The modem is based on Marvell PXA1826 and uses ACM+RNDIS interface to
establish connection with custom commands specific to ZTE modems.
Two variants of modems were discovered, some identifying themselves
as "ZTE", and others as plain "Marvell", the chipset manufacturer.
The modem itself runs a fork of OpenWrt inside, which root shell can be
accessed via ADB interface.
Signed-off-by: Cezary Jackiewicz <cezary@eko.one.pl>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit e02fb42c53bad5dd36726c6ef5a46bfe31d2e400)
Due to SCHED_FIFO being a broken scheduler model, all users of
sched_setscheduler() are converted to sched_set_fifo_low() upstream and
sched_setscheduler() is no longer exported.
The callback handling of the tasklet API was redesigned and the macros
using the old syntax renamed to _OLD.
Signed-off-by: Mathias Kresin <dev@kresin.me>
(cherry picked from commit 31f3f797004ad318a1de88ec9cfdece523ee46d9)
[Add DECLARE_TASKLET handling for kernel 5.4.235 too]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The callback handling of the tasklet API was redesigned and the macros
using the old syntax renamed to _OLD.
The stuck queue is now passed to ndo_tx_timeout callback but not used so
far.
Signed-off-by: Mathias Kresin <dev@kresin.me>
(cherry picked from commit 804c541446ab8e3fab11dba5d8fe07807af7fac5)
[Add DECLARE_TASKLET handling for kernel 5.4.235 too]
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Due to SCHED_FIFO being a broken scheduler model, all users of
sched_setscheduler() are converted to sched_set_fifo_low() upstream and
sched_setscheduler() is no longer exported.
The callback handling of the tasklet API was redesigned and the macros
using the old syntax renamed to _OLD.
Signed-off-by: Mathias Kresin <dev@kresin.me>
ltq tapi
(cherry picked from commit 31f3f797004ad318a1de88ec9cfdece523ee46d9)
The callback handling of the tasklet API was redesigned and the macros
using the old syntax renamed to _OLD.
The stuck queue is now passed to ndo_tx_timeout callback but not used so
far.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
This patch fixes a corner case when using passwords that are exactly 64
characters in length with mesh mode or passwords longer than 63 characters
with SAE because 'psk' is used instead of 'sae_password'.
SAE is obligatory for 802.11s (mesh point).
The 'psk' option for hostapd is suited for WPA2 and enforces length
restrictions on passwords. Values of 64 characters are treated as PMKs.
With SAE, PMKs are always generated during the handshake and there are no
length restrictions.
The 'sae_password' option is more suited for SAE and should be used
instead.
Before this patch, the 'sae_password' option is only used with mesh mode
passwords that are not 64 characters long.
As a consequence:
- mesh passwords can't be 64 characters in length
- SAE only works with passwords with lengths >8 and <=63 (due to psk
limitation).
Fix this by always using 'sae_password' with SAE/mesh and applying the PMK
differentiation only when PSK is used.
Fixes: #11324
Signed-off-by: Leon M. Busch-George <leon@georgemail.eu>
[ improve commit description ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
(cherry picked from commit ae751535de0cb46978bfcbacab882dd1082e59e3)
It's generally advised to use quotes for variable assignments in bash.
Signed-off-by: Leon M. Busch-George <leon@georgemail.eu>
(cherry picked from commit 3c10c42ddd4741615b896e1d429ac7d6e91a980f)
This patch is a revert of the upstream patch to Debian's ca-certificate
commit 033d52259172 ("mozilla/certdata2pem.py: print a warning for expired certificates.")
The reason is, that this change broke builds with the popular
Ubuntu 20.04 LTS (focal) releases which are shipping with an
older version of the python3-cryptography package that is not
compatible.
|Traceback (most recent call last):
| File "certdata2pem.py", line 125, in <module>
| cert = x509.load_der_x509_certificate(obj['CKA_VALUE'])
|TypeError: load_der_x509_certificate() missing 1 required positional argument: 'backend'
|make[5]: *** [Makefile:6: all] Error 1
...or if the python3-cryptography was missing all together:
|Traceback (most recent call last):
| File "/certdata2pem.py", line 31, in <module>
| from cryptography import x509
|ModuleNotFoundError: No module named 'cryptography'
More concerns were raised by Jo-Philipp Wich:
"We don't want the build to depend on the local system time anyway.
Right now it seems to be just a warning but I could imagine that
eventually certs are simply omitted of found to be expired at
build time which would break reproducibility."
Link: <https://github.com/openwrt/openwrt/commit/7c99085bd697>
Reported-by: Chen Minqiang <ptpt52@gmail.com>
Reported-by: Shane Synan <digitalcircuit36939@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
(cherry picked from commit 25bc66eb40ea2c062940778fba601032b2579734)
The kmod-mt7615-common package does not contain any code that
related to mt7915e Wi-Fi6 driver, so remove it.
Tested on ramips/mt7621: SIM SIMAX1800T
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
(cherry picked from commit 3410f010a20a60e9fc47a280fdfdc2dc8fa0e447)
It's not just required for the PCI version, but for USB and presumably
SDIO as well.
Tested with 0e8d:7961 Comfast CF-953AX (MT7921AU).
Signed-off-by: Andre Heider <a.heider@gmail.com>
(cherry picked from commit 6f729163b18fb5860f1aa5a5a0c8861a8e3f53ad)
This adds support for the Askey RT4230W REV6
(Branded by Spectrum/Charter as RAC2V1K)
At this time, there's no way to reinstall the stock firmware so don't install
this on a router that's being rented.
Specifications:
Qualcomm IPQ8065
1 GB of RAM (DDR3)
512 MB Flash (NAND)
2x Wave 2 WiFi cards (QCA9984)
5x 10/100/1000 Mbps Ethernet (Switch: QCA8337)
1x LED (Controlled by a microcontroller that switches it between red and
blue with different patterns)
1x USB 3.0 Type-A
12V DC Power Input
UART header on PCB - pinout from top to bottom is RX, TX, GND, 5V
Port settings are 115200n8
More information: https://forum.openwrt.org/t/askey-rac2v1k-support/15830https://deviwiki.com/wiki/Askey_RAC2V1K
To check what revision your router is, restore one of these config backups
through the stock firmware to get ssh access then run
"cat /proc/device-tree/model".
https://forum.openwrt.org/t/askey-rac2v1k-support/15830/17
The revision number on the board doesn't seem to be very consistent so that's
why this is needed. You can also run printenv in the uboot console and if
machid is set to 177d, that means your router is rev6.
Note: Don't install this if the router is being rented from an ISP. The defined
partition layout is different from the OEM one and even if you changed the
layout to match, backing up and restoring the OEM firmware breaks /overlay so
nothing will save and the router will likely enter a bootloop.
How to install:
Method 1: Install without opening the case using SSH and tftp
You'll need:
RAC2V1K-SSH.zip:
https://github.com/lmore377/openwrt-rt4230w/blob/master/RAC2V1K-SSH.zip
initramfs and sysupgrade images
Connect to one of the router's LAN ports
Download the RAC2V1K-SSH.zip file and restore the config file that
corresponds to your router's firmware (If you're firmware is newer than what's
in the zip file, just restore the 1.1.16 file)
After a reboot, you should be able to ssh into the router with username:
"4230w" and password: "linuxbox" or "admin". Run the following commannds
fw_setenv ipaddr 10.42.0.10 #IP of router, can be anything as long as
it's in the same subnet as the server
fw_setenv serverip 10.42.0.1# #IP of tftp server that's set up in next
steps
fw_setenv bootdelay 8
fw_setenv bootcmd "tftpboot initramfs.bin; bootm; bootipq"
Don't reboot the router yet.
Install and set up a tftp server on your computer
Set a static ip on the ethernet interface of your computer (use this for
serverip in the above commands)
Rename the initramfs image to initramfs.bin, and host it with the tftp
server
Reboot the router. If you set up everything right, the router led should
switch over to a slow blue glow which means openwrt is booted. If for some
reason the file doesn't get loaded into ram properly, it should still boot to
the OEM firmware.
After openwrt boots, ssh into it and run these commands:
fw_setenv bootcmd "setenv mtdids nand0=nand0 && setenv mtdparts
mtdparts=nand0:0x1A000000@0x2400000(firmware) && ubi part firmware && ubi
read 0x44000000 kernel 0x6e0000 && bootm"
fw_setenv bootdelay 2
After openwrt boots up, figure out a way to get the sysupgrade file onto it
(scp, custom build with usb kernel module included, wget, etc.) then flash it
with sysupgrade. After it finishes flashing, it should reboot, the light should
start flashing blue, then when the light starts "breathing" blue that means
openwrt is booted.
Method 2: Install with serial access (Do this if something fails and you can't
boot after using method 1)
You'll need:
initramfs and sysupgrade images
Serial access:
https://openwrt.org/inbox/toh/askey/askey_rt4230w_rev6#opening_the_case
Install and set up a tftp server
Set a static ip on the ethernet interface of your computer
Download the initramfs image, rename it to initramfs.bin, and host it with
the tftp server
Connect the wan port of the router to your computer
Interrupt U-Boot and run these commands:
setenv serverip 10.42.0.1 (You can use whatever ip you set for the computer)
setenv ipaddr 10.42.0.10 (Can be any ip as long as it's in the same subnet)
setenv bootcmd "setenv mtdids nand0=nand0 &&
set mtdparts mtdparts=nand0:0x1A000000@0x2400000(firmware) && ubi part firmware
&& ubi read 0x44000000 kernel 0x6e0000 && bootm"
saveenv
tftpboot initramfs.bin
bootm
After openwrt boots up, figure out a way to get the sysupgrade file onto it
(scp, custom build with usb kernel module included, wget, etc.) then flash it
with sysupgrade. After it finishes flashing, it should reboot, the light should
start flashing blue, then when the light starts "breathing" blue that means
openwrt is booted.
Signed-off-by: Lauro Moreno <lmore377@gmail.com>
[add entry in 5.10 patch, fix whitespace issues]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit da8428d277cd3373b05330cb3b4f93aef717c5ab)
This update mac80211 to version 5.10.168-1. This includes multiple
bugfixes. Some of these bugfixes are fixing security relevant bugs.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Changes between 1.1.1s and 1.1.1t [7 Feb 2023]
*) Fixed X.400 address type confusion in X.509 GeneralName.
There is a type confusion vulnerability relating to X.400 address processing
inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING
but subsequently interpreted by GENERAL_NAME_cmp as an ASN1_TYPE. This
vulnerability may allow an attacker who can provide a certificate chain and
CRL (neither of which need have a valid signature) to pass arbitrary
pointers to a memcmp call, creating a possible read primitive, subject to
some constraints. Refer to the advisory for more information. Thanks to
David Benjamin for discovering this issue. (CVE-2023-0286)
This issue has been fixed by changing the public header file definition of
GENERAL_NAME so that x400Address reflects the implementation. It was not
possible for any existing application to successfully use the existing
definition; however, if any application references the x400Address field
(e.g. in dead code), note that the type of this field has changed. There is
no ABI change.
[Hugo Landau]
*) Fixed Use-after-free following BIO_new_NDEF.
The public API function BIO_new_NDEF is a helper function used for
streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL
to support the SMIME, CMS and PKCS7 streaming capabilities, but may also
be called directly by end user applications.
The function receives a BIO from the caller, prepends a new BIO_f_asn1
filter BIO onto the front of it to form a BIO chain, and then returns
the new head of the BIO chain to the caller. Under certain conditions,
for example if a CMS recipient public key is invalid, the new filter BIO
is freed and the function returns a NULL result indicating a failure.
However, in this case, the BIO chain is not properly cleaned up and the
BIO passed by the caller still retains internal pointers to the previously
freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO
then a use-after-free will occur. This will most likely result in a crash.
(CVE-2023-0215)
[Viktor Dukhovni, Matt Caswell]
*) Fixed Double free after calling PEM_read_bio_ex.
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and
decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload
data. If the function succeeds then the "name_out", "header" and "data"
arguments are populated with pointers to buffers containing the relevant
decoded data. The caller is responsible for freeing those buffers. It is
possible to construct a PEM file that results in 0 bytes of payload data.
In this case PEM_read_bio_ex() will return a failure code but will populate
the header argument with a pointer to a buffer that has already been freed.
If the caller also frees this buffer then a double free will occur. This
will most likely lead to a crash.
The functions PEM_read_bio() and PEM_read() are simple wrappers around
PEM_read_bio_ex() and therefore these functions are also directly affected.
These functions are also called indirectly by a number of other OpenSSL
functions including PEM_X509_INFO_read_bio_ex() and
SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL
internal uses of these functions are not vulnerable because the caller does
not free the header argument if PEM_read_bio_ex() returns a failure code.
(CVE-2022-4450)
[Kurt Roeckx, Matt Caswell]
*) Fixed Timing Oracle in RSA Decryption.
A timing based side channel exists in the OpenSSL RSA Decryption
implementation which could be sufficient to recover a plaintext across
a network in a Bleichenbacher style attack. To achieve a successful
decryption an attacker would have to be able to send a very large number
of trial messages for decryption. The vulnerability affects all RSA padding
modes: PKCS#1 v1.5, RSA-OEAP and RSASVE.
(CVE-2022-4304)
[Dmitry Belyavsky, Hubert Kario]
Signed-off-by: John Audia <therealgraysky@proton.me>
(cherry picked from commit 4ae86b3358a149a17411657b12103ccebfbdb11b)
The original commit removed the upstreamed patch 010-padlock.patch, but
it's not on OpenWrt 21.02, so it doesn't have to be removed.
Signed-off-by: Michal Vasilek <michal.vasilek@nic.cz>
This update mac80211 to version 5.15.92-1. This includes multiple
bugfixes. Some of these bugfixes are fixing security relevant bugs.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
(cherry picked from commit 863288b49d3d1466f22bcf6098e4635a5be98626)
Removed upstreamed patch: 010-padlock.patch
Changes between 1.1.1s and 1.1.1t [7 Feb 2023]
*) Fixed X.400 address type confusion in X.509 GeneralName.
There is a type confusion vulnerability relating to X.400 address processing
inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING
but subsequently interpreted by GENERAL_NAME_cmp as an ASN1_TYPE. This
vulnerability may allow an attacker who can provide a certificate chain and
CRL (neither of which need have a valid signature) to pass arbitrary
pointers to a memcmp call, creating a possible read primitive, subject to
some constraints. Refer to the advisory for more information. Thanks to
David Benjamin for discovering this issue. (CVE-2023-0286)
This issue has been fixed by changing the public header file definition of
GENERAL_NAME so that x400Address reflects the implementation. It was not
possible for any existing application to successfully use the existing
definition; however, if any application references the x400Address field
(e.g. in dead code), note that the type of this field has changed. There is
no ABI change.
[Hugo Landau]
*) Fixed Use-after-free following BIO_new_NDEF.
The public API function BIO_new_NDEF is a helper function used for
streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL
to support the SMIME, CMS and PKCS7 streaming capabilities, but may also
be called directly by end user applications.
The function receives a BIO from the caller, prepends a new BIO_f_asn1
filter BIO onto the front of it to form a BIO chain, and then returns
the new head of the BIO chain to the caller. Under certain conditions,
for example if a CMS recipient public key is invalid, the new filter BIO
is freed and the function returns a NULL result indicating a failure.
However, in this case, the BIO chain is not properly cleaned up and the
BIO passed by the caller still retains internal pointers to the previously
freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO
then a use-after-free will occur. This will most likely result in a crash.
(CVE-2023-0215)
[Viktor Dukhovni, Matt Caswell]
*) Fixed Double free after calling PEM_read_bio_ex.
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and
decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload
data. If the function succeeds then the "name_out", "header" and "data"
arguments are populated with pointers to buffers containing the relevant
decoded data. The caller is responsible for freeing those buffers. It is
possible to construct a PEM file that results in 0 bytes of payload data.
In this case PEM_read_bio_ex() will return a failure code but will populate
the header argument with a pointer to a buffer that has already been freed.
If the caller also frees this buffer then a double free will occur. This
will most likely lead to a crash.
The functions PEM_read_bio() and PEM_read() are simple wrappers around
PEM_read_bio_ex() and therefore these functions are also directly affected.
These functions are also called indirectly by a number of other OpenSSL
functions including PEM_X509_INFO_read_bio_ex() and
SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL
internal uses of these functions are not vulnerable because the caller does
not free the header argument if PEM_read_bio_ex() returns a failure code.
(CVE-2022-4450)
[Kurt Roeckx, Matt Caswell]
*) Fixed Timing Oracle in RSA Decryption.
A timing based side channel exists in the OpenSSL RSA Decryption
implementation which could be sufficient to recover a plaintext across
a network in a Bleichenbacher style attack. To achieve a successful
decryption an attacker would have to be able to send a very large number
of trial messages for decryption. The vulnerability affects all RSA padding
modes: PKCS#1 v1.5, RSA-OEAP and RSASVE.
(CVE-2022-4304)
[Dmitry Belyavsky, Hubert Kario]
Signed-off-by: John Audia <therealgraysky@proton.me>
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
This adds missing HE modes to mac80211_prepare_ht_modes.
Previously mesh without wpa_supplicant would be initialized with 802.11g
/NO-HT only, as this method did not parse channel bandwidth for HE
operation.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit a63430eac33ceb1dbf96d3667e2a0f2e04ba391f)