectFromString(ImFontAtlas* atlas, int x, int y, int w, int h, const char* in_str, char in_marker_char, unsigned char in_marker_pixel_value) { IM_ASSERT(x >= 0 && x + w <= atlas->TexWidth); IM_ASSERT(y >= 0 && y + h <= atlas->TexHeight); unsigned char* out_pixel = atlas->TexPixelsAlpha8 + x + (y * atlas->TexWidth); for (int off_y = 0; off_y < h; off_y++, out_pixel += atlas->TexWidth, in_str += w) for (int off_x = 0; off_x < w; off_x++) out_pixel[off_x] = (in_str[off_x] == in_marker_char) ? in_marker_pixel_value : 0x00; } void ImFontAtlasBuildRender32bppRectFromString(ImFontAtlas* atlas, int x, int y, int w, int h, const char* in_str, char in_marker_char, unsigned int in_marker_pixel_value) { IM_ASSERT(x >= 0 && x + w <= atlas->TexWidth); IM_ASSERT(y >= 0 && y + h <= atlas->TexHeight); unsigned int* out_pixel = atlas->TexPixelsRGBA32 + x + (y * atlas->TexWidth); for (int off_y = 0; off_y < h; off_y++, out_pixel += atlas->TexWidth, in_str += w) for (int off_x = 0; off_x < w; off_x++) out_pixel[off_x] = (in_str[off_x] == in_marker_char) ? in_marker_pixel_value : IM_COL32_BLACK_TRANS; } static void ImFontAtlasBuildRenderDefaultTexData(ImFontAtlas* atlas) { ImFontAtlasCustomRect* r = atlas->GetCustomRectByIndex(atlas->PackIdMouseCursors); IM_ASSERT(r->IsPacked()); const int w = atlas->TexWidth; if (!(atlas->Flags & ImFontAtlasFlags_NoMouseCursors)) { // Render/copy pixels IM_ASSERT(r->Width == FONT_ATLAS_DEFAULT_TEX_DATA_W * 2 + 1 && r->Height == FONT_ATLAS_DEFAULT_TEX_DATA_H); const int x_for_white = r->X; const int x_for_black = r->X + FONT_ATLAS_DEFAULT_TEX_DATA_W + 1; if (atlas->TexPixelsAlpha8 != NULL) { ImFontAtlasBuildRender8bppRectFromString(atlas, x_for_white, r->Y, FONT_ATLAS_DEFAULT_TEX_DATA_W, FONT_ATLAS_DEFAULT_TEX_DATA_H, FONT_ATLAS_DEFAULT_TEX_DATA_PIXELS, '.', 0xFF); ImFontAtlasBuildRender8bppRectFromString(atlas, x_for_black, r->Y, FONT_ATLAS_DEFAULT_TEX_DATA_W, FONT_ATLAS_DEFAULT_TEX_DATA_H, FONT_ATLAS_DEFAULT_TEX_DATA_PIXELS, 'X', 0xFF); } else { ImFontAtlasBuildRender32bppRectFromString(atlas, x_for_white, r->Y, FONT_ATLAS_DEFAULT_TEX_DATA_W, FONT_ATLAS_DEFAULT_TEX_DATA_H, FONT_ATLAS_DEFAULT_TEX_DATA_PIXELS, '.', IM_COL32_WHITE); ImFontAtlasBuildRender32bppRectFromString(atlas, x_for_black, r->Y, FONT_ATLAS_DEFAULT_TEX_DATA_W, FONT_ATLAS_DEFAULT_TEX_DATA_H, FONT_ATLAS_DEFAULT_TEX_DATA_PIXELS, 'X', IM_COL32_WHITE); } } else { // Render 4 white pixels IM_ASSERT(r->Width == 2 && r->Height == 2); const int offset = (int)r->X + (int)r->Y * w; if (atlas->TexPixelsAlpha8 != NULL) { atlas->TexPixelsAlpha8[offset] = atlas->TexPixelsAlpha8[offset + 1] = atlas->TexPixelsAlpha8[offset + w] = atlas->TexPixelsAlpha8[offset + w + 1] = 0xFF; } else { atlas->TexPixelsRGBA32[offset] = atlas->TexPixelsRGBA32[offset + 1] = atlas->TexPixelsRGBA32[offset + w] = atlas->TexPixelsRGBA32[offset + w + 1] = IM_COL32_WHITE; } } atlas->TexUvWhitePixel = ImVec2((r->X + 0.5f) * atlas->TexUvScale.x, (r->Y + 0.5f) * atlas->TexUvScale.y); } static void ImFontAtlasBuildRenderLinesTexData(ImFontAtlas* atlas) { if (atlas->Flags & ImFontAtlasFlags_NoBakedLines) return; // This generates a triangular shape in the texture, with the various line widths stacked on top of each other to allow interpolation between them ImFontAtlasCustomRect* r = atlas->GetCustomRectByIndex(atlas->PackIdLines); IM_ASSERT(r->IsPacked()); for (unsigned int n = 0; n < IM_DRAWLIST_TEX_LINES_WIDTH_MAX + 1; n++) // +1 because of the zero-width row { // Each line consists of at least two empty pixels at the ends, with a line of solid pixels in the middle unsigned int y = n; unsigned int line_width = n; unsigned int pad_left = (r->Width - line_width) / 2; unsigned int pad_right = r->Width - (pad_left + line_width); // Write each slice IM_ASSERT(pad_left + line_width + pad_right == r->Width && y < r->Height); // Make sure we're inside the texture bounds before we start writing pixels if (atlas->TexPixelsAlpha8 != NULL) { unsigned char* write_ptr = &atlas->TexPixelsAlpha8[r->X + ((r->Y + y) * atlas->TexWidth)]; for (unsigned int i = 0; i < pad_left; i++) *(write_ptr + i) = 0x00; for (unsigned int i = 0; i < line_width; i++) *(write_ptr + pad_left + i) = 0xFF; for (unsigned int i = 0; i < pad_right; i++) *(write_ptr + pad_left + line_width + i) = 0x00; } else { unsigned int* write_ptr = &atlas->TexPixelsRGBA32[r->X + ((r->Y + y) * atlas->TexWidth)]; for (unsigned int i = 0; i < pad_left; i++) *(write_ptr + i) = IM_COL32(255, 255, 255, 0); for (unsigned int i = 0; i < line_width; i++) *(write_ptr + pad_left + i) = IM_COL32_WHITE; for (unsigned int i = 0; i < pad_right; i++) *(write_ptr + pad_left + line_width + i) = IM_COL32(255, 255, 255, 0); } // Calculate UVs for this line ImVec2 uv0 = ImVec2((float)(r->X + pad_left - 1), (float)(r->Y + y)) * atlas->TexUvScale; ImVec2 uv1 = ImVec2((float)(r->X + pad_left + line_width + 1), (float)(r->Y + y + 1)) * atlas->TexUvScale; float half_v = (uv0.y + uv1.y) * 0.5f; // Calculate a constant V in the middle of the row to avoid sampling artifacts atlas->TexUvLines[n] = ImVec4(uv0.x, half_v, uv1.x, half_v); } } // Register the rectangles we need for the rounded corner images static void ImFontAtlasBuildRegisterShadowCustomRects(ImFontAtlas* atlas) { if (atlas->ShadowRectIds[0] >= 0) return; // ShadowRectIds[0] is the rectangle for rectangular shadows // ShadowRectIds[1] is the rectangle for convex shadows // The actual size we want to reserve, including padding const ImFontAtlasShadowTexConfig* shadow_cfg = &atlas->ShadowTexConfig; const unsigned int effective_size = shadow_cfg->CalcRectTexSize() + shadow_cfg->GetRectTexPadding(); atlas->ShadowRectIds[0] = atlas->AddCustomRectRegular(effective_size, effective_size); atlas->ShadowRectIds[1] = atlas->AddCustomRectRegular(shadow_cfg->CalcConvexTexWidth() + shadow_cfg->GetConvexTexPadding(), shadow_cfg->CalcConvexTexHeight() + shadow_cfg->GetConvexTexPadding()); } // Calculates the signed distance from sample_pos to the nearest point on the rectangle defined by rect_min->rect_max static float DistanceFromRectangle(const ImVec2& sample_pos, const ImVec2& rect_min, const ImVec2& rect_max) { ImVec2 rect_centre = (rect_min + rect_max) * 0.5f; ImVec2 rect_half_size = (rect_max - rect_min) * 0.5f; ImVec2 local_sample_pos = sample_pos - rect_centre; ImVec2 axis_dist = ImVec2(ImFabs(local_sample_pos.x), ImFabs(local_sample_pos.y)) - rect_half_size; float out_dist = ImLength(ImVec2(ImMax(axis_dist.x, 0.0f), ImMax(axis_dist.y, 0.0f)), 0.00001f); float in_dist = ImMin(ImMax(axis_dist.x, axis_dist.y), 0.0f); return out_dist + in_dist; } // Calculates the signed distance from sample_pos to the point given static float DistanceFromPoint(const ImVec2& sample_pos, const ImVec2& point) { return ImLength(sample_pos - point, 0.0f); } // Perform a single Gaussian blur pass with a fixed kernel size and sigma static void GaussianBlurPass(float* src, float* dest, int size, bool horizontal) { // See http://dev.theomader.com/gaussian-kernel-calculator/ const float coefficients[] = { 0.0f, 0.0f, 0.000003f, 0.000229f, 0.005977f, 0.060598f, 0.24173f, 0.382925f, 0.24173f, 0.060598f, 0.005977f, 0.000229f, 0.000003f, 0.0f, 0.0f }; const int kernel_size = IM_ARRAYSIZE(coefficients); const int sample_step = horizontal ? 1 : size; float* read_ptr = src; float* write_ptr = dest; for (int y = 0; y < size; y++) for (int x = 0; x < size; x++) { float result = 0.0f; int current_offset = (horizontal ? x : y) - ((kernel_size - 1) >> 1); float* sample_ptr = read_ptr - (((kernel_size - 1) >> 1) * sample_step); for (int j = 0; j < kernel_size; j++) { if (current_offset >= 0 && current_offset < size) result += (*sample_ptr) * coefficients[j]; current_offset++; sample_ptr += sample_step; } read_ptr++; *(write_ptr++) = result; } } // Perform an in-place Gaussian blur of a square array of floats with a fixed kernel size and sigma // Uses a stack allocation for the temporary data so potentially dangerous with large size values static void GaussianBlur(float* data, int size) { // Do two passes, one from data into temp and then the second back to data again float* temp = (float*)alloca(size * size * sizeof(float)); GaussianBlurPass(data, temp, size, true); GaussianBlurPass(temp, data, size, false); } // Generate the actual pixel data for rounded corners in the atlas static void ImFontAtlasBuildRenderShadowTexData(ImFontAtlas* atlas) { IM_ASSERT(atlas->TexPixelsAlpha8 != NULL || atlas->TexPixelsRGBA32 != NULL); IM_ASSERT(atlas->ShadowRectIds[0] >= 0 && atlas->ShadowRectIds[1] >= 0); // Because of the blur, we have to generate the full 3x3 texture here, and then we chop that down to just the 2x2 section we need later. // 'size' correspond to the our 3x3 size, whereas 'shadow_tex_size' correspond to our 2x2 version where duplicate mirrored corners are not stored. const ImFontAtlasShadowTexConfig* shadow_cfg = &atlas->ShadowTexConfig; // The rectangular shadow texture { const int size = shadow_cfg->TexCornerSize + shadow_cfg->TexEdgeSize + shadow_cfg->TexCornerSize; const int corner_size = shadow_cfg->TexCornerSize; const int edge_size = shadow_cfg->TexEdgeSize; // The bounds of the rectangle we are generating the shadow from const ImVec2 shadow_rect_min((float)corner_size, (float)corner_size); const ImVec2 shadow_rect_max((float)(corner_size + edge_size), (float)(corner_size + edge_size)); // Remove the padding we added ImFontAtlasCustomRect r = atlas->CustomRects[atlas->ShadowRectIds[0]]; const int padding = shadow_cfg->GetRectTexPadding(); r.X += (unsigned short)padding; r.Y += (unsigned short)padding; r.Width -= (unsigned short)padding * 2; r.Height -= (unsigned short)padding * 2; // Generate distance field // We draw the actual texture content by evaluating the distance field for the inner rectangle float* tex_data = (float*)alloca(size * size * sizeof(float)); for (int y = 0; y < size; y++) for (int x = 0; x < size; x++) { float dist = DistanceFromRectangle(ImVec2((float)x, (float)y), shadow_rect_min, shadow_rect_max); float alpha = 1.0f - ImMin(ImMax(dist + shadow_cfg->TexDistanceFieldOffset, 0.0f) / ImMax(shadow_cfg->TexCornerSize + shadow_cfg->TexDistanceFieldOffset, 0.001f), 1.0f); alpha = ImPow(alpha, shadow_cfg->TexFalloffPower); // Apply power curve to give a nicer falloff tex_data[x + (y * size)] = alpha; } // Blur if (shadow_cfg->TexBlur) GaussianBlur(tex_data, size); // Copy to texture, truncating to the actual required texture size (the bottom/right of the source data is chopped off, as we don't need it - see below). The truncated size is essentially the top 2x2 of our data, plus a little bit of padding for sampling. const int tex_w = atlas->TexWidth; const int shadow_tex_size = shadow_cfg->CalcRectTexSize(); for (int y = 0; y < shadow_tex_size; y++) for (int x = 0; x < shadow_tex_size; x++) { const unsigned int offset = (int)(r.X + x) + (int)(r.Y + y) * tex_w; const float alpha_f = tex_data[x + (y * size)]; const unsigned char alpha_8 = (unsigned char)(0xFF * alpha_f); if (atlas->TexPixelsAlpha8) atlas->TexPixelsAlpha8[offset] = alpha_8; else atlas->TexPixelsRGBA32[offset] = IM_COL32(255, 255, 255, alpha_8); } // Generate UVs for each of the nine sections, which are arranged in a 3x3 grid starting from 0 in the top-left and going across then down for (int i = 0; i < 9; i++) { // The third row/column of the 3x3 grid are generated by flipping the appropriate chunks of the upper 2x2 grid. bool flip_h = false; // Do we need to flip the UVs horizontally? bool flip_v = false; // Do we need to flip the UVs vertically? ImFontAtlasCustomRect sub_rect = r; switch (i % 3) { case 0: sub_rect.Width = (unsigned short)corner_size; break; case 1: sub_rect.X += (unsigned short)corner_size; sub_rect.Width = (unsigned short)edge_size; break; case 2: sub_rect.Width = (unsigned short)corner_size; flip_h = true; break; } switch (i / 3) { case 0: sub_rect.Height = (unsigned short)corner_size; break; case 1: sub_rect.Y += (unsigned short)corner_size; sub_rect.Height = (unsigned short)edge_size; break; case 2: sub_rect.Height = (unsigned short)corner_size; flip_v = true; break; } ImVec2 uv0, uv1; atlas->CalcCustomRectUV(&sub_rect, &uv0, &uv1); atlas->ShadowRectUvs[i] = ImVec4(flip_h ? uv1.x : uv0.x, flip_v ? uv1.y : uv0.y, flip_h ? uv0.x : uv1.x, flip_v ? uv0.y : uv1.y); } } // The convex shape shadow texture { const int size = shadow_cfg->TexCornerSize * 2; const int padding = shadow_cfg->GetConvexTexPadding(); // Generate distance field // We draw the actual texture content by evaluating the distance field for the distance from a center point ImFontAtlasCustomRect r = atlas->CustomRects[atlas->ShadowRectIds[1]]; ImVec2 center_point(size * 0.5f, size * 0.5f); float* tex_data = (float*)alloca(size * size * sizeof(float)); for (int y = 0; y < size; y++) for (int x = 0; x < size; x++) { float dist = DistanceFromPoint(ImVec2((float)x, (float)y), center_point); float alpha = 1.0f - ImMin(ImMax((float)dist + shadow_cfg->TexDistanceFieldOffset, 0.0f) / ImMax((float)shadow_cfg->TexCornerSize + shadow_cfg->TexDistanceFieldOffset, 0.001f), 1.0f); alpha = ImPow(alpha, shadow_cfg->TexFalloffPower); // Apply power curve to give a nicer falloff tex_data[x + (y * size)] = alpha; } // Blur if (shadow_cfg->TexBlur) GaussianBlur(tex_data, size); // Copy to texture, truncating to the actual required texture size (the bottom/right of the source data is chopped off, as we don't need it - see below) // We push the data down and right by the amount we padded the top of the texture (see CalcConvexTexWidth/CalcConvexTexHeight) for details const int padded_size = (int)(shadow_cfg->TexCornerSize / ImCos(IM_PI * 0.25f)); const int src_x_offset = padding + (padded_size - shadow_cfg->TexCornerSize); const int src_y_offset = padding + (padded_size - shadow_cfg->TexCornerSize); const int tex_width = shadow_cfg->CalcConvexTexWidth(); const int tex_height = shadow_cfg->CalcConvexTexHeight(); const int tex_w = atlas->TexWidth; for (int y = 0; y < tex_height; y++) for (int x = 0; x < tex_width; x++) { const int src_x = ImClamp(x - src_x_offset, 0, size - 1); const int src_y = ImClamp(y - src_y_offset, 0, size - 1); const float alpha_f = tex_data[src_x + (src_y * size)]; const unsigned char alpha_8 = (unsigned char)(0xFF * alpha_f); const unsigned int offset = (int)(r.X + x) + (int)(r.Y + y) * tex_w; if (atlas->TexPixelsAlpha8) atlas->TexPixelsAlpha8[offset] = alpha_8; else atlas->TexPixelsRGBA32[offset] = IM_COL32(255, 255, 255, alpha_8); } // Remove the padding we added r.X += (unsigned short)padding; r.Y += (unsigned short)padding; r.Width = (unsigned short)(tex_width - (padding * 2)); r.Height = (unsigned short)(tex_height - (padding * 2)); // Generate UVs ImVec2 uv0, uv1; atlas->CalcCustomRectUV(&r, &uv0, &uv1); atlas->ShadowRectUvs[9] = ImVec4(uv0.x, uv0.y, uv1.x, uv1.y); } } // Note: this is called / shared by both the stb_truetype and the FreeType builder void ImFontAtlasBuildInit(ImFontAtlas* atlas) { // Round font size // - We started rounding in 1.90 WIP (18991) as our layout system currently doesn't support non-rounded font size well yet. // - Note that using io.FontGlobalScale or SetWindowFontScale(), with are legacy-ish, partially supported features, can still lead to unrounded sizes. // - We may support it better later and remove this rounding. for (ImFontConfig& cfg : atlas->ConfigData) cfg.SizePixels = ImTrunc(cfg.SizePixels); // Register texture region for mouse cursors or standard white pixels if (atlas->PackIdMouseCursors < 0) { if (!(atlas->Flags & ImFontAtlasFlags_NoMouseCursors)) atlas->PackIdMouseCursors = atlas->AddCustomRectRegular(FONT_ATLAS_DEFAULT_TEX_DATA_W * 2 + 1, FONT_ATLAS_DEFAULT_TEX_DATA_H); else atlas->PackIdMouseCursors = atlas->AddCustomRectRegular(2, 2); } // Register texture region for thick lines // The +2 here is to give space for the end caps, whilst height +1 is to accommodate the fact we have a zero-width row if (atlas->PackIdLines < 0) { if (!(atlas->Flags & ImFontAtlasFlags_NoBakedLines)) atlas->PackIdLines = atlas->AddCustomRectRegular(IM_DRAWLIST_TEX_LINES_WIDTH_MAX + 2, IM_DRAWLIST_TEX_LINES_WIDTH_MAX + 1); } ImFontAtlasBuildRegisterShadowCustomRects(atlas); } // This is called/shared by both the stb_truetype and the FreeType builder. void ImFontAtlasBuildFinish(ImFontAtlas* atlas) { // Render into our custom data blocks IM_ASSERT(atlas->TexPixelsAlpha8 != NULL || atlas->TexPixelsRGBA32 != NULL); ImFontAtlasBuildRenderDefaultTexData(atlas); ImFontAtlasBuildRenderLinesTexData(atlas); ImFontAtlasBuildRenderShadowTexData(atlas); // Register custom rectangle glyphs for (int i = 0; i < atlas->CustomRects.Size; i++) { const ImFontAtlasCustomRect* r = &atlas->CustomRects[i]; if (r->Font == NULL || r->GlyphID == 0) continue; // Will ignore ImFontConfig settings: GlyphMinAdvanceX, GlyphMinAdvanceY, GlyphExtraSpacing, PixelSnapH IM_ASSERT(r->Font->ContainerAtlas == atlas); ImVec2 uv0, uv1; atlas->CalcCustomRectUV(r, &uv0, &uv1); r->Font->AddGlyph(NULL, (ImWchar)r->GlyphID, r->GlyphOffset.x, r->GlyphOffset.y, r->GlyphOffset.x + r->Width, r->GlyphOffset.y + r->Height, uv0.x, uv0.y, uv1.x, uv1.y, r->GlyphAdvanceX); } // Build all fonts lookup tables for (ImFont* font : atlas->Fonts) if (font->DirtyLookupTables) font->BuildLookupTable(); atlas->TexReady = true; } // Retrieve list of range (2 int per range, values are inclusive) const ImWchar* ImFontAtlas::GetGlyphRangesDefault() { static const ImWchar ranges[] = { 0x0020, 0x00FF, // Basic Latin + Latin Supplement 0, }; return &ranges[0]; } const ImWchar* ImFontAtlas::GetGlyphRangesGreek() { static const ImWchar ranges[] = { 0x0020, 0x00FF, // Basic Latin + Latin Supplement 0x0370, 0x03FF, // Greek and Coptic 0, }; return &ranges[0]; } const ImWchar* ImFontAtlas::GetGlyphRangesKorean() { static const ImWchar ranges[] = { 0x0020, 0x00FF, // Basic Latin + Latin Supplement 0x3131, 0x3163, // Korean alphabets 0xAC00, 0xD7A3, // Korean characters 0xFFFD, 0xFFFD, // Invalid 0, }; return &ranges[0]; } const ImWchar* ImFontAtlas::GetGlyphRangesChineseFull() { static const ImWchar ranges[] = { 0x0020, 0x00FF, // Basic Latin + Latin Supplement 0x2000, 0x206F, // General Punctuation 0x3000, 0x30FF, // CJK Symbols and Punctuations, Hiragana, Katakana 0x31F0, 0x31FF, // Katakana Phonetic Extensions 0xFF00, 0xFFEF, // Half-width characters 0xFFFD, 0xFFFD, // Invalid 0x4e00, 0x9FAF, // CJK Ideograms 0, }; return &ranges[0]; } static void UnpackAccumulativeOffsetsIntoRanges(int base_codepoint, const short* accumulative_offsets, int accumulative_offsets_count, ImWchar* out_ranges) { for (int n = 0; n < accumulative_offsets_count; n++, out_ranges += 2) { out_ranges[0] = out_ranges[1] = (ImWchar)(base_codepoint + accumulative_offsets[n]); base_codepoint += accumulative_offsets[n]; } out_ranges[0] = 0; } //------------------------------------------------------------------------- // [SECTION] ImFontAtlas glyph ranges helpers //------------------------------------------------------------------------- const ImWchar* ImFontAtlas::GetGlyphRangesChineseSimplifiedCommon() { // Store 2500 regularly used characters for Simplified Chinese. // Sourced from https://zh.wiktionary.org/wiki/%E9%99%84%E5%BD%95:%E7%8E%B0%E4%BB%A3%E6%B1%89%E8%AF%AD%E5%B8%B8%E7%94%A8%E5%AD%97%E8%A1%A8 // This table covers 97.97% of all characters used during the month in July, 1987. // You can use ImFontGlyphRangesBuilder to create your own ranges derived from this, by merging existing ranges or adding new characters. // (Stored as accumulative offsets from the initial unicode codepoint 0x4E00. This encoding is designed to helps us compact the source code size.) static const short accumulative_offsets_from_0x4E00[] = { 0,1,2,4,1,1,1,1,2,1,3,2,1,2,2,1,1,1,1,1,5,2,1,2,3,3,3,2,2,4,1,1,1,2,1,5,2,3,1,2,1,2,1,1,2,1,1,2,2,1,4,1,1,1,1,5,10,1,2,19,2,1,2,1,2,1,2,1,2, 1,5,1,6,3,2,1,2,2,1,1,1,4,8,5,1,1,4,1,1,3,1,2,1,5,1,2,1,1,1,10,1,1,5,2,4,6,1,4,2,2,2,12,2,1,1,6,1,1,1,4,1,1,4,6,5,1,4,2,2,4,10,7,1,1,4,2,4, 2,1,4,3,6,10,12,5,7,2,14,2,9,1,1,6,7,10,4,7,13,1,5,4,8,4,1,1,2,28,5,6,1,1,5,2,5,20,2,2,9,8,11,2,9,17,1,8,6,8,27,4,6,9,20,11,27,6,68,2,2,1,1, 1,2,1,2,2,7,6,11,3,3,1,1,3,1,2,1,1,1,1,1,3,1,1,8,3,4,1,5,7,2,1,4,4,8,4,2,1,2,1,1,4,5,6,3,6,2,12,3,1,3,9,2,4,3,4,1,5,3,3,1,3,7,1,5,1,1,1,1,2, 3,4,5,2,3,2,6,1,1,2,1,7,1,7,3,4,5,15,2,2,1,5,3,22,19,2,1,1,1,1,2,5,1,1,1,6,1,1,12,8,2,9,18,22,4,1,1,5,1,16,1,2,7,10,15,1,1,6,2,4,1,2,4,1,6, 1,1,3,2,4,1,6,4,5,1,2,1,1,2,1,10,3,1,3,2,1,9,3,2,5,7,2,19,4,3,6,1,1,1,1,1,4,3,2,1,1,1,2,5,3,1,1,1,2,2,1,1,2,1,1,2,1,3,1,1,1,3,7,1,4,1,1,2,1, 1,2,1,2,4,4,3,8,1,1,1,2,1,3,5,1,3,1,3,4,6,2,2,14,4,6,6,11,9,1,15,3,1,28,5,2,5,5,3,1,3,4,5,4,6,14,3,2,3,5,21,2,7,20,10,1,2,19,2,4,28,28,2,3, 2,1,14,4,1,26,28,42,12,40,3,52,79,5,14,17,3,2,2,11,3,4,6,3,1,8,2,23,4,5,8,10,4,2,7,3,5,1,1,6,3,1,2,2,2,5,28,1,1,7,7,20,5,3,29,3,17,26,1,8,4, 27,3,6,11,23,5,3,4,6,13,24,16,6,5,10,25,35,7,3,2,3,3,14,3,6,2,6,1,4,2,3,8,2,1,1,3,3,3,4,1,1,13,2,2,4,5,2,1,14,14,1,2,2,1,4,5,2,3,1,14,3,12, 3,17,2,16,5,1,2,1,8,9,3,19,4,2,2,4,17,25,21,20,28,75,1,10,29,103,4,1,2,1,1,4,2,4,1,2,3,24,2,2,2,1,1,2,1,3,8,1,1,1,2,1,1,3,1,1,1,6,1,5,3,1,1, 1,3,4,1,1,5,2,1,5,6,13,9,16,1,1,1,1,3,2,3,2,4,5,2,5,2,2,3,7,13,7,2,2,1,1,1,1,2,3,3,2,1,6,4,9,2,1,14,2,14,2,1,18,3,4,14,4,11,41,15,23,15,23, 176,1,3,4,1,1,1,1,5,3,1,2,3,7,3,1,1,2,1,2,4,4,6,2,4,1,9,7,1,10,5,8,16,29,1,1,2,2,3,1,3,5,2,4,5,4,1,1,2,2,3,3,7,1,6,10,1,17,1,44,4,6,2,1,1,6, 5,4,2,10,1,6,9,2,8,1,24,1,2,13,7,8,8,2,1,4,1,3,1,3,3,5,2,5,10,9,4,9,12,2,1,6,1,10,1,1,7,7,4,10,8,3,1,13,4,3,1,6,1,3,5,2,1,2,17,16,5,2,16,6, 1,4,2,1,3,3,6,8,5,11,11,1,3,3,2,4,6,10,9,5,7,4,7,4,7,1,1,4,2,1,3,6,8,7,1,6,11,5,5,3,24,9,4,2,7,13,5,1,8,82,16,61,1,1,1,4,2,2,16,10,3,8,1,1, 6,4,2,1,3,1,1,1,4,3,8,4,2,2,1,1,1,1,1,6,3,5,1,1,4,6,9,2,1,1,1,2,1,7,2,1,6,1,5,4,4,3,1,8,1,3,3,1,3,2,2,2,2,3,1,6,1,2,1,2,1,3,7,1,8,2,1,2,1,5, 2,5,3,5,10,1,2,1,1,3,2,5,11,3,9,3,5,1,1,5,9,1,2,1,5,7,9,9,8,1,3,3,3,6,8,2,3,2,1,1,32,6,1,2,15,9,3,7,13,1,3,10,13,2,14,1,13,10,2,1,3,10,4,15, 2,15,15,10,1,3,9,6,9,32,25,26,47,7,3,2,3,1,6,3,4,3,2,8,5,4,1,9,4,2,2,19,10,6,2,3,8,1,2,2,4,2,1,9,4,4,4,6,4,8,9,2,3,1,1,1,1,3,5,5,1,3,8,4,6, 2,1,4,12,1,5,3,7,13,2,5,8,1,6,1,2,5,14,6,1,5,2,4,8,15,5,1,23,6,62,2,10,1,1,8,1,2,2,10,4,2,2,9,2,1,1,3,2,3,1,5,3,3,2,1,3,8,1,1,1,11,3,1,1,4, 3,7,1,14,1,2,3,12,5,2,5,1,6,7,5,7,14,11,1,3,1,8,9,12,2,1,11,8,4,4,2,6,10,9,13,1,1,3,1,5,1,3,2,4,4,1,18,2,3,14,11,4,29,4,2,7,1,3,13,9,2,2,5, 3,5,20,7,16,8,5,72,34,6,4,22,12,12,28,45,36,9,7,39,9,191,1,1,1,4,11,8,4,9,2,3,22,1,1,1,1,4,17,1,7,7,1,11,31,10,2,4,8,2,3,2,1,4,2,16,4,32,2, 3,19,13,4,9,1,5,2,14,8,1,1,3,6,19,6,5,1,16,6,2,10,8,5,1,2,3,1,5,5,1,11,6,6,1,3,3,2,6,3,8,1,1,4,10,7,5,7,7,5,8,9,2,1,3,4,1,1,3,1,3,3,2,6,16, 1,4,6,3,1,10,6,1,3,15,2,9,2,10,25,13,9,16,6,2,2,10,11,4,3,9,1,2,6,6,5,4,30,40,1,10,7,12,14,33,6,3,6,7,3,1,3,1,11,14,4,9,5,12,11,49,18,51,31, 140,31,2,2,1,5,1,8,1,10,1,4,4,3,24,1,10,1,3,6,6,16,3,4,5,2,1,4,2,57,10,6,22,2,22,3,7,22,6,10,11,36,18,16,33,36,2,5,5,1,1,1,4,10,1,4,13,2,7, 5,2,9,3,4,1,7,43,3,7,3,9,14,7,9,1,11,1,1,3,7,4,18,13,1,14,1,3,6,10,73,2,2,30,6,1,11,18,19,13,22,3,46,42,37,89,7,3,16,34,2,2,3,9,1,7,1,1,1,2, 2,4,10,7,3,10,3,9,5,28,9,2,6,13,7,3,1,3,10,2,7,2,11,3,6,21,54,85,2,1,4,2,2,1,39,3,21,2,2,5,1,1,1,4,1,1,3,4,15,1,3,2,4,4,2,3,8,2,20,1,8,7,13, 4,1,26,6,2,9,34,4,21,52,10,4,4,1,5,12,2,11,1,7,2,30,12,44,2,30,1,1,3,6,16,9,17,39,82,2,2,24,7,1,7,3,16,9,14,44,2,1,2,1,2,3,5,2,4,1,6,7,5,3, 2,6,1,11,5,11,2,1,18,19,8,1,3,24,29,2,1,3,5,2,2,1,13,6,5,1,46,11,3,5,1,1,5,8,2,10,6,12,6,3,7,11,2,4,16,13,2,5,1,1,2,2,5,2,28,5,2,23,10,8,4, 4,22,39,95,38,8,14,9,5,1,13,5,4,3,13,12,11,1,9,1,27,37,2,5,4,4,63,211,95,2,2,2,1,3,5,2,1,1,2,2,1,1,1,3,2,4,1,2,1,1,5,2,2,1,1,2,3,1,3,1,1,1, 3,1,4,2,1,3,6,1,1,3,7,15,5,3,2,5,3,9,11,4,2,22,1,6,3,8,7,1,4,28,4,16,3,3,25,4,4,27,27,1,4,1,2,2,7,1,3,5,2,28,8,2,14,1,8,6,16,25,3,3,3,14,3, 3,1,1,2,1,4,6,3,8,4,1,1,1,2,3,6,10,6,2,3,18,3,2,5,5,4,3,1,5,2,5,4,23,7,6,12,6,4,17,11,9,5,1,1,10,5,12,1,1,11,26,33,7,3,6,1,17,7,1,5,12,1,11, 2,4,1,8,14,17,23,1,2,1,7,8,16,11,9,6,5,2,6,4,16,2,8,14,1,11,8,9,1,1,1,9,25,4,11,19,7,2,15,2,12,8,52,7,5,19,2,16,4,36,8,1,16,8,24,26,4,6,2,9, 5,4,36,3,28,12,25,15,37,27,17,12,59,38,5,32,127,1,2,9,17,14,4,1,2,1,1,8,11,50,4,14,2,19,16,4,17,5,4,5,26,12,45,2,23,45,104,30,12,8,3,10,2,2, 3,3,1,4,20,7,2,9,6,15,2,20,1,3,16,4,11,15,6,134,2,5,59,1,2,2,2,1,9,17,3,26,137,10,211,59,1,2,4,1,4,1,1,1,2,6,2,3,1,1,2,3,2,3,1,3,4,4,2,3,3, 1,4,3,1,7,2,2,3,1,2,1,3,3,3,2,2,3,2,1,3,14,6,1,3,2,9,6,15,27,9,34,145,1,1,2,1,1,1,1,2,1,1,1,1,2,2,2,3,1,2,1,1,1,2,3,5,8,3,5,2,4,1,3,2,2,2,12, 4,1,1,1,10,4,5,1,20,4,16,1,15,9,5,12,2,9,2,5,4,2,26,19,7,1,26,4,30,12,15,42,1,6,8,172,1,1,4,2,1,1,11,2,2,4,2,1,2,1,10,8,1,2,1,4,5,1,2,5,1,8, 4,1,3,4,2,1,6,2,1,3,4,1,2,1,1,1,1,12,5,7,2,4,3,1,1,1,3,3,6,1,2,2,3,3,3,2,1,2,12,14,11,6,6,4,12,2,8,1,7,10,1,35,7,4,13,15,4,3,23,21,28,52,5, 26,5,6,1,7,10,2,7,53,3,2,1,1,1,2,163,532,1,10,11,1,3,3,4,8,2,8,6,2,2,23,22,4,2,2,4,2,1,3,1,3,3,5,9,8,2,1,2,8,1,10,2,12,21,20,15,105,2,3,1,1, 3,2,3,1,1,2,5,1,4,15,11,19,1,1,1,1,5,4,5,1,1,2,5,3,5,12,1,2,5,1,11,1,1,15,9,1,4,5,3,26,8,2,1,3,1,1,15,19,2,12,1,2,5,2,7,2,19,2,20,6,26,7,5, 2,2,7,34,21,13,70,2,128,1,1,2,1,1,2,1,1,3,2,2,2,15,1,4,1,3,4,42,10,6,1,49,85,8,1,2,1,1,4,4,2,3,6,1,5,7,4,3,211,4,1,2,1,2,5,1,2,4,2,2,6,5,6, 10,3,4,48,100,6,2,16,296,5,27,387,2,2,3,7,16,8,5,38,15,39,21,9,10,3,7,59,13,27,21,47,5,21,6 }; static ImWchar base_ranges[] = // not zero-terminated { 0x0020, 0x00FF, // Basic Latin + Latin Supplement 0x2000, 0x206F, // General Punctuation 0x3000, 0x30FF, // CJK Symbols and Punctuations, Hiragana, Katakana 0x31F0, 0x31FF, // Katakana Phonetic Extensions 0xFF00, 0xFFEF, // Half-width characters 0xFFFD, 0xFFFD // Invalid }; static ImWchar full_ranges[IM_ARRAYSIZE(base_ranges) + IM_ARRAYSIZE(accumulative_offsets_from_0x4E00) * 2 + 1] = { 0 }; if (!full_ranges[0]) { memcpy(full_ranges, base_ranges, sizeof(base_ranges)); UnpackAccumulativeOffsetsIntoRanges(0x4E00, accumulative_offsets_from_0x4E00, IM_ARRAYSIZE(accumulative_offsets_from_0x4E00), full_ranges + IM_ARRAYSIZE(base_ranges)); } return &full_ranges[0]; } const ImWchar* ImFontAtlas::GetGlyphRangesJapanese() { // 2999 ideograms code points for Japanese // - 2136 Joyo (meaning "for regular use" or "for common use") Kanji code points // - 863 Jinmeiyo (meaning "for personal name") Kanji code points // - Sourced from official information provided by the government agencies of Japan: // - List of Joyo Kanji by the Agency for Cultural Affairs // - https://www.bunka.go.jp/kokugo_nihongo/sisaku/joho/joho/kijun/naikaku/kanji/ // - List of Jinmeiyo Kanji by the Ministry of Justice // - http://www.moj.go.jp/MINJI/minji86.html // - Available under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0). // - https://creativecommons.org/licenses/by/4.0/legalcode // - You can generate this code by the script at: // - https://github.com/vaiorabbit/everyday_use_kanji // - References: // - List of Joyo Kanji // - (Wikipedia) https://en.wikipedia.org/wiki/List_of_j%C5%8Dy%C5%8D_kanji // - List of Jinmeiyo Kanji // - (Wikipedia) https://en.wikipedia.org/wiki/Jinmeiy%C5%8D_kanji // - Missing 1 Joyo Kanji: U+20B9F (Kun'yomi: Shikaru, On'yomi: Shitsu,shichi), see https://github.com/ocornut/imgui/pull/3627 for details. // You can use ImFontGlyphRangesBuilder to create your own ranges derived from this, by merging existing ranges or adding new characters. // (Stored as accumulative offsets from the initial unicode codepoint 0x4E00. This encoding is designed to helps us compact the source code size.) static const short accumulative_offsets_from_0x4E00[] = { 0,1,2,4,1,1,1,1,2,1,3,3,2,2,1,5,3,5,7,5,6,1,2,1,7,2,6,3,1,8,1,1,4,1,1,18,2,11,2,6,2,1,2,1,5,1,2,1,3,1,2,1,2,3,3,1,1,2,3,1,1,1,12,7,9,1,4,5,1, 1,2,1,10,1,1,9,2,2,4,5,6,9,3,1,1,1,1,9,3,18,5,2,2,2,2,1,6,3,7,1,1,1,1,2,2,4,2,1,23,2,10,4,3,5,2,4,10,2,4,13,1,6,1,9,3,1,1,6,6,7,6,3,1,2,11,3, 2,2,3,2,15,2,2,5,4,3,6,4,1,2,5,2,12,16,6,13,9,13,2,1,1,7,16,4,7,1,19,1,5,1,2,2,7,7,8,2,6,5,4,9,18,7,4,5,9,13,11,8,15,2,1,1,1,2,1,2,2,1,2,2,8, 2,9,3,3,1,1,4,4,1,1,1,4,9,1,4,3,5,5,2,7,5,3,4,8,2,1,13,2,3,3,1,14,1,1,4,5,1,3,6,1,5,2,1,1,3,3,3,3,1,1,2,7,6,6,7,1,4,7,6,1,1,1,1,1,12,3,3,9,5, 2,6,1,5,6,1,2,3,18,2,4,14,4,1,3,6,1,1,6,3,5,5,3,2,2,2,2,12,3,1,4,2,3,2,3,11,1,7,4,1,2,1,3,17,1,9,1,24,1,1,4,2,2,4,1,2,7,1,1,1,3,1,2,2,4,15,1, 1,2,1,1,2,1,5,2,5,20,2,5,9,1,10,8,7,6,1,1,1,1,1,1,6,2,1,2,8,1,1,1,1,5,1,1,3,1,1,1,1,3,1,1,12,4,1,3,1,1,1,1,1,10,3,1,7,5,13,1,2,3,4,6,1,1,30, 2,9,9,1,15,38,11,3,1,8,24,7,1,9,8,10,2,1,9,31,2,13,6,2,9,4,49,5,2,15,2,1,10,2,1,1,1,2,2,6,15,30,35,3,14,18,8,1,16,10,28,12,19,45,38,1,3,2,3, 13,2,1,7,3,6,5,3,4,3,1,5,7,8,1,5,3,18,5,3,6,1,21,4,24,9,24,40,3,14,3,21,3,2,1,2,4,2,3,1,15,15,6,5,1,1,3,1,5,6,1,9,7,3,3,2,1,4,3,8,21,5,16,4, 5,2,10,11,11,3,6,3,2,9,3,6,13,1,2,1,1,1,1,11,12,6,6,1,4,2,6,5,2,1,1,3,3,6,13,3,1,1,5,1,2,3,3,14,2,1,2,2,2,5,1,9,5,1,1,6,12,3,12,3,4,13,2,14, 2,8,1,17,5,1,16,4,2,2,21,8,9,6,23,20,12,25,19,9,38,8,3,21,40,25,33,13,4,3,1,4,1,2,4,1,2,5,26,2,1,1,2,1,3,6,2,1,1,1,1,1,1,2,3,1,1,1,9,2,3,1,1, 1,3,6,3,2,1,1,6,6,1,8,2,2,2,1,4,1,2,3,2,7,3,2,4,1,2,1,2,2,1,1,1,1,1,3,1,2,5,4,10,9,4,9,1,1,1,1,1,1,5,3,2,1,6,4,9,6,1,10,2,31,17,8,3,7,5,40,1, 7,7,1,6,5,2,10,7,8,4,15,39,25,6,28,47,18,10,7,1,3,1,1,2,1,1,1,3,3,3,1,1,1,3,4,2,1,4,1,3,6,10,7,8,6,2,2,1,3,3,2,5,8,7,9,12,2,15,1,1,4,1,2,1,1, 1,3,2,1,3,3,5,6,2,3,2,10,1,4,2,8,1,1,1,11,6,1,21,4,16,3,1,3,1,4,2,3,6,5,1,3,1,1,3,3,4,6,1,1,10,4,2,7,10,4,7,4,2,9,4,3,1,1,1,4,1,8,3,4,1,3,1, 6,1,4,2,1,4,7,2,1,8,1,4,5,1,1,2,2,4,6,2,7,1,10,1,1,3,4,11,10,8,21,4,6,1,3,5,2,1,2,28,5,5,2,3,13,1,2,3,1,4,2,1,5,20,3,8,11,1,3,3,3,1,8,10,9,2, 10,9,2,3,1,1,2,4,1,8,3,6,1,7,8,6,11,1,4,29,8,4,3,1,2,7,13,1,4,1,6,2,6,12,12,2,20,3,2,3,6,4,8,9,2,7,34,5,1,18,6,1,1,4,4,5,7,9,1,2,2,4,3,4,1,7, 2,2,2,6,2,3,25,5,3,6,1,4,6,7,4,2,1,4,2,13,6,4,4,3,1,5,3,4,4,3,2,1,1,4,1,2,1,1,3,1,11,1,6,3,1,7,3,6,2,8,8,6,9,3,4,11,3,2,10,12,2,5,11,1,6,4,5, 3,1,8,5,4,6,6,3,5,1,1,3,2,1,2,2,6,17,12,1,10,1,6,12,1,6,6,19,9,6,16,1,13,4,4,15,7,17,6,11,9,15,12,6,7,2,1,2,2,15,9,3,21,4,6,49,18,7,3,2,3,1, 6,8,2,2,6,2,9,1,3,6,4,4,1,2,16,2,5,2,1,6,2,3,5,3,1,2,5,1,2,1,9,3,1,8,6,4,8,11,3,1,1,1,1,3,1,13,8,4,1,3,2,2,1,4,1,11,1,5,2,1,5,2,5,8,6,1,1,7, 4,3,8,3,2,7,2,1,5,1,5,2,4,7,6,2,8,5,1,11,4,5,3,6,18,1,2,13,3,3,1,21,1,1,4,1,4,1,1,1,8,1,2,2,7,1,2,4,2,2,9,2,1,1,1,4,3,6,3,12,5,1,1,1,5,6,3,2, 4,8,2,2,4,2,7,1,8,9,5,2,3,2,1,3,2,13,7,14,6,5,1,1,2,1,4,2,23,2,1,1,6,3,1,4,1,15,3,1,7,3,9,14,1,3,1,4,1,1,5,8,1,3,8,3,8,15,11,4,14,4,4,2,5,5, 1,7,1,6,14,7,7,8,5,15,4,8,6,5,6,2,1,13,1,20,15,11,9,2,5,6,2,11,2,6,2,5,1,5,8,4,13,19,25,4,1,1,11,1,34,2,5,9,14,6,2,2,6,1,1,14,1,3,14,13,1,6, 12,21,14,14,6,32,17,8,32,9,28,1,2,4,11,8,3,1,14,2,5,15,1,1,1,1,3,6,4,1,3,4,11,3,1,1,11,30,1,5,1,4,1,5,8,1,1,3,2,4,3,17,35,2,6,12,17,3,1,6,2, 1,1,12,2,7,3,3,2,1,16,2,8,3,6,5,4,7,3,3,8,1,9,8,5,1,2,1,3,2,8,1,2,9,12,1,1,2,3,8,3,24,12,4,3,7,5,8,3,3,3,3,3,3,1,23,10,3,1,2,2,6,3,1,16,1,16, 22,3,10,4,11,6,9,7,7,3,6,2,2,2,4,10,2,1,1,2,8,7,1,6,4,1,3,3,3,5,10,12,12,2,3,12,8,15,1,1,16,6,6,1,5,9,11,4,11,4,2,6,12,1,17,5,13,1,4,9,5,1,11, 2,1,8,1,5,7,28,8,3,5,10,2,17,3,38,22,1,2,18,12,10,4,38,18,1,4,44,19,4,1,8,4,1,12,1,4,31,12,1,14,7,75,7,5,10,6,6,13,3,2,11,11,3,2,5,28,15,6,18, 18,5,6,4,3,16,1,7,18,7,36,3,5,3,1,7,1,9,1,10,7,2,4,2,6,2,9,7,4,3,32,12,3,7,10,2,23,16,3,1,12,3,31,4,11,1,3,8,9,5,1,30,15,6,12,3,2,2,11,19,9, 14,2,6,2,3,19,13,17,5,3,3,25,3,14,1,1,1,36,1,3,2,19,3,13,36,9,13,31,6,4,16,34,2,5,4,2,3,3,5,1,1,1,4,3,1,17,3,2,3,5,3,1,3,2,3,5,6,3,12,11,1,3, 1,2,26,7,12,7,2,14,3,3,7,7,11,25,25,28,16,4,36,1,2,1,6,2,1,9,3,27,17,4,3,4,13,4,1,3,2,2,1,10,4,2,4,6,3,8,2,1,18,1,1,24,2,2,4,33,2,3,63,7,1,6, 40,7,3,4,4,2,4,15,18,1,16,1,1,11,2,41,14,1,3,18,13,3,2,4,16,2,17,7,15,24,7,18,13,44,2,2,3,6,1,1,7,5,1,7,1,4,3,3,5,10,8,2,3,1,8,1,1,27,4,2,1, 12,1,2,1,10,6,1,6,7,5,2,3,7,11,5,11,3,6,6,2,3,15,4,9,1,1,2,1,2,11,2,8,12,8,5,4,2,3,1,5,2,2,1,14,1,12,11,4,1,11,17,17,4,3,2,5,5,7,3,1,5,9,9,8, 2,5,6,6,13,13,2,1,2,6,1,2,2,49,4,9,1,2,10,16,7,8,4,3,2,23,4,58,3,29,1,14,19,19,11,11,2,7,5,1,3,4,6,2,18,5,12,12,17,17,3,3,2,4,1,6,2,3,4,3,1, 1,1,1,5,1,1,9,1,3,1,3,6,1,8,1,1,2,6,4,14,3,1,4,11,4,1,3,32,1,2,4,13,4,1,2,4,2,1,3,1,11,1,4,2,1,4,4,6,3,5,1,6,5,7,6,3,23,3,5,3,5,3,3,13,3,9,10, 1,12,10,2,3,18,13,7,160,52,4,2,2,3,2,14,5,4,12,4,6,4,1,20,4,11,6,2,12,27,1,4,1,2,2,7,4,5,2,28,3,7,25,8,3,19,3,6,10,2,2,1,10,2,5,4,1,3,4,1,5, 3,2,6,9,3,6,2,16,3,3,16,4,5,5,3,2,1,2,16,15,8,2,6,21,2,4,1,22,5,8,1,1,21,11,2,1,11,11,19,13,12,4,2,3,2,3,6,1,8,11,1,4,2,9,5,2,1,11,2,9,1,1,2, 14,31,9,3,4,21,14,4,8,1,7,2,2,2,5,1,4,20,3,3,4,10,1,11,9,8,2,1,4,5,14,12,14,2,17,9,6,31,4,14,1,20,13,26,5,2,7,3,6,13,2,4,2,19,6,2,2,18,9,3,5, 12,12,14,4,6,2,3,6,9,5,22,4,5,25,6,4,8,5,2,6,27,2,35,2,16,3,7,8,8,6,6,5,9,17,2,20,6,19,2,13,3,1,1,1,4,17,12,2,14,7,1,4,18,12,38,33,2,10,1,1, 2,13,14,17,11,50,6,33,20,26,74,16,23,45,50,13,38,33,6,6,7,4,4,2,1,3,2,5,8,7,8,9,3,11,21,9,13,1,3,10,6,7,1,2,2,18,5,5,1,9,9,2,68,9,19,13,2,5, 1,4,4,7,4,13,3,9,10,21,17,3,26,2,1,5,2,4,5,4,1,7,4,7,3,4,2,1,6,1,1,20,4,1,9,2,2,1,3,3,2,3,2,1,1,1,20,2,3,1,6,2,3,6,2,4,8,1,3,2,10,3,5,3,4,4, 3,4,16,1,6,1,10,2,4,2,1,1,2,10,11,2,2,3,1,24,31,4,10,10,2,5,12,16,164,15,4,16,7,9,15,19,17,1,2,1,1,5,1,1,1,1,1,3,1,4,3,1,3,1,3,1,2,1,1,3,3,7, 2,8,1,2,2,2,1,3,4,3,7,8,12,92,2,10,3,1,3,14,5,25,16,42,4,7,7,4,2,21,5,27,26,27,21,25,30,31,2,1,5,13,3,22,5,6,6,11,9,12,1,5,9,7,5,5,22,60,3,5, 13,1,1,8,1,1,3,3,2,1,9,3,3,18,4,1,2,3,7,6,3,1,2,3,9,1,3,1,3,2,1,3,1,1,1,2,1,11,3,1,6,9,1,3,2,3,1,2,1,5,1,1,4,3,4,1,2,2,4,4,1,7,2,1,2,2,3,5,13, 18,3,4,14,9,9,4,16,3,7,5,8,2,6,48,28,3,1,1,4,2,14,8,2,9,2,1,15,2,4,3,2,10,16,12,8,7,1,1,3,1,1,1,2,7,4,1,6,4,38,39,16,23,7,15,15,3,2,12,7,21, 37,27,6,5,4,8,2,10,8,8,6,5,1,2,1,3,24,1,16,17,9,23,10,17,6,1,51,55,44,13,294,9,3,6,2,4,2,2,15,1,1,1,13,21,17,68,14,8,9,4,1,4,9,3,11,7,1,1,1, 5,6,3,2,1,1,1,2,3,8,1,2,2,4,1,5,5,2,1,4,3,7,13,4,1,4,1,3,1,1,1,5,5,10,1,6,1,5,2,1,5,2,4,1,4,5,7,3,18,2,9,11,32,4,3,3,2,4,7,11,16,9,11,8,13,38, 32,8,4,2,1,1,2,1,2,4,4,1,1,1,4,1,21,3,11,1,16,1,1,6,1,3,2,4,9,8,57,7,44,1,3,3,13,3,10,1,1,7,5,2,7,21,47,63,3,15,4,7,1,16,1,1,2,8,2,3,42,15,4, 1,29,7,22,10,3,78,16,12,20,18,4,67,11,5,1,3,15,6,21,31,32,27,18,13,71,35,5,142,4,10,1,2,50,19,33,16,35,37,16,19,27,7,1,133,19,1,4,8,7,20,1,4, 4,1,10,3,1,6,1,2,51,5,40,15,24,43,22928,11,1,13,154,70,3,1,1,7,4,10,1,2,1,1,2,1,2,1,2,2,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1, 3,2,1,1,1,1,2,1,1, }; static ImWchar base_ranges[] = // not zero-terminated { 0x0020, 0x00FF, // Basic Latin + Latin Supplement 0x3000, 0x30FF, // CJK Symbols and Punctuations, Hiragana, Katakana 0x31F0, 0x31FF, // Katakana Phonetic Extensions 0xFF00, 0xFFEF, // Half-width characters 0xFFFD, 0xFFFD // Invalid }; static ImWchar full_ranges[IM_ARRAYSIZE(base_ranges) + IM_ARRAYSIZE(accumulative_offsets_from_0x4E00)*2 + 1] = { 0 }; if (!full_ranges[0]) { memcpy(full_ranges, base_ranges, sizeof(base_ranges)); UnpackAccumulativeOffsetsIntoRanges(0x4E00, accumulative_offsets_from_0x4E00, IM_ARRAYSIZE(accumulative_offsets_from_0x4E00), full_ranges + IM_ARRAYSIZE(base_ranges)); } return &full_ranges[0]; } const ImWchar* ImFontAtlas::GetGlyphRangesCyrillic() { static const ImWchar ranges[] = { 0x0020, 0x00FF, // Basic Latin + Latin Supplement 0x0400, 0x052F, // Cyrillic + Cyrillic Supplement 0x2DE0, 0x2DFF, // Cyrillic Extended-A 0xA640, 0xA69F, // Cyrillic Extended-B 0, }; return &ranges[0]; } const ImWchar* ImFontAtlas::GetGlyphRangesThai() { static const ImWchar ranges[] = { 0x0020, 0x00FF, // Basic Latin 0x2010, 0x205E, // Punctuations 0x0E00, 0x0E7F, // Thai 0, }; return &ranges[0]; } const ImWchar* ImFontAtlas::GetGlyphRangesVietnamese() { static const ImWchar ranges[] = { 0x0020, 0x00FF, // Basic Latin 0x0102, 0x0103, 0x0110, 0x0111, 0x0128, 0x0129, 0x0168, 0x0169, 0x01A0, 0x01A1, 0x01AF, 0x01B0, 0x1EA0, 0x1EF9, 0, }; return &ranges[0]; } //----------------------------------------------------------------------------- // [SECTION] ImFontGlyphRangesBuilder //----------------------------------------------------------------------------- void ImFontGlyphRangesBuilder::AddText(const char* text, const char* text_end) { while (text_end ? (text < text_end) : *text) { unsigned int c = 0; int c_len = ImTextCharFromUtf8(&c, text, text_end); text += c_len; if (c_len == 0) break; AddChar((ImWchar)c); } } void ImFontGlyphRangesBuilder::AddRanges(const ImWchar* ranges) { for (; ranges[0]; ranges += 2) for (unsigned int c = ranges[0]; c <= ranges[1] && c <= IM_UNICODE_CODEPOINT_MAX; c++) //-V560 AddChar((ImWchar)c); } void ImFontGlyphRangesBuilder::BuildRanges(ImVector* out_ranges) { const int max_codepoint = IM_UNICODE_CODEPOINT_MAX; for (int n = 0; n <= max_codepoint; n++) if (GetBit(n)) { out_ranges->push_back((ImWchar)n); while (n < max_codepoint && GetBit(n + 1)) n++; out_ranges->push_back((ImWchar)n); } out_ranges->push_back(0); } //----------------------------------------------------------------------------- // [SECTION] ImFont //----------------------------------------------------------------------------- ImFont::ImFont() { FontSize = 0.0f; FallbackAdvanceX = 0.0f; FallbackChar = (ImWchar)-1; EllipsisChar = (ImWchar)-1; EllipsisWidth = EllipsisCharStep = 0.0f; EllipsisCharCount = 0; FallbackGlyph = NULL; ContainerAtlas = NULL; ConfigData = NULL; ConfigDataCount = 0; DirtyLookupTables = false; Scale = 1.0f; Ascent = Descent = 0.0f; MetricsTotalSurface = 0; memset(Used4kPagesMap, 0, sizeof(Used4kPagesMap)); } ImFont::~ImFont() { ClearOutputData(); } void ImFont::ClearOutputData() { FontSize = 0.0f; FallbackAdvanceX = 0.0f; Glyphs.clear(); IndexAdvanceX.clear(); IndexLookup.clear(); FallbackGlyph = NULL; ContainerAtlas = NULL; DirtyLookupTables = true; Ascent = Descent = 0.0f; MetricsTotalSurface = 0; } static ImWchar FindFirstExistingGlyph(ImFont* font, const ImWchar* candidate_chars, int candidate_chars_count) { for (int n = 0; n < candidate_chars_count; n++) if (font->FindGlyphNoFallback(candidate_chars[n]) != NULL) return candidate_chars[n]; return (ImWchar)-1; } void ImFont::BuildLookupTable() { int max_codepoint = 0; for (int i = 0; i != Glyphs.Size; i++) max_codepoint = ImMax(max_codepoint, (int)Glyphs[i].Codepoint); // Build lookup table IM_ASSERT(Glyphs.Size > 0 && "Font has not loaded glyph!"); IM_ASSERT(Glyphs.Size < 0xFFFF); // -1 is reserved IndexAdvanceX.clear(); IndexLookup.clear(); DirtyLookupTables = false; memset(Used4kPagesMap, 0, sizeof(Used4kPagesMap)); GrowIndex(max_codepoint + 1); for (int i = 0; i < Glyphs.Size; i++) { int codepoint = (int)Glyphs[i].Codepoint; IndexAdvanceX[codepoint] = Glyphs[i].AdvanceX; IndexLookup[codepoint] = (ImWchar)i; // Mark 4K page as used const int page_n = codepoint / 4096; Used4kPagesMap[page_n >> 3] |= 1 << (page_n & 7); } // Create a glyph to handle TAB // FIXME: Needs proper TAB handling but it needs to be contextualized (or we could arbitrary say that each string starts at "column 0" ?) if (FindGlyph((ImWchar)' ')) { if (Glyphs.back().Codepoint != '\t') // So we can call this function multiple times (FIXME: Flaky) Glyphs.resize(Glyphs.Size + 1); ImFontGlyph& tab_glyph = Glyphs.back(); tab_glyph = *FindGlyph((ImWchar)' '); tab_glyph.Codepoint = '\t'; tab_glyph.AdvanceX *= IM_TABSIZE; IndexAdvanceX[(int)tab_glyph.Codepoint] = (float)tab_glyph.AdvanceX; IndexLookup[(int)tab_glyph.Codepoint] = (ImWchar)(Glyphs.Size - 1); } // Mark special glyphs as not visible (note that AddGlyph already mark as non-visible glyphs with zero-size polygons) SetGlyphVisible((ImWchar)' ', false); SetGlyphVisible((ImWchar)'\t', false); // Setup Fallback character const ImWchar fallback_chars[] = { (ImWchar)IM_UNICODE_CODEPOINT_INVALID, (ImWchar)'?', (ImWchar)' ' }; FallbackGlyph = FindGlyphNoFallback(FallbackChar); if (FallbackGlyph == NULL) { FallbackChar = FindFirstExistingGlyph(this, fallback_chars, IM_ARRAYSIZE(fallback_chars)); FallbackGlyph = FindGlyphNoFallback(FallbackChar); if (FallbackGlyph == NULL) { FallbackGlyph = &Glyphs.back(); FallbackChar = (ImWchar)FallbackGlyph->Codepoint; } } FallbackAdvanceX = FallbackGlyph->AdvanceX; for (int i = 0; i < max_codepoint + 1; i++) if (IndexAdvanceX[i] < 0.0f) IndexAdvanceX[i] = FallbackAdvanceX; // Setup Ellipsis character. It is required for rendering elided text. We prefer using U+2026 (horizontal ellipsis). // However some old fonts may contain ellipsis at U+0085. Here we auto-detect most suitable ellipsis character. // FIXME: Note that 0x2026 is rarely included in our font ranges. Because of this we are more likely to use three individual dots. const ImWchar ellipsis_chars[] = { (ImWchar)0x2026, (ImWchar)0x0085 }; const ImWchar dots_chars[] = { (ImWchar)'.', (ImWchar)0xFF0E }; if (EllipsisChar == (ImWchar)-1) EllipsisChar = FindFirstExistingGlyph(this, ellipsis_chars, IM_ARRAYSIZE(ellipsis_chars)); const ImWchar dot_char = FindFirstExistingGlyph(this, dots_chars, IM_ARRAYSIZE(dots_chars)); if (EllipsisChar != (ImWchar)-1) { EllipsisCharCount = 1; EllipsisWidth = EllipsisCharStep = FindGlyph(EllipsisChar)->X1; } else if (dot_char != (ImWchar)-1) { const ImFontGlyph* glyph = FindGlyph(dot_char); EllipsisChar = dot_char; EllipsisCharCount = 3; EllipsisCharStep = (glyph->X1 - glyph->X0) + 1.0f; EllipsisWidth = EllipsisCharStep * 3.0f - 1.0f; } } // API is designed this way to avoid exposing the 4K page size // e.g. use with IsGlyphRangeUnused(0, 255) bool ImFont::IsGlyphRangeUnused(unsigned int c_begin, unsigned int c_last) { unsigned int page_begin = (c_begin / 4096); unsigned int page_last = (c_last / 4096); for (unsigned int page_n = page_begin; page_n <= page_last; page_n++) if ((page_n >> 3) < sizeof(Used4kPagesMap)) if (Used4kPagesMap[page_n >> 3] & (1 << (page_n & 7))) return false; return true; } void ImFont::SetGlyphVisible(ImWchar c, bool visible) { if (ImFontGlyph* glyph = (ImFontGlyph*)(void*)FindGlyph((ImWchar)c)) glyph->Visible = visible ? 1 : 0; } void ImFont::GrowIndex(int new_size) { IM_ASSERT(IndexAdvanceX.Size == IndexLookup.Size); if (new_size <= IndexLookup.Size) return; IndexAdvanceX.resize(new_size, -1.0f); IndexLookup.resize(new_size, (ImWchar)-1); } // x0/y0/x1/y1 are offset from the character upper-left layout position, in pixels. Therefore x0/y0 are often fairly close to zero. // Not to be mistaken with texture coordinates, which are held by u0/v0/u1/v1 in normalized format (0.0..1.0 on each texture axis). // 'cfg' is not necessarily == 'this->ConfigData' because multiple source fonts+configs can be used to build one target font. void ImFont::AddGlyph(const ImFontConfig* cfg, ImWchar codepoint, float x0, float y0, float x1, float y1, float u0, float v0, float u1, float v1, float advance_x) { if (cfg != NULL) { // Clamp & recenter if needed const float advance_x_original = advance_x; advance_x = ImClamp(advance_x, cfg->GlyphMinAdvanceX, cfg->GlyphMaxAdvanceX); if (advance_x != advance_x_original) { float char_off_x = cfg->PixelSnapH ? ImTrunc((advance_x - advance_x_original) * 0.5f) : (advance_x - advance_x_original) * 0.5f; x0 += char_off_x; x1 += char_off_x; } // Snap to pixel if (cfg->PixelSnapH) advance_x = IM_ROUND(advance_x); // Bake spacing advance_x += cfg->GlyphExtraSpacing.x; } Glyphs.resize(Glyphs.Size + 1); ImFontGlyph& glyph = Glyphs.back(); glyph.Codepoint = (unsigned int)codepoint; glyph.Visible = (x0 != x1) && (y0 != y1); glyph.Colored = false; glyph.X0 = x0; glyph.Y0 = y0; glyph.X1 = x1; glyph.Y1 = y1; glyph.U0 = u0; glyph.V0 = v0; glyph.U1 = u1; glyph.V1 = v1; glyph.AdvanceX = advance_x; // Compute rough surface usage metrics (+1 to account for average padding, +0.99 to round) // We use (U1-U0)*TexWidth instead of X1-X0 to account for oversampling. float pad = ContainerAtlas->TexGlyphPadding + 0.99f; DirtyLookupTables = true; MetricsTotalSurface += (int)((glyph.U1 - glyph.U0) * ContainerAtlas->TexWidth + pad) * (int)((glyph.V1 - glyph.V0) * ContainerAtlas->TexHeight + pad); } void ImFont::AddRemapChar(ImWchar dst, ImWchar src, bool overwrite_dst) { IM_ASSERT(IndexLookup.Size > 0); // Currently this can only be called AFTER the font has been built, aka after calling ImFontAtlas::GetTexDataAs*() function. unsigned int index_size = (unsigned int)IndexLookup.Size; if (dst < index_size && IndexLookup.Data[dst] == (ImWchar)-1 && !overwrite_dst) // 'dst' already exists return; if (src >= index_size && dst >= index_size) // both 'dst' and 'src' don't exist -> no-op return; GrowIndex(dst + 1); IndexLookup[dst] = (src < index_size) ? IndexLookup.Data[src] : (ImWchar)-1; IndexAdvanceX[dst] = (src < index_size) ? IndexAdvanceX.Data[src] : 1.0f; } const ImFontGlyph* ImFont::FindGlyph(ImWchar c) const { if (c >= (size_t)IndexLookup.Size) return FallbackGlyph; const ImWchar i = IndexLookup.Data[c]; if (i == (ImWchar)-1) return FallbackGlyph; return &Glyphs.Data[i]; } const ImFontGlyph* ImFont::FindGlyphNoFallback(ImWchar c) const { if (c >= (size_t)IndexLookup.Size) return NULL; const ImWchar i = IndexLookup.Data[c]; if (i == (ImWchar)-1) return NULL; return &Glyphs.Data[i]; } // Wrapping skips upcoming blanks static inline const char* CalcWordWrapNextLineStartA(const char* text, const char* text_end) { while (text < text_end && ImCharIsBlankA(*text)) text++; if (*text == '\n') text++; return text; } // Simple word-wrapping for English, not full-featured. Please submit failing cases! // This will return the next location to wrap from. If no wrapping if necessary, this will fast-forward to e.g. text_end. // FIXME: Much possible improvements (don't cut things like "word !", "word!!!" but cut within "word,,,,", more sensible support for punctuations, support for Unicode punctuations, etc.) const char* ImFont::CalcWordWrapPositionA(float scale, const char* text, const char* text_end, float wrap_width) const { // For references, possible wrap point marked with ^ // "aaa bbb, ccc,ddd. eee fff. ggg!" // ^ ^ ^ ^ ^__ ^ ^ // List of hardcoded separators: .,;!?'" // Skip extra blanks after a line returns (that includes not counting them in width computation) // e.g. "Hello world" --> "Hello" "World" // Cut words that cannot possibly fit within one line. // e.g.: "The tropical fish" with ~5 characters worth of width --> "The tr" "opical" "fish" float line_width = 0.0f; float word_width = 0.0f; float blank_width = 0.0f; wrap_width /= scale; // We work with unscaled widths to avoid scaling every characters const char* word_end = text; const char* prev_word_end = NULL; bool inside_word = true; const char* s = text; IM_ASSERT(text_end != NULL); while (s < text_end) { unsigned int c = (unsigned int)*s; const char* next_s; if (c < 0x80) next_s = s + 1; else next_s = s + ImTextCharFromUtf8(&c, s, text_end); if (c < 32) { if (c == '\n') { line_width = word_width = blank_width = 0.0f; inside_word = true; s = next_s; continue; } if (c == '\r') { s = next_s; continue; } } const float char_width = ((int)c < IndexAdvanceX.Size ? IndexAdvanceX.Data[c] : FallbackAdvanceX); if (ImCharIsBlankW(c)) { if (inside_word) { line_width += blank_width; blank_width = 0.0f; word_end = s; } blank_width += char_width; inside_word = false; } else { word_width += char_width; if (inside_word) { word_end = next_s; } else { prev_word_end = word_end; line_width += word_width + blank_width; word_width = blank_width = 0.0f; } // Allow wrapping after punctuation. inside_word = (c != '.' && c != ',' && c != ';' && c != '!' && c != '?' && c != '\"'); } // We ignore blank width at the end of the line (they can be skipped) if (line_width + word_width > wrap_width) { // Words that cannot possibly fit within an entire line will be cut anywhere. if (word_width < wrap_width) s = prev_word_end ? prev_word_end : word_end; break; } s = next_s; } // Wrap_width is too small to fit anything. Force displaying 1 character to minimize the height discontinuity. // +1 may not be a character start point in UTF-8 but it's ok because caller loops use (text >= word_wrap_eol). if (s == text && text < text_end) return s + 1; return s; } ImVec2 ImFont::CalcTextSizeA(float size, float max_width, float wrap_width, const char* text_begin, const char* text_end, const char** remaining) const { if (!text_end) text_end = text_begin + strlen(text_begin); // FIXME-OPT: Need to avoid this. const float line_height = size; const float scale = size / FontSize; ImVec2 text_size = ImVec2(0, 0); float line_width = 0.0f; const bool word_wrap_enabled = (wrap_width > 0.0f); const char* word_wrap_eol = NULL; const char* s = text_begin; while (s < text_end) { if (word_wrap_enabled) { // Calculate how far we can render. Requires two passes on the string data but keeps the code simple and not intrusive for what's essentially an uncommon feature. if (!word_wrap_eol) word_wrap_eol = CalcWordWrapPositionA(scale, s, text_end, wrap_width - line_width); if (s >= word_wrap_eol) { if (text_size.x < line_width) text_size.x = line_width; text_size.y += line_height; line_width = 0.0f; word_wrap_eol = NULL; s = CalcWordWrapNextLineStartA(s, text_end); // Wrapping skips upcoming blanks continue; } } // Decode and advance source const char* prev_s = s; unsigned int c = (unsigned int)*s; if (c < 0x80) s += 1; else s += ImTextCharFromUtf8(&c, s, text_end); if (c < 32) { if (c == '\n') { text_size.x = ImMax(text_size.x, line_width); text_size.y += line_height; line_width = 0.0f; continue; } if (c == '\r') continue; } const float char_width = ((int)c < IndexAdvanceX.Size ? IndexAdvanceX.Data[c] : FallbackAdvanceX) * scale; if (line_width + char_width >= max_width) { s = prev_s; break; } line_width += char_width; } if (text_size.x < line_width) text_size.x = line_width; if (line_width > 0 || text_size.y == 0.0f) text_size.y += line_height; if (remaining) *remaining = s; return text_size; } // Note: as with every ImDrawList drawing function, this expects that the font atlas texture is bound. void ImFont::RenderChar(ImDrawList* draw_list, float size, const ImVec2& pos, ImU32 col, ImWchar c) const { const ImFontGlyph* glyph = FindGlyph(c); if (!glyph || !glyph->Visible) return; if (glyph->Colored) col |= ~IM_COL32_A_MASK; float scale = (size >= 0.0f) ? (size / FontSize) : 1.0f; float x = IM_TRUNC(pos.x); float y = IM_TRUNC(pos.y); draw_list->PrimReserve(6, 4); draw_list->PrimRectUV(ImVec2(x + glyph->X0 * scale, y + glyph->Y0 * scale), ImVec2(x + glyph->X1 * scale, y + glyph->Y1 * scale), ImVec2(glyph->U0, glyph->V0), ImVec2(glyph->U1, glyph->V1), col); } // Note: as with every ImDrawList drawing function, this expects that the font atlas texture is bound. void ImFont::RenderText(ImDrawList* draw_list, float size, const ImVec2& pos, ImU32 col, const ImVec4& clip_rect, const char* text_begin, const char* text_end, float wrap_width, bool cpu_fine_clip) const { if (!text_end) text_end = text_begin + strlen(text_begin); // ImGui:: functions generally already provides a valid text_end, so this is merely to handle direct calls. // Align to be pixel perfect float x = IM_TRUNC(pos.x); float y = IM_TRUNC(pos.y); if (y > clip_rect.w) return; const float start_x = x; const float scale = size / FontSize; const float line_height = FontSize * scale; const bool word_wrap_enabled = (wrap_width > 0.0f); // Fast-forward to first visible line const char* s = text_begin; if (y + line_height < clip_rect.y) while (y + line_height < clip_rect.y && s < text_end) { const char* line_end = (const char*)memchr(s, '\n', text_end - s); if (word_wrap_enabled) { // FIXME-OPT: This is not optimal as do first do a search for \n before calling CalcWordWrapPositionA(). // If the specs for CalcWordWrapPositionA() were reworked to optionally return on \n we could combine both. // However it is still better than nothing performing the fast-forward! s = CalcWordWrapPositionA(scale, s, line_end ? line_end : text_end, wrap_width); s = CalcWordWrapNextLineStartA(s, text_end); } else { s = line_end ? line_end + 1 : text_end; } y += line_height; } // For large text, scan for the last visible line in order to avoid over-reserving in the call to PrimReserve() // Note that very large horizontal line will still be affected by the issue (e.g. a one megabyte string buffer without a newline will likely crash atm) if (text_end - s > 10000 && !word_wrap_enabled) { const char* s_end = s; float y_end = y; while (y_end < clip_rect.w && s_end < text_end) { s_end = (const char*)memchr(s_end, '\n', text_end - s_end); s_end = s_end ? s_end + 1 : text_end; y_end += line_height; } text_end = s_end; } if (s == text_end) return; // Reserve vertices for remaining worse case (over-reserving is useful and easily amortized) const int vtx_count_max = (int)(text_end - s) * 4; const int idx_count_max = (int)(text_end - s) * 6; const int idx_expected_size = draw_list->IdxBuffer.Size + idx_count_max; draw_list->PrimReserve(idx_count_max, vtx_count_max); ImDrawVert* vtx_write = draw_list->_VtxWritePtr; ImDrawIdx* idx_write = draw_list->_IdxWritePtr; unsigned int vtx_index = draw_list->_VtxCurrentIdx; const ImU32 col_untinted = col | ~IM_COL32_A_MASK; const char* word_wrap_eol = NULL; while (s < text_end) { if (word_wrap_enabled) { // Calculate how far we can render. Requires two passes on the string data but keeps the code simple and not intrusive for what's essentially an uncommon feature. if (!word_wrap_eol) word_wrap_eol = CalcWordWrapPositionA(scale, s, text_end, wrap_width - (x - start_x)); if (s >= word_wrap_eol) { x = start_x; y += line_height; word_wrap_eol = NULL; s = CalcWordWrapNextLineStartA(s, text_end); // Wrapping skips upcoming blanks continue; } } // Decode and advance source unsigned int c = (unsigned int)*s; if (c < 0x80) s += 1; else s += ImTextCharFromUtf8(&c, s, text_end); if (c < 32) { if (c == '\n') { x = start_x; y += line_height; if (y > clip_rect.w) break; // break out of main loop continue; } if (c == '\r') continue; } const ImFontGlyph* glyph = FindGlyph((ImWchar)c); if (glyph == NULL) continue; float char_width = glyph->AdvanceX * scale; if (glyph->Visible) { // We don't do a second finer clipping test on the Y axis as we've already skipped anything before clip_rect.y and exit once we pass clip_rect.w float x1 = x + glyph->X0 * scale; float x2 = x + glyph->X1 * scale; float y1 = y + glyph->Y0 * scale; float y2 = y + glyph->Y1 * scale; if (x1 <= clip_rect.z && x2 >= clip_rect.x) { // Render a character float u1 = glyph->U0; float v1 = glyph->V0; float u2 = glyph->U1; float v2 = glyph->V1; // CPU side clipping used to fit text in their frame when the frame is too small. Only does clipping for axis aligned quads. if (cpu_fine_clip) { if (x1 < clip_rect.x) { u1 = u1 + (1.0f - (x2 - clip_rect.x) / (x2 - x1)) * (u2 - u1); x1 = clip_rect.x; } if (y1 < clip_rect.y) { v1 = v1 + (1.0f - (y2 - clip_rect.y) / (y2 - y1)) * (v2 - v1); y1 = clip_rect.y; } if (x2 > clip_rect.z) { u2 = u1 + ((clip_rect.z - x1) / (x2 - x1)) * (u2 - u1); x2 = clip_rect.z; } if (y2 > clip_rect.w) { v2 = v1 + ((clip_rect.w - y1) / (y2 - y1)) * (v2 - v1); y2 = clip_rect.w; } if (y1 >= y2) { x += char_width; continue; } } // Support for untinted glyphs ImU32 glyph_col = glyph->Colored ? col_untinted : col; // We are NOT calling PrimRectUV() here because non-inlined causes too much overhead in a debug builds. Inlined here: { vtx_write[0].pos.x = x1; vtx_write[0].pos.y = y1; vtx_write[0].col = glyph_col; vtx_write[0].uv.x = u1; vtx_write[0].uv.y = v1; vtx_write[1].pos.x = x2; vtx_write[1].pos.y = y1; vtx_write[1].col = glyph_col; vtx_write[1].uv.x = u2; vtx_write[1].uv.y = v1; vtx_write[2].pos.x = x2; vtx_write[2].pos.y = y2; vtx_write[2].col = glyph_col; vtx_write[2].uv.x = u2; vtx_write[2].uv.y = v2; vtx_write[3].pos.x = x1; vtx_write[3].pos.y = y2; vtx_write[3].col = glyph_col; vtx_write[3].uv.x = u1; vtx_write[3].uv.y = v2; idx_write[0] = (ImDrawIdx)(vtx_index); idx_write[1] = (ImDrawIdx)(vtx_index + 1); idx_write[2] = (ImDrawIdx)(vtx_index + 2); idx_write[3] = (ImDrawIdx)(vtx_index); idx_write[4] = (ImDrawIdx)(vtx_index + 2); idx_write[5] = (ImDrawIdx)(vtx_index + 3); vtx_write += 4; vtx_index += 4; idx_write += 6; } } } x += char_width; } // Give back unused vertices (clipped ones, blanks) ~ this is essentially a PrimUnreserve() action. draw_list->VtxBuffer.Size = (int)(vtx_write - draw_list->VtxBuffer.Data); // Same as calling shrink() draw_list->IdxBuffer.Size = (int)(idx_write - draw_list->IdxBuffer.Data); draw_list->CmdBuffer[draw_list->CmdBuffer.Size - 1].ElemCount -= (idx_expected_size - draw_list->IdxBuffer.Size); draw_list->_VtxWritePtr = vtx_write; draw_list->_IdxWritePtr = idx_write; draw_list->_VtxCurrentIdx = vtx_index; } //----------------------------------------------------------------------------- // [SECTION] ImGui Internal Render Helpers //----------------------------------------------------------------------------- // Vaguely redesigned to stop accessing ImGui global state: // - RenderArrow() // - RenderBullet() // - RenderCheckMark() // - RenderArrowPointingAt() // - RenderRectFilledRangeH() // - RenderRectFilledWithHole() //----------------------------------------------------------------------------- // Function in need of a redesign (legacy mess) // - RenderColorRectWithAlphaCheckerboard() //----------------------------------------------------------------------------- // Render an arrow aimed to be aligned with text (p_min is a position in the same space text would be positioned). To e.g. denote expanded/collapsed state void ImGui::RenderArrow(ImDrawList* draw_list, ImVec2 pos, ImU32 col, ImGuiDir dir, float scale) { const float h = draw_list->_Data->FontSize * 1.00f; float r = h * 0.40f * scale; ImVec2 center = pos + ImVec2(h * 0.50f, h * 0.50f * scale); ImVec2 a, b, c; switch (dir) { case ImGuiDir_Up: case ImGuiDir_Down: if (dir == ImGuiDir_Up) r = -r; a = ImVec2(+0.000f, +0.750f) * r; b = ImVec2(-0.866f, -0.750f) * r; c = ImVec2(+0.866f, -0.750f) * r; break; case ImGuiDir_Left: case ImGuiDir_Right: if (dir == ImGuiDir_Left) r = -r; a = ImVec2(+0.750f, +0.000f) * r; b = ImVec2(-0.750f, +0.866f) * r; c = ImVec2(-0.750f, -0.866f) * r; break; case ImGuiDir_None: case ImGuiDir_COUNT: IM_ASSERT(0); break; } draw_list->AddTriangleFilled(center + a, center + b, center + c, col); } void ImGui::RenderBullet(ImDrawList* draw_list, ImVec2 pos, ImU32 col) { // FIXME-OPT: This should be baked in font. draw_list->AddCircleFilled(pos, draw_list->_Data->FontSize * 0.20f, col, 8); } void ImGui::RenderCheckMark(ImDrawList* draw_list, ImVec2 pos, ImU32 col, float sz) { float thickness = ImMax(sz / 5.0f, 1.0f); sz -= thickness * 0.5f; pos += ImVec2(thickness * 0.25f, thickness * 0.25f); float third = sz / 3.0f; float bx = pos.x + third; float by = pos.y + sz - third * 0.5f; draw_list->PathLineTo(ImVec2(bx - third, by - third)); draw_list->PathLineTo(ImVec2(bx, by)); draw_list->PathLineTo(ImVec2(bx + third * 2.0f, by - third * 2.0f)); draw_list->PathStroke(col, 0, thickness); } // Render an arrow. 'pos' is position of the arrow tip. half_sz.x is length from base to tip. half_sz.y is length on each side. void ImGui::RenderArrowPointingAt(ImDrawList* draw_list, ImVec2 pos, ImVec2 half_sz, ImGuiDir direction, ImU32 col) { switch (direction) { case ImGuiDir_Left: draw_list->AddTriangleFilled(ImVec2(pos.x + half_sz.x, pos.y - half_sz.y), ImVec2(pos.x + half_sz.x, pos.y + half_sz.y), pos, col); return; case ImGuiDir_Right: draw_list->AddTriangleFilled(ImVec2(pos.x - half_sz.x, pos.y + half_sz.y), ImVec2(pos.x - half_sz.x, pos.y - half_sz.y), pos, col); return; case ImGuiDir_Up: draw_list->AddTriangleFilled(ImVec2(pos.x + half_sz.x, pos.y + half_sz.y), ImVec2(pos.x - half_sz.x, pos.y + half_sz.y), pos, col); return; case ImGuiDir_Down: draw_list->AddTriangleFilled(ImVec2(pos.x - half_sz.x, pos.y - half_sz.y), ImVec2(pos.x + half_sz.x, pos.y - half_sz.y), pos, col); return; case ImGuiDir_None: case ImGuiDir_COUNT: break; // Fix warnings } } static inline float ImAcos01(float x) { if (x <= 0.0f) return IM_PI * 0.5f; if (x >= 1.0f) return 0.0f; return ImAcos(x); //return (-0.69813170079773212f * x * x - 0.87266462599716477f) * x + 1.5707963267948966f; // Cheap approximation, may be enough for what we do. } // FIXME: Cleanup and move code to ImDrawList. void ImGui::RenderRectFilledRangeH(ImDrawList* draw_list, const ImRect& rect, ImU32 col, float x_start_norm, float x_end_norm, float rounding) { if (x_end_norm == x_start_norm) return; if (x_start_norm > x_end_norm) ImSwap(x_start_norm, x_end_norm); ImVec2 p0 = ImVec2(ImLerp(rect.Min.x, rect.Max.x, x_start_norm), rect.Min.y); ImVec2 p1 = ImVec2(ImLerp(rect.Min.x, rect.Max.x, x_end_norm), rect.Max.y); if (rounding == 0.0f) { draw_list->AddRectFilled(p0, p1, col, 0.0f); return; } rounding = ImClamp(ImMin((rect.Max.x - rect.Min.x) * 0.5f, (rect.Max.y - rect.Min.y) * 0.5f) - 1.0f, 0.0f, rounding); const float inv_rounding = 1.0f / rounding; const float arc0_b = ImAcos01(1.0f - (p0.x - rect.Min.x) * inv_rounding); const float arc0_e = ImAcos01(1.0f - (p1.x - rect.Min.x) * inv_rounding); const float half_pi = IM_PI * 0.5f; // We will == compare to this because we know this is the exact value ImAcos01 can return. const float x0 = ImMax(p0.x, rect.Min.x + rounding); if (arc0_b == arc0_e) { draw_list->PathLineTo(ImVec2(x0, p1.y)); draw_list->PathLineTo(ImVec2(x0, p0.y)); } else if (arc0_b == 0.0f && arc0_e == half_pi) { draw_list->PathArcToFast(ImVec2(x0, p1.y - rounding), rounding, 3, 6); // BL draw_list->PathArcToFast(ImVec2(x0, p0.y + rounding), rounding, 6, 9); // TR } else { draw_list->PathArcTo(ImVec2(x0, p1.y - rounding), rounding, IM_PI - arc0_e, IM_PI - arc0_b, 3); // BL draw_list->PathArcTo(ImVec2(x0, p0.y + rounding), rounding, IM_PI + arc0_b, IM_PI + arc0_e, 3); // TR } if (p1.x > rect.Min.x + rounding) { const float arc1_b = ImAcos01(1.0f - (rect.Max.x - p1.x) * inv_rounding); const float arc1_e = ImAcos01(1.0f - (rect.Max.x - p0.x) * inv_rounding); const float x1 = ImMin(p1.x, rect.Max.x - rounding); if (arc1_b == arc1_e) { draw_list->PathLineTo(ImVec2(x1, p0.y)); draw_list->PathLineTo(ImVec2(x1, p1.y)); } else if (arc1_b == 0.0f && arc1_e == half_pi) { draw_list->PathArcToFast(ImVec2(x1, p0.y + rounding), rounding, 9, 12); // TR draw_list->PathArcToFast(ImVec2(x1, p1.y - rounding), rounding, 0, 3); // BR } else { draw_list->PathArcTo(ImVec2(x1, p0.y + rounding), rounding, -arc1_e, -arc1_b, 3); // TR draw_list->PathArcTo(ImVec2(x1, p1.y - rounding), rounding, +arc1_b, +arc1_e, 3); // BR } } draw_list->PathFillConvex(col); } void ImGui::RenderRectFilledWithHole(ImDrawList* draw_list, const ImRect& outer, const ImRect& inner, ImU32 col, float rounding) { const bool fill_L = (inner.Min.x > outer.Min.x); const bool fill_R = (inner.Max.x < outer.Max.x); const bool fill_U = (inner.Min.y > outer.Min.y); const bool fill_D = (inner.Max.y < outer.Max.y); if (fill_L) draw_list->AddRectFilled(ImVec2(outer.Min.x, inner.Min.y), ImVec2(inner.Min.x, inner.Max.y), col, rounding, ImDrawFlags_RoundCornersNone | (fill_U ? 0 : ImDrawFlags_RoundCornersTopLeft) | (fill_D ? 0 : ImDrawFlags_RoundCornersBottomLeft)); if (fill_R) draw_list->AddRectFilled(ImVec2(inner.Max.x, inner.Min.y), ImVec2(outer.Max.x, inner.Max.y), col, rounding, ImDrawFlags_RoundCornersNone | (fill_U ? 0 : ImDrawFlags_RoundCornersTopRight) | (fill_D ? 0 : ImDrawFlags_RoundCornersBottomRight)); if (fill_U) draw_list->AddRectFilled(ImVec2(inner.Min.x, outer.Min.y), ImVec2(inner.Max.x, inner.Min.y), col, rounding, ImDrawFlags_RoundCornersNone | (fill_L ? 0 : ImDrawFlags_RoundCornersTopLeft) | (fill_R ? 0 : ImDrawFlags_RoundCornersTopRight)); if (fill_D) draw_list->AddRectFilled(ImVec2(inner.Min.x, inner.Max.y), ImVec2(inner.Max.x, outer.Max.y), col, rounding, ImDrawFlags_RoundCornersNone | (fill_L ? 0 : ImDrawFlags_RoundCornersBottomLeft) | (fill_R ? 0 : ImDrawFlags_RoundCornersBottomRight)); if (fill_L && fill_U) draw_list->AddRectFilled(ImVec2(outer.Min.x, outer.Min.y), ImVec2(inner.Min.x, inner.Min.y), col, rounding, ImDrawFlags_RoundCornersTopLeft); if (fill_R && fill_U) draw_list->AddRectFilled(ImVec2(inner.Max.x, outer.Min.y), ImVec2(outer.Max.x, inner.Min.y), col, rounding, ImDrawFlags_RoundCornersTopRight); if (fill_L && fill_D) draw_list->AddRectFilled(ImVec2(outer.Min.x, inner.Max.y), ImVec2(inner.Min.x, outer.Max.y), col, rounding, ImDrawFlags_RoundCornersBottomLeft); if (fill_R && fill_D) draw_list->AddRectFilled(ImVec2(inner.Max.x, inner.Max.y), ImVec2(outer.Max.x, outer.Max.y), col, rounding, ImDrawFlags_RoundCornersBottomRight); } // Helper for ColorPicker4() // NB: This is rather brittle and will show artifact when rounding this enabled if rounded corners overlap multiple cells. Caller currently responsible for avoiding that. // Spent a non reasonable amount of time trying to getting this right for ColorButton with rounding+anti-aliasing+ImGuiColorEditFlags_HalfAlphaPreview flag + various grid sizes and offsets, and eventually gave up... probably more reasonable to disable rounding altogether. // FIXME: uses ImGui::GetColorU32 void ImGui::RenderColorRectWithAlphaCheckerboard(ImDrawList* draw_list, ImVec2 p_min, ImVec2 p_max, ImU32 col, float grid_step, ImVec2 grid_off, float rounding, ImDrawFlags flags) { if ((flags & ImDrawFlags_RoundCornersMask_) == 0) flags = ImDrawFlags_RoundCornersDefault_; if (((col & IM_COL32_A_MASK) >> IM_COL32_A_SHIFT) < 0xFF) { ImU32 col_bg1 = GetColorU32(ImAlphaBlendColors(IM_COL32(204, 204, 204, 255), col)); ImU32 col_bg2 = GetColorU32(ImAlphaBlendColors(IM_COL32(128, 128, 128, 255), col)); draw_list->AddRectFilled(p_min, p_max, col_bg1, rounding, flags); int yi = 0; for (float y = p_min.y + grid_off.y; y < p_max.y; y += grid_step, yi++) { float y1 = ImClamp(y, p_min.y, p_max.y), y2 = ImMin(y + grid_step, p_max.y); if (y2 <= y1) continue; for (float x = p_min.x + grid_off.x + (yi & 1) * grid_step; x < p_max.x; x += grid_step * 2.0f) { float x1 = ImClamp(x, p_min.x, p_max.x), x2 = ImMin(x + grid_step, p_max.x); if (x2 <= x1) continue; ImDrawFlags cell_flags = ImDrawFlags_RoundCornersNone; if (y1 <= p_min.y) { if (x1 <= p_min.x) cell_flags |= ImDrawFlags_RoundCornersTopLeft; if (x2 >= p_max.x) cell_flags |= ImDrawFlags_RoundCornersTopRight; } if (y2 >= p_max.y) { if (x1 <= p_min.x) cell_flags |= ImDrawFlags_RoundCornersBottomLeft; if (x2 >= p_max.x) cell_flags |= ImDrawFlags_RoundCornersBottomRight; } // Combine flags cell_flags = (flags == ImDrawFlags_RoundCornersNone || cell_flags == ImDrawFlags_RoundCornersNone) ? ImDrawFlags_RoundCornersNone : (cell_flags & flags); draw_list->AddRectFilled(ImVec2(x1, y1), ImVec2(x2, y2), col_bg2, rounding, cell_flags); } } } else { draw_list->AddRectFilled(p_min, p_max, col, rounding, flags); } } //----------------------------------------------------------------------------- // [SECTION] Decompression code //----------------------------------------------------------------------------- // Compressed with stb_compress() then converted to a C array and encoded as base85. // Use the program in misc/fonts/binary_to_compressed_c.cpp to create the array from a TTF file. // The purpose of encoding as base85 instead of "0x00,0x01,..." style is only save on _source code_ size. // Decompression from stb.h (public domain) by Sean Barrett https://github.com/nothings/stb/blob/master/stb.h //----------------------------------------------------------------------------- static unsigned int stb_decompress_length(const unsigned char *input) { return (input[8] << 24) + (input[9] << 16) + (input[10] << 8) + input[11]; } static unsigned char *stb__barrier_out_e, *stb__barrier_out_b; static const unsigned char *stb__barrier_in_b; static unsigned char *stb__dout; static void stb__match(const unsigned char *data, unsigned int length) { // INVERSE of memmove... write each byte before copying the next... IM_ASSERT(stb__dout + length <= stb__barrier_out_e); if (stb__dout + length > stb__barrier_out_e) { stb__dout += length; return; } if (data < stb__barrier_out_b) { stb__dout = stb__barrier_out_e+1; return; } while (length--) *stb__dout++ = *data++; } static void stb__lit(const unsigned char *data, unsigned int length) { IM_ASSERT(stb__dout + length <= stb__barrier_out_e); if (stb__dout + length > stb__barrier_out_e) { stb__dout += length; return; } if (data < stb__barrier_in_b) { stb__dout = stb__barrier_out_e+1; return; } memcpy(stb__dout, data, length); stb__dout += length; } #define stb__in2(x) ((i[x] << 8) + i[(x)+1]) #define stb__in3(x) ((i[x] << 16) + stb__in2((x)+1)) #define stb__in4(x) ((i[x] << 24) + stb__in3((x)+1)) static const unsigned char *stb_decompress_token(const unsigned char *i) { if (*i >= 0x20) { // use fewer if's for cases that expand small if (*i >= 0x80) stb__match(stb__dout-i[1]-1, i[0] - 0x80 + 1), i += 2; else if (*i >= 0x40) stb__match(stb__dout-(stb__in2(0) - 0x4000 + 1), i[2]+1), i += 3; else /* *i >= 0x20 */ stb__lit(i+1, i[0] - 0x20 + 1), i += 1 + (i[0] - 0x20 + 1); } else { // more ifs for cases that expand large, since overhead is amortized if (*i >= 0x18) stb__match(stb__dout-(stb__in3(0) - 0x180000 + 1), i[3]+1), i += 4; else if (*i >= 0x10) stb__match(stb__dout-(stb__in3(0) - 0x100000 + 1), stb__in2(3)+1), i += 5; else if (*i >= 0x08) stb__lit(i+2, stb__in2(0) - 0x0800 + 1), i += 2 + (stb__in2(0) - 0x0800 + 1); else if (*i == 0x07) stb__lit(i+3, stb__in2(1) + 1), i += 3 + (stb__in2(1) + 1); else if (*i == 0x06) stb__match(stb__dout-(stb__in3(1)+1), i[4]+1), i += 5; else if (*i == 0x04) stb__match(stb__dout-(stb__in3(1)+1), stb__in2(4)+1), i += 6; } return i; } static unsigned int stb_adler32(unsigned int adler32, unsigned char *buffer, unsigned int buflen) { const unsigned long ADLER_MOD = 65521; unsigned long s1 = adler32 & 0xffff, s2 = adler32 >> 16; unsigned long blocklen = buflen % 5552; unsigned long i; while (buflen) { for (i=0; i + 7 < blocklen; i += 8) { s1 += buffer[0], s2 += s1; s1 += buffer[1], s2 += s1; s1 += buffer[2], s2 += s1; s1 += buffer[3], s2 += s1; s1 += buffer[4], s2 += s1; s1 += buffer[5], s2 += s1; s1 += buffer[6], s2 += s1; s1 += buffer[7], s2 += s1; buffer += 8; } for (; i < blocklen; ++i) s1 += *buffer++, s2 += s1; s1 %= ADLER_MOD, s2 %= ADLER_MOD; buflen -= blocklen; blocklen = 5552; } return (unsigned int)(s2 << 16) + (unsigned int)s1; } static unsigned int stb_decompress(unsigned char *output, const unsigned char *i, unsigned int /*length*/) { if (stb__in4(0) != 0x57bC0000) return 0; if (stb__in4(4) != 0) return 0; // error! stream is > 4GB const unsigned int olen = stb_decompress_length(i); stb__barrier_in_b = i; stb__barrier_out_e = output + olen; stb__barrier_out_b = output; i += 16; stb__dout = output; for (;;) { const unsigned char *old_i = i; i = stb_decompress_token(i); if (i == old_i) { if (*i == 0x05 && i[1] == 0xfa) { IM_ASSERT(stb__dout == output + olen); if (stb__dout != output + olen) return 0; if (stb_adler32(1, output, olen) != (unsigned int) stb__in4(2)) return 0; return olen; } else { IM_ASSERT(0); /* NOTREACHED */ return 0; } } IM_ASSERT(stb__dout <= output + olen); if (stb__dout > output + olen) return 0; } } //----------------------------------------------------------------------------- // [SECTION] Default font data (ProggyClean.ttf) //----------------------------------------------------------------------------- // ProggyClean.ttf // Copyright (c) 2004, 2005 Tristan Grimmer // MIT license (see License.txt in http://www.upperbounds.net/download/ProggyClean.ttf.zip) // Download and more information at http://upperbounds.net //----------------------------------------------------------------------------- // File: 'ProggyClean.ttf' (41208 bytes) // Exported using misc/fonts/binary_to_compressed_c.cpp (with compression + base85 string encoding). // The purpose of encoding as base85 instead of "0x00,0x01,..." style is only save on _source code_ size. //----------------------------------------------------------------------------- static const char proggy_clean_ttf_compressed_data_base85[11980 + 1] = "7])#######hV0qs'/###[),##/l:$#Q6>##5[n42>c-TH`->>#/e>11NNV=Bv(*:.F?uu#(gRU.o0XGH`$vhLG1hxt9?W`#,5LsCp#-i>.r$<$6pD>Lb';9Crc6tgXmKVeU2cD4Eo3R/" "2*>]b(MC;$jPfY.;h^`IWM9Qo#t'X#(v#Y9w0#1D$CIf;W'#pWUPXOuxXuU(H9M(1=Ke$$'5F%)]0^#0X@U.a$FBjVQTSDgEKnIS7EM9>ZY9w0#L;>>#Mx&4Mvt//L[MkA#W@lK.N'[0#7RL_&#w+F%HtG9M#XL`N&.,GM4Pg;--VsM.M0rJfLH2eTM`*oJMHRC`N" "kfimM2J,W-jXS:)r0wK#@Fge$U>`w'N7G#$#fB#$E^$#:9:hk+eOe--6x)F7*E%?76%^GMHePW-Z5l'&GiF#$956:rS?dA#fiK:)Yr+`�j@'DbG&#^$PG.Ll+DNa&VZ>1i%h1S9u5o@YaaW$e+bROPOpxTO7Stwi1::iB1q)C_=dV26J;2,]7op$]uQr@_V7$q^%lQwtuHY]=DX,n3L#0PHDO4f9>dC@O>HBuKPpP*E,N+b3L#lpR/MrTEH.IAQk.a>D[.e;mc." "x]Ip.PH^'/aqUO/$1WxLoW0[iLAw=4h(9.`G" "CRUxHPeR`5Mjol(dUWxZa(>STrPkrJiWx`5U7F#.g*jrohGg`cg:lSTvEY/EV_7H4Q9[Z%cnv;JQYZ5q.l7Zeas:HOIZOB?Ggv:[7MI2k).'2($5FNP&EQ(,)" "U]W]+fh18.vsai00);D3@4ku5P?DP8aJt+;qUM]=+b'8@;mViBKx0DE[-auGl8:PJ&Dj+M6OC]O^((##]`0i)drT;-7X`=-H3[igUnPG-NZlo.#k@h#=Ork$m>a>$-?Tm$UV(?#P6YY#" "'/###xe7q.73rI3*pP/$1>s9)W,JrM7SN]'/4C#v$U`0#V.[0>xQsH$fEmPMgY2u7Kh(G%siIfLSoS+MK2eTM$=5,M8p`A.;_R%#u[K#$x4AG8.kK/HSB==-'Ie/QTtG?-.*^N-4B/ZM" "_3YlQC7(p7q)&](`6_c)$/*JL(L-^(]$wIM`dPtOdGA,U3:w2M-0+WomX2u7lqM2iEumMTcsF?-aT=Z-97UEnXglEn1K-bnEO`gu" "Ft(c%=;Am_Qs@jLooI&NX;]0#j4#F14;gl8-GQpgwhrq8'=l_f-b49'UOqkLu7-##oDY2L(te+Mch&gLYtJ,MEtJfLh'x'M=$CS-ZZ%P]8bZ>#S?YY#%Q&q'3^Fw&?D)UDNrocM3A76/" "/oL?#h7gl85[qW/NDOk%16ij;+:1a'iNIdb-ou8.P*w,v5#EI$TWS>Pot-R*H'-SEpA:g)f+O$%%`kA#G=8RMmG1&O`>to8bC]T&$,n.LoO>29sp3dt-52U%VM#q7'DHpg+#Z9%H[Ket`e;)f#Km8&+DC$I46>#Kr]]u-[=99tts1.qb#q72g1WJO81q+eN'03'eM>&1XxY-caEnO" "j%2n8)),?ILR5^.Ibn<-X-Mq7[a82Lq:F&#ce+S9wsCK*x`569E8ew'He]h:sI[2LM$[guka3ZRd6:t%IG:;$%YiJ:Nq=?eAw;/:nnDq0(CYcMpG)qLN4$##&J-XTt,%OVU4)S1+R-#dg0/Nn?Ku1^0f$B*P:Rowwm-`0PKjYDDM'3]d39VZHEl4,.j']Pk-M.h^&:0FACm$maq-&sgw0t7/6(^xtk%" "LuH88Fj-ekm>GA#_>568x6(OFRl-IZp`&b,_P'$MhLbxfc$mj`,O;&%W2m`Zh:/)Uetw:aJ%]K9h:TcF]u_-Sj9,VK3M.*'&0D[Ca]J9gp8,kAW]" "%(?A%R$f<->Zts'^kn=-^@c4%-pY6qI%J%1IGxfLU9CP8cbPlXv);C=b),<2mOvP8up,UVf3839acAWAW-W?#ao/^#%KYo8fRULNd2.>%m]UK:n%r$'sw]J;5pAoO_#2mO3n,'=H5(et" "Hg*`+RLgv>=4U8guD$I%D:W>-r5V*%j*W:Kvej.Lp$'?;++O'>()jLR-^u68PHm8ZFWe+ej8h:9r6L*0//c&iH&R8pRbA#Kjm%upV1g:" "a_#Ur7FuA#(tRh#.Y5K+@?3<-8m0$PEn;J:rh6?I6uG<-`wMU'ircp0LaE_OtlMb&1#6T.#FDKu#1Lw%u%+GM+X'e?YLfjM[VO0MbuFp7;>Q&#WIo)0@F%q7c#4XAXN-U&VBpqB>0ie&jhZ[?iLR@@_AvA-iQC(=ksRZRVp7`.=+NpBC%rh&3]R:8XDmE5^V8O(x<-+k?'(^](H.aREZSi,#1:[IXaZFOm<-ui#qUq2$##Ri;u75OK#(RtaW-K-F`S+cF]uN`-KMQ%rP/Xri.LRcB##=YL3BgM/3M" "D?@f&1'BW-)Ju#bmmWCMkk&#TR`C,5d>g)F;t,4:@_l8G/5h4vUd%&%950:VXD'QdWoY-F$BtUwmfe$YqL'8(PWX(" "P?^@Po3$##`MSs?DWBZ/S>+4%>fX,VWv/w'KD`LP5IbH;rTV>n3cEK8U#bX]l-/V+^lj3;vlMb&[5YQ8#pekX9JP3XUC72L,,?+Ni&co7ApnO*5NK,((W-i:$,kp'UDAO(G0Sq7MVjJs" "bIu)'Z,*[>br5fX^:FPAWr-m2KgLQ_nN6'8uTGT5g)uLv:873UpTLgH+#FgpH'_o1780Ph8KmxQJ8#H72L4@768@Tm&Q" "h4CB/5OvmA&,Q&QbUoi$a_%3M01H)4x7I^&KQVgtFnV+;[Pc>[m4k//,]1?#`VY[Jr*3&&slRfLiVZJ:]?=K3Sw=[$=uRB?3xk48@aege0jT6'N#(q%.O=?2S]u*(m<-" "V8J'(1)G][68hW$5'q[GC&5j`TE?m'esFGNRM)j,ffZ?-qx8;->g4t*:CIP/[Qap7/9'#(1sao7w-.qNUdkJ)tCF&#B^;xGvn2r9FEPFFFcL@.iFNkTve$m%#QvQS8U@)2Z+3K:AKM5i" "sZ88+dKQ)W6>J%CL`.d*(B`-n8D9oK-XV1q['-5k'cAZ69e;D_?$ZPP&s^+7])$*$#@QYi9,5P r+$%CE=68>K8r0=dSC%%(@p7" ".m7jilQ02'0-VWAgTlGW'b)Tq7VT9q^*^$$.:&N@@" "$&)WHtPm*5_rO0&e%K&#-30j(E4#'Zb.o/(Tpm$>K'f@[PvFl,hfINTNU6u'0pao7%XUp9]5.>%h`8_=VYbxuel.NTSsJfLacFu3B'lQSu/m6-Oqem8T+oE--$0a/k]uj9EwsG>%veR*" "hv^BFpQj:K'#SJ,sB-'#](j.Lg92rTw-*n%@/;39rrJF,l#qV%OrtBeC6/,;qB3ebNW[?,Hqj2L.1NP&GjUR=1D8QaS3Up&@*9wP?+lo7b?@%'k4`p0Z$22%K3+iCZj?XJN4Nm&+YF]u" "@-W$U%VEQ/,,>>#)D#%8cY#YZ?=,`Wdxu/ae&#" "w6)R89tI#6@s'(6Bf7a&?S=^ZI_kS&ai`&=tE72L_D,;^R)7[$so8lKN%5/$(vdfq7+ebA#" "u1p]ovUKW&Y%q]'>$1@-[xfn$7ZTp7mM,G,Ko7a&Gu%G[RMxJs[0MM%wci.LFDK)(%:_i2B5CsR8&9Z&#=mPEnm0f`<&c)QL5uJ#%u%lJj+D-r;BoFDoS97h5g)E#o:&S4weDF,9^Hoe`h*L+_a*NrLW-1pG_&2UdB8" "6e%B/:=>)N4xeW.*wft-;$'58-ESqr#U`'6AQ]m&6/`Z>#S?YY#Vc;r7U2&326d=w&H####?TZ`*4?&.MK?LP8Vxg>$[QXc%QJv92.(Db*B)gb*BM9dM*hJMAo*c&#" "b0v=Pjer]$gG&JXDf->'StvU7505l9$AFvgYRI^&<^b68?j#q9QX4SM'RO#&sL1IM.rJfLUAj221]d##DW=m83u5;'bYx,*Sl0hL(W;;$doB&O/TQ:(Z^xBdLjLV#*8U_72Lh+2Q8Cj0i:6hp&$C/:p(HK>T8Y[gHQ4`4)'$Ab(Nof%V'8hL&#SfD07&6D@M.*J:;$-rv29'M]8qMv-tLp,'886iaC=Hb*YJoKJ,(j%K=H`K.v9HggqBIiZu'QvBT.#=)0ukruV&.)3=(^1`o*Pj4<-#MJ+gLq9-##@HuZPN0]u:h7.T..G:;$/Usj(T7`Q8tT72LnYl<-qx8;-HV7Q-&Xdx%1a,hC=0u+HlsV>nuIQL-5" "_>@kXQtMacfD.m-VAb8;IReM3$wf0''hra*so568'Ip&vRs849'MRYSp%:t:h5qSgwpEr$B>Q,;s(C#$)`svQuF$##-D,##,g68@2[T;.XSdN9Qe)rpt._K-#5wF)sP'##p#C0c%-Gb%" "hd+<-j'Ai*x&&HMkT]C'OSl##5RG[JXaHN;d'uA#x._U;.`PU@(Z3dt4r152@:v,'R.Sj'w#0<-;kPI)FfJ&#AYJ&#//)>-k=m=*XnK$>=)72L]0I%>.G690a:$##<,);?;72#?x9+d;" "^V'9;jY@;)br#q^YQpx:X#Te$Z^'=-=bGhLf:D6&bNwZ9-ZD#n^9HhLMr5G;']d&6'wYmTFmLq9wI>P(9mI[>kC-ekLC/R&CH+s'B;K-M6$EB%is00:" "+A4[7xks.LrNk0&E)wILYF@2L'0Nb$+pv<(2.768/FrY&h$^3i&@+G%JT'<-,v`3;_)I9M^AE]CN?Cl2AZg+%4iTpT3$U4O]GKx'm9)b@p7YsvK3w^YR-" "CdQ*:Ir<($u&)#(&?L9Rg3H)4fiEp^iI9O8KnTj,]H?D*r7'M;PwZ9K0E^k&-cpI;.p/6_vwoFMV<->#%Xi.LxVnrU(4&8/P+:hLSKj$#U%]49t'I:rgMi'FL@a:0Y-uA[39',(vbma*" "hU%<-SRF`Tt:542R_VV$p@[p8DV[A,?1839FWdFTi1O*H&#(AL8[_P%.M>v^-))qOT*F5Cq0`Ye%+$B6i:7@0IXSsDiWP,##P`%/L-" "S(qw%sf/@%#B6;/U7K]uZbi^Oc^2n%t<)'mEVE''n`WnJra$^TKvX5B>;_aSEK',(hwa0:i4G?.Bci.(X[?b*($,=-n<.Q%`(X=?+@Am*Js0&=3bh8K]mL69=Lb,OcZV/);TTm8VI;?%OtJ<(b4mq7M6:u?KRdFl*:xP?Yb.5)%w_I?7uk5JC+FS(m#i'k.'a0i)9<7b'fs'59hq$*5Uhv##pi^8+hIEBF`nvo`;'l0.^S1<-wUK2/Coh58KKhLj" "M=SO*rfO`+qC`W-On.=AJ56>>i2@2LH6A:&5q`?9I3@@'04&p2/LVa*T-4<-i3;M9UvZd+N7>b*eIwg:CC)c<>nO&#$(>.Z-I&J(Q0Hd5Q%7Co-b`-cP)hI;*_F]u`Rb[.j8_Q/<&>uu+VsH$sM9TA%?)(vmJ80),P7E>)tjD%2L=-t#fK[%`v=Q8WlA2);Sa" ">gXm8YB`1d@K#n]76-a$U,mF%Ul:#/'xoFM9QX-$.QN'>" "[%$Z$uF6pA6Ki2O5:8w*vP1<-1`[G,)-m#>0`P&#eb#.3i)rtB61(o'$?X3B2Qft^ae_5tKL9MUe9b*sLEQ95C&`=G?@Mj=wh*'3E>=-<)Gt*Iw)'QG:`@I" "wOf7&]1i'S01B+Ev/Nac#9S;=;YQpg_6U`*kVY39xK,[/6Aj7:'1Bm-_1EYfa1+o&o4hp7KN_Q(OlIo@S%;jVdn0'1h19w,WQhLI)3S#f$2(eb,jr*b;3Vw]*7NH%$c4Vs,eD9>XW8?N]o+(*pgC%/72LV-uW%iewS8W6m2rtCpo'RS1R84=@paTKt)>=%&1[)*vp'u+x,VrwN;&]kuO9JDbg=pO$J*.jVe;u'm0dr9l,<*wMK*Oe=g8lV_KEBFkO'oU]^=[-792#ok,)" "i]lR8qQ2oA8wcRCZ^7w/Njh;?.stX?Q1>S1q4Bn$)K1<-rGdO'$Wr.Lc.CG)$/*JL4tNR/,SVO3,aUw'DJN:)Ss;wGn9A32ijw%FL+Z0Fn.U9;reSq)bmI32U==5ALuG&#Vf1398/pVo" "1*c-(aY168o<`JsSbk-,1N;$>0:OUas(3:8Z972LSfF8eb=c-;>SPw7.6hn3m`9^Xkn(r.qS[0;T%&Qc=+STRxX'q1BNk3&*eu2;&8q$&x>Q#Q7^Tf+6<(d%ZVmj2bDi%.3L2n+4W'$P" "iDDG)g,r%+?,$@?uou5tSe2aN_AQU*'IAO" "URQ##V^Fv-XFbGM7Fl(N<3DhLGF%q.1rC$#:T__&Pi68%0xi_&[qFJ(77j_&JWoF.V735&T,[R*:xFR*K5>>#`bW-?4Ne_&6Ne_&6Ne_&n`kr-#GJcM6X;uM6X;uM(.a..^2TkL%oR(#" ";u.T%fAr%4tJ8&><1=GHZ_+m9/#H1F^R#SC#*N=BA9(D?v[UiFY>>^8p,KKF.W]L29uLkLlu/+4T" "w$)F./^n3+rlo+DB;5sIYGNk+i1t-69Jg--0pao7Sm#K)pdHW&;LuDNH@H>#/X-TI(;P>#,Gc>#0Su>#4`1?#8lC?#xL$#B.`$#F:r$#JF.%#NR@%#R_R%#Vke%#Zww%#_-4^Rh%Sflr-k'MS.o?.5/sWel/wpEM0%3'/1)K^f1-d>G21&v(35>V`39V7A4=onx4" "A1OY5EI0;6Ibgr6M$HS7Q<)58C5w,;WoA*#[%T*#`1g*#d=#+#hI5+#lUG+#pbY+#tnl+#x$),#&1;,#*=M,#.I`,#2Ur,#6b.-#;w[H#iQtA#m^0B#qjBB#uvTB##-hB#'9$C#+E6C#" "/QHC#3^ZC#7jmC#;v)D#?,)4kMYD4lVu`4m`:&5niUA5@(A5BA1]PBB:xlBCC=2CDLXMCEUtiCf&0g2'tN?PGT4CPGT4CPGT4CPGT4CPGT4CPGT4CPGT4CP" "GT4CPGT4CPGT4CPGT4CPGT4CPGT4CP-qekC`.9kEg^+F$kwViFJTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5KTB&5o,^<-28ZI'O?;xp" "O?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xpO?;xp;7q-#lLYI:xvD=#"; static const char* GetDefaultCompressedFontDataTTFBase85() { return proggy_clean_ttf_compressed_data_base85; } #endif // #ifndef IMGUI_DISABLE