Sander Vanheule 3f7047db7a kernel: mtdsplit: support ELF loader splitting
To parse the ELF kernel loader, a small ELF parser is used that can
handle both ELF32 or ELF64 class loaders. The splitter assumes that the
kernel is always located before the rootfs, whether it is embedded in
the loader or not. If the kernel is located after the rootfs on the
firmware partition, then the rootfs splitter will include it in the
dynamically created rootfs_data partition and the kernel will be
corrupted.

The kernel image is preferably embedded inside the ELF loader, so the
end of the loader equals the end of the kernel partition. This is due to
the way mtd_find_rootfs_from searches for the the rootfs:
- if the kernel image is embedded in the loader, the appended rootfs may
  follow the loader immediately, within the same erase block.
- if the kernel image is not embedded in the loader, but placed at some
  offset behind the loader (OKLI-style loader), the rootfs must be
  aligned to an erase-block after the loader and kernel image.

In case section header table is empty, determine the elf loader size by
finding the end of the last segment, as defined by the program header
table.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2020-09-09 20:41:50 +03:00
2020-09-03 14:14:33 +01:00
2020-07-11 15:19:53 +02:00
2020-06-24 14:58:17 +02:00
2020-08-02 15:54:43 +02:00
2020-08-02 15:44:40 +02:00
2020-07-11 15:19:53 +02:00
2020-08-02 15:44:40 +02:00

OpenWrt logo

OpenWrt Project is a Linux operating system targeting embedded devices. Instead of trying to create a single, static firmware, OpenWrt provides a fully writable filesystem with package management. This frees you from the application selection and configuration provided by the vendor and allows you to customize the device through the use of packages to suit any application. For developers, OpenWrt is the framework to build an application without having to build a complete firmware around it; for users this means the ability for full customization, to use the device in ways never envisioned.

Sunshine!

Development

To build your own firmware you need a GNU/Linux, BSD or MacOSX system (case sensitive filesystem required). Cygwin is unsupported because of the lack of a case sensitive file system.

Requirements

You need the following tools to compile OpenWrt, the package names vary between distributions. A complete list with distribution specific packages is found in the Build System Setup documentation.

gcc binutils bzip2 flex python3 perl make find grep diff unzip gawk getopt
subversion libz-dev libc-dev

Quickstart

  1. Run ./scripts/feeds update -a to obtain all the latest package definitions defined in feeds.conf / feeds.conf.default

  2. Run ./scripts/feeds install -a to install symlinks for all obtained packages into package/feeds/

  3. Run make menuconfig to select your preferred configuration for the toolchain, target system & firmware packages.

  4. Run make to build your firmware. This will download all sources, build the cross-compile toolchain and then cross-compile the GNU/Linux kernel & all chosen applications for your target system.

The main repository uses multiple sub-repositories to manage packages of different categories. All packages are installed via the OpenWrt package manager called opkg. If you're looking to develop the web interface or port packages to OpenWrt, please find the fitting repository below.

Support Information

For a list of supported devices see the OpenWrt Hardware Database

Documentation

Support Community

  • Forum: For usage, projects, discussions and hardware advise.
  • Support Chat: Channel #openwrt on freenode.net.

Developer Community

License

OpenWrt is licensed under GPL-2.0

Description
An Immortalwrt variant fot mediatek mt798x routers.
Readme
Languages
C 70%
Makefile 12.4%
Shell 6%
Roff 3.9%
Perl 2%
Other 5.6%