librw/src/base.cpp
2019-08-04 23:52:03 +02:00

983 lines
21 KiB
C++

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <cmath>
#include <cctype>
#include "rwbase.h"
#include "rwerror.h"
#include "rwplg.h"
#include "rwpipeline.h"
#include "rwobjects.h"
#include "rwengine.h"
namespace rw {
#define PLUGIN_ID 0
int32 version = 0x36003;
int32 build = 0xFFFF;
#ifdef RW_PS2
int32 platform = PLATFORM_PS2;
#elif RW_WDGL
int32 platform = PLATFORM_WDGL;
#elif RW_GL3
int32 platform = PLATFORM_GL3;
#elif RW_D3D9
int32 platform = PLATFORM_D3D9;
#else
int32 platform = PLATFORM_NULL;
#endif
bool32 streamAppendFrames = 0;
char *debugFile = nil;
static Matrix identMat = {
{ 1.0f, 0.0f, 0.0f }, Matrix::IDENTITY|Matrix::TYPEORTHONORMAL,
{ 0.0f, 1.0f, 0.0f }, 0,
{ 0.0f, 0.0f, 1.0f }, 0,
{ 0.0f, 0.0f, 0.0f }, 0
};
// lazy implementation
int
strcmp_ci(const char *s1, const char *s2)
{
char c1, c2;
for(;;){
c1 = tolower(*s1);
c2 = tolower(*s2);
if(c1 != c2)
return c1 - c2;
if(c1 == '\0')
return 0;
s1++;
s2++;
}
}
int
strncmp_ci(const char *s1, const char *s2, int n)
{
char c1, c2;
while(n--){
c1 = tolower(*s1);
c2 = tolower(*s2);
if(c1 != c2)
return c1 - c2;
if(c1 == '\0')
return 0;
s1++;
s2++;
}
return 0;
}
Quat
mult(const Quat &q, const Quat &p)
{
return makeQuat(q.w*p.w - q.x*p.x - q.y*p.y - q.z*p.z,
q.w*p.x + q.x*p.w + q.y*p.z - q.z*p.y,
q.w*p.y + q.y*p.w + q.z*p.x - q.x*p.z,
q.w*p.z + q.z*p.w + q.x*p.y - q.y*p.x);
}
Quat
lerp(const Quat &q, const Quat &p, float32 r)
{
float32 c;
Quat q1 = q;
c = dot(q1, p);
if(c < 0.0f){
c = -c;
q1 = negate(q1);
}
return makeQuat(q1.w + r*(p.w - q1.w),
q1.x + r*(p.x - q1.x),
q1.y + r*(p.y - q1.y),
q1.z + r*(p.z - q1.z));
};
Quat
slerp(const Quat &q, const Quat &p, float32 a)
{
float32 c;
Quat q1 = q;
c = dot(q1, p);
if(c < 0.0f){
c = -c;
q1 = negate(q1);
}
float32 phi = acos(c);
if(phi > 0.00001f){
float32 s = sinf(phi);
return add(scale(q1, sinf((1.0f-a)*phi)/s),
scale(p, sinf(a*phi)/s));
}
return q1;
}
//
// V3d
//
V3d
cross(const V3d &a, const V3d &b)
{
return makeV3d(a.y*b.z - a.z*b.y,
a.z*b.x - a.x*b.z,
a.x*b.y - a.y*b.x);
}
void
V3d::transformPoints(V3d *out, const V3d *in, int32 n, const Matrix *m)
{
int32 i;
V3d tmp;
for(i = 0; i < n; i++){
tmp.x = in[i].x*m->right.x + in[i].y*m->up.x + in[i].z*m->at.x + m->pos.x;
tmp.y = in[i].x*m->right.y + in[i].y*m->up.y + in[i].z*m->at.y + m->pos.y;
tmp.z = in[i].x*m->right.z + in[i].y*m->up.z + in[i].z*m->at.z + m->pos.z;
out[i] = tmp;
}
}
void
V3d::transformVectors(V3d *out, const V3d *in, int32 n, const Matrix *m)
{
int32 i;
V3d tmp;
for(i = 0; i < n; i++){
tmp.x = in[i].x*m->right.x + in[i].y*m->up.x + in[i].z*m->at.x;
tmp.y = in[i].x*m->right.y + in[i].y*m->up.y + in[i].z*m->at.y;
tmp.z = in[i].x*m->right.z + in[i].y*m->up.z + in[i].z*m->at.z;
out[i] = tmp;
}
}
//
// RawMatrix
//
void
RawMatrix::mult(RawMatrix *dst, RawMatrix *src1, RawMatrix *src2)
{
dst->right.x = src1->right.x*src2->right.x + src1->right.y*src2->up.x + src1->right.z*src2->at.x + src1->rightw*src2->pos.x;
dst->right.y = src1->right.x*src2->right.y + src1->right.y*src2->up.y + src1->right.z*src2->at.y + src1->rightw*src2->pos.y;
dst->right.z = src1->right.x*src2->right.z + src1->right.y*src2->up.z + src1->right.z*src2->at.z + src1->rightw*src2->pos.z;
dst->rightw = src1->right.x*src2->rightw + src1->right.y*src2->upw + src1->right.z*src2->atw + src1->rightw*src2->posw;
dst->up.x = src1->up.x*src2->right.x + src1->up.y*src2->up.x + src1->up.z*src2->at.x + src1->upw*src2->pos.x;
dst->up.y = src1->up.x*src2->right.y + src1->up.y*src2->up.y + src1->up.z*src2->at.y + src1->upw*src2->pos.y;
dst->up.z = src1->up.x*src2->right.z + src1->up.y*src2->up.z + src1->up.z*src2->at.z + src1->upw*src2->pos.z;
dst->upw = src1->up.x*src2->rightw + src1->up.y*src2->upw + src1->up.z*src2->atw + src1->upw*src2->posw;
dst->at.x = src1->at.x*src2->right.x + src1->at.y*src2->up.x + src1->at.z*src2->at.x + src1->atw*src2->pos.x;
dst->at.y = src1->at.x*src2->right.y + src1->at.y*src2->up.y + src1->at.z*src2->at.y + src1->atw*src2->pos.y;
dst->at.z = src1->at.x*src2->right.z + src1->at.y*src2->up.z + src1->at.z*src2->at.z + src1->atw*src2->pos.z;
dst->atw = src1->at.x*src2->rightw + src1->at.y*src2->upw + src1->at.z*src2->atw + src1->atw*src2->posw;
dst->pos.x = src1->pos.x*src2->right.x + src1->pos.y*src2->up.x + src1->pos.z*src2->at.x + src1->posw*src2->pos.x;
dst->pos.y = src1->pos.x*src2->right.y + src1->pos.y*src2->up.y + src1->pos.z*src2->at.y + src1->posw*src2->pos.y;
dst->pos.z = src1->pos.x*src2->right.z + src1->pos.y*src2->up.z + src1->pos.z*src2->at.z + src1->posw*src2->pos.z;
dst->posw = src1->pos.x*src2->rightw + src1->pos.y*src2->upw + src1->pos.z*src2->atw + src1->posw*src2->posw;
}
void
RawMatrix::transpose(RawMatrix *dst, RawMatrix *src)
{
dst->right.x = src->right.x;
dst->up.x = src->right.y;
dst->at.x = src->right.z;
dst->pos.x = src->rightw;
dst->right.y = src->up.x;
dst->up.y = src->up.y;
dst->at.y = src->up.z;
dst->pos.y = src->upw;
dst->right.z = src->at.x;
dst->up.z = src->at.y;
dst->at.z = src->at.z;
dst->pos.z = src->atw;
dst->rightw = src->pos.x;
dst->upw = src->pos.y;
dst->atw = src->pos.z;
dst->posw = src->posw;
}
void
RawMatrix::setIdentity(RawMatrix *dst)
{
static RawMatrix identity = {
{ 1.0f, 0.0f, 0.0f }, 0.0f,
{ 0.0f, 1.0f, 0.0f }, 0.0f,
{ 0.0f, 0.0f, 1.0f }, 0.0f,
{ 0.0f, 0.0f, 0.0f }, 1.0f
};
*dst = identity;
}
//
// Matrix
//
static Matrix::Tolerance matrixDefaultTolerance = { 0.01f, 0.01f, 0.01f };
Matrix*
Matrix::create(void)
{
Matrix *m = (Matrix*)rwMalloc(sizeof(Matrix), MEMDUR_EVENT | ID_MATRIX);
m->setIdentity();
return m;
}
void
Matrix::destroy(void)
{
rwFree(this);
}
void
Matrix::setIdentity(void)
{
*this = identMat;
}
void
Matrix::optimize(Tolerance *tolerance)
{
bool32 isnormal, isorthogonal, isidentity;
if(tolerance == nil)
tolerance = &matrixDefaultTolerance;
isnormal = normalError() <= tolerance->normal;
isorthogonal = orthogonalError() <= tolerance->orthogonal;
isidentity = isnormal && isorthogonal && identityError() <= tolerance->identity;
if(isnormal)
flags |= TYPENORMAL;
else
flags &= ~TYPENORMAL;
if(isorthogonal)
flags |= TYPEORTHOGONAL;
else
flags &= ~TYPEORTHOGONAL;
if(isidentity)
flags |= IDENTITY;
else
flags &= ~IDENTITY;
}
Matrix*
Matrix::mult(Matrix *dst, const Matrix *src1, const Matrix *src2)
{
if(src1->flags & IDENTITY)
*dst = *src2;
else if(src2->flags & IDENTITY)
*dst = *src1;
else{
mult_(dst, src1, src2);
dst->flags = src1->flags & src2->flags;
}
return dst;
}
Matrix*
Matrix::invert(Matrix *dst, const Matrix *src)
{
if(src->flags & IDENTITY)
*dst = *src;
else if((src->flags & TYPEMASK) == TYPEORTHONORMAL)
invertOrthonormal(dst, src);
else
return invertGeneral(dst, src);
return dst;
}
// transpose the 3x3 submatrix, pos is set to 0
Matrix*
Matrix::transpose(Matrix *dst, const Matrix *src)
{
if(src->flags & IDENTITY)
*dst = *src;
dst->right.x = src->right.x;
dst->up.x = src->right.y;
dst->at.x = src->right.z;
dst->right.y = src->up.x;
dst->up.y = src->up.y;
dst->at.y = src->up.z;
dst->right.z = src->at.x;
dst->up.z = src->at.y;
dst->at.z = src->at.z;
dst->pos.x = 0.0;
dst->pos.y = 0.0;
dst->pos.z = 0.0;
return dst;
}
Matrix*
Matrix::rotate(V3d *axis, float32 angle, CombineOp op)
{
Matrix tmp, rot;
makeRotation(&rot, axis, angle);
switch(op){
case COMBINEREPLACE:
*this = rot;
break;
case COMBINEPRECONCAT:
mult(&tmp, &rot, this);
*this = tmp;
break;
case COMBINEPOSTCONCAT:
mult(&tmp, this, &rot);
*this = tmp;
break;
}
return this;
}
Matrix*
Matrix::rotate(const Quat &q, CombineOp op)
{
Matrix tmp, rot;
makeRotation(&rot, q);
switch(op){
case COMBINEREPLACE:
*this = rot;
break;
case COMBINEPRECONCAT:
mult(&tmp, &rot, this);
*this = tmp;
break;
case COMBINEPOSTCONCAT:
mult(&tmp, this, &rot);
*this = tmp;
break;
}
return this;
}
Matrix*
Matrix::translate(V3d *translation, CombineOp op)
{
Matrix tmp;
Matrix trans = identMat;
trans.pos = *translation;
trans.flags &= ~IDENTITY;
switch(op){
case COMBINEREPLACE:
*this = trans;
break;
case COMBINEPRECONCAT:
mult(&tmp, &trans, this);
*this = tmp;
break;
case COMBINEPOSTCONCAT:
mult(&tmp, this, &trans);
*this = tmp;
break;
}
return this;
}
Matrix*
Matrix::scale(V3d *scale, CombineOp op)
{
Matrix tmp;
Matrix scl = identMat;
scl.right.x = scale->x;
scl.right.y = scale->y;
scl.right.z = scale->z;
switch(op){
case COMBINEREPLACE:
*this = scl;
break;
case COMBINEPRECONCAT:
mult(&tmp, &scl, this);
*this = tmp;
break;
case COMBINEPOSTCONCAT:
mult(&tmp, this, &scl);
*this = tmp;
break;
}
return this;
}
Matrix*
Matrix::transform(Matrix *mat, CombineOp op)
{
Matrix tmp;
switch(op){
case COMBINEREPLACE:
*this = *mat;
break;
case COMBINEPRECONCAT:
mult(&tmp, mat, this);
*this = tmp;
break;
case COMBINEPOSTCONCAT:
mult(&tmp, this, mat);
*this = tmp;
break;
}
return this;
}
Quat
Matrix::getRotation(void)
{
Quat q = { 0.0f, 0.0f, 0.0f, 1.0f };
float32 tr = right.x + up.y + at.z;
float s;
if(tr > 0.0f){
s = sqrtf(1.0f + tr) * 2.0f;
q.w = s / 4.0f;
q.x = (up.z - at.y) / s;
q.y = (at.x - right.z) / s;
q.z = (right.y - up.x) / s;
}else if(right.x > up.y && right.x > at.z){
s = sqrtf(1.0f + right.x - up.y - at.z) * 2.0f;
q.w = (up.z - at.y) / s;
q.x = s / 4.0f;
q.y = (up.x + right.y) / s;
q.z = (at.x + right.z) / s;
}else if(up.y > at.z){
s = sqrtf(1.0f + up.y - right.x - at.z) * 2.0f;
q.w = (at.x - right.z) / s;
q.x = (up.x + right.y) / s;
q.y = s / 4.0f;
q.z = (at.y + up.z) / s;
}else{
s = sqrtf(1.0f + at.z - right.x - up.y) * 2.0f;
q.w = (right.y - up.x) / s;
q.x = (at.x + right.z) / s;
q.y = (at.y + up.z) / s;
q.z = s / 4.0f;
}
return q;
}
void
Matrix::lookAt(const V3d &dir, const V3d &up)
{
// this->right is really pointing left
this->at = normalize(dir);
this->right = normalize(cross(up, this->at));
this->up = cross(this->at, this->right);
this->flags = TYPEORTHONORMAL;
}
/* For a row-major representation, this calculates src1 * src.
* For colum-major src2 * src1 */
void
Matrix::mult_(Matrix *dst, const Matrix *src1, const Matrix *src2)
{
dst->right.x = src1->right.x*src2->right.x + src1->right.y*src2->up.x + src1->right.z*src2->at.x;
dst->right.y = src1->right.x*src2->right.y + src1->right.y*src2->up.y + src1->right.z*src2->at.y;
dst->right.z = src1->right.x*src2->right.z + src1->right.y*src2->up.z + src1->right.z*src2->at.z;
dst->up.x = src1->up.x*src2->right.x + src1->up.y*src2->up.x + src1->up.z*src2->at.x;
dst->up.y = src1->up.x*src2->right.y + src1->up.y*src2->up.y + src1->up.z*src2->at.y;
dst->up.z = src1->up.x*src2->right.z + src1->up.y*src2->up.z + src1->up.z*src2->at.z;
dst->at.x = src1->at.x*src2->right.x + src1->at.y*src2->up.x + src1->at.z*src2->at.x;
dst->at.y = src1->at.x*src2->right.y + src1->at.y*src2->up.y + src1->at.z*src2->at.y;
dst->at.z = src1->at.x*src2->right.z + src1->at.y*src2->up.z + src1->at.z*src2->at.z;
dst->pos.x = src1->pos.x*src2->right.x + src1->pos.y*src2->up.x + src1->pos.z*src2->at.x + src2->pos.x;
dst->pos.y = src1->pos.x*src2->right.y + src1->pos.y*src2->up.y + src1->pos.z*src2->at.y + src2->pos.y;
dst->pos.z = src1->pos.x*src2->right.z + src1->pos.y*src2->up.z + src1->pos.z*src2->at.z + src2->pos.z;
}
void
Matrix::invertOrthonormal(Matrix *dst, const Matrix *src)
{
dst->right.x = src->right.x;
dst->right.y = src->up.x;
dst->right.z = src->at.x;
dst->up.x = src->right.y;
dst->up.y = src->up.y;
dst->up.z = src->at.y;
dst->at.x = src->right.z;
dst->at.y = src->up.z;
dst->at.z = src->at.z;
dst->pos.x = -(src->pos.x*src->right.x +
src->pos.y*src->right.y +
src->pos.z*src->right.z);
dst->pos.y = -(src->pos.x*src->up.x +
src->pos.y*src->up.y +
src->pos.z*src->up.z);
dst->pos.z = -(src->pos.x*src->at.x +
src->pos.y*src->at.y +
src->pos.z*src->at.z);
dst->flags = TYPEORTHONORMAL;
}
Matrix*
Matrix::invertGeneral(Matrix *dst, const Matrix *src)
{
float32 det, invdet;
// calculate a few cofactors
dst->right.x = src->up.y*src->at.z - src->up.z*src->at.y;
dst->right.y = src->at.y*src->right.z - src->at.z*src->right.y;
dst->right.z = src->right.y*src->up.z - src->right.z*src->up.y;
// get the determinant from that
det = src->up.x * dst->right.y + src->at.x * dst->right.z + dst->right.x * src->right.x;
invdet = 1.0;
if(det != 0.0f)
invdet = 1.0f/det;
dst->right.x *= invdet;
dst->right.y *= invdet;
dst->right.z *= invdet;
dst->up.x = invdet * (src->up.z*src->at.x - src->up.x*src->at.z);
dst->up.y = invdet * (src->at.z*src->right.x - src->at.x*src->right.z);
dst->up.z = invdet * (src->right.z*src->up.x - src->right.x*src->up.z);
dst->at.x = invdet * (src->up.x*src->at.y - src->up.y*src->at.x);
dst->at.y = invdet * (src->at.x*src->right.y - src->at.y*src->right.x);
dst->at.z = invdet * (src->right.x*src->up.y - src->right.y*src->up.x);
dst->pos.x = -(src->pos.x*dst->right.x + src->pos.y*dst->up.x + src->pos.z*dst->at.x);
dst->pos.y = -(src->pos.x*dst->right.y + src->pos.y*dst->up.y + src->pos.z*dst->at.y);
dst->pos.z = -(src->pos.x*dst->right.z + src->pos.y*dst->up.z + src->pos.z*dst->at.z);
dst->flags &= ~IDENTITY;
return dst;
}
void
Matrix::makeRotation(Matrix *dst, V3d *axis, float32 angle)
{
V3d v = normalize(*axis);
angle = angle*(float)M_PI/180.0f;
float32 s = sin(angle);
float32 c = cos(angle);
float32 t = 1.0f - c;
dst->right.x = c + v.x*v.x*t;
dst->right.y = v.x*v.y*t + v.z*s;
dst->right.z = v.z*v.x*t - v.y*s;
dst->up.x = v.x*v.y*t - v.z*s;
dst->up.y = c + v.y*v.y*t;
dst->up.z = v.y*v.z*t + v.x*s;
dst->at.x = v.z*v.x*t + v.y*s;
dst->at.y = v.y*v.z*t - v.x*s;
dst->at.z = c + v.z*v.z*t;
dst->pos.x = 0.0;
dst->pos.y = 0.0;
dst->pos.z = 0.0;
dst->flags = TYPEORTHONORMAL;
}
/* q must be normalized */
void
Matrix::makeRotation(Matrix *dst, const Quat &q)
{
float xx = q.x*q.x;
float yy = q.y*q.y;
float zz = q.z*q.z;
float yz = q.y*q.z;
float zx = q.z*q.x;
float xy = q.x*q.y;
float wx = q.w*q.x;
float wy = q.w*q.y;
float wz = q.w*q.z;
dst->right.x = 1.0f - 2.0f*(yy + zz);
dst->right.y = 2.0f*(xy + wz);
dst->right.z = 2.0f*(zx - wy);
dst->up.x = 2.0f*(xy - wz);
dst->up.y = 1.0f - 2.0f*(xx + zz);
dst->up.z = 2.0f*(yz + wx);
dst->at.x = 2.0f*(zx + wy);
dst->at.y = 2.0f*(yz - wx);
dst->at.z = 1.0f - 2.0f*(xx + yy);
dst->pos.x = 0.0;
dst->pos.y = 0.0;
dst->pos.z = 0.0;
dst->flags = TYPEORTHONORMAL;
}
float32
Matrix::normalError(void)
{
float32 x, y, z;
x = dot(right, right) - 1.0f;
y = dot(up, up) - 1.0f;
z = dot(at, at) - 1.0f;
return x*x + y*y + z*z;
}
float32
Matrix::orthogonalError(void)
{
float32 x, y, z;
x = dot(at, up);
y = dot(at, right);
z = dot(up, right);
return x*x + y*y + z*z;
}
float32
Matrix::identityError(void)
{
V3d r = { right.x-1.0f, right.y, right.z };
V3d u = { up.x, up.y-1.0f, up.z };
V3d a = { at.x, at.y, at.z-1.0f };
return dot(r,r) + dot(u,u) + dot(a,a) + dot(pos,pos);
}
#define PSEP_C '/'
#define PSEP_S "/"
#ifndef _WIN32
#include <sys/types.h>
#include <dirent.h>
#endif
void
correctPathCase(char *filename)
{
#ifndef _WIN32
DIR *direct;
struct dirent *dirent;
char *dir, *arg;
char copy[1024], sofar[1024] = ".";
strncpy(copy, filename, 1024);
arg = copy;
// hack for absolute paths
if(filename[0] == '/'){
sofar[0] = '/';
sofar[1] = '/';
sofar[2] = '\0';
arg++;
}
while(dir = strtok(arg, PSEP_S)){
arg = nil;
if(direct = opendir(sofar), dir == nil)
return;
while(dirent = readdir(direct), dirent != nil)
if(strncmp_ci(dirent->d_name, dir, 1024) == 0){
strncat(sofar, PSEP_S, 1024);
strncat(sofar, dirent->d_name, 1024);
break;
}
closedir(direct);
if(dirent == nil)
return;
}
strcpy(filename, sofar+2);
#endif
}
void
makePath(char *filename)
{
size_t len = strlen(filename);
for(size_t i = 0; i < len; i++)
if(filename[i] == '/' || filename[i] == '\\')
filename[i] = PSEP_C;
#ifndef _WIN32
correctPathCase(filename);
#endif
}
int32
Stream::writeI8(int8 val)
{
return write(&val, sizeof(int8));
}
int32
Stream::writeU8(uint8 val)
{
return write(&val, sizeof(uint8));
}
int32
Stream::writeI16(int16 val)
{
return write(&val, sizeof(int16));
}
int32
Stream::writeU16(uint16 val)
{
return write(&val, sizeof(uint16));
}
int32
Stream::writeI32(int32 val)
{
return write(&val, sizeof(int32));
}
int32
Stream::writeU32(uint32 val)
{
return write(&val, sizeof(uint32));
}
int32
Stream::writeF32(float32 val)
{
return write(&val, sizeof(float32));
}
int8
Stream::readI8(void)
{
int8 tmp;
read(&tmp, sizeof(int8));
return tmp;
}
uint8
Stream::readU8(void)
{
uint8 tmp;
read(&tmp, sizeof(uint8));
return tmp;
}
int16
Stream::readI16(void)
{
int16 tmp;
read(&tmp, sizeof(int16));
return tmp;
}
uint16
Stream::readU16(void)
{
uint16 tmp;
read(&tmp, sizeof(uint16));
return tmp;
}
int32
Stream::readI32(void)
{
int32 tmp;
read(&tmp, sizeof(int32));
return tmp;
}
uint32
Stream::readU32(void)
{
uint32 tmp;
read(&tmp, sizeof(uint32));
return tmp;
}
float32
Stream::readF32(void)
{
float32 tmp;
read(&tmp, sizeof(float32));
return tmp;
}
void
StreamMemory::close(void)
{
}
uint32
StreamMemory::write(const void *data, uint32 len)
{
if(this->eof())
return 0;
uint32 l = len;
if(this->position+l > this->length){
if(this->position+l > this->capacity)
l = this->capacity-this->position;
this->length = this->position+l;
}
memcpy(&this->data[this->position], data, l);
this->position += l;
if(len != l)
this->position = S_EOF;
return l;
}
uint32
StreamMemory::read(void *data, uint32 len)
{
if(this->eof())
return 0;
uint32 l = len;
if(this->position+l > this->length)
l = this->length-this->position;
memcpy(data, &this->data[this->position], l);
this->position += l;
if(len != l)
this->position = S_EOF;
return l;
}
void
StreamMemory::seek(int32 offset, int32 whence)
{
if(whence == 0)
this->position = offset;
else if(whence == 1)
this->position += offset;
else
this->position = this->length-offset;
if(this->position > this->length){
// TODO: ideally this would depend on the mode
if(this->position > this->capacity)
this->position = S_EOF;
else
this->length = this->position;
}
}
uint32
StreamMemory::tell(void)
{
return this->position;
}
bool
StreamMemory::eof(void)
{
return this->position == S_EOF;
}
StreamMemory*
StreamMemory::open(uint8 *data, uint32 length, uint32 capacity)
{
this->data = data;
this->capacity = capacity;
this->length = length;
if(this->capacity < this->length)
this->capacity = this->length;
this->position = 0;
return this;
}
uint32
StreamMemory::getLength(void)
{
return this->length;
}
StreamFile*
StreamFile::open(const char *path, const char *mode)
{
assert(this->file == nil);
this->file = fopen(path, mode);
if(this->file == nil){
RWERROR((ERR_FILE, path));
return nil;
}
return this;
}
void
StreamFile::close(void)
{
assert(this->file);
fclose(this->file);
this->file = nil;
}
uint32
StreamFile::write(const void *data, uint32 length)
{
return (uint32)fwrite(data, length, 1, this->file);
}
uint32
StreamFile::read(void *data, uint32 length)
{
return (uint32)fread(data, length, 1, this->file);
}
void
StreamFile::seek(int32 offset, int32 whence)
{
fseek(this->file, offset, whence);
}
uint32
StreamFile::tell(void)
{
return ftell(this->file);
}
bool
StreamFile::eof(void)
{
return ( feof(this->file) != 0 );
}
bool
writeChunkHeader(Stream *s, int32 type, int32 size)
{
struct {
int32 type, size;
uint32 id;
} buf = { type, size, libraryIDPack(version, build) };
s->write(&buf, 12);
return true;
}
bool
readChunkHeaderInfo(Stream *s, ChunkHeaderInfo *header)
{
struct {
int32 type, size;
uint32 id;
} buf;
s->read(&buf, 12);
if(s->eof())
return false;
assert(header != nil);
header->type = buf.type;
header->length = buf.size;
header->version = libraryIDUnpackVersion(buf.id);
header->build = libraryIDUnpackBuild(buf.id);
return true;
}
bool
findChunk(Stream *s, uint32 type, uint32 *length, uint32 *version)
{
ChunkHeaderInfo header;
while(readChunkHeaderInfo(s, &header)){
if(header.type == ID_NAOBJECT)
return false;
if(header.type == type){
if(length)
*length = header.length;
if(version)
*version = header.version;
return true;
}
s->seek(header.length);
}
return false;
}
int32
findPointer(void *p, void **list, int32 num)
{
int i;
for(i = 0; i < num; i++)
if(list[i] == p)
return i;
return -1;
}
uint8*
getFileContents(char *name, uint32 *len)
{
FILE *cf = fopen(name, "rb");
assert(cf != nil);
fseek(cf, 0, SEEK_END);
*len = ftell(cf);
fseek(cf, 0, SEEK_SET);
uint8 *data = rwNewT(uint8, *len, MEMDUR_EVENT);
fread(data, *len, 1, cf);
fclose(cf);
return data;
}
}