kernel: mtdsplit: support ELF loader splitting

To parse the ELF kernel loader, a small ELF parser is used that can
handle both ELF32 or ELF64 class loaders. The splitter assumes that the
kernel is always located before the rootfs, whether it is embedded in
the loader or not. If the kernel is located after the rootfs on the
firmware partition, then the rootfs splitter will include it in the
dynamically created rootfs_data partition and the kernel will be
corrupted.

The kernel image is preferably embedded inside the ELF loader, so the
end of the loader equals the end of the kernel partition. This is due to
the way mtd_find_rootfs_from searches for the the rootfs:
- if the kernel image is embedded in the loader, the appended rootfs may
  follow the loader immediately, within the same erase block.
- if the kernel image is not embedded in the loader, but placed at some
  offset behind the loader (OKLI-style loader), the rootfs must be
  aligned to an erase-block after the loader and kernel image.

In case section header table is empty, determine the elf loader size by
finding the end of the last segment, as defined by the program header
table.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
This commit is contained in:
Sander Vanheule 2020-07-02 22:33:56 +02:00 committed by Stijn Tintel
parent f58d323534
commit 3f7047db7a
3 changed files with 293 additions and 0 deletions

View File

@ -79,3 +79,8 @@ config MTD_SPLIT_JIMAGE_FW
bool "JBOOT Image based firmware partition parser"
depends on MTD_SPLIT_SUPPORT
select MTD_SPLIT
config MTD_SPLIT_ELF_FW
bool "ELF loader firmware partition parser"
depends on MTD_SPLIT_SUPPORT
select MTD_SPLIT

View File

@ -12,3 +12,4 @@ obj-$(CONFIG_MTD_SPLIT_EVA_FW) += mtdsplit_eva.o
obj-$(CONFIG_MTD_SPLIT_WRGG_FW) += mtdsplit_wrgg.o
obj-$(CONFIG_MTD_SPLIT_MINOR_FW) += mtdsplit_minor.o
obj-$(CONFIG_MTD_SPLIT_JIMAGE_FW) += mtdsplit_jimage.o
obj-$(CONFIG_MTD_SPLIT_ELF_FW) += mtdsplit_elf.o

View File

@ -0,0 +1,287 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* MTD splitter for ELF loader firmware partitions
*
* Copyright (C) 2020 Sander Vanheule <sander@svanheule.net>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; version 2.
*
* To parse the ELF kernel loader, a small ELF parser is used that can
* handle both ELF32 or ELF64 class loaders. The splitter assumes that the
* kernel is always located before the rootfs, whether it is embedded in the
* loader or not.
*
* The kernel image is preferably embedded inside the ELF loader, so the end
* of the loader equals the end of the kernel partition. This is due to the
* way mtd_find_rootfs_from searches for the the rootfs:
* - if the kernel image is embedded in the loader, the appended rootfs may
* follow the loader immediately, within the same erase block.
* - if the kernel image is not embedded in the loader, but placed at some
* offset behind the loader (OKLI-style loader), the rootfs must be
* aligned to an erase-block after the loader and kernel image.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/byteorder/generic.h>
#include "mtdsplit.h"
#define ELF_NR_PARTS 2
#define ELF_MAGIC 0x7f454c46 /* 0x7f E L F */
#define ELF_CLASS_32 1
#define ELF_CLASS_64 2
struct elf_header_ident {
uint32_t magic;
uint8_t class;
uint8_t data;
uint8_t version;
uint8_t osabi;
uint8_t abiversion;
uint8_t pad[7];
};
struct elf_header_32 {
uint16_t type;
uint16_t machine;
uint32_t version;
uint32_t entry;
uint32_t phoff;
uint32_t shoff;
uint32_t flags;
uint16_t ehsize;
uint16_t phentsize;
uint16_t phnum;
uint16_t shentsize;
uint16_t shnum;
uint16_t shstrndx;
};
struct elf_header_64 {
uint16_t type;
uint16_t machine;
uint32_t version;
uint64_t entry;
uint64_t phoff;
uint64_t shoff;
uint32_t flags;
uint16_t ehsize;
uint16_t phentsize;
uint16_t phnum;
uint16_t shentsize;
uint16_t shnum;
uint16_t shstrndx;
};
struct elf_header {
struct elf_header_ident ident;
union {
struct elf_header_32 elf32;
struct elf_header_64 elf64;
};
};
struct elf_program_header_32 {
uint32_t type;
uint32_t offset;
uint32_t vaddr;
uint32_t paddr;
uint32_t filesize;
uint32_t memsize;
uint32_t flags;
};
struct elf_program_header_64 {
uint32_t type;
uint32_t flags;
uint64_t offset;
uint64_t vaddr;
uint64_t paddr;
uint64_t filesize;
uint64_t memsize;
};
static int mtdsplit_elf_read_mtd(struct mtd_info *mtd, size_t offset,
uint8_t *dst, size_t len)
{
size_t retlen;
int ret;
ret = mtd_read(mtd, offset, len, &retlen, dst);
if (ret) {
pr_debug("read error in \"%s\"\n", mtd->name);
return ret;
}
if (retlen != len) {
pr_debug("short read in \"%s\"\n", mtd->name);
return -EIO;
}
return 0;
}
static int elf32_determine_size(struct mtd_info *mtd, struct elf_header *hdr,
size_t *size)
{
struct elf_header_32 *hdr32 = &(hdr->elf32);
int err;
size_t section_end, ph_table_end, ph_entry;
struct elf_program_header_32 ph;
*size = 0;
if (hdr32->shoff > 0) {
*size = hdr32->shoff + hdr32->shentsize * hdr32->shnum;
return 0;
}
ph_entry = hdr32->phoff;
ph_table_end = hdr32->phoff + hdr32->phentsize * hdr32->phnum;
while (ph_entry < ph_table_end) {
err = mtdsplit_elf_read_mtd(mtd, ph_entry, (uint8_t *)(&ph),
sizeof(ph));
if (err)
return err;
section_end = ph.offset + ph.filesize;
if (section_end > *size)
*size = section_end;
ph_entry += hdr32->phentsize;
}
return 0;
}
static int elf64_determine_size(struct mtd_info *mtd, struct elf_header *hdr,
size_t *size)
{
struct elf_header_64 *hdr64 = &(hdr->elf64);
int err;
size_t section_end, ph_table_end, ph_entry;
struct elf_program_header_64 ph;
*size = 0;
if (hdr64->shoff > 0) {
*size = hdr64->shoff + hdr64->shentsize * hdr64->shnum;
return 0;
}
ph_entry = hdr64->phoff;
ph_table_end = hdr64->phoff + hdr64->phentsize * hdr64->phnum;
while (ph_entry < ph_table_end) {
err = mtdsplit_elf_read_mtd(mtd, ph_entry, (uint8_t *)(&ph),
sizeof(ph));
if (err)
return err;
section_end = ph.offset + ph.filesize;
if (section_end > *size)
*size = section_end;
ph_entry += hdr64->phentsize;
}
return 0;
}
static int mtdsplit_parse_elf(struct mtd_info *mtd,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct elf_header hdr;
size_t loader_size, rootfs_offset;
enum mtdsplit_part_type type;
struct mtd_partition *parts;
int err;
err = mtdsplit_elf_read_mtd(mtd, 0, (uint8_t *)&hdr, sizeof(hdr));
if (err)
return err;
if (be32_to_cpu(hdr.ident.magic) != ELF_MAGIC) {
pr_debug("invalid ELF magic %08x\n",
be32_to_cpu(hdr.ident.magic));
return -EINVAL;
}
switch (hdr.ident.class) {
case ELF_CLASS_32:
err = elf32_determine_size(mtd, &hdr, &loader_size);
break;
case ELF_CLASS_64:
err = elf64_determine_size(mtd, &hdr, &loader_size);
break;
default:
pr_debug("invalid ELF class %i\n", hdr.ident.class);
err = -EINVAL;
}
if (err)
return err;
err = mtd_find_rootfs_from(mtd, loader_size, mtd->size,
&rootfs_offset, &type);
if (err)
return err;
if (rootfs_offset == mtd->size) {
pr_debug("no rootfs found in \"%s\"\n", mtd->name);
return -ENODEV;
}
parts = kzalloc(ELF_NR_PARTS * sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
parts[0].name = KERNEL_PART_NAME;
parts[0].offset = 0;
parts[0].size = rootfs_offset;
if (type == MTDSPLIT_PART_TYPE_UBI)
parts[1].name = UBI_PART_NAME;
else
parts[1].name = ROOTFS_PART_NAME;
parts[1].offset = rootfs_offset;
parts[1].size = mtd->size - rootfs_offset;
*pparts = parts;
return ELF_NR_PARTS;
}
static const struct of_device_id mtdsplit_elf_of_match_table[] = {
{ .compatible = "openwrt,elf" },
{},
};
MODULE_DEVICE_TABLE(of, mtdsplit_elf_of_match_table);
static struct mtd_part_parser mtdsplit_elf_parser = {
.owner = THIS_MODULE,
.name = "elf-loader-fw",
.of_match_table = mtdsplit_elf_of_match_table,
.parse_fn = mtdsplit_parse_elf,
.type = MTD_PARSER_TYPE_FIRMWARE,
};
static int __init mtdsplit_elf_init(void)
{
register_mtd_parser(&mtdsplit_elf_parser);
return 0;
}
subsys_initcall(mtdsplit_elf_init);