This patch adds support for the COMFAST CF-E130N v2, an outdoor wireless
CPE with a single Ethernet port and a 802.11bgn radio.
Specifications:
- QCA9531 SoC
- 1x 10/100 Mbps Ethernet with PoE-in support
- 64 MB of RAM (DDR2)
- 16 MB of FLASH
- 5 dBi built-in antenna
- POWER/LAN/WLAN green LEDs
- 4x RSSI LEDs (2x red, 2x green)
- UART (115200 8N1) and GPIO (J9) headers on PCB
Flashing instructions:
The original firmware is based on OpenWrt so a sysupgrade image can be
installed via the stock web GUI.
The U-boot bootloader also contains a backup TFTP client to upload the
firmware from. Upon boot, it checks its ethernet network for the IP
192.168.1.10. Host a TFTP server and provide the image to be flashed as
file firmware_auto.bin.
MAC address setup:
The art partition contains four consecutive MAC addresses:
0x0 aa:bb:cc:xx:xx:c4
0x6 aa:bb:cc:xx:xx:c6
0x1002 aa:bb:cc:xx:xx:c5
0x5006 aa:bb:cc:xx:xx:c7
However, the manufacturer in its infinite wisdom decided that one address
is enough and both eth0 and WiFi get the MAC address from 0x0 (yes, that's
overwriting the existing and valid address in 0x1002). This is obviously
also the address on the device's label.
Signed-off-by: Pavel Balan <admin@kryma.net>
[fix configs partition, fix IMAGE_SIZE, add MAC address comment, rename
ATH_SOC to SOC]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
AHB is 258 MHz for this device (CPU_PLL / 3), but there is no difference
between 64 MHz and 50 MHz for spi-max-frequency, thus increase to 50 MHz.
Tested on revisions C1 and C3.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
GPIO 11 needs to be pulled high for the external gigabit switch to work,
this is currently solved via gpio-hog. Replace with phy0 reset-gpios.
Tested on revisions C1 and C3. Reset button is still working for reboot,
to enter failsafe, and to enter bootloader http recovery.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The device has a total of 8 LEDs, 5 of which are controlled by the switch
(LAN 1-4, WAN). Only power, wifi and wps are controlled by the SoC.
* led_power is on GPIO 5 (not 15), boot flashing sequence is now visible
* remove led 'internet', since it is only connected to the switch
* remove ucidef_set_led_switch for WAN from 01_leds, as it has no effect
Tested on revisions C1 and C3.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[adjust commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The UBIFS_FS_ZSTD is exposed when UBIFS is enabled.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[adjust commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Between 4.19 and 5.4, the kernel moved the partition parsers into
the parsers subdirectory. This led to some necessary rebasing of
our local patches for parsers, which partially has been performed
without caring about where the code was inserted.
This commit tries to adjust our local patches so that parsers are
inserted at the "proper" positions with respect to alphabetic sorting
(if possible). Thus, the commit is cosmetic.
While this might look useless now, it will make life easier when
adding other parsers in the future or for rebasing on kernel changes.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the WNDR4300SW, marketed by California ISP
SureWest (hence the 'SW' suffix). Hardware wise, it's identical to the
WNDR4300 v1.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2,4 GHz)
* Ethernet: 5x 1000Base-T
* LED: Power, WAN, LAN, WiFi, USB, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.1.1/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Netgear
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the red circle around it) and turn the router on
while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Hardware
--------
SoC: Atheros AR9344
RAM: 128M DDR2
FLASH: 2x Macronix MX25L12845EM
2x 16MiB SPI-NOR
WLAN2: Atheros AR9344 2x2 2T2R
WLAN5: Atheros AR9580 2x2 2T2R
SERIAL: Cisco-RJ45 on the back (115200 8n1)
Installation
------------
The U-Boot CLI is password protected (using the same credentials as the
OS). Default is admin/new2day.
1. Download the OpenWrt initramfs-image. Place it into a TFTP server
root directory and rename it to 1401A8C0.img. Configure the TFTP
server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point. Attach power and
interrupt the boot procedure when prompted (bootdelay is 1 second).
4. Configure the U-Boot environment for booting OpenWrt from Ram and
flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xbf230000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot 0x85000000; bootm'
$ setenv bootcmd 'run boot_openwrt'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
Wait for the image to boot.
6. Transfer the OpenWrt sysupgrade image to the device. Write the image
to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysuograde.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
This ports support for the TL-WA901ND v4 and v5 from ar71xx to ath79.
They are similar to the TP9343-based TL-WR940N v3/v4 and TL-WR941ND v6.
Specifications:
SoC: TP9343
Flash/RAM: 4/32 MiB
CPU: 750 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to * (see below)
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
* The image name for TFTP recovery is wa901ndv4_tp_recovery.bin for
both variants.
In ar71xx, a MAC address with offset 1 was used for ethernet port.
That's probably wrong, but this commit sticks to it until we know
the correct value.
Like in ar71xx, this builds the default factory.bin with EU country
code.
Thanks to Leonardo Weiss for testing on the v5.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Increase SPI frequency to 33.333 MHz. It's maximum frequency supported
by SPI Flash memory chip without Fast read opcode.
Before:
$ time dd if=/dev/mtd1 of=/dev/null bs=8M
0+1 records in
0+1 records out
real 0m 3.21s
user 0m 0.00s
sys 0m 3.21s
After:
$ time dd if=/dev/mtd1 of=/dev/null bs=8M
0+1 records in
0+1 records out
real 0m 2.52s
user 0m 0.00s
sys 0m 2.52s
Tested on TP-Link TL-WR1043ND V2.
Signed-off-by: Aleksander Jan Bajkowski <A.Bajkowski@stud.elka.pw.edu.pl>
Out of all devices currently supported based on AR9331 chipset,
this one had the 'serial0' alias missing. Add it to fix setting of
/dev/console and login shell on the onboard UART.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
This commit takes advantages of base-files 220 which introduces routines
to perform caldata loading directly via the kernel sysfs loader helper.
This has the benefits of not wasting flash space to store caldata.
Memory footprint is reduced to the bare minimum: for devices that don't
need MAC patching, the caldata is loaded directly, for devices that do
need MAC patching, the caldata is extracted to /tmp, patched and then
loaded.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
With the implementation of a sysfs interface to access WLAN data, this
target no longer needs a special wrapper to extract caldata.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
As evidenced here[1] the device MAC address can be stored at a random
offset in the hard_config partition. Rely on sysfs to update the MAC
address correctly.
To match sticker and vendor OS behavior, WAN MAC is set to the device
base MAC and LAN MAC is incremented from that.
Note: this will trigger a harmless kernel message during boot:
ag71xx 19000000.eth: invalid MAC address, using random address
There is no clean workaround to prevent this message from being emitted.
[1] https://github.com/openwrt/openwrt/pull/2850#issuecomment-610809021
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
This board was previously supported in ar71xx as 'RUT9XX'. The
difference between that and the other RUT955 board already supported in
ath79 is that instead of the SPI shift registers driving the LEDs and
digital outputs that model got an I2C GPIO expander instead.
To support LEDs during early boot and interrupt-driven digital inputs,
I2C support as well as support for PCA953x has to be built-in and
cannot be kernel modules, hence select those symbols for ath79/generic.
Specification:
- 550/400/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 4x 10/100 Mbps Ethernet, with passive PoE support on LAN1
- 2T2R 2,4 GHz (AR9344)
- built-in 4G/3G module (example: Quectel EC-25EU)
- internal microSD slot (spi-mmc, buggy and disabled for now)
- RS232 on D-Sub9 port (Cypress ACM via USB, /dev/ttyACM0)
- RS422/RS485 (AR934x high speed UART, /dev/ttyATH1)
- analog 0-24V input (MCP3221)
- various digital inputs and outputs incl. a relay
- 11x LED (4 are driven by AR9344, 7 by PCA9539)
- 2x miniSIM slot (can be swapped via GPIO)
- 2x RP-SMA/F (Wi-Fi), 3x SMA/F (2x WWAN, GPS)
- 1x button (reset)
- DC jack for main power input (9-30 V)
- debugging UART available on PCB edge connector
Serial console (/dev/ttyS0) pinout:
- RX: pin1 (square) on top side of the main PCB (AR9344 is on top)
- TX: pin1 (square) on bottom side
Flash instruction:
Vendor firmware is based on OpenWrt CC release. Use the "factory" image
directly in GUI (make sure to uncheck "keep settings") or in U-Boot web
based recovery. To avoid any problems, make sure to first update vendor
firmware to latest version - "factory" image was successfully tested on
device running "RUT9XX_R_00.06.051" firmware and U-Boot "3.0.1".
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Split device-tree of Teltonika RUT955 into a generic RUT9xx part and
a part specific to that version of RUT955 already supported.
Also harmonize GPIO and LED names with what is used by the vendor
firmware and assign RS485 DTR signal.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This adds some still-missing board names for old TP-Link devices
to ath79 SUPPORTED_DEVICES.
Fixes: FS#3017
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Like for Ubiquiti PowerBeam 5AC Gen2, the highest RSSI LED can
be exploited to indicate boot/failsafe/upgrade for the NanoBeam AC
and Nanostation AC as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Ubiquiti PowerBeam 5AC Gen 2 (PBE-5AC-Gen2) is an outdoor 802.11ac
5 GHz bridge with a radio feed and a dish antenna. The device is
hardware-compatible with the LiteBeam AC Gen2, plus the 4 extra LEDs.
Specifications:
- SoC: Qualcomm Atheros AR9342 rev 2
- RAM: 64 MB DDR2
- Flash: 16 MB SPI NOR (mx25l12805d)
- Ethernet: 1x 10/100/1000 Mbps Atheros 8035, 24 Vdc PoE-in
- WiFi 5 GHz: QCA988x HW2.0 Ubiquiti target 0x4100016c chip_id 0x043222ff
- WiFi 2.4 GHz: Atheros AR9340 (SoC-based)
- Buttons: 1x (reset)
- LEDs: 1x power, 1x Ethernet, 4x RSSI via GPIO. All blue.
- UART: not tested
Installation from stock airOS firmware:
- Follow instructions for WA-type Ubiquiti devices on OpenWrt wiki
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[changed device name in commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
These boards suffer from a sudden inability to establish a link on the
SGMII. Enable the workaround to fix the link when it dies.
Signed-off-by: David Bauer <mail@david-bauer.net>
ath79 does not support kernels prior to 4.19 anymore.
Remove legacy code for those kernels from the ag71xx driver.
Signed-off-by: David Bauer <mail@david-bauer.net>
This parser was added with the target, but no device seems to use it
currently, as all partitions are specified in the device-tree.
Signed-off-by: David Bauer <mail@david-bauer.net>
Some boards using a QCA9556 or QCA9558 had their machine compatible
binding incorrectly set to qca,qca9557.
Signed-off-by: David Bauer <mail@david-bauer.net>
There are at least 3 different chips in the Scorpion series of SoCs.
Rename the common DTSI to better reflect it's purpose for the whole
series.
Also rename the compatible bindings from qca,ar9557 and qca,qca9557
to qca,qca9550.
Signed-off-by: David Bauer <mail@david-bauer.net>
Between 4.19 and 5.4, mtd parsers have been moved to "parsers"
subdirectory. Like for myloader.c in the previous patch,
this patch moves tplinkpart.c to the kernel patches, so the
code and the kernel includes are at the same location and
the path can be adjusted per kernel.
While at it, remove some outdated kernel version switches from
the C code.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Between 4.19 and 5.4, mtd parsers have been moved to "parsers"
subdirectory. Based on this, the selection of myloader.o in OpenWrt
was also moved to that subdirectory, while the Kconfig and our local
myloader.c file remained in /drivers/mtd.
This resulted in linking errors like the following (on ath25@5.4):
make[8]: *** No rule to make target 'drivers/mtd/parsers/myloader.o', ...
needed by 'drivers/mtd/parsers/built-in.a'. Stop.
make[7]: *** [scripts/Makefile.build:500: drivers/mtd/parsers] Error 2
make[6]: *** [scripts/Makefile.build:500: drivers/mtd] Error 2
Since myloader.c is not too big, this patch moves it to the kernel patches,
allowing to adjust the path for kernel 5.4 and keeping Makefiles and
file paths better in sync.
Other patches have been refreshed accordingly.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
SOC: Qualcomm QCA9556 (Scorpion) 560MHz MIPS74Kc
RAM: 64MB Zentel A3R12E40CBF DDR2
FLASH: 16MiB Winbond W25Q128 SPI NOR
WLAN1: QCA9556 2.4 GHz 802.11b/g/n 3x3
INPUT: WPS button
LED: Power, WiFi, LAN, RSSI indicator
Serial: Header Next to Black metal shield
Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V)
The Serial setting is 115200-8-N-1.
Installation via EVA:
In the first seconds after Power is connected, the bootloader will
listen for FTP connections on 192.168.178.1. Firmware can be uploaded
like following:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1
Note that this procedure might take up to two minutes.
You need to powercycle the device afterwards to boot OpenWRT.
Tested-by: Andreas Ziegler <dev@andreas-ziegler.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit adds support for the AVM Fritz!WLAN Repeater 1750E
SOC: Qualcomm QCA9556 (Scorpion) 720MHz MIPS74Kc
RAM: 64MB Zentel A3R12E40CBF DDR2
FLASH: 16MiB Winbond W25Q128 SPI NOR
WLAN1: QCA9556 2.4 GHz 802.11b/g/n 3x3
WLAN2: QCA9880 5 GHz 802.11 n/ac 3x3
INPUT: WPS button
LED: Power, WiFi, LAN, RSSI indicator
Serial: Header Next to Black metal shield
Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V)
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet
- 2.4 GHz WiFi (correct MAC)
- 5 GHz WiFi (correct MAC)
- Installation via EVA bootloader
- OpenWRT sysupgrade
- Buttons
- LEDs
Installation via EVA:
In the first seconds after Power is connected, the bootloader will
listen for FTP connections on 192.168.178.1. Firmware can be uploaded
like following:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1
Note that this procedure might take up to two minutes.
You need to powercycle the Device afterwards to boot OpenWRT.
Signed-off-by: David Bauer <mail@david-bauer.net>
The QCA9550 family of SoCs have a slightly different reset
sequence compared to older chips.
Normally the bootloader performs this sequence, however
some bootloader implementation expect the operating system
to clear the reset. Also get the PCIe resets from OF to
support the second RC of the QCA9558.
This is required for the AVM FRITZ!WLAN Repeater 1750E to work,
as EVA leaves the PCIe bus in reset.
Tested: AVM FRITZ!WLAN Repeater 1750E - OCEDO Koala
Signed-off-by: David Bauer <mail@david-bauer.net>
The previous spi-max-frequency value did not work with all the CPU speed
settings (configurable with rbcfg or from the stock firmware); the new
one does for the three of them.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Improve the status LED functionality in GL-AR750
by adding the definitions for different statuses
(boot, failsafe, running, flashing).
Signed-off-by: Hannu Nyman <hannu.nyman@iki.fi>
This adds the board name from ar71xx to support upgrade without
-F for the TP-Link TL-WA901ND v2.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This applies further fixes to the DTS of ZyXEL NBG6716 based on
what is found in ar71xx (mach-nbg6716.c):
- use WiFi label names as in ar71xx
- fix WPS gpio number
- fix GPIO_ACTIVE_HIGH and mode for WiFi switch
- add codes for USB eject buttons
- fix node name for "internet" LED
This device has separate LEDs for WAN and "Internet". As the WAN-LED
(and the four LAN-LEDs) are driven independent of the setup in
DT/01_leds, the "internet" LED is left unassigned (in contrast to
ar71xx, where it was set up effectively as a second WAN LED)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>