mirror of
https://github.com/alliedmodders/hl2sdk.git
synced 2025-01-03 16:13:22 +08:00
3263 lines
113 KiB
C++
3263 lines
113 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose: Common collision utility methods
|
|
//
|
|
// $Header: $
|
|
// $NoKeywords: $
|
|
//=============================================================================//
|
|
|
|
#if !defined(_STATIC_LINKED) || defined(_SHARED_LIB)
|
|
|
|
#include "collisionutils.h"
|
|
#include "cmodel.h"
|
|
#include "mathlib/mathlib.h"
|
|
#include "mathlib/vector.h"
|
|
#include "tier0/dbg.h"
|
|
#include <float.h>
|
|
#include "mathlib/vector4d.h"
|
|
#include "trace.h"
|
|
|
|
// memdbgon must be the last include file in a .cpp file!!!
|
|
#include "tier0/memdbgon.h"
|
|
|
|
#define UNINIT -99999.0
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Clears the trace
|
|
//-----------------------------------------------------------------------------
|
|
static void Collision_ClearTrace( const Vector &vecRayStart, const Vector &vecRayDelta, CBaseTrace *pTrace )
|
|
{
|
|
pTrace->startpos = vecRayStart;
|
|
pTrace->endpos = vecRayStart;
|
|
pTrace->endpos += vecRayDelta;
|
|
pTrace->startsolid = false;
|
|
pTrace->allsolid = false;
|
|
pTrace->fraction = 1.0f;
|
|
pTrace->contents = 0;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the offset in t along the ray that we'll use for the collision
|
|
//-----------------------------------------------------------------------------
|
|
static float ComputeBoxOffset( const Ray_t& ray )
|
|
{
|
|
if (ray.m_IsRay)
|
|
return 1e-3f;
|
|
|
|
// Find the projection of the box diagonal along the ray...
|
|
float offset = FloatMakePositive(ray.m_Extents[0] * ray.m_Delta[0]) +
|
|
FloatMakePositive(ray.m_Extents[1] * ray.m_Delta[1]) +
|
|
FloatMakePositive(ray.m_Extents[2] * ray.m_Delta[2]);
|
|
|
|
// We need to divide twice: Once to normalize the computation above
|
|
// so we get something in units of extents, and the second to normalize
|
|
// that with respect to the entire raycast.
|
|
offset *= InvRSquared( ray.m_Delta );
|
|
|
|
// 1e-3 is an epsilon
|
|
return offset + 1e-3;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a swept box against a triangle
|
|
//-----------------------------------------------------------------------------
|
|
float IntersectRayWithTriangle( const Ray_t& ray,
|
|
const Vector& v1, const Vector& v2, const Vector& v3, bool oneSided )
|
|
{
|
|
// This is cute: Use barycentric coordinates to represent the triangle
|
|
// Vo(1-u-v) + V1u + V2v and intersect that with a line Po + Dt
|
|
// This gives us 3 equations + 3 unknowns, which we can solve with
|
|
// Cramer's rule...
|
|
// E1x u + E2x v - Dx t = Pox - Vox
|
|
// There's a couple of other optimizations, Cramer's rule involves
|
|
// computing the determinant of a matrix which has been constructed
|
|
// by three vectors. It turns out that
|
|
// det | A B C | = -( A x C ) dot B or -(C x B) dot A
|
|
// which we'll use below..
|
|
|
|
Vector edge1, edge2, org;
|
|
VectorSubtract( v2, v1, edge1 );
|
|
VectorSubtract( v3, v1, edge2 );
|
|
|
|
// Cull out one-sided stuff
|
|
if (oneSided)
|
|
{
|
|
Vector normal;
|
|
CrossProduct( edge1, edge2, normal );
|
|
if (DotProduct( normal, ray.m_Delta ) >= 0.0f)
|
|
return -1.0f;
|
|
}
|
|
|
|
// FIXME: This is inaccurate, but fast for boxes
|
|
// We want to do a fast separating axis implementation here
|
|
// with a swept triangle along the reverse direction of the ray.
|
|
|
|
// Compute some intermediary terms
|
|
Vector dirCrossEdge2, orgCrossEdge1;
|
|
CrossProduct( ray.m_Delta, edge2, dirCrossEdge2 );
|
|
|
|
// Compute the denominator of Cramer's rule:
|
|
// | -Dx E1x E2x |
|
|
// det | -Dy E1y E2y | = (D x E2) dot E1
|
|
// | -Dz E1z E2z |
|
|
float denom = DotProduct( dirCrossEdge2, edge1 );
|
|
if( FloatMakePositive( denom ) < 1e-6 )
|
|
return -1.0f;
|
|
denom = 1.0f / denom;
|
|
|
|
// Compute u. It's gotta lie in the range of 0 to 1.
|
|
// | -Dx orgx E2x |
|
|
// u = denom * det | -Dy orgy E2y | = (D x E2) dot org
|
|
// | -Dz orgz E2z |
|
|
VectorSubtract( ray.m_Start, v1, org );
|
|
float u = DotProduct( dirCrossEdge2, org ) * denom;
|
|
if ((u < 0.0f) || (u > 1.0f))
|
|
return -1.0f;
|
|
|
|
// Compute t and v the same way...
|
|
// In barycentric coords, u + v < 1
|
|
CrossProduct( org, edge1, orgCrossEdge1 );
|
|
float v = DotProduct( orgCrossEdge1, ray.m_Delta ) * denom;
|
|
if ((v < 0.0f) || (v + u > 1.0f))
|
|
return -1.0f;
|
|
|
|
// Compute the distance along the ray direction that we need to fudge
|
|
// when using swept boxes
|
|
float boxt = ComputeBoxOffset( ray );
|
|
float t = DotProduct( orgCrossEdge1, edge2 ) * denom;
|
|
if ((t < -boxt) || (t > 1.0f + boxt))
|
|
return -1.0f;
|
|
|
|
return clamp( t, 0.f, 1.f );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// computes the barycentric coordinates of an intersection
|
|
//-----------------------------------------------------------------------------
|
|
|
|
bool ComputeIntersectionBarycentricCoordinates( const Ray_t& ray,
|
|
const Vector& v1, const Vector& v2, const Vector& v3, float& u, float& v,
|
|
float *t )
|
|
{
|
|
Vector edge1, edge2, org;
|
|
VectorSubtract( v2, v1, edge1 );
|
|
VectorSubtract( v3, v1, edge2 );
|
|
|
|
// Compute some intermediary terms
|
|
Vector dirCrossEdge2, orgCrossEdge1;
|
|
CrossProduct( ray.m_Delta, edge2, dirCrossEdge2 );
|
|
|
|
// Compute the denominator of Cramer's rule:
|
|
// | -Dx E1x E2x |
|
|
// det | -Dy E1y E2y | = (D x E2) dot E1
|
|
// | -Dz E1z E2z |
|
|
float denom = DotProduct( dirCrossEdge2, edge1 );
|
|
if( FloatMakePositive( denom ) < 1e-6 )
|
|
return false;
|
|
denom = 1.0f / denom;
|
|
|
|
// Compute u. It's gotta lie in the range of 0 to 1.
|
|
// | -Dx orgx E2x |
|
|
// u = denom * det | -Dy orgy E2y | = (D x E2) dot org
|
|
// | -Dz orgz E2z |
|
|
VectorSubtract( ray.m_Start, v1, org );
|
|
u = DotProduct( dirCrossEdge2, org ) * denom;
|
|
|
|
// Compute t and v the same way...
|
|
// In barycentric coords, u + v < 1
|
|
CrossProduct( org, edge1, orgCrossEdge1 );
|
|
v = DotProduct( orgCrossEdge1, ray.m_Delta ) * denom;
|
|
|
|
// Compute the distance along the ray direction that we need to fudge
|
|
// when using swept boxes
|
|
if( t )
|
|
{
|
|
float boxt = ComputeBoxOffset( ray );
|
|
*t = DotProduct( orgCrossEdge1, edge2 ) * denom;
|
|
if( ( *t < -boxt ) || ( *t > 1.0f + boxt ) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a plane with a triangle (requires barycentric definition)
|
|
//-----------------------------------------------------------------------------
|
|
|
|
int IntersectTriangleWithPlaneBarycentric( const Vector& org, const Vector& edgeU,
|
|
const Vector& edgeV, const Vector4D& plane, Vector2D* pIntersection )
|
|
{
|
|
// This uses a barycentric method, since we need that to determine
|
|
// interpolated points, alphas, and normals
|
|
// Given the plane equation P dot N + d = 0
|
|
// and the barycentric coodinate equation P = Org + EdgeU * u + EdgeV * v
|
|
// Plug em in. Intersection occurs at u = 0 or v = 0 or u + v = 1
|
|
|
|
float orgDotNormal = DotProduct( org, plane.AsVector3D() );
|
|
float edgeUDotNormal = DotProduct( edgeU, plane.AsVector3D() );
|
|
float edgeVDotNormal = DotProduct( edgeV, plane.AsVector3D() );
|
|
|
|
int ptIdx = 0;
|
|
|
|
// u = 0
|
|
if ( edgeVDotNormal != 0.0f )
|
|
{
|
|
pIntersection[ptIdx].x = 0.0f;
|
|
pIntersection[ptIdx].y = - ( orgDotNormal - plane.w ) / edgeVDotNormal;
|
|
if ((pIntersection[ptIdx].y >= 0.0f) && (pIntersection[ptIdx].y <= 1.0f))
|
|
++ptIdx;
|
|
}
|
|
|
|
// v = 0
|
|
if ( edgeUDotNormal != 0.0f )
|
|
{
|
|
pIntersection[ptIdx].x = - ( orgDotNormal - plane.w ) / edgeUDotNormal;
|
|
pIntersection[ptIdx].y = 0.0f;
|
|
if ((pIntersection[ptIdx].x >= 0.0f) && (pIntersection[ptIdx].x <= 1.0f))
|
|
++ptIdx;
|
|
}
|
|
|
|
// u + v = 1
|
|
if (ptIdx == 2)
|
|
return ptIdx;
|
|
|
|
if ( edgeVDotNormal != edgeUDotNormal )
|
|
{
|
|
pIntersection[ptIdx].x = - ( orgDotNormal - plane.w + edgeVDotNormal) /
|
|
( edgeUDotNormal - edgeVDotNormal);
|
|
pIntersection[ptIdx].y = 1.0f - pIntersection[ptIdx].x;;
|
|
if ((pIntersection[ptIdx].x >= 0.0f) && (pIntersection[ptIdx].x <= 1.0f) &&
|
|
(pIntersection[ptIdx].y >= 0.0f) && (pIntersection[ptIdx].y <= 1.0f))
|
|
++ptIdx;
|
|
}
|
|
|
|
Assert( ptIdx < 3 );
|
|
return ptIdx;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Returns true if a box intersects with a sphere
|
|
//-----------------------------------------------------------------------------
|
|
bool IsSphereIntersectingSphere( const Vector& center1, float radius1,
|
|
const Vector& center2, float radius2 )
|
|
{
|
|
Vector delta;
|
|
VectorSubtract( center2, center1, delta );
|
|
float distSq = delta.LengthSqr();
|
|
float radiusSum = radius1 + radius2;
|
|
return (distSq <= (radiusSum * radiusSum));
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Returns true if a box intersects with a sphere
|
|
//-----------------------------------------------------------------------------
|
|
bool IsBoxIntersectingSphere( const Vector& boxMin, const Vector& boxMax,
|
|
const Vector& center, float radius )
|
|
{
|
|
// See Graphics Gems, box-sphere intersection
|
|
float dmin = 0.0f;
|
|
float flDelta;
|
|
|
|
// Unrolled the loop.. this is a big cycle stealer...
|
|
if (center[0] < boxMin[0])
|
|
{
|
|
flDelta = center[0] - boxMin[0];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
else if (center[0] > boxMax[0])
|
|
{
|
|
flDelta = boxMax[0] - center[0];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
|
|
if (center[1] < boxMin[1])
|
|
{
|
|
flDelta = center[1] - boxMin[1];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
else if (center[1] > boxMax[1])
|
|
{
|
|
flDelta = boxMax[1] - center[1];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
|
|
if (center[2] < boxMin[2])
|
|
{
|
|
flDelta = center[2] - boxMin[2];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
else if (center[2] > boxMax[2])
|
|
{
|
|
flDelta = boxMax[2] - center[2];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
|
|
return dmin < radius * radius;
|
|
}
|
|
|
|
bool IsBoxIntersectingSphereExtents( const Vector& boxCenter, const Vector& boxHalfDiag,
|
|
const Vector& center, float radius )
|
|
{
|
|
// See Graphics Gems, box-sphere intersection
|
|
float dmin = 0.0f;
|
|
float flDelta, flDiff;
|
|
|
|
// Unrolled the loop.. this is a big cycle stealer...
|
|
flDiff = FloatMakePositive( center.x - boxCenter.x );
|
|
if (flDiff > boxHalfDiag.x)
|
|
{
|
|
flDelta = flDiff - boxHalfDiag.x;
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
|
|
flDiff = FloatMakePositive( center.y - boxCenter.y );
|
|
if (flDiff > boxHalfDiag.y)
|
|
{
|
|
flDelta = flDiff - boxHalfDiag.y;
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
|
|
flDiff = FloatMakePositive( center.z - boxCenter.z );
|
|
if (flDiff > boxHalfDiag.z)
|
|
{
|
|
flDelta = flDiff - boxHalfDiag.z;
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
|
|
return dmin < radius * radius;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Returns true if a rectangle intersects with a circle
|
|
//-----------------------------------------------------------------------------
|
|
bool IsCircleIntersectingRectangle( const Vector2D& boxMin, const Vector2D& boxMax,
|
|
const Vector2D& center, float radius )
|
|
{
|
|
// See Graphics Gems, box-sphere intersection
|
|
float dmin = 0.0f;
|
|
float flDelta;
|
|
|
|
if (center[0] < boxMin[0])
|
|
{
|
|
flDelta = center[0] - boxMin[0];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
else if (center[0] > boxMax[0])
|
|
{
|
|
flDelta = boxMax[0] - center[0];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
|
|
if (center[1] < boxMin[1])
|
|
{
|
|
flDelta = center[1] - boxMin[1];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
else if (center[1] > boxMax[1])
|
|
{
|
|
flDelta = boxMax[1] - center[1];
|
|
dmin += flDelta * flDelta;
|
|
}
|
|
|
|
return dmin < radius * radius;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// returns true if there's an intersection between ray and sphere
|
|
//-----------------------------------------------------------------------------
|
|
bool IsRayIntersectingSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta,
|
|
const Vector& vecCenter, float flRadius, float flTolerance )
|
|
{
|
|
// For this algorithm, find a point on the ray which is closest to the sphere origin
|
|
// Do this by making a plane passing through the sphere origin
|
|
// whose normal is parallel to the ray. Intersect that plane with the ray.
|
|
// Plane: N dot P = I, N = D (ray direction), I = C dot N = C dot D
|
|
// Ray: P = O + D * t
|
|
// D dot ( O + D * t ) = C dot D
|
|
// D dot O + D dot D * t = C dot D
|
|
// t = (C - O) dot D / D dot D
|
|
// Clamp t to (0,1)
|
|
// Find distance of the point on the ray to the sphere center.
|
|
Assert( flTolerance >= 0.0f );
|
|
flRadius += flTolerance;
|
|
|
|
Vector vecRayToSphere;
|
|
VectorSubtract( vecCenter, vecRayOrigin, vecRayToSphere );
|
|
float flNumerator = DotProduct( vecRayToSphere, vecRayDelta );
|
|
|
|
float t;
|
|
if (flNumerator <= 0.0f)
|
|
{
|
|
t = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
float flDenominator = DotProduct( vecRayDelta, vecRayDelta );
|
|
if ( flNumerator > flDenominator )
|
|
t = 1.0f;
|
|
else
|
|
t = flNumerator / flDenominator;
|
|
}
|
|
|
|
Vector vecClosestPoint;
|
|
VectorMA( vecRayOrigin, t, vecRayDelta, vecClosestPoint );
|
|
return ( vecClosestPoint.DistToSqr( vecCenter ) <= flRadius * flRadius );
|
|
|
|
// NOTE: This in an alternate algorithm which I didn't use because I'd have to use a sqrt
|
|
// So it's probably faster to do this other algorithm. I'll leave the comments here
|
|
// for how to go back if we want to
|
|
|
|
// Solve using the ray equation + the sphere equation
|
|
// P = o + dt
|
|
// (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2
|
|
// (ox + dx * t - xc)^2 + (oy + dy * t - yc)^2 + (oz + dz * t - zc)^2 = r^2
|
|
// (ox - xc)^2 + 2 * (ox-xc) * dx * t + dx^2 * t^2 +
|
|
// (oy - yc)^2 + 2 * (oy-yc) * dy * t + dy^2 * t^2 +
|
|
// (oz - zc)^2 + 2 * (oz-zc) * dz * t + dz^2 * t^2 = r^2
|
|
// (dx^2 + dy^2 + dz^2) * t^2 + 2 * ((ox-xc)dx + (oy-yc)dy + (oz-zc)dz) t +
|
|
// (ox-xc)^2 + (oy-yc)^2 + (oz-zc)^2 - r^2 = 0
|
|
// or, t = (-b +/- sqrt( b^2 - 4ac)) / 2a
|
|
// a = DotProduct( vecRayDelta, vecRayDelta );
|
|
// b = 2 * DotProduct( vecRayOrigin - vecCenter, vecRayDelta )
|
|
// c = DotProduct(vecRayOrigin - vecCenter, vecRayOrigin - vecCenter) - flRadius * flRadius;
|
|
// Valid solutions are possible only if b^2 - 4ac >= 0
|
|
// Therefore, compute that value + see if we got it
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// IntersectInfiniteRayWithSphere
|
|
//
|
|
// Returns whether or not there was an intersection.
|
|
// Returns the two intersection points
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectInfiniteRayWithSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta,
|
|
const Vector &vecSphereCenter, float flRadius, float *pT1, float *pT2 )
|
|
{
|
|
// Solve using the ray equation + the sphere equation
|
|
// P = o + dt
|
|
// (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2
|
|
// (ox + dx * t - xc)^2 + (oy + dy * t - yc)^2 + (oz + dz * t - zc)^2 = r^2
|
|
// (ox - xc)^2 + 2 * (ox-xc) * dx * t + dx^2 * t^2 +
|
|
// (oy - yc)^2 + 2 * (oy-yc) * dy * t + dy^2 * t^2 +
|
|
// (oz - zc)^2 + 2 * (oz-zc) * dz * t + dz^2 * t^2 = r^2
|
|
// (dx^2 + dy^2 + dz^2) * t^2 + 2 * ((ox-xc)dx + (oy-yc)dy + (oz-zc)dz) t +
|
|
// (ox-xc)^2 + (oy-yc)^2 + (oz-zc)^2 - r^2 = 0
|
|
// or, t = (-b +/- sqrt( b^2 - 4ac)) / 2a
|
|
// a = DotProduct( vecRayDelta, vecRayDelta );
|
|
// b = 2 * DotProduct( vecRayOrigin - vecCenter, vecRayDelta )
|
|
// c = DotProduct(vecRayOrigin - vecCenter, vecRayOrigin - vecCenter) - flRadius * flRadius;
|
|
|
|
Vector vecSphereToRay;
|
|
VectorSubtract( vecRayOrigin, vecSphereCenter, vecSphereToRay );
|
|
|
|
float a = DotProduct( vecRayDelta, vecRayDelta );
|
|
|
|
// This would occur in the case of a zero-length ray
|
|
if ( a == 0.0f )
|
|
{
|
|
*pT1 = *pT2 = 0.0f;
|
|
return vecSphereToRay.LengthSqr() <= flRadius * flRadius;
|
|
}
|
|
|
|
float b = 2 * DotProduct( vecSphereToRay, vecRayDelta );
|
|
float c = DotProduct( vecSphereToRay, vecSphereToRay ) - flRadius * flRadius;
|
|
float flDiscrim = b * b - 4 * a * c;
|
|
if ( flDiscrim < 0.0f )
|
|
return false;
|
|
|
|
flDiscrim = sqrt( flDiscrim );
|
|
float oo2a = 0.5f / a;
|
|
*pT1 = ( - b - flDiscrim ) * oo2a;
|
|
*pT2 = ( - b + flDiscrim ) * oo2a;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// IntersectRayWithSphere
|
|
//
|
|
// Returns whether or not there was an intersection.
|
|
// Returns the two intersection points, clamped to (0,1)
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta,
|
|
const Vector &vecSphereCenter, float flRadius, float *pT1, float *pT2 )
|
|
{
|
|
if ( !IntersectInfiniteRayWithSphere( vecRayOrigin, vecRayDelta, vecSphereCenter, flRadius, pT1, pT2 ) )
|
|
return false;
|
|
|
|
if (( *pT1 > 1.0f ) || ( *pT2 < 0.0f ))
|
|
return false;
|
|
|
|
// Clamp it!
|
|
if ( *pT1 < 0.0f )
|
|
*pT1 = 0.0f;
|
|
if ( *pT2 > 1.0f )
|
|
*pT2 = 1.0f;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// returns true if the sphere and cone intersect
|
|
// NOTE: cone sine/cosine are the half angle of the cone
|
|
bool IsSphereIntersectingCone( const Vector &sphereCenter, float sphereRadius, const Vector &coneOrigin, const Vector &coneNormal, float coneSine, float coneCosine )
|
|
{
|
|
Vector backCenter = coneOrigin - (sphereRadius / coneSine) * coneNormal;
|
|
Vector delta = sphereCenter - backCenter;
|
|
float deltaLen = delta.Length();
|
|
if ( DotProduct(coneNormal, delta) >= deltaLen*coneCosine )
|
|
{
|
|
delta = sphereCenter - coneOrigin;
|
|
deltaLen = delta.Length();
|
|
if ( -DotProduct(coneNormal, delta) >= deltaLen * coneSine )
|
|
{
|
|
return ( deltaLen <= sphereRadius ) ? true : false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// returns true if the point is in the box
|
|
//-----------------------------------------------------------------------------
|
|
bool IsPointInBox( const Vector& pt, const Vector& boxMin, const Vector& boxMax )
|
|
{
|
|
Assert( boxMin[0] <= boxMax[0] );
|
|
Assert( boxMin[1] <= boxMax[1] );
|
|
Assert( boxMin[2] <= boxMax[2] );
|
|
|
|
// on x360, force use of SIMD version.
|
|
if (IsX360())
|
|
{
|
|
return IsPointInBox( LoadUnaligned3SIMD(pt.Base()), LoadUnaligned3SIMD(boxMin.Base()), LoadUnaligned3SIMD(boxMax.Base()) ) ;
|
|
}
|
|
|
|
if ( (pt[0] > boxMax[0]) || (pt[0] < boxMin[0]) )
|
|
return false;
|
|
if ( (pt[1] > boxMax[1]) || (pt[1] < boxMin[1]) )
|
|
return false;
|
|
if ( (pt[2] > boxMax[2]) || (pt[2] < boxMin[2]) )
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool IsPointInCone( const Vector &pt, const Vector &origin, const Vector &axis, float cosAngle, float length )
|
|
{
|
|
Vector delta = pt - origin;
|
|
float dist = VectorNormalize( delta );
|
|
float dot = DotProduct( delta, axis );
|
|
if ( dot < cosAngle )
|
|
return false;
|
|
if ( dist * dot > length )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// returns true if there's an intersection between two boxes
|
|
//-----------------------------------------------------------------------------
|
|
bool IsBoxIntersectingBox( const Vector& boxMin1, const Vector& boxMax1,
|
|
const Vector& boxMin2, const Vector& boxMax2 )
|
|
{
|
|
Assert( boxMin1[0] <= boxMax1[0] );
|
|
Assert( boxMin1[1] <= boxMax1[1] );
|
|
Assert( boxMin1[2] <= boxMax1[2] );
|
|
Assert( boxMin2[0] <= boxMax2[0] );
|
|
Assert( boxMin2[1] <= boxMax2[1] );
|
|
Assert( boxMin2[2] <= boxMax2[2] );
|
|
|
|
if ( (boxMin1[0] > boxMax2[0]) || (boxMax1[0] < boxMin2[0]) )
|
|
return false;
|
|
if ( (boxMin1[1] > boxMax2[1]) || (boxMax1[1] < boxMin2[1]) )
|
|
return false;
|
|
if ( (boxMin1[2] > boxMax2[2]) || (boxMax1[2] < boxMin2[2]) )
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool IsBoxIntersectingBoxExtents( const Vector& boxCenter1, const Vector& boxHalfDiagonal1,
|
|
const Vector& boxCenter2, const Vector& boxHalfDiagonal2 )
|
|
{
|
|
Vector vecDelta, vecSize;
|
|
VectorSubtract( boxCenter1, boxCenter2, vecDelta );
|
|
VectorAdd( boxHalfDiagonal1, boxHalfDiagonal2, vecSize );
|
|
return ( FloatMakePositive( vecDelta.x ) <= vecSize.x ) &&
|
|
( FloatMakePositive( vecDelta.y ) <= vecSize.y ) &&
|
|
( FloatMakePositive( vecDelta.z ) <= vecSize.z );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// IsOBBIntersectingOBB
|
|
//
|
|
// returns true if there's an intersection between two OBBs
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
bool IsOBBIntersectingOBB( const Vector &vecOrigin1, const QAngle &vecAngles1, const Vector& boxMin1, const Vector& boxMax1,
|
|
const Vector &vecOrigin2, const QAngle &vecAngles2, const Vector& boxMin2, const Vector& boxMax2, float flTolerance )
|
|
{
|
|
// FIXME: Simple case AABB check doesn't work because the min and max extents are not oriented based on the angle
|
|
// this fast check would only be good for cubes.
|
|
/*if ( vecAngles1 == vecAngles2 )
|
|
{
|
|
const Vector &vecDelta = vecOrigin2 - vecOrigin1;
|
|
Vector vecOtherMins, vecOtherMaxs;
|
|
VectorAdd( boxMin2, vecDelta, vecOtherMins );
|
|
VectorAdd( boxMax2, vecDelta, vecOtherMaxs );
|
|
return IsBoxIntersectingBox( boxMin1, boxMax1, vecOtherMins, vecOtherMaxs );
|
|
}*/
|
|
|
|
// OBB test...
|
|
cplane_t plane;
|
|
bool bFoundPlane = ComputeSeparatingPlane( vecOrigin1, vecAngles1, boxMin1, boxMax1,
|
|
vecOrigin2, vecAngles2, boxMin2, boxMax2, flTolerance, &plane );
|
|
return (bFoundPlane == false);
|
|
}
|
|
|
|
// NOTE: This is only very slightly faster on high end PCs and x360
|
|
#define USE_SIMD_RAY_CHECKS 1
|
|
//-----------------------------------------------------------------------------
|
|
// returns true if there's an intersection between box and ray
|
|
//-----------------------------------------------------------------------------
|
|
bool FASTCALL IsBoxIntersectingRay( const Vector& boxMin, const Vector& boxMax,
|
|
const Vector& origin, const Vector& vecDelta, float flTolerance )
|
|
{
|
|
|
|
#if USE_SIMD_RAY_CHECKS
|
|
// Load the unaligned ray/box parameters into SIMD registers
|
|
fltx4 start = LoadUnaligned3SIMD(origin.Base());
|
|
fltx4 delta = LoadUnaligned3SIMD(vecDelta.Base());
|
|
fltx4 boxMins = LoadUnaligned3SIMD( boxMin.Base() );
|
|
fltx4 boxMaxs = LoadUnaligned3SIMD( boxMax.Base() );
|
|
fltx4 epsilon = ReplicateX4(flTolerance);
|
|
// compute the mins/maxs of the box expanded by the ray extents
|
|
// relocate the problem so that the ray start is at the origin.
|
|
fltx4 offsetMins = SubSIMD(boxMins, start);
|
|
fltx4 offsetMaxs = SubSIMD(boxMaxs, start);
|
|
fltx4 offsetMinsExpanded = SubSIMD(offsetMins, epsilon);
|
|
fltx4 offsetMaxsExpanded = AddSIMD(offsetMaxs, epsilon);
|
|
|
|
// Check to see if both the origin (start point) and the end point (delta) are on the front side
|
|
// of any of the box sides - if so there can be no intersection
|
|
fltx4 startOutMins = CmpLtSIMD(Four_Zeros, offsetMinsExpanded);
|
|
fltx4 endOutMins = CmpLtSIMD(delta,offsetMinsExpanded);
|
|
fltx4 minsMask = AndSIMD( startOutMins, endOutMins );
|
|
fltx4 startOutMaxs = CmpGtSIMD(Four_Zeros, offsetMaxsExpanded);
|
|
fltx4 endOutMaxs = CmpGtSIMD(delta,offsetMaxsExpanded);
|
|
fltx4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs );
|
|
if ( IsAnyNegative(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask))))
|
|
return false;
|
|
|
|
// now build the per-axis interval of t for intersections
|
|
fltx4 invDelta = ReciprocalSaturateSIMD(delta);
|
|
fltx4 tmins = MulSIMD( offsetMinsExpanded, invDelta );
|
|
fltx4 tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
|
|
fltx4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs));
|
|
|
|
// only consider axes where we crossed a plane
|
|
tmins = MaskedAssign( crossPlane, tmins, Four_Negative_FLT_MAX );
|
|
tmaxs = MaskedAssign( crossPlane, tmaxs, Four_FLT_MAX );
|
|
|
|
// now sort the interval per axis
|
|
fltx4 mint = MinSIMD( tmins, tmaxs );
|
|
fltx4 maxt = MaxSIMD( tmins, tmaxs );
|
|
|
|
// now find the intersection of the intervals on all axes
|
|
fltx4 firstOut = FindLowestSIMD3(maxt);
|
|
fltx4 lastIn = FindHighestSIMD3(mint);
|
|
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
|
|
firstOut = MinSIMD(firstOut, Four_Ones);
|
|
lastIn = MaxSIMD(lastIn, Four_Zeros);
|
|
|
|
// If the final interval is valid lastIn<firstOut, check for separation
|
|
fltx4 separation = CmpGtSIMD(lastIn, firstOut);
|
|
|
|
return IsAllZeros(separation);
|
|
#else
|
|
// On the x360, we force use of the SIMD functions.
|
|
#if defined(_X360)
|
|
if (IsX360())
|
|
{
|
|
fltx4 delta = LoadUnaligned3SIMD(vecDelta.Base());
|
|
return IsBoxIntersectingRay(
|
|
LoadUnaligned3SIMD(boxMin.Base()), LoadUnaligned3SIMD(boxMax.Base()),
|
|
LoadUnaligned3SIMD(origin.Base()), delta, ReciprocalSIMD(delta), // ray parameters
|
|
ReplicateX4(flTolerance) ///< eg from ReplicateX4(flTolerance)
|
|
);
|
|
}
|
|
#endif
|
|
Assert( boxMin[0] <= boxMax[0] );
|
|
Assert( boxMin[1] <= boxMax[1] );
|
|
Assert( boxMin[2] <= boxMax[2] );
|
|
|
|
// FIXME: Surely there's a faster way
|
|
float tmin = -FLT_MAX;
|
|
float tmax = FLT_MAX;
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
// Parallel case...
|
|
if (FloatMakePositive(vecDelta[i]) < 1e-8)
|
|
{
|
|
// Check that origin is in the box
|
|
// if not, then it doesn't intersect..
|
|
if ( (origin[i] < boxMin[i] - flTolerance) || (origin[i] > boxMax[i] + flTolerance) )
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
// non-parallel case
|
|
// Find the t's corresponding to the entry and exit of
|
|
// the ray along x, y, and z. The find the furthest entry
|
|
// point, and the closest exit point. Once that is done,
|
|
// we know we don't collide if the closest exit point
|
|
// is behind the starting location. We also don't collide if
|
|
// the closest exit point is in front of the furthest entry point
|
|
|
|
float invDelta = 1.0f / vecDelta[i];
|
|
float t1 = (boxMin[i] - flTolerance - origin[i]) * invDelta;
|
|
float t2 = (boxMax[i] + flTolerance - origin[i]) * invDelta;
|
|
if (t1 > t2)
|
|
{
|
|
float temp = t1;
|
|
t1 = t2;
|
|
t2 = temp;
|
|
}
|
|
if (t1 > tmin)
|
|
tmin = t1;
|
|
if (t2 < tmax)
|
|
tmax = t2;
|
|
if (tmin > tmax)
|
|
return false;
|
|
if (tmax < 0)
|
|
return false;
|
|
if (tmin > 1)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// returns true if there's an intersection between box and ray
|
|
//-----------------------------------------------------------------------------
|
|
bool FASTCALL IsBoxIntersectingRay( const Vector& boxMin, const Vector& boxMax,
|
|
const Vector& origin, const Vector& vecDelta,
|
|
const Vector& vecInvDelta, float flTolerance )
|
|
{
|
|
#if USE_SIMD_RAY_CHECKS
|
|
// Load the unaligned ray/box parameters into SIMD registers
|
|
fltx4 start = LoadUnaligned3SIMD(origin.Base());
|
|
fltx4 delta = LoadUnaligned3SIMD(vecDelta.Base());
|
|
fltx4 boxMins = LoadUnaligned3SIMD( boxMin.Base() );
|
|
fltx4 boxMaxs = LoadUnaligned3SIMD( boxMax.Base() );
|
|
// compute the mins/maxs of the box expanded by the ray extents
|
|
// relocate the problem so that the ray start is at the origin.
|
|
boxMins = SubSIMD(boxMins, start);
|
|
boxMaxs = SubSIMD(boxMaxs, start);
|
|
|
|
// Check to see if both the origin (start point) and the end point (delta) are on the front side
|
|
// of any of the box sides - if so there can be no intersection
|
|
fltx4 startOutMins = CmpLtSIMD(Four_Zeros, boxMins);
|
|
fltx4 endOutMins = CmpLtSIMD(delta,boxMins);
|
|
fltx4 minsMask = AndSIMD( startOutMins, endOutMins );
|
|
fltx4 startOutMaxs = CmpGtSIMD(Four_Zeros, boxMaxs);
|
|
fltx4 endOutMaxs = CmpGtSIMD(delta,boxMaxs);
|
|
fltx4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs );
|
|
if ( IsAnyNegative(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask))))
|
|
return false;
|
|
|
|
// now build the per-axis interval of t for intersections
|
|
fltx4 epsilon = ReplicateX4(flTolerance);
|
|
fltx4 invDelta = LoadUnaligned3SIMD(vecInvDelta.Base());
|
|
boxMins = SubSIMD(boxMins, epsilon);
|
|
boxMaxs = AddSIMD(boxMaxs, epsilon);
|
|
|
|
boxMins = MulSIMD( boxMins, invDelta );
|
|
boxMaxs = MulSIMD( boxMaxs, invDelta );
|
|
|
|
fltx4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs));
|
|
// only consider axes where we crossed a plane
|
|
boxMins = MaskedAssign( crossPlane, boxMins, Four_Negative_FLT_MAX );
|
|
boxMaxs = MaskedAssign( crossPlane, boxMaxs, Four_FLT_MAX );
|
|
|
|
// now sort the interval per axis
|
|
fltx4 mint = MinSIMD( boxMins, boxMaxs );
|
|
fltx4 maxt = MaxSIMD( boxMins, boxMaxs );
|
|
|
|
// now find the intersection of the intervals on all axes
|
|
fltx4 firstOut = FindLowestSIMD3(maxt);
|
|
fltx4 lastIn = FindHighestSIMD3(mint);
|
|
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
|
|
firstOut = MinSIMD(firstOut, Four_Ones);
|
|
lastIn = MaxSIMD(lastIn, Four_Zeros);
|
|
|
|
// If the final interval is valid lastIn<firstOut, check for separation
|
|
fltx4 separation = CmpGtSIMD(lastIn, firstOut);
|
|
|
|
return IsAllZeros(separation);
|
|
#else
|
|
// On the x360, we force use of the SIMD functions.
|
|
#if defined(_X360) && !defined(PARANOID_SIMD_ASSERTING)
|
|
if (IsX360())
|
|
{
|
|
return IsBoxIntersectingRay(
|
|
LoadUnaligned3SIMD(boxMin.Base()), LoadUnaligned3SIMD(boxMax.Base()),
|
|
LoadUnaligned3SIMD(origin.Base()), LoadUnaligned3SIMD(vecDelta.Base()), LoadUnaligned3SIMD(vecInvDelta.Base()), // ray parameters
|
|
ReplicateX4(flTolerance) ///< eg from ReplicateX4(flTolerance)
|
|
);
|
|
}
|
|
#endif
|
|
|
|
Assert( boxMin[0] <= boxMax[0] );
|
|
Assert( boxMin[1] <= boxMax[1] );
|
|
Assert( boxMin[2] <= boxMax[2] );
|
|
|
|
// FIXME: Surely there's a faster way
|
|
float tmin = -FLT_MAX;
|
|
float tmax = FLT_MAX;
|
|
|
|
for ( int i = 0; i < 3; ++i )
|
|
{
|
|
// Parallel case...
|
|
if ( FloatMakePositive( vecDelta[i] ) < 1e-8 )
|
|
{
|
|
// Check that origin is in the box, if not, then it doesn't intersect..
|
|
if ( ( origin[i] < boxMin[i] - flTolerance ) || ( origin[i] > boxMax[i] + flTolerance ) )
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Non-parallel case
|
|
// Find the t's corresponding to the entry and exit of
|
|
// the ray along x, y, and z. The find the furthest entry
|
|
// point, and the closest exit point. Once that is done,
|
|
// we know we don't collide if the closest exit point
|
|
// is behind the starting location. We also don't collide if
|
|
// the closest exit point is in front of the furthest entry point
|
|
float t1 = ( boxMin[i] - flTolerance - origin[i] ) * vecInvDelta[i];
|
|
float t2 = ( boxMax[i] + flTolerance - origin[i] ) * vecInvDelta[i];
|
|
if ( t1 > t2 )
|
|
{
|
|
float temp = t1;
|
|
t1 = t2;
|
|
t2 = temp;
|
|
}
|
|
|
|
if (t1 > tmin)
|
|
tmin = t1;
|
|
|
|
if (t2 < tmax)
|
|
tmax = t2;
|
|
|
|
if (tmin > tmax)
|
|
return false;
|
|
|
|
if (tmax < 0)
|
|
return false;
|
|
|
|
if (tmin > 1)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray with a aabb, return true if they intersect
|
|
//-----------------------------------------------------------------------------
|
|
bool FASTCALL IsBoxIntersectingRay( const Vector& vecBoxMin, const Vector& vecBoxMax, const Ray_t& ray, float flTolerance )
|
|
{
|
|
// On the x360, we force use of the SIMD functions.
|
|
#if defined(_X360)
|
|
if (IsX360())
|
|
{
|
|
return IsBoxIntersectingRay(
|
|
LoadUnaligned3SIMD(vecBoxMin.Base()), LoadUnaligned3SIMD(vecBoxMax.Base()),
|
|
ray, flTolerance);
|
|
}
|
|
#endif
|
|
|
|
if ( !ray.m_IsSwept )
|
|
{
|
|
Vector rayMins, rayMaxs;
|
|
VectorSubtract( ray.m_Start, ray.m_Extents, rayMins );
|
|
VectorAdd( ray.m_Start, ray.m_Extents, rayMaxs );
|
|
if ( flTolerance != 0.0f )
|
|
{
|
|
rayMins.x -= flTolerance; rayMins.y -= flTolerance; rayMins.z -= flTolerance;
|
|
rayMaxs.x += flTolerance; rayMaxs.y += flTolerance; rayMaxs.z += flTolerance;
|
|
}
|
|
return IsBoxIntersectingBox( vecBoxMin, vecBoxMax, rayMins, rayMaxs );
|
|
}
|
|
|
|
Vector vecExpandedBoxMin, vecExpandedBoxMax;
|
|
VectorSubtract( vecBoxMin, ray.m_Extents, vecExpandedBoxMin );
|
|
VectorAdd( vecBoxMax, ray.m_Extents, vecExpandedBoxMax );
|
|
return IsBoxIntersectingRay( vecExpandedBoxMin, vecExpandedBoxMax, ray.m_Start, ray.m_Delta, flTolerance );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// returns true if there's an intersection between box and ray (SIMD version)
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
#ifdef _X360
|
|
bool FASTCALL IsBoxIntersectingRay( fltx4 boxMin, fltx4 boxMax,
|
|
fltx4 origin, fltx4 delta, fltx4 invDelta, // ray parameters
|
|
fltx4 vTolerance ///< eg from ReplicateX4(flTolerance)
|
|
)
|
|
#else
|
|
bool FASTCALL IsBoxIntersectingRay( const fltx4 &inBoxMin, const fltx4 & inBoxMax,
|
|
const fltx4 & origin, const fltx4 & delta, const fltx4 & invDelta, // ray parameters
|
|
const fltx4 & vTolerance ///< eg from ReplicateX4(flTolerance)
|
|
)
|
|
#endif
|
|
{
|
|
// Load the unaligned ray/box parameters into SIMD registers
|
|
// compute the mins/maxs of the box expanded by the ray extents
|
|
// relocate the problem so that the ray start is at the origin.
|
|
|
|
#ifdef _X360
|
|
boxMin = SubSIMD(boxMin, origin);
|
|
boxMax = SubSIMD(boxMax, origin);
|
|
#else
|
|
fltx4 boxMin = SubSIMD(inBoxMin, origin);
|
|
fltx4 boxMax = SubSIMD(inBoxMax, origin);
|
|
#endif
|
|
|
|
// Check to see if the origin (start point) and the end point (delta) are on the same side
|
|
// of any of the box sides - if so there can be no intersection
|
|
fltx4 startOutMins = AndSIMD( CmpLtSIMD(Four_Zeros, boxMin), CmpLtSIMD(delta,boxMin) );
|
|
fltx4 startOutMaxs = AndSIMD( CmpGtSIMD(Four_Zeros, boxMax), CmpGtSIMD(delta,boxMax) );
|
|
if ( IsAnyNegative(SetWToZeroSIMD(OrSIMD(startOutMaxs,startOutMins))))
|
|
return false;
|
|
|
|
// now build the per-axis interval of t for intersections
|
|
boxMin = SubSIMD(boxMin, vTolerance);
|
|
boxMax = AddSIMD(boxMax, vTolerance);
|
|
|
|
boxMin = MulSIMD( boxMin, invDelta );
|
|
boxMax = MulSIMD( boxMax, invDelta );
|
|
|
|
// now sort the interval per axis
|
|
fltx4 mint = MinSIMD( boxMin, boxMax );
|
|
fltx4 maxt = MaxSIMD( boxMin, boxMax );
|
|
|
|
// now find the intersection of the intervals on all axes
|
|
fltx4 firstOut = FindLowestSIMD3(maxt);
|
|
fltx4 lastIn = FindHighestSIMD3(mint);
|
|
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
|
|
firstOut = MinSIMD(firstOut, Four_Ones);
|
|
lastIn = MaxSIMD(lastIn, Four_Zeros);
|
|
|
|
// If the final interval is valid lastIn<firstOut, check for separation
|
|
fltx4 separation = CmpGtSIMD(lastIn, firstOut);
|
|
|
|
return IsAllZeros(separation);
|
|
}
|
|
|
|
|
|
bool FASTCALL IsBoxIntersectingRay( const fltx4& boxMin, const fltx4& boxMax,
|
|
const Ray_t& ray, float flTolerance )
|
|
{
|
|
fltx4 vTolerance = ReplicateX4(flTolerance);
|
|
fltx4 rayStart = LoadAlignedSIMD(ray.m_Start);
|
|
fltx4 rayExtents = LoadAlignedSIMD(ray.m_Extents);
|
|
if ( !ray.m_IsSwept )
|
|
{
|
|
|
|
fltx4 rayMins, rayMaxs;
|
|
rayMins = SubSIMD(rayStart, rayExtents);
|
|
rayMaxs = AddSIMD(rayStart, rayExtents);
|
|
rayMins = AddSIMD(rayMins, vTolerance);
|
|
rayMaxs = AddSIMD(rayMaxs, vTolerance);
|
|
|
|
VectorAligned vecBoxMin, vecBoxMax, vecRayMins, vecRayMaxs;
|
|
StoreAlignedSIMD( vecBoxMin.Base(), boxMin );
|
|
StoreAlignedSIMD( vecBoxMax.Base(), boxMax );
|
|
StoreAlignedSIMD( vecRayMins.Base(), rayMins );
|
|
StoreAlignedSIMD( vecRayMaxs.Base(), rayMaxs );
|
|
|
|
return IsBoxIntersectingBox( vecBoxMin, vecBoxMax, vecRayMins, vecRayMaxs );
|
|
}
|
|
|
|
fltx4 rayDelta = LoadAlignedSIMD(ray.m_Delta);
|
|
fltx4 vecExpandedBoxMin, vecExpandedBoxMax;
|
|
vecExpandedBoxMin = SubSIMD( boxMin, rayExtents );
|
|
vecExpandedBoxMax = AddSIMD( boxMax, rayExtents );
|
|
|
|
return IsBoxIntersectingRay( vecExpandedBoxMin, vecExpandedBoxMax, rayStart, rayDelta, ReciprocalSIMD(rayDelta), ReplicateX4(flTolerance) );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray with a ray, return true if they intersect
|
|
// t, s = parameters of closest approach (if not intersecting!)
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithRay( const Ray_t &ray0, const Ray_t &ray1, float &t, float &s )
|
|
{
|
|
Assert( ray0.m_IsRay && ray1.m_IsRay );
|
|
|
|
//
|
|
// r0 = p0 + v0t
|
|
// r1 = p1 + v1s
|
|
//
|
|
// intersection : r0 = r1 :: p0 + v0t = p1 + v1s
|
|
// NOTE: v(0,1) are unit direction vectors
|
|
//
|
|
// subtract p0 from both sides and cross with v1 (NOTE: v1 x v1 = 0)
|
|
// (v0 x v1)t = ((p1 - p0 ) x v1)
|
|
//
|
|
// dotting with (v0 x v1) and dividing by |v0 x v1|^2
|
|
// t = Det | (p1 - p0) , v1 , (v0 x v1) | / |v0 x v1|^2
|
|
// s = Det | (p1 - p0) , v0 , (v0 x v1) | / |v0 x v1|^2
|
|
//
|
|
// Det | A B C | = -( A x C ) dot B or -( C x B ) dot A
|
|
//
|
|
// NOTE: if |v0 x v1|^2 = 0, then the lines are parallel
|
|
//
|
|
Vector v0( ray0.m_Delta );
|
|
Vector v1( ray1.m_Delta );
|
|
VectorNormalize( v0 );
|
|
VectorNormalize( v1 );
|
|
|
|
Vector v0xv1 = v0.Cross( v1 );
|
|
float lengthSq = v0xv1.LengthSqr();
|
|
if( lengthSq == 0.0f )
|
|
{
|
|
t = 0; s = 0;
|
|
return false; // parallel
|
|
}
|
|
|
|
Vector p1p0 = ray1.m_Start - ray0.m_Start;
|
|
|
|
Vector AxC = p1p0.Cross( v0xv1 );
|
|
AxC.Negate();
|
|
float detT = AxC.Dot( v1 );
|
|
|
|
AxC = p1p0.Cross( v0xv1 );
|
|
AxC.Negate();
|
|
float detS = AxC.Dot( v0 );
|
|
|
|
t = detT / lengthSq;
|
|
s = detS / lengthSq;
|
|
|
|
// intersection????
|
|
Vector i0, i1;
|
|
i0 = v0 * t;
|
|
i1 = v1 * s;
|
|
i0 += ray0.m_Start;
|
|
i1 += ray1.m_Start;
|
|
if( i0.x == i1.x && i0.y == i1.y && i0.z == i1.z )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray with a plane, returns distance t along ray.
|
|
//-----------------------------------------------------------------------------
|
|
float IntersectRayWithPlane( const Ray_t& ray, const cplane_t& plane )
|
|
{
|
|
float denom = DotProduct( ray.m_Delta, plane.normal );
|
|
if (denom == 0.0f)
|
|
return 0.0f;
|
|
|
|
denom = 1.0f / denom;
|
|
return (plane.dist - DotProduct( ray.m_Start, plane.normal )) * denom;
|
|
}
|
|
|
|
float IntersectRayWithPlane( const Vector& org, const Vector& dir, const cplane_t& plane )
|
|
{
|
|
float denom = DotProduct( dir, plane.normal );
|
|
if (denom == 0.0f)
|
|
return 0.0f;
|
|
|
|
denom = 1.0f / denom;
|
|
return (plane.dist - DotProduct( org, plane.normal )) * denom;
|
|
}
|
|
|
|
float IntersectRayWithPlane( const Vector& org, const Vector& dir, const Vector& normal, float dist )
|
|
{
|
|
float denom = DotProduct( dir, normal );
|
|
if (denom == 0.0f)
|
|
return 0.0f;
|
|
|
|
denom = 1.0f / denom;
|
|
return (dist - DotProduct( org, normal )) * denom;
|
|
}
|
|
|
|
float IntersectRayWithAAPlane( const Vector& vecStart, const Vector& vecEnd, int nAxis, float flSign, float flDist )
|
|
{
|
|
float denom = flSign * (vecEnd[nAxis] - vecStart[nAxis]);
|
|
if (denom == 0.0f)
|
|
return 0.0f;
|
|
|
|
denom = 1.0f / denom;
|
|
return (flDist - flSign * vecStart[nAxis]) * denom;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray against a box
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithBox( const Vector &vecRayStart, const Vector &vecRayDelta,
|
|
const Vector &boxMins, const Vector &boxMaxs, float flTolerance, BoxTraceInfo_t *pTrace )
|
|
{
|
|
int i;
|
|
float d1, d2;
|
|
float f;
|
|
|
|
pTrace->t1 = -1.0f;
|
|
pTrace->t2 = 1.0f;
|
|
pTrace->hitside = -1;
|
|
|
|
// UNDONE: This makes this code a little messy
|
|
pTrace->startsolid = true;
|
|
|
|
for ( i = 0; i < 6; ++i )
|
|
{
|
|
if ( i >= 3 )
|
|
{
|
|
d1 = vecRayStart[i-3] - boxMaxs[i-3];
|
|
d2 = d1 + vecRayDelta[i-3];
|
|
}
|
|
else
|
|
{
|
|
d1 = -vecRayStart[i] + boxMins[i];
|
|
d2 = d1 - vecRayDelta[i];
|
|
}
|
|
|
|
// if completely in front of face, no intersection
|
|
if (d1 > 0 && d2 > 0)
|
|
{
|
|
// UNDONE: Have to revert this in case it's still set
|
|
// UNDONE: Refactor to have only 2 return points (true/false) from this function
|
|
pTrace->startsolid = false;
|
|
return false;
|
|
}
|
|
|
|
// completely inside, check next face
|
|
if (d1 <= 0 && d2 <= 0)
|
|
continue;
|
|
|
|
if (d1 > 0)
|
|
{
|
|
pTrace->startsolid = false;
|
|
}
|
|
|
|
// crosses face
|
|
if (d1 > d2)
|
|
{
|
|
f = d1 - flTolerance;
|
|
if ( f < 0 )
|
|
{
|
|
f = 0;
|
|
}
|
|
f = f / (d1-d2);
|
|
if (f > pTrace->t1)
|
|
{
|
|
pTrace->t1 = f;
|
|
pTrace->hitside = i;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// leave
|
|
f = (d1 + flTolerance) / (d1-d2);
|
|
if (f < pTrace->t2)
|
|
{
|
|
pTrace->t2 = f;
|
|
}
|
|
}
|
|
}
|
|
|
|
return pTrace->startsolid || (pTrace->t1 < pTrace->t2 && pTrace->t1 >= 0.0f);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray against a box
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithBox( const Vector &vecRayStart, const Vector &vecRayDelta,
|
|
const Vector &boxMins, const Vector &boxMaxs, float flTolerance, CBaseTrace *pTrace, float *pFractionLeftSolid )
|
|
{
|
|
Collision_ClearTrace( vecRayStart, vecRayDelta, pTrace );
|
|
|
|
BoxTraceInfo_t trace;
|
|
|
|
if ( IntersectRayWithBox( vecRayStart, vecRayDelta, boxMins, boxMaxs, flTolerance, &trace ) )
|
|
{
|
|
pTrace->startsolid = trace.startsolid;
|
|
if (trace.t1 < trace.t2 && trace.t1 >= 0.0f)
|
|
{
|
|
pTrace->fraction = trace.t1;
|
|
VectorMA( pTrace->startpos, trace.t1, vecRayDelta, pTrace->endpos );
|
|
pTrace->contents = CONTENTS_SOLID;
|
|
pTrace->plane.normal = vec3_origin;
|
|
if ( trace.hitside >= 3 )
|
|
{
|
|
trace.hitside -= 3;
|
|
pTrace->plane.dist = boxMaxs[trace.hitside];
|
|
pTrace->plane.normal[trace.hitside] = 1.0f;
|
|
pTrace->plane.type = trace.hitside;
|
|
}
|
|
else
|
|
{
|
|
pTrace->plane.dist = -boxMins[trace.hitside];
|
|
pTrace->plane.normal[trace.hitside] = -1.0f;
|
|
pTrace->plane.type = trace.hitside;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if ( pTrace->startsolid )
|
|
{
|
|
pTrace->allsolid = (trace.t2 <= 0.0f) || (trace.t2 >= 1.0f);
|
|
pTrace->fraction = 0;
|
|
if ( pFractionLeftSolid )
|
|
{
|
|
*pFractionLeftSolid = trace.t2;
|
|
}
|
|
pTrace->endpos = pTrace->startpos;
|
|
pTrace->contents = CONTENTS_SOLID;
|
|
pTrace->plane.dist = pTrace->startpos[0];
|
|
pTrace->plane.normal.Init( 1.0f, 0.0f, 0.0f );
|
|
pTrace->plane.type = 0;
|
|
pTrace->startpos = vecRayStart + (trace.t2 * vecRayDelta);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray against a box
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithBox( const Ray_t &ray, const Vector &boxMins, const Vector &boxMaxs,
|
|
float flTolerance, CBaseTrace *pTrace, float *pFractionLeftSolid )
|
|
{
|
|
if ( !ray.m_IsRay )
|
|
{
|
|
Vector vecExpandedMins = boxMins - ray.m_Extents;
|
|
Vector vecExpandedMaxs = boxMaxs + ray.m_Extents;
|
|
bool bIntersects = IntersectRayWithBox( ray.m_Start, ray.m_Delta, vecExpandedMins, vecExpandedMaxs, flTolerance, pTrace, pFractionLeftSolid );
|
|
pTrace->startpos += ray.m_StartOffset;
|
|
pTrace->endpos += ray.m_StartOffset;
|
|
return bIntersects;
|
|
}
|
|
return IntersectRayWithBox( ray.m_Start, ray.m_Delta, boxMins, boxMaxs, flTolerance, pTrace, pFractionLeftSolid );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray against an OBB, returns t1 and t2
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithOBB( const Vector &vecRayStart, const Vector &vecRayDelta,
|
|
const matrix3x4_t &matOBBToWorld, const Vector &vecOBBMins, const Vector &vecOBBMaxs,
|
|
float flTolerance, BoxTraceInfo_t *pTrace )
|
|
{
|
|
// FIXME: Two transforms is pretty expensive. Should we optimize this?
|
|
Vector start, delta;
|
|
VectorITransform( vecRayStart, matOBBToWorld, start );
|
|
VectorIRotate( vecRayDelta, matOBBToWorld, delta );
|
|
|
|
return IntersectRayWithBox( start, delta, vecOBBMins, vecOBBMaxs, flTolerance, pTrace );
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray against an OBB
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithOBB( const Vector &vecRayStart, const Vector &vecRayDelta,
|
|
const matrix3x4_t &matOBBToWorld, const Vector &vecOBBMins, const Vector &vecOBBMaxs,
|
|
float flTolerance, CBaseTrace *pTrace )
|
|
{
|
|
Collision_ClearTrace( vecRayStart, vecRayDelta, pTrace );
|
|
|
|
// FIXME: Make it work with tolerance
|
|
Assert( flTolerance == 0.0f );
|
|
|
|
// OPTIMIZE: Store this in the box instead of computing it here
|
|
// compute center in local space
|
|
Vector vecBoxExtents = (vecOBBMins + vecOBBMaxs) * 0.5;
|
|
Vector vecBoxCenter;
|
|
|
|
// transform to world space
|
|
VectorTransform( vecBoxExtents, matOBBToWorld, vecBoxCenter );
|
|
|
|
// calc extents from local center
|
|
vecBoxExtents = vecOBBMaxs - vecBoxExtents;
|
|
|
|
// OPTIMIZE: This is optimized for world space. If the transform is fast enough, it may make more
|
|
// sense to just xform and call UTIL_ClipToBox() instead. MEASURE THIS.
|
|
|
|
// save the extents of the ray along
|
|
Vector extent, uextent;
|
|
Vector segmentCenter = vecRayStart + vecRayDelta - vecBoxCenter;
|
|
|
|
extent.Init();
|
|
|
|
// check box axes for separation
|
|
for ( int j = 0; j < 3; j++ )
|
|
{
|
|
extent[j] = vecRayDelta.x * matOBBToWorld[0][j] + vecRayDelta.y * matOBBToWorld[1][j] + vecRayDelta.z * matOBBToWorld[2][j];
|
|
uextent[j] = fabsf(extent[j]);
|
|
float coord = segmentCenter.x * matOBBToWorld[0][j] + segmentCenter.y * matOBBToWorld[1][j] + segmentCenter.z * matOBBToWorld[2][j];
|
|
coord = fabsf(coord);
|
|
|
|
if ( coord > (vecBoxExtents[j] + uextent[j]) )
|
|
return false;
|
|
}
|
|
|
|
// now check cross axes for separation
|
|
float tmp, cextent;
|
|
Vector cross = vecRayDelta.Cross( segmentCenter );
|
|
cextent = cross.x * matOBBToWorld[0][0] + cross.y * matOBBToWorld[1][0] + cross.z * matOBBToWorld[2][0];
|
|
cextent = fabsf(cextent);
|
|
tmp = vecBoxExtents[1]*uextent[2] + vecBoxExtents[2]*uextent[1];
|
|
if ( cextent > tmp )
|
|
return false;
|
|
|
|
cextent = cross.x * matOBBToWorld[0][1] + cross.y * matOBBToWorld[1][1] + cross.z * matOBBToWorld[2][1];
|
|
cextent = fabsf(cextent);
|
|
tmp = vecBoxExtents[0]*uextent[2] + vecBoxExtents[2]*uextent[0];
|
|
if ( cextent > tmp )
|
|
return false;
|
|
|
|
cextent = cross.x * matOBBToWorld[0][2] + cross.y * matOBBToWorld[1][2] + cross.z * matOBBToWorld[2][2];
|
|
cextent = fabsf(cextent);
|
|
tmp = vecBoxExtents[0]*uextent[1] + vecBoxExtents[1]*uextent[0];
|
|
if ( cextent > tmp )
|
|
return false;
|
|
|
|
// !!! We hit this box !!! compute intersection point and return
|
|
// Compute ray start in bone space
|
|
Vector start;
|
|
VectorITransform( vecRayStart, matOBBToWorld, start );
|
|
|
|
// extent is ray.m_Delta in bone space, recompute delta in bone space
|
|
extent *= 2.0f;
|
|
|
|
// delta was prescaled by the current t, so no need to see if this intersection
|
|
// is closer
|
|
trace_t boxTrace;
|
|
if ( !IntersectRayWithBox( start, extent, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ) )
|
|
return false;
|
|
|
|
// Fix up the start/end pos and fraction
|
|
Vector vecTemp;
|
|
VectorTransform( pTrace->endpos, matOBBToWorld, vecTemp );
|
|
pTrace->endpos = vecTemp;
|
|
|
|
pTrace->startpos = vecRayStart;
|
|
pTrace->fraction *= 2.0f;
|
|
|
|
// Fix up the plane information
|
|
float flSign = pTrace->plane.normal[ pTrace->plane.type ];
|
|
pTrace->plane.normal[0] = flSign * matOBBToWorld[0][pTrace->plane.type];
|
|
pTrace->plane.normal[1] = flSign * matOBBToWorld[1][pTrace->plane.type];
|
|
pTrace->plane.normal[2] = flSign * matOBBToWorld[2][pTrace->plane.type];
|
|
pTrace->plane.dist = DotProduct( pTrace->endpos, pTrace->plane.normal );
|
|
pTrace->plane.type = 3;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray against an OBB
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithOBB( const Vector &vecRayOrigin, const Vector &vecRayDelta,
|
|
const Vector &vecBoxOrigin, const QAngle &angBoxRotation,
|
|
const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace )
|
|
{
|
|
if (angBoxRotation == vec3_angle)
|
|
{
|
|
Vector vecAbsMins, vecAbsMaxs;
|
|
VectorAdd( vecBoxOrigin, vecOBBMins, vecAbsMins );
|
|
VectorAdd( vecBoxOrigin, vecOBBMaxs, vecAbsMaxs );
|
|
return IntersectRayWithBox( vecRayOrigin, vecRayDelta, vecAbsMins, vecAbsMaxs, flTolerance, pTrace );
|
|
}
|
|
|
|
matrix3x4_t obbToWorld;
|
|
AngleMatrix( angBoxRotation, vecBoxOrigin, obbToWorld );
|
|
return IntersectRayWithOBB( vecRayOrigin, vecRayDelta, obbToWorld, vecOBBMins, vecOBBMaxs, flTolerance, pTrace );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Box support map
|
|
//-----------------------------------------------------------------------------
|
|
inline void ComputeSupportMap( const Vector &vecDirection, const Vector &vecBoxMins,
|
|
const Vector &vecBoxMaxs, float pDist[2] )
|
|
{
|
|
int nIndex = (vecDirection.x > 0.0f);
|
|
pDist[nIndex] = vecBoxMaxs.x * vecDirection.x;
|
|
pDist[1 - nIndex] = vecBoxMins.x * vecDirection.x;
|
|
|
|
nIndex = (vecDirection.y > 0.0f);
|
|
pDist[nIndex] += vecBoxMaxs.y * vecDirection.y;
|
|
pDist[1 - nIndex] += vecBoxMins.y * vecDirection.y;
|
|
|
|
nIndex = (vecDirection.z > 0.0f);
|
|
pDist[nIndex] += vecBoxMaxs.z * vecDirection.z;
|
|
pDist[1 - nIndex] += vecBoxMins.z * vecDirection.z;
|
|
}
|
|
|
|
inline void ComputeSupportMap( const Vector &vecDirection, int i1, int i2,
|
|
const Vector &vecBoxMins, const Vector &vecBoxMaxs, float pDist[2] )
|
|
{
|
|
int nIndex = (vecDirection[i1] > 0.0f);
|
|
pDist[nIndex] = vecBoxMaxs[i1] * vecDirection[i1];
|
|
pDist[1 - nIndex] = vecBoxMins[i1] * vecDirection[i1];
|
|
|
|
nIndex = (vecDirection[i2] > 0.0f);
|
|
pDist[nIndex] += vecBoxMaxs[i2] * vecDirection[i2];
|
|
pDist[1 - nIndex] += vecBoxMins[i2] * vecDirection[i2];
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray against an OBB
|
|
//-----------------------------------------------------------------------------
|
|
static int s_ExtIndices[3][2] =
|
|
{
|
|
{ 2, 1 },
|
|
{ 0, 2 },
|
|
{ 0, 1 },
|
|
};
|
|
|
|
static int s_MatIndices[3][2] =
|
|
{
|
|
{ 1, 2 },
|
|
{ 2, 0 },
|
|
{ 1, 0 },
|
|
};
|
|
|
|
bool IntersectRayWithOBB( const Ray_t &ray, const matrix3x4_t &matOBBToWorld,
|
|
const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace )
|
|
{
|
|
if ( ray.m_IsRay )
|
|
{
|
|
return IntersectRayWithOBB( ray.m_Start, ray.m_Delta, matOBBToWorld,
|
|
vecOBBMins, vecOBBMaxs, flTolerance, pTrace );
|
|
}
|
|
|
|
Collision_ClearTrace( ray.m_Start + ray.m_StartOffset, ray.m_Delta, pTrace );
|
|
|
|
// Compute a bounding sphere around the bloated OBB
|
|
Vector vecOBBCenter;
|
|
VectorAdd( vecOBBMins, vecOBBMaxs, vecOBBCenter );
|
|
vecOBBCenter *= 0.5f;
|
|
vecOBBCenter.x += matOBBToWorld[0][3];
|
|
vecOBBCenter.y += matOBBToWorld[1][3];
|
|
vecOBBCenter.z += matOBBToWorld[2][3];
|
|
|
|
Vector vecOBBHalfDiagonal;
|
|
VectorSubtract( vecOBBMaxs, vecOBBMins, vecOBBHalfDiagonal );
|
|
vecOBBHalfDiagonal *= 0.5f;
|
|
|
|
float flRadius = vecOBBHalfDiagonal.Length() + ray.m_Extents.Length();
|
|
if ( !IsRayIntersectingSphere( ray.m_Start, ray.m_Delta, vecOBBCenter, flRadius, flTolerance ) )
|
|
return false;
|
|
|
|
// Ok, we passed the trivial reject, so lets do the dirty deed.
|
|
// Basically we're going to do the GJK thing explicitly. We'll shrink the ray down
|
|
// to a point, and bloat the OBB by the ray's extents. This will generate facet
|
|
// planes which are perpendicular to all of the separating axes typically seen in
|
|
// a standard seperating axis implementation.
|
|
|
|
// We're going to create a number of planes through various vertices in the OBB
|
|
// which represent all of the separating planes. Then we're going to bloat the planes
|
|
// by the ray extents.
|
|
|
|
// We're going to do all work in OBB-space because it's easier to do the
|
|
// support-map in this case
|
|
|
|
// First, transform the ray into the space of the OBB
|
|
Vector vecLocalRayOrigin, vecLocalRayDirection;
|
|
VectorITransform( ray.m_Start, matOBBToWorld, vecLocalRayOrigin );
|
|
VectorIRotate( ray.m_Delta, matOBBToWorld, vecLocalRayDirection );
|
|
|
|
// Next compute all separating planes
|
|
Vector pPlaneNormal[15];
|
|
float ppPlaneDist[15][2];
|
|
|
|
int i;
|
|
for ( i = 0; i < 3; ++i )
|
|
{
|
|
// Each plane needs to be bloated an amount = to the abs dot product of
|
|
// the ray extents with the plane normal
|
|
// For the OBB planes, do it in world space;
|
|
// and use the direction of the OBB (the ith column of matOBBToWorld) in world space vs extents
|
|
pPlaneNormal[i].Init( );
|
|
pPlaneNormal[i][i] = 1.0f;
|
|
|
|
float flExtentDotNormal =
|
|
FloatMakePositive( matOBBToWorld[0][i] * ray.m_Extents.x ) +
|
|
FloatMakePositive( matOBBToWorld[1][i] * ray.m_Extents.y ) +
|
|
FloatMakePositive( matOBBToWorld[2][i] * ray.m_Extents.z );
|
|
|
|
ppPlaneDist[i][0] = vecOBBMins[i] - flExtentDotNormal;
|
|
ppPlaneDist[i][1] = vecOBBMaxs[i] + flExtentDotNormal;
|
|
|
|
// For the ray-extents planes, they are bloated by the extents
|
|
// Use the support map to determine which
|
|
VectorCopy( matOBBToWorld[i], pPlaneNormal[i+3].Base() );
|
|
ComputeSupportMap( pPlaneNormal[i+3], vecOBBMins, vecOBBMaxs, ppPlaneDist[i+3] );
|
|
ppPlaneDist[i+3][0] -= ray.m_Extents[i];
|
|
ppPlaneDist[i+3][1] += ray.m_Extents[i];
|
|
|
|
// Now the edge cases... (take the cross product of x,y,z axis w/ ray extent axes
|
|
// given by the rows of the obb to world matrix.
|
|
// Compute the ray extent bloat in world space because it's easier...
|
|
|
|
// These are necessary to compute the world-space versions of
|
|
// the edges so we can compute the extent dot products
|
|
float flRayExtent0 = ray.m_Extents[s_ExtIndices[i][0]];
|
|
float flRayExtent1 = ray.m_Extents[s_ExtIndices[i][1]];
|
|
const float *pMatRow0 = matOBBToWorld[s_MatIndices[i][0]];
|
|
const float *pMatRow1 = matOBBToWorld[s_MatIndices[i][1]];
|
|
|
|
// x axis of the OBB + world ith axis
|
|
pPlaneNormal[i+6].Init( 0.0f, -matOBBToWorld[i][2], matOBBToWorld[i][1] );
|
|
ComputeSupportMap( pPlaneNormal[i+6], 1, 2, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+6] );
|
|
flExtentDotNormal =
|
|
FloatMakePositive( pMatRow0[0] ) * flRayExtent0 +
|
|
FloatMakePositive( pMatRow1[0] ) * flRayExtent1;
|
|
ppPlaneDist[i+6][0] -= flExtentDotNormal;
|
|
ppPlaneDist[i+6][1] += flExtentDotNormal;
|
|
|
|
// y axis of the OBB + world ith axis
|
|
pPlaneNormal[i+9].Init( matOBBToWorld[i][2], 0.0f, -matOBBToWorld[i][0] );
|
|
ComputeSupportMap( pPlaneNormal[i+9], 0, 2, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+9] );
|
|
flExtentDotNormal =
|
|
FloatMakePositive( pMatRow0[1] ) * flRayExtent0 +
|
|
FloatMakePositive( pMatRow1[1] ) * flRayExtent1;
|
|
ppPlaneDist[i+9][0] -= flExtentDotNormal;
|
|
ppPlaneDist[i+9][1] += flExtentDotNormal;
|
|
|
|
// z axis of the OBB + world ith axis
|
|
pPlaneNormal[i+12].Init( -matOBBToWorld[i][1], matOBBToWorld[i][0], 0.0f );
|
|
ComputeSupportMap( pPlaneNormal[i+12], 0, 1, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+12] );
|
|
flExtentDotNormal =
|
|
FloatMakePositive( pMatRow0[2] ) * flRayExtent0 +
|
|
FloatMakePositive( pMatRow1[2] ) * flRayExtent1;
|
|
ppPlaneDist[i+12][0] -= flExtentDotNormal;
|
|
ppPlaneDist[i+12][1] += flExtentDotNormal;
|
|
}
|
|
|
|
float enterfrac, leavefrac;
|
|
float d1[2], d2[2];
|
|
float f;
|
|
|
|
int hitplane = -1;
|
|
int hitside = -1;
|
|
enterfrac = -1.0f;
|
|
leavefrac = 1.0f;
|
|
|
|
pTrace->startsolid = true;
|
|
|
|
Vector vecLocalRayEnd;
|
|
VectorAdd( vecLocalRayOrigin, vecLocalRayDirection, vecLocalRayEnd );
|
|
|
|
for ( i = 0; i < 15; ++i )
|
|
{
|
|
// FIXME: Not particularly optimal since there's a lot of 0's in the plane normals
|
|
float flStartDot = DotProduct( pPlaneNormal[i], vecLocalRayOrigin );
|
|
float flEndDot = DotProduct( pPlaneNormal[i], vecLocalRayEnd );
|
|
|
|
// NOTE: Negative here is because the plane normal + dist
|
|
// are defined in negative terms for the far plane (plane dist index 0)
|
|
d1[0] = -(flStartDot - ppPlaneDist[i][0]);
|
|
d2[0] = -(flEndDot - ppPlaneDist[i][0]);
|
|
|
|
d1[1] = flStartDot - ppPlaneDist[i][1];
|
|
d2[1] = flEndDot - ppPlaneDist[i][1];
|
|
|
|
int j;
|
|
for ( j = 0; j < 2; ++j )
|
|
{
|
|
// if completely in front near plane or behind far plane no intersection
|
|
if (d1[j] > 0 && d2[j] > 0)
|
|
return false;
|
|
|
|
// completely inside, check next plane set
|
|
if (d1[j] <= 0 && d2[j] <= 0)
|
|
continue;
|
|
|
|
if (d1[j] > 0)
|
|
{
|
|
pTrace->startsolid = false;
|
|
}
|
|
|
|
// crosses face
|
|
float flDenom = 1.0f / (d1[j] - d2[j]);
|
|
if (d1[j] > d2[j])
|
|
{
|
|
f = d1[j] - flTolerance;
|
|
if ( f < 0 )
|
|
{
|
|
f = 0;
|
|
}
|
|
f *= flDenom;
|
|
if (f > enterfrac)
|
|
{
|
|
enterfrac = f;
|
|
hitplane = i;
|
|
hitside = j;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// leave
|
|
f = (d1[j] + flTolerance) * flDenom;
|
|
if (f < leavefrac)
|
|
{
|
|
leavefrac = f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (enterfrac < leavefrac && enterfrac >= 0.0f)
|
|
{
|
|
pTrace->fraction = enterfrac;
|
|
VectorMA( pTrace->startpos, enterfrac, ray.m_Delta, pTrace->endpos );
|
|
pTrace->contents = CONTENTS_SOLID;
|
|
|
|
// Need to transform the plane into world space...
|
|
cplane_t temp;
|
|
temp.normal = pPlaneNormal[hitplane];
|
|
temp.dist = ppPlaneDist[hitplane][hitside];
|
|
if (hitside == 0)
|
|
{
|
|
temp.normal *= -1.0f;
|
|
temp.dist *= -1.0f;
|
|
}
|
|
temp.type = 3;
|
|
|
|
MatrixITransformPlane( matOBBToWorld, temp, pTrace->plane );
|
|
return true;
|
|
}
|
|
|
|
if ( pTrace->startsolid )
|
|
{
|
|
pTrace->allsolid = (leavefrac <= 0.0f) || (leavefrac >= 1.0f);
|
|
pTrace->fraction = 0;
|
|
pTrace->endpos = pTrace->startpos;
|
|
pTrace->contents = CONTENTS_SOLID;
|
|
pTrace->plane.dist = pTrace->startpos[0];
|
|
pTrace->plane.normal.Init( 1.0f, 0.0f, 0.0f );
|
|
pTrace->plane.type = 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersects a ray against an OBB
|
|
//-----------------------------------------------------------------------------
|
|
bool IntersectRayWithOBB( const Ray_t &ray, const Vector &vecBoxOrigin, const QAngle &angBoxRotation,
|
|
const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace )
|
|
{
|
|
if ( angBoxRotation == vec3_angle )
|
|
{
|
|
Vector vecWorldMins, vecWorldMaxs;
|
|
VectorAdd( vecBoxOrigin, vecOBBMins, vecWorldMins );
|
|
VectorAdd( vecBoxOrigin, vecOBBMaxs, vecWorldMaxs );
|
|
return IntersectRayWithBox( ray, vecWorldMins, vecWorldMaxs, flTolerance, pTrace );
|
|
}
|
|
|
|
if ( ray.m_IsRay )
|
|
{
|
|
return IntersectRayWithOBB( ray.m_Start, ray.m_Delta, vecBoxOrigin, angBoxRotation, vecOBBMins, vecOBBMaxs, flTolerance, pTrace );
|
|
}
|
|
|
|
matrix3x4_t matOBBToWorld;
|
|
AngleMatrix( angBoxRotation, vecBoxOrigin, matOBBToWorld );
|
|
return IntersectRayWithOBB( ray, matOBBToWorld, vecOBBMins, vecOBBMaxs, flTolerance, pTrace );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void GetNonMajorAxes( const Vector &vNormal, Vector2D &axes )
|
|
{
|
|
axes[0] = 0;
|
|
axes[1] = 1;
|
|
|
|
if( FloatMakePositive( vNormal.x ) > FloatMakePositive( vNormal.y ) )
|
|
{
|
|
if( FloatMakePositive( vNormal.x ) > FloatMakePositive( vNormal.z ) )
|
|
{
|
|
axes[0] = 1;
|
|
axes[1] = 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( FloatMakePositive( vNormal.y ) > FloatMakePositive( vNormal.z ) )
|
|
{
|
|
axes[0] = 0;
|
|
axes[1] = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
QuadBarycentricRetval_t QuadWithParallelEdges( const Vector &vecOrigin,
|
|
const Vector &vecU, float lengthU, const Vector &vecV, float lengthV,
|
|
const Vector &pt, Vector2D &vecUV )
|
|
{
|
|
Ray_t rayAxis;
|
|
Ray_t rayPt;
|
|
|
|
//
|
|
// handle the u axis
|
|
//
|
|
rayAxis.m_Start = vecOrigin;
|
|
rayAxis.m_Delta = vecU;
|
|
rayAxis.m_IsRay = true;
|
|
|
|
rayPt.m_Start = pt;
|
|
rayPt.m_Delta = vecV * -( lengthV * 10.0f );
|
|
rayPt.m_IsRay = true;
|
|
|
|
float s, t;
|
|
IntersectRayWithRay( rayAxis, rayPt, t, s );
|
|
vecUV[0] = t / lengthU;
|
|
|
|
//
|
|
// handle the v axis
|
|
//
|
|
rayAxis.m_Delta = vecV;
|
|
|
|
rayPt.m_Delta = vecU * -( lengthU * 10.0f );
|
|
|
|
IntersectRayWithRay( rayAxis, rayPt, t, s );
|
|
vecUV[1] = t / lengthV;
|
|
|
|
// inside of the quad??
|
|
if( ( vecUV[0] < 0.0f ) || ( vecUV[0] > 1.0f ) ||
|
|
( vecUV[1] < 0.0f ) || ( vecUV[1] > 1.0f ) )
|
|
return BARY_QUADRATIC_FALSE;
|
|
|
|
return BARY_QUADRATIC_TRUE;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
void ResolveQuadratic( double tPlus, double tMinus,
|
|
const Vector axisU0, const Vector axisU1,
|
|
const Vector axisV0, const Vector axisV1,
|
|
const Vector axisOrigin, const Vector pt,
|
|
int projU, double &s, double &t )
|
|
{
|
|
// calculate the sPlus, sMinus pair(s)
|
|
double sDenomPlus = ( axisU0[projU] * ( 1 - tPlus ) ) + ( axisU1[projU] * tPlus );
|
|
double sDenomMinus = ( axisU0[projU] * ( 1 - tMinus ) ) + ( axisU1[projU] * tMinus );
|
|
|
|
double sPlus = UNINIT, sMinus = UNINIT;
|
|
if( FloatMakePositive( sDenomPlus ) >= 1e-5 )
|
|
{
|
|
sPlus = ( pt[projU] - axisOrigin[projU] - ( axisV0[projU] * tPlus ) ) / sDenomPlus;
|
|
}
|
|
|
|
if( FloatMakePositive( sDenomMinus ) >= 1e-5 )
|
|
{
|
|
sMinus = ( pt[projU] - axisOrigin[projU] - ( axisV0[projU] * tMinus ) ) / sDenomMinus;
|
|
}
|
|
|
|
if( ( tPlus >= 0.0 ) && ( tPlus <= 1.0 ) && ( sPlus >= 0.0 ) && ( sPlus <= 1.0 ) )
|
|
{
|
|
s = sPlus;
|
|
t = tPlus;
|
|
return;
|
|
}
|
|
|
|
if( ( tMinus >= 0.0 ) && ( tMinus <= 1.0 ) && ( sMinus >= 0.0 ) && ( sMinus <= 1.0 ) )
|
|
{
|
|
s = sMinus;
|
|
t = tMinus;
|
|
return;
|
|
}
|
|
|
|
double s0, t0, s1, t1;
|
|
|
|
s0 = sPlus;
|
|
t0 = tPlus;
|
|
if( s0 >= 1.0 ) { s0 -= 1.0; }
|
|
if( t0 >= 1.0 ) { t0 -= 1.0; }
|
|
|
|
s1 = sMinus;
|
|
t1 = tMinus;
|
|
if( s1 >= 1.0 ) { s1 -= 1.0; }
|
|
if( t1 >= 1.0 ) { t1 -= 1.0; }
|
|
|
|
s0 = FloatMakePositive( s0 );
|
|
t0 = FloatMakePositive( t0 );
|
|
s1 = FloatMakePositive( s1 );
|
|
t1 = FloatMakePositive( t1 );
|
|
|
|
double max0, max1;
|
|
max0 = s0;
|
|
if( t0 > max0 ) { max0 = t0; }
|
|
max1 = s1;
|
|
if( t1 > max1 ) { max1 = t1; }
|
|
|
|
if( max0 > max1 )
|
|
{
|
|
s = sMinus;
|
|
t = tMinus;
|
|
}
|
|
else
|
|
{
|
|
s = sPlus;
|
|
t = tPlus;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
QuadBarycentricRetval_t PointInQuadToBarycentric( const Vector &v1, const Vector &v2,
|
|
const Vector &v3, const Vector &v4, const Vector &point, Vector2D &uv )
|
|
{
|
|
#define PIQ_TEXTURE_EPSILON 0.001
|
|
#define PIQ_PLANE_EPSILON 0.1
|
|
#define PIQ_DOT_EPSILON 0.99f
|
|
|
|
//
|
|
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
|
|
// u0 = v2 - v1
|
|
// u1 = v3 - v4
|
|
// v0 = v4 - v1
|
|
// v1 = v3 - v2
|
|
//
|
|
Vector axisU[2], axisV[2];
|
|
Vector axisUNorm[2], axisVNorm[2];
|
|
axisU[0] = axisUNorm[0] = v2 - v1;
|
|
axisU[1] = axisUNorm[1] = v3 - v4;
|
|
axisV[0] = axisVNorm[0] = v4 - v1;
|
|
axisV[1] = axisVNorm[1] = v3 - v2;
|
|
|
|
float lengthU[2], lengthV[2];
|
|
lengthU[0] = VectorNormalize( axisUNorm[0] );
|
|
lengthU[1] = VectorNormalize( axisUNorm[1] );
|
|
lengthV[0] = VectorNormalize( axisVNorm[0] );
|
|
lengthV[1] = VectorNormalize( axisVNorm[1] );
|
|
|
|
//
|
|
// check for an early out - parallel opposite edges!
|
|
// NOTE: quad property if 1 set of opposite edges is parallel and equal
|
|
// in length, then the other set of edges is as well
|
|
//
|
|
if( axisUNorm[0].Dot( axisUNorm[1] ) > PIQ_DOT_EPSILON )
|
|
{
|
|
if( FloatMakePositive( lengthU[0] - lengthU[1] ) < PIQ_PLANE_EPSILON )
|
|
{
|
|
return QuadWithParallelEdges( v1, axisUNorm[0], lengthU[0], axisVNorm[0], lengthV[0], point, uv );
|
|
}
|
|
}
|
|
|
|
//
|
|
// since we are solving for s in our equations below we need to ensure that
|
|
// the v axes are non-parallel
|
|
//
|
|
bool bFlipped = false;
|
|
if( axisVNorm[0].Dot( axisVNorm[1] ) > PIQ_DOT_EPSILON )
|
|
{
|
|
Vector tmp[2];
|
|
tmp[0] = axisV[0];
|
|
tmp[1] = axisV[1];
|
|
axisV[0] = axisU[0];
|
|
axisV[1] = axisU[1];
|
|
axisU[0] = tmp[0];
|
|
axisU[1] = tmp[1];
|
|
bFlipped = true;
|
|
}
|
|
|
|
//
|
|
// get the "projection" axes
|
|
//
|
|
Vector2D projAxes;
|
|
Vector vNormal = axisU[0].Cross( axisV[0] );
|
|
GetNonMajorAxes( vNormal, projAxes );
|
|
|
|
//
|
|
// NOTE: axisU[0][projAxes[0]] < axisU[0][projAxes[1]],
|
|
// this is done to decrease error when dividing later
|
|
//
|
|
if( FloatMakePositive( axisU[0][projAxes[0]] ) < FloatMakePositive( axisU[0][projAxes[1]] ) )
|
|
{
|
|
int tmp = projAxes[0];
|
|
projAxes[0] = projAxes[1];
|
|
projAxes[1] = tmp;
|
|
}
|
|
|
|
// Here's how we got these equations:
|
|
//
|
|
// Given the points and u,v line segments above...
|
|
//
|
|
// Then:
|
|
//
|
|
// (1.0) PT = P0 + U0 * s + V * t
|
|
//
|
|
// where
|
|
//
|
|
// (1.1) V = V0 + s * (V1 - V0)
|
|
// (1.2) U = U0 + t * (U1 - U0)
|
|
//
|
|
// Therefore (from 1.1 + 1.0):
|
|
// PT - P0 = U0 * s + (V0 + s * (V1-V0)) * t
|
|
// Group s's:
|
|
// PT - P0 - t * V0 = s * (U0 + t * (V1-V0))
|
|
// Two equations and two unknowns in x and y get you the following quadratic:
|
|
//
|
|
// solve the quadratic
|
|
//
|
|
double s = 0.0, t = 0.0;
|
|
double A, negB, C;
|
|
|
|
A = ( axisU[0][projAxes[1]] * axisV[0][projAxes[0]] ) -
|
|
( axisU[0][projAxes[0]] * axisV[0][projAxes[1]] ) -
|
|
( axisU[1][projAxes[1]] * axisV[0][projAxes[0]] ) +
|
|
( axisU[1][projAxes[0]] * axisV[0][projAxes[1]] );
|
|
C = ( v1[projAxes[1]] * axisU[0][projAxes[0]] ) -
|
|
( point[projAxes[1]] * axisU[0][projAxes[0]] ) -
|
|
( v1[projAxes[0]] * axisU[0][projAxes[1]] ) +
|
|
( point[projAxes[0]] * axisU[0][projAxes[1]] );
|
|
negB = C -
|
|
( v1[projAxes[1]] * axisU[1][projAxes[0]] ) +
|
|
( point[projAxes[1]] * axisU[1][projAxes[0]] ) +
|
|
( v1[projAxes[0]] * axisU[1][projAxes[1]] ) -
|
|
( point[projAxes[0]] * axisU[1][projAxes[1]] ) +
|
|
( axisU[0][projAxes[1]] * axisV[0][projAxes[0]] ) -
|
|
( axisU[0][projAxes[0]] * axisV[0][projAxes[1]] );
|
|
|
|
if( ( A > -PIQ_PLANE_EPSILON ) && ( A < PIQ_PLANE_EPSILON ) )
|
|
{
|
|
// shouldn't be here -- this should have been take care of in the "early out"
|
|
// Assert( 0 );
|
|
|
|
Vector vecUAvg, vecVAvg;
|
|
vecUAvg = ( axisUNorm[0] + axisUNorm[1] ) * 0.5f;
|
|
vecVAvg = ( axisVNorm[0] + axisVNorm[1] ) * 0.5f;
|
|
|
|
float fLengthUAvg = ( lengthU[0] + lengthU[1] ) * 0.5f;
|
|
float fLengthVAvg = ( lengthV[0] + lengthV[1] ) * 0.5f;
|
|
|
|
return QuadWithParallelEdges( v1, vecUAvg, fLengthUAvg, vecVAvg, fLengthVAvg, point, uv );
|
|
|
|
#if 0
|
|
// legacy code -- kept here for completeness!
|
|
|
|
// not a quadratic -- solve linearly
|
|
t = C / negB;
|
|
|
|
// See (1.2) above
|
|
float ui = axisU[0][projAxes[0]] + t * ( axisU[1][projAxes[0]] - axisU[0][projAxes[0]] );
|
|
if( FloatMakePositive( ui ) >= 1e-5 )
|
|
{
|
|
// See (1.0) above
|
|
s = ( point[projAxes[0]] - v1[projAxes[0]] - axisV[0][projAxes[0]] * t ) / ui;
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
// (-b +/- sqrt( b^2 - 4ac )) / 2a
|
|
double discriminant = (negB*negB) - (4.0f * A * C);
|
|
if( discriminant < 0.0f )
|
|
{
|
|
uv[0] = -99999.0f;
|
|
uv[1] = -99999.0f;
|
|
return BARY_QUADRATIC_NEGATIVE_DISCRIMINANT;
|
|
}
|
|
|
|
double quad = sqrt( discriminant );
|
|
double QPlus = ( negB + quad ) / ( 2.0f * A );
|
|
double QMinus = ( negB - quad ) / ( 2.0f * A );
|
|
|
|
ResolveQuadratic( QPlus, QMinus, axisU[0], axisU[1], axisV[0], axisV[1], v1, point, projAxes[0], s, t );
|
|
}
|
|
|
|
if( !bFlipped )
|
|
{
|
|
uv[0] = ( float )s;
|
|
uv[1] = ( float )t;
|
|
}
|
|
else
|
|
{
|
|
uv[0] = ( float )t;
|
|
uv[1] = ( float )s;
|
|
}
|
|
|
|
// inside of the quad??
|
|
if( ( uv[0] < 0.0f ) || ( uv[0] > 1.0f ) || ( uv[1] < 0.0f ) || ( uv[1] > 1.0f ) )
|
|
return BARY_QUADRATIC_FALSE;
|
|
|
|
return BARY_QUADRATIC_TRUE;
|
|
|
|
#undef PIQ_TEXTURE_EPSILON
|
|
#undef PIQ_PLANE_EPSILON
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
void PointInQuadFromBarycentric( const Vector &v1, const Vector &v2, const Vector &v3, const Vector &v4,
|
|
const Vector2D &uv, Vector &point )
|
|
{
|
|
//
|
|
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
|
|
// find the ray from v0 edge to v1 edge at v
|
|
//
|
|
Vector vPts[2];
|
|
VectorLerp( v1, v4, uv[1], vPts[0] );
|
|
VectorLerp( v2, v3, uv[1], vPts[1] );
|
|
VectorLerp( vPts[0], vPts[1], uv[0], point );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//-----------------------------------------------------------------------------
|
|
void TexCoordInQuadFromBarycentric( const Vector2D &v1, const Vector2D &v2, const Vector2D &v3, const Vector2D &v4,
|
|
const Vector2D &uv, Vector2D &texCoord )
|
|
{
|
|
//
|
|
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
|
|
// find the ray from v0 edge to v1 edge at v
|
|
//
|
|
Vector2D vCoords[2];
|
|
Vector2DLerp( v1, v4, uv[1], vCoords[0] );
|
|
Vector2DLerp( v2, v3, uv[1], vCoords[1] );
|
|
Vector2DLerp( vCoords[0], vCoords[1], uv[0], texCoord );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute point from barycentric specification
|
|
// Edge u goes from v0 to v1, edge v goes from v0 to v2
|
|
//-----------------------------------------------------------------------------
|
|
void ComputePointFromBarycentric( const Vector& v0, const Vector& v1, const Vector& v2,
|
|
float u, float v, Vector& pt )
|
|
{
|
|
Vector edgeU, edgeV;
|
|
VectorSubtract( v1, v0, edgeU );
|
|
VectorSubtract( v2, v0, edgeV );
|
|
VectorMA( v0, u, edgeU, pt );
|
|
VectorMA( pt, v, edgeV, pt );
|
|
}
|
|
|
|
void ComputePointFromBarycentric( const Vector2D& v0, const Vector2D& v1, const Vector2D& v2,
|
|
float u, float v, Vector2D& pt )
|
|
{
|
|
Vector2D edgeU, edgeV;
|
|
Vector2DSubtract( v1, v0, edgeU );
|
|
Vector2DSubtract( v2, v0, edgeV );
|
|
Vector2DMA( v0, u, edgeU, pt );
|
|
Vector2DMA( pt, v, edgeV, pt );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute a matrix that has the correct orientation but which has an origin at
|
|
// the center of the bounds
|
|
//-----------------------------------------------------------------------------
|
|
static void ComputeCenterMatrix( const Vector& origin, const QAngle& angles,
|
|
const Vector& mins, const Vector& maxs, matrix3x4_t& matrix )
|
|
{
|
|
Vector centroid;
|
|
VectorAdd( mins, maxs, centroid );
|
|
centroid *= 0.5f;
|
|
AngleMatrix( angles, matrix );
|
|
|
|
Vector worldCentroid;
|
|
VectorRotate( centroid, matrix, worldCentroid );
|
|
worldCentroid += origin;
|
|
MatrixSetColumn( worldCentroid, 3, matrix );
|
|
}
|
|
|
|
static void ComputeCenterIMatrix( const Vector& origin, const QAngle& angles,
|
|
const Vector& mins, const Vector& maxs, matrix3x4_t& matrix )
|
|
{
|
|
Vector centroid;
|
|
VectorAdd( mins, maxs, centroid );
|
|
centroid *= -0.5f;
|
|
AngleIMatrix( angles, matrix );
|
|
|
|
// For the translational component here, note that the origin in world space
|
|
// is T = R * C + O, (R = rotation matrix, C = centroid in local space, O = origin in world space)
|
|
// The IMatrix translation = - transpose(R) * T = -C - transpose(R) * 0
|
|
Vector localOrigin;
|
|
VectorRotate( origin, matrix, localOrigin );
|
|
centroid -= localOrigin;
|
|
MatrixSetColumn( centroid, 3, matrix );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute a matrix which is the absolute value of another
|
|
//-----------------------------------------------------------------------------
|
|
static inline void ComputeAbsMatrix( const matrix3x4_t& in, matrix3x4_t& out )
|
|
{
|
|
FloatBits(out[0][0]) = FloatAbsBits(in[0][0]);
|
|
FloatBits(out[0][1]) = FloatAbsBits(in[0][1]);
|
|
FloatBits(out[0][2]) = FloatAbsBits(in[0][2]);
|
|
FloatBits(out[1][0]) = FloatAbsBits(in[1][0]);
|
|
FloatBits(out[1][1]) = FloatAbsBits(in[1][1]);
|
|
FloatBits(out[1][2]) = FloatAbsBits(in[1][2]);
|
|
FloatBits(out[2][0]) = FloatAbsBits(in[2][0]);
|
|
FloatBits(out[2][1]) = FloatAbsBits(in[2][1]);
|
|
FloatBits(out[2][2]) = FloatAbsBits(in[2][2]);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute a separating plane between two boxes (expensive!)
|
|
// Returns false if no separating plane exists
|
|
//-----------------------------------------------------------------------------
|
|
static bool ComputeSeparatingPlane( const matrix3x4_t &worldToBox1, const matrix3x4_t &box2ToWorld,
|
|
const Vector& box1Size, const Vector& box2Size, float tolerance, cplane_t* pPlane )
|
|
{
|
|
// The various separating planes can be either
|
|
// 1) A plane parallel to one of the box face planes
|
|
// 2) A plane parallel to the cross-product of an edge from each box
|
|
|
|
// First, compute the basis of second box in the space of the first box
|
|
// NOTE: These basis place the origin at the centroid of each box!
|
|
matrix3x4_t box2ToBox1;
|
|
ConcatTransforms( worldToBox1, box2ToWorld, box2ToBox1 );
|
|
|
|
// We're going to be using the origin of box2 in the space of box1 alot,
|
|
// lets extract it from the matrix....
|
|
Vector box2Origin;
|
|
MatrixGetColumn( box2ToBox1, 3, box2Origin );
|
|
|
|
// Next get the absolute values of these entries and store in absbox2ToBox1.
|
|
matrix3x4_t absBox2ToBox1;
|
|
ComputeAbsMatrix( box2ToBox1, absBox2ToBox1 );
|
|
|
|
// There are 15 tests to make. The first 3 involve trying planes parallel
|
|
// to the faces of the first box.
|
|
|
|
// NOTE: The algorithm here involves finding the projections of the two boxes
|
|
// onto a particular line. If the projections on the line do not overlap,
|
|
// that means that there's a plane perpendicular to the line which separates
|
|
// the two boxes; and we've therefore found a separating plane.
|
|
|
|
// The way we check for overlay is we find the projections of the two boxes
|
|
// onto the line, and add them up. We compare the sum with the projection
|
|
// of the relative center of box2 onto the same line.
|
|
|
|
Vector tmp;
|
|
float boxProjectionSum;
|
|
float originProjection;
|
|
|
|
// NOTE: For these guys, we're taking advantage of the fact that the ith
|
|
// row of the box2ToBox1 is the direction of the box1 (x,y,z)-axis
|
|
// transformed into the space of box2.
|
|
|
|
// First side of box 1
|
|
boxProjectionSum = box1Size.x + MatrixRowDotProduct( absBox2ToBox1, 0, box2Size );
|
|
originProjection = FloatMakePositive( box2Origin.x ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
VectorCopy( worldToBox1[0], pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
|
|
// Second side of box 1
|
|
boxProjectionSum = box1Size.y + MatrixRowDotProduct( absBox2ToBox1, 1, box2Size );
|
|
originProjection = FloatMakePositive( box2Origin.y ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
VectorCopy( worldToBox1[1], pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
|
|
// Third side of box 1
|
|
boxProjectionSum = box1Size.z + MatrixRowDotProduct( absBox2ToBox1, 2, box2Size );
|
|
originProjection = FloatMakePositive( box2Origin.z ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
VectorCopy( worldToBox1[2], pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
|
|
// The next three involve checking splitting planes parallel to the
|
|
// faces of the second box.
|
|
|
|
// NOTE: For these guys, we're taking advantage of the fact that the 0th
|
|
// column of the box2ToBox1 is the direction of the box2 x-axis
|
|
// transformed into the space of box1.
|
|
// Here, we're determining the distance of box2's center from box1's center
|
|
// by projecting it onto a line parallel to box2's axis
|
|
|
|
// First side of box 2
|
|
boxProjectionSum = box2Size.x + MatrixColumnDotProduct( absBox2ToBox1, 0, box1Size );
|
|
originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 0, box2Origin ) ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 0, pPlane->normal );
|
|
return true;
|
|
}
|
|
|
|
// Second side of box 2
|
|
boxProjectionSum = box2Size.y + MatrixColumnDotProduct( absBox2ToBox1, 1, box1Size );
|
|
originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 1, box2Origin ) ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 1, pPlane->normal );
|
|
return true;
|
|
}
|
|
|
|
// Third side of box 2
|
|
boxProjectionSum = box2Size.z + MatrixColumnDotProduct( absBox2ToBox1, 2, box1Size );
|
|
originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 2, box2Origin ) ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 2, pPlane->normal );
|
|
return true;
|
|
}
|
|
|
|
// Next check the splitting planes which are orthogonal to the pairs
|
|
// of edges, one from box1 and one from box2. As only direction matters,
|
|
// there are 9 pairs since each box has 3 distinct edge directions.
|
|
|
|
// Here, we take advantage of the fact that the edges from box 1 are all
|
|
// axis aligned; therefore the crossproducts are simplified. Let's walk through
|
|
// the example of b1e1 x b2e1:
|
|
|
|
// In this example, the line to check is perpendicular to b1e1 + b2e2
|
|
// we can compute this line by taking the cross-product:
|
|
//
|
|
// [ i j k ]
|
|
// [ 1 0 0 ] = - ez j + ey k = l1
|
|
// [ ex ey ez ]
|
|
|
|
// Where ex, ey, ez is the components of box2's x axis in the space of box 1,
|
|
// which is == to the 0th column of of box2toBox1
|
|
|
|
// The projection of box1 onto this line = the absolute dot product of the box size
|
|
// against the line, which =
|
|
// AbsDot( box1Size, l1 ) = abs( -ez * box1.y ) + abs( ey * box1.z )
|
|
|
|
// To compute the projection of box2 onto this line, we'll do it in the space of box 2
|
|
//
|
|
// [ i j k ]
|
|
// [ fx fy fz ] = fz j - fy k = l2
|
|
// [ 1 0 0 ]
|
|
|
|
// Where fx, fy, fz is the components of box1's x axis in the space of box 2,
|
|
// which is == to the 0th row of of box2toBox1
|
|
|
|
// The projection of box2 onto this line = the absolute dot product of the box size
|
|
// against the line, which =
|
|
// AbsDot( box2Size, l2 ) = abs( fz * box2.y ) + abs ( fy * box2.z )
|
|
|
|
// The projection of the relative origin position on this line is done in the
|
|
// space of box 1:
|
|
//
|
|
// originProjection = DotProduct( <-ez j + ey k>, box2Origin ) =
|
|
// -ez * box2Origin.y + ey * box2Origin.z
|
|
|
|
// NOTE: These checks can be bogus if both edges are parallel. The if
|
|
// checks at the beginning of each block are designed to catch that case
|
|
|
|
// b1e1 x b2e1
|
|
if ( absBox2ToBox1[0][0] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.y * absBox2ToBox1[2][0] + box1Size.z * absBox2ToBox1[1][0] +
|
|
box2Size.y * absBox2ToBox1[0][2] + box2Size.z * absBox2ToBox1[0][1];
|
|
originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][0] + box2Origin.z * box2ToBox1[1][0] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 0, tmp );
|
|
CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// b1e1 x b2e2
|
|
if ( absBox2ToBox1[0][1] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.y * absBox2ToBox1[2][1] + box1Size.z * absBox2ToBox1[1][1] +
|
|
box2Size.x * absBox2ToBox1[0][2] + box2Size.z * absBox2ToBox1[0][0];
|
|
originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][1] + box2Origin.z * box2ToBox1[1][1] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 1, tmp );
|
|
CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// b1e1 x b2e3
|
|
if ( absBox2ToBox1[0][2] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.y * absBox2ToBox1[2][2] + box1Size.z * absBox2ToBox1[1][2] +
|
|
box2Size.x * absBox2ToBox1[0][1] + box2Size.y * absBox2ToBox1[0][0];
|
|
originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][2] + box2Origin.z * box2ToBox1[1][2] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 2, tmp );
|
|
CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// b1e2 x b2e1
|
|
if ( absBox2ToBox1[1][0] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.x * absBox2ToBox1[2][0] + box1Size.z * absBox2ToBox1[0][0] +
|
|
box2Size.y * absBox2ToBox1[1][2] + box2Size.z * absBox2ToBox1[1][1];
|
|
originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][0] - box2Origin.z * box2ToBox1[0][0] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 0, tmp );
|
|
CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// b1e2 x b2e2
|
|
if ( absBox2ToBox1[1][1] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.x * absBox2ToBox1[2][1] + box1Size.z * absBox2ToBox1[0][1] +
|
|
box2Size.x * absBox2ToBox1[1][2] + box2Size.z * absBox2ToBox1[1][0];
|
|
originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][1] - box2Origin.z * box2ToBox1[0][1] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 1, tmp );
|
|
CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// b1e2 x b2e3
|
|
if ( absBox2ToBox1[1][2] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.x * absBox2ToBox1[2][2] + box1Size.z * absBox2ToBox1[0][2] +
|
|
box2Size.x * absBox2ToBox1[1][1] + box2Size.y * absBox2ToBox1[1][0];
|
|
originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][2] - box2Origin.z * box2ToBox1[0][2] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 2, tmp );
|
|
CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// b1e3 x b2e1
|
|
if ( absBox2ToBox1[2][0] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.x * absBox2ToBox1[1][0] + box1Size.y * absBox2ToBox1[0][0] +
|
|
box2Size.y * absBox2ToBox1[2][2] + box2Size.z * absBox2ToBox1[2][1];
|
|
originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][0] + box2Origin.y * box2ToBox1[0][0] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 0, tmp );
|
|
CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// b1e3 x b2e2
|
|
if ( absBox2ToBox1[2][1] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.x * absBox2ToBox1[1][1] + box1Size.y * absBox2ToBox1[0][1] +
|
|
box2Size.x * absBox2ToBox1[2][2] + box2Size.z * absBox2ToBox1[2][0];
|
|
originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][1] + box2Origin.y * box2ToBox1[0][1] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 1, tmp );
|
|
CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// b1e3 x b2e3
|
|
if ( absBox2ToBox1[2][2] < 1.0f - 1e-3f )
|
|
{
|
|
boxProjectionSum =
|
|
box1Size.x * absBox2ToBox1[1][2] + box1Size.y * absBox2ToBox1[0][2] +
|
|
box2Size.x * absBox2ToBox1[2][1] + box2Size.y * absBox2ToBox1[2][0];
|
|
originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][2] + box2Origin.y * box2ToBox1[0][2] ) + tolerance;
|
|
if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) )
|
|
{
|
|
MatrixGetColumn( box2ToWorld, 2, tmp );
|
|
CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() );
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute a separating plane between two boxes (expensive!)
|
|
// Returns false if no separating plane exists
|
|
//-----------------------------------------------------------------------------
|
|
bool ComputeSeparatingPlane( const Vector& org1, const QAngle& angles1, const Vector& min1, const Vector& max1,
|
|
const Vector& org2, const QAngle& angles2, const Vector& min2, const Vector& max2,
|
|
float tolerance, cplane_t* pPlane )
|
|
{
|
|
matrix3x4_t worldToBox1, box2ToWorld;
|
|
ComputeCenterIMatrix( org1, angles1, min1, max1, worldToBox1 );
|
|
ComputeCenterMatrix( org2, angles2, min2, max2, box2ToWorld );
|
|
|
|
// Then compute the size of the two boxes
|
|
Vector box1Size, box2Size;
|
|
VectorSubtract( max1, min1, box1Size );
|
|
VectorSubtract( max2, min2, box2Size );
|
|
box1Size *= 0.5f;
|
|
box2Size *= 0.5f;
|
|
|
|
return ComputeSeparatingPlane( worldToBox1, box2ToWorld, box1Size, box2Size, tolerance, pPlane );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Swept OBB test
|
|
//-----------------------------------------------------------------------------
|
|
bool IsRayIntersectingOBB( const Ray_t &ray, const Vector& org, const QAngle& angles,
|
|
const Vector& mins, const Vector& maxs )
|
|
{
|
|
if ( angles == vec3_angle )
|
|
{
|
|
Vector vecWorldMins, vecWorldMaxs;
|
|
VectorAdd( org, mins, vecWorldMins );
|
|
VectorAdd( org, maxs, vecWorldMaxs );
|
|
return IsBoxIntersectingRay( vecWorldMins, vecWorldMaxs, ray );
|
|
}
|
|
|
|
if ( ray.m_IsRay )
|
|
{
|
|
matrix3x4_t worldToBox;
|
|
AngleIMatrix( angles, org, worldToBox );
|
|
|
|
Ray_t rotatedRay;
|
|
VectorTransform( ray.m_Start, worldToBox, rotatedRay.m_Start );
|
|
VectorRotate( ray.m_Delta, worldToBox, rotatedRay.m_Delta );
|
|
rotatedRay.m_StartOffset = vec3_origin;
|
|
rotatedRay.m_Extents = vec3_origin;
|
|
rotatedRay.m_IsRay = ray.m_IsRay;
|
|
rotatedRay.m_IsSwept = ray.m_IsSwept;
|
|
|
|
return IsBoxIntersectingRay( mins, maxs, rotatedRay );
|
|
}
|
|
|
|
if ( !ray.m_IsSwept )
|
|
{
|
|
cplane_t plane;
|
|
return ComputeSeparatingPlane( ray.m_Start, vec3_angle, -ray.m_Extents, ray.m_Extents,
|
|
org, angles, mins, maxs, 0.0f, &plane ) == false;
|
|
}
|
|
|
|
// NOTE: See the comments in ComputeSeparatingPlane to understand this math
|
|
|
|
// First, compute the basis of box in the space of the ray
|
|
// NOTE: These basis place the origin at the centroid of each box!
|
|
matrix3x4_t worldToBox1, box2ToWorld;
|
|
ComputeCenterMatrix( org, angles, mins, maxs, box2ToWorld );
|
|
|
|
// Find the center + extents of an AABB surrounding the ray
|
|
Vector vecRayCenter;
|
|
VectorMA( ray.m_Start, 0.5, ray.m_Delta, vecRayCenter );
|
|
vecRayCenter *= -1.0f;
|
|
SetIdentityMatrix( worldToBox1 );
|
|
MatrixSetColumn( vecRayCenter, 3, worldToBox1 );
|
|
|
|
Vector box1Size;
|
|
box1Size.x = ray.m_Extents.x + FloatMakePositive( ray.m_Delta.x ) * 0.5f;
|
|
box1Size.y = ray.m_Extents.y + FloatMakePositive( ray.m_Delta.y ) * 0.5f;
|
|
box1Size.z = ray.m_Extents.z + FloatMakePositive( ray.m_Delta.z ) * 0.5f;
|
|
|
|
// Then compute the size of the box
|
|
Vector box2Size;
|
|
VectorSubtract( maxs, mins, box2Size );
|
|
box2Size *= 0.5f;
|
|
|
|
// Do an OBB test of the box with the AABB surrounding the ray
|
|
cplane_t plane;
|
|
if ( ComputeSeparatingPlane( worldToBox1, box2ToWorld, box1Size, box2Size, 0.0f, &plane ) )
|
|
return false;
|
|
|
|
// Now deal with the planes which are the cross products of the ray sweep direction vs box edges
|
|
Vector vecRayDirection = ray.m_Delta;
|
|
VectorNormalize( vecRayDirection );
|
|
|
|
// Need a vector between ray center vs box center measured in the space of the ray (world)
|
|
Vector vecCenterDelta;
|
|
vecCenterDelta.x = box2ToWorld[0][3] - ray.m_Start.x;
|
|
vecCenterDelta.y = box2ToWorld[1][3] - ray.m_Start.y;
|
|
vecCenterDelta.z = box2ToWorld[2][3] - ray.m_Start.z;
|
|
|
|
// Rotate the ray direction into the space of the OBB
|
|
Vector vecAbsRayDirBox2;
|
|
VectorIRotate( vecRayDirection, box2ToWorld, vecAbsRayDirBox2 );
|
|
|
|
// Make abs versions of the ray in world space + ray in box2 space
|
|
VectorAbs( vecAbsRayDirBox2, vecAbsRayDirBox2 );
|
|
|
|
// Now do the work for the planes which are perpendicular to the edges of the AABB
|
|
// and the sweep direction edges...
|
|
|
|
// In this example, the line to check is perpendicular to box edge x + ray delta
|
|
// we can compute this line by taking the cross-product:
|
|
//
|
|
// [ i j k ]
|
|
// [ 1 0 0 ] = - dz j + dy k = l1
|
|
// [ dx dy dz ]
|
|
|
|
// Where dx, dy, dz is the ray delta (normalized)
|
|
|
|
// The projection of the box onto this line = the absolute dot product of the box size
|
|
// against the line, which =
|
|
// AbsDot( vecBoxHalfDiagonal, l1 ) = abs( -dz * vecBoxHalfDiagonal.y ) + abs( dy * vecBoxHalfDiagonal.z )
|
|
|
|
// Because the plane contains the sweep direction, the sweep will produce
|
|
// no extra projection onto the line normal to the plane.
|
|
// Therefore all we need to do is project the ray extents onto this line also:
|
|
// AbsDot( ray.m_Extents, l1 ) = abs( -dz * ray.m_Extents.y ) + abs( dy * ray.m_Extents.z )
|
|
|
|
Vector vecPlaneNormal;
|
|
|
|
// box x x ray delta
|
|
CrossProduct( vecRayDirection, Vector( box2ToWorld[0][0], box2ToWorld[1][0], box2ToWorld[2][0] ), vecPlaneNormal );
|
|
float flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) );
|
|
float flBoxProjectionSum =
|
|
vecAbsRayDirBox2.z * box2Size.y + vecAbsRayDirBox2.y * box2Size.z +
|
|
DotProductAbs( vecPlaneNormal, ray.m_Extents );
|
|
if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) )
|
|
return false;
|
|
|
|
// box y x ray delta
|
|
CrossProduct( vecRayDirection, Vector( box2ToWorld[0][1], box2ToWorld[1][1], box2ToWorld[2][1] ), vecPlaneNormal );
|
|
flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) );
|
|
flBoxProjectionSum =
|
|
vecAbsRayDirBox2.z * box2Size.x + vecAbsRayDirBox2.x * box2Size.z +
|
|
DotProductAbs( vecPlaneNormal, ray.m_Extents );
|
|
if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) )
|
|
return false;
|
|
|
|
// box z x ray delta
|
|
CrossProduct( vecRayDirection, Vector( box2ToWorld[0][2], box2ToWorld[1][2], box2ToWorld[2][2] ), vecPlaneNormal );
|
|
flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) );
|
|
flBoxProjectionSum =
|
|
vecAbsRayDirBox2.y * box2Size.x + vecAbsRayDirBox2.x * box2Size.y +
|
|
DotProductAbs( vecPlaneNormal, ray.m_Extents );
|
|
if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------
|
|
// Purpose:
|
|
//
|
|
// NOTE:
|
|
// triangle points are given in clockwise order (aabb-triangle test)
|
|
//
|
|
// 1 edge0 = 1 - 0
|
|
// | \ edge1 = 2 - 1
|
|
// | \ edge2 = 0 - 2
|
|
// | \ .
|
|
// | \ .
|
|
// 0-----2 .
|
|
//
|
|
//--------------------------------------------------------------------------
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: find the minima and maxima of the 3 given values
|
|
//-----------------------------------------------------------------------------
|
|
inline void FindMinMax( float v1, float v2, float v3, float &min, float &max )
|
|
{
|
|
min = max = v1;
|
|
if ( v2 < min ) { min = v2; }
|
|
if ( v2 > max ) { max = v2; }
|
|
if ( v3 < min ) { min = v3; }
|
|
if ( v3 > max ) { max = v3; }
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
inline bool AxisTestEdgeCrossX2( float flEdgeZ, float flEdgeY, float flAbsEdgeZ, float flAbsEdgeY,
|
|
const Vector &p1, const Vector &p3, const Vector &vecExtents,
|
|
float flTolerance )
|
|
{
|
|
// Cross Product( axialX(1,0,0) x edge ): x = 0.0f, y = edge.z, z = -edge.y
|
|
// Triangle Point Distances: dist(x) = normal.y * pt(x).y + normal.z * pt(x).z
|
|
float flDist1 = flEdgeZ * p1.y - flEdgeY * p1.z;
|
|
float flDist3 = flEdgeZ * p3.y - flEdgeY * p3.z;
|
|
|
|
// Extents are symmetric: dist = abs( normal.y ) * extents.y + abs( normal.z ) * extents.z
|
|
float flDistBox = flAbsEdgeZ * vecExtents.y + flAbsEdgeY * vecExtents.z;
|
|
|
|
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
|
|
if ( flDist1 < flDist3 )
|
|
{
|
|
if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------
|
|
// Purpose:
|
|
//--------------------------------------------------------------------------
|
|
inline bool AxisTestEdgeCrossX3( float flEdgeZ, float flEdgeY, float flAbsEdgeZ, float flAbsEdgeY,
|
|
const Vector &p1, const Vector &p2, const Vector &vecExtents,
|
|
float flTolerance )
|
|
{
|
|
// Cross Product( axialX(1,0,0) x edge ): x = 0.0f, y = edge.z, z = -edge.y
|
|
// Triangle Point Distances: dist(x) = normal.y * pt(x).y + normal.z * pt(x).z
|
|
float flDist1 = flEdgeZ * p1.y - flEdgeY * p1.z;
|
|
float flDist2 = flEdgeZ * p2.y - flEdgeY * p2.z;
|
|
|
|
// Extents are symmetric: dist = abs( normal.y ) * extents.y + abs( normal.z ) * extents.z
|
|
float flDistBox = flAbsEdgeZ * vecExtents.y + flAbsEdgeY * vecExtents.z;
|
|
|
|
// Either dist1, dist2 is the closest point to the box, determine which and test of overlap with box(AABB).
|
|
if ( flDist1 < flDist2 )
|
|
{
|
|
if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------
|
|
//--------------------------------------------------------------------------
|
|
inline bool AxisTestEdgeCrossY2( float flEdgeZ, float flEdgeX, float flAbsEdgeZ, float flAbsEdgeX,
|
|
const Vector &p1, const Vector &p3, const Vector &vecExtents,
|
|
float flTolerance )
|
|
{
|
|
// Cross Product( axialY(0,1,0) x edge ): x = -edge.z, y = 0.0f, z = edge.x
|
|
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.z * pt(x).z
|
|
float flDist1 = -flEdgeZ * p1.x + flEdgeX * p1.z;
|
|
float flDist3 = -flEdgeZ * p3.x + flEdgeX * p3.z;
|
|
|
|
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.z ) * extents.z
|
|
float flDistBox = flAbsEdgeZ * vecExtents.x + flAbsEdgeX * vecExtents.z;
|
|
|
|
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
|
|
if ( flDist1 < flDist3 )
|
|
{
|
|
if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------
|
|
//--------------------------------------------------------------------------
|
|
inline bool AxisTestEdgeCrossY3( float flEdgeZ, float flEdgeX, float flAbsEdgeZ, float flAbsEdgeX,
|
|
const Vector &p1, const Vector &p2, const Vector &vecExtents,
|
|
float flTolerance )
|
|
{
|
|
// Cross Product( axialY(0,1,0) x edge ): x = -edge.z, y = 0.0f, z = edge.x
|
|
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.z * pt(x).z
|
|
float flDist1 = -flEdgeZ * p1.x + flEdgeX * p1.z;
|
|
float flDist2 = -flEdgeZ * p2.x + flEdgeX * p2.z;
|
|
|
|
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.z ) * extents.z
|
|
float flDistBox = flAbsEdgeZ * vecExtents.x + flAbsEdgeX * vecExtents.z;
|
|
|
|
// Either dist1, dist2 is the closest point to the box, determine which and test of overlap with box(AABB).
|
|
if ( flDist1 < flDist2 )
|
|
{
|
|
if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------
|
|
//--------------------------------------------------------------------------
|
|
inline bool AxisTestEdgeCrossZ1( float flEdgeY, float flEdgeX, float flAbsEdgeY, float flAbsEdgeX,
|
|
const Vector &p2, const Vector &p3, const Vector &vecExtents,
|
|
float flTolerance )
|
|
{
|
|
// Cross Product( axialZ(0,0,1) x edge ): x = edge.y, y = -edge.x, z = 0.0f
|
|
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.y * pt(x).y
|
|
float flDist2 = flEdgeY * p2.x - flEdgeX * p2.y;
|
|
float flDist3 = flEdgeY * p3.x - flEdgeX * p3.y;
|
|
|
|
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.y ) * extents.y
|
|
float flDistBox = flAbsEdgeY * vecExtents.x + flAbsEdgeX * vecExtents.y;
|
|
|
|
// Either dist2, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
|
|
if ( flDist3 < flDist2 )
|
|
{
|
|
if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------
|
|
//--------------------------------------------------------------------------
|
|
inline bool AxisTestEdgeCrossZ2( float flEdgeY, float flEdgeX, float flAbsEdgeY, float flAbsEdgeX,
|
|
const Vector &p1, const Vector &p3, const Vector &vecExtents,
|
|
float flTolerance )
|
|
{
|
|
// Cross Product( axialZ(0,0,1) x edge ): x = edge.y, y = -edge.x, z = 0.0f
|
|
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.y * pt(x).y
|
|
float flDist1 = flEdgeY * p1.x - flEdgeX * p1.y;
|
|
float flDist3 = flEdgeY * p3.x - flEdgeX * p3.y;
|
|
|
|
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.y ) * extents.y
|
|
float flDistBox = flAbsEdgeY * vecExtents.x + flAbsEdgeX * vecExtents.y;
|
|
|
|
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
|
|
if ( flDist1 < flDist3 )
|
|
{
|
|
if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Test for an intersection (overlap) between an axial-aligned bounding
|
|
// box (AABB) and a triangle.
|
|
//
|
|
// Using the "Separating-Axis Theorem" to test for intersections between
|
|
// a triangle and an axial-aligned bounding box (AABB).
|
|
// 1. 3 Axis Planes - x, y, z
|
|
// 2. 9 Edge Planes Tests - the 3 edges of the triangle crossed with all 3 axial
|
|
// planes (x, y, z)
|
|
// 3. 1 Face Plane - the triangle plane (cplane_t plane below)
|
|
// Output: false = separating axis (no intersection)
|
|
// true = intersection
|
|
//-----------------------------------------------------------------------------
|
|
bool IsBoxIntersectingTriangle( const Vector &vecBoxCenter, const Vector &vecBoxExtents,
|
|
const Vector &v1, const Vector &v2, const Vector &v3,
|
|
const cplane_t &plane, float flTolerance )
|
|
{
|
|
// Test the axial planes (x,y,z) against the min, max of the triangle.
|
|
float flMin, flMax;
|
|
Vector p1, p2, p3;
|
|
|
|
// x plane
|
|
p1.x = v1.x - vecBoxCenter.x;
|
|
p2.x = v2.x - vecBoxCenter.x;
|
|
p3.x = v3.x - vecBoxCenter.x;
|
|
FindMinMax( p1.x, p2.x, p3.x, flMin, flMax );
|
|
if ( ( flMin > ( vecBoxExtents.x + flTolerance ) ) || ( flMax < -( vecBoxExtents.x + flTolerance ) ) )
|
|
return false;
|
|
|
|
// y plane
|
|
p1.y = v1.y - vecBoxCenter.y;
|
|
p2.y = v2.y - vecBoxCenter.y;
|
|
p3.y = v3.y - vecBoxCenter.y;
|
|
FindMinMax( p1.y, p2.y, p3.y, flMin, flMax );
|
|
if ( ( flMin > ( vecBoxExtents.y + flTolerance ) ) || ( flMax < -( vecBoxExtents.y + flTolerance ) ) )
|
|
return false;
|
|
|
|
// z plane
|
|
p1.z = v1.z - vecBoxCenter.z;
|
|
p2.z = v2.z - vecBoxCenter.z;
|
|
p3.z = v3.z - vecBoxCenter.z;
|
|
FindMinMax( p1.z, p2.z, p3.z, flMin, flMax );
|
|
if ( ( flMin > ( vecBoxExtents.z + flTolerance ) ) || ( flMax < -( vecBoxExtents.z + flTolerance ) ) )
|
|
return false;
|
|
|
|
// Test the 9 edge cases.
|
|
Vector vecEdge, vecAbsEdge;
|
|
|
|
// edge 0 (cross x,y,z)
|
|
vecEdge = p2 - p1;
|
|
vecAbsEdge.y = FloatMakePositive( vecEdge.y );
|
|
vecAbsEdge.z = FloatMakePositive( vecEdge.z );
|
|
if ( !AxisTestEdgeCrossX2( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p3, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
vecAbsEdge.x = FloatMakePositive( vecEdge.x );
|
|
if ( !AxisTestEdgeCrossY2( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p3, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
if ( !AxisTestEdgeCrossZ1( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p2, p3, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
// edge 1 (cross x,y,z)
|
|
vecEdge = p3 - p2;
|
|
vecAbsEdge.y = FloatMakePositive( vecEdge.y );
|
|
vecAbsEdge.z = FloatMakePositive( vecEdge.z );
|
|
if ( !AxisTestEdgeCrossX2( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p2, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
vecAbsEdge.x = FloatMakePositive( vecEdge.x );
|
|
if ( !AxisTestEdgeCrossY2( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p2, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
if ( !AxisTestEdgeCrossZ2( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p1, p3, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
// edge 2 (cross x,y,z)
|
|
vecEdge = p1 - p3;
|
|
vecAbsEdge.y = FloatMakePositive( vecEdge.y );
|
|
vecAbsEdge.z = FloatMakePositive( vecEdge.z );
|
|
if ( !AxisTestEdgeCrossX3( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p2, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
vecAbsEdge.x = FloatMakePositive( vecEdge.x );
|
|
if ( !AxisTestEdgeCrossY3( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p2, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
if ( !AxisTestEdgeCrossZ1( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p2, p3, vecBoxExtents, flTolerance ) )
|
|
return false;
|
|
|
|
// Test against the triangle face plane.
|
|
Vector vecMin, vecMax;
|
|
VectorSubtract( vecBoxCenter, vecBoxExtents, vecMin );
|
|
VectorAdd( vecBoxCenter, vecBoxExtents, vecMax );
|
|
if ( BoxOnPlaneSide( vecMin, vecMax, &plane ) != 3 )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// NOTE: JAY: This is untested code based on Real-time Collision Detection by Ericson
|
|
#if 0
|
|
Vector CalcClosestPointOnTriangle( const Vector &P, const Vector &v0, const Vector &v1, const Vector &v2 )
|
|
{
|
|
Vector e0 = v1 - v0;
|
|
Vector e1 = v2 - v0;
|
|
Vector p0 = P - v0;
|
|
|
|
// voronoi region of v0
|
|
float d1 = DotProduct( e0, p0 );
|
|
float d2 = DotProduct( e1, p0 );
|
|
if (d1 <= 0.0f && d2 <= 0.0f)
|
|
return v0;
|
|
|
|
// voronoi region of v1
|
|
Vector p1 = P - v1;
|
|
float d3 = DotProduct( e0, p1 );
|
|
float d4 = DotProduct( e1, p1 );
|
|
if (d3 >=0.0f && d4 <= d3)
|
|
return v1;
|
|
|
|
// voronoi region of e0 (v0-v1)
|
|
float ve2 = d1*d4 - d3*d2;
|
|
if ( ve2 <= 0.0f && d1 >= 0.0f && d3 <= 0.0f )
|
|
{
|
|
float v = d1 / (d1-d3);
|
|
return v0 + v * e0;
|
|
}
|
|
// voronoi region of v2
|
|
Vector p2 = P - v2;
|
|
float d5 = DotProduct( e0, p2 );
|
|
float d6 = DotProduct( e1, p2 );
|
|
if (d6 >= 0.0f && d5 <= d6)
|
|
return v2;
|
|
// voronoi region of e1
|
|
float ve1 = d5*d2 - d1*d6;
|
|
if (ve1 <= 0.0f && d2 >= 0.0f && d6 >= 0.0f)
|
|
{
|
|
float w = d2 / (d2-d6);
|
|
return v0 + w * e1;
|
|
}
|
|
// voronoi region on e2
|
|
float ve0 = d3*d6 - d5*d4;
|
|
if ( ve0 <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f )
|
|
{
|
|
float w = (d4-d3)/((d4-d3) + (d5-d6));
|
|
return v1 + w * (v2-v1);
|
|
}
|
|
// voronoi region of v0v1v2 triangle
|
|
float denom = 1.0f / (ve0+ve1+ve2);
|
|
float v = ve1*denom;
|
|
float w = ve2 * denom;
|
|
return v0 + e0 * v + e1 * w;
|
|
}
|
|
#endif
|
|
|
|
|
|
bool OBBHasFullyContainedIntersectionWithQuad( const Vector &vOBBExtent1_Scaled, const Vector &vOBBExtent2_Scaled, const Vector &vOBBExtent3_Scaled, const Vector &ptOBBCenter,
|
|
const Vector &vQuadNormal, float fQuadPlaneDist, const Vector &ptQuadCenter,
|
|
const Vector &vQuadExtent1_Normalized, float fQuadExtent1Length,
|
|
const Vector &vQuadExtent2_Normalized, float fQuadExtent2Length )
|
|
{
|
|
Vector ptOBB[8]; //this specific ordering helps us web out from a point to its 3 connecting points with some bit math (most importantly, no if's)
|
|
ptOBB[0] = ptOBBCenter - vOBBExtent1_Scaled - vOBBExtent2_Scaled - vOBBExtent3_Scaled;
|
|
ptOBB[1] = ptOBBCenter - vOBBExtent1_Scaled - vOBBExtent2_Scaled + vOBBExtent3_Scaled;
|
|
ptOBB[2] = ptOBBCenter - vOBBExtent1_Scaled + vOBBExtent2_Scaled + vOBBExtent3_Scaled;
|
|
ptOBB[3] = ptOBBCenter - vOBBExtent1_Scaled + vOBBExtent2_Scaled - vOBBExtent3_Scaled;
|
|
ptOBB[4] = ptOBBCenter + vOBBExtent1_Scaled - vOBBExtent2_Scaled - vOBBExtent3_Scaled;
|
|
ptOBB[5] = ptOBBCenter + vOBBExtent1_Scaled - vOBBExtent2_Scaled + vOBBExtent3_Scaled;
|
|
ptOBB[6] = ptOBBCenter + vOBBExtent1_Scaled + vOBBExtent2_Scaled + vOBBExtent3_Scaled;
|
|
ptOBB[7] = ptOBBCenter + vOBBExtent1_Scaled + vOBBExtent2_Scaled - vOBBExtent3_Scaled;
|
|
|
|
float fDists[8];
|
|
for( int i = 0; i != 8; ++i )
|
|
fDists[i] = vQuadNormal.Dot( ptOBB[i] ) - fQuadPlaneDist;
|
|
|
|
int iSides[8];
|
|
int iSideMask = 0;
|
|
for( int i = 0; i != 8; ++i )
|
|
{
|
|
if( fDists[i] > 0.0f )
|
|
{
|
|
iSides[i] = 1;
|
|
iSideMask |= 1;
|
|
}
|
|
else
|
|
{
|
|
iSides[i] = 2;
|
|
iSideMask |= 2;
|
|
}
|
|
}
|
|
|
|
if( iSideMask != 3 ) //points reside entirely on one side of the quad's plane
|
|
return false;
|
|
|
|
Vector ptPlaneIntersections[12]; //only have 12 lines, can only possibly generate 12 split points
|
|
int iPlaneIntersectionsCount = 0;
|
|
|
|
for( int i = 0; i != 8; ++i )
|
|
{
|
|
if( iSides[i] == 2 ) //point behind the plane
|
|
{
|
|
int iAxisCrossings[3];
|
|
iAxisCrossings[0] = i ^ 4; //upper 4 vs lower 4 crosses vOBBExtent1 axis
|
|
iAxisCrossings[1] = ((i + 1) & 3) + (i & 4); //cycle to the next element while staying within the upper 4 or lower 4, this will cross either vOBBExtent2 or vOBBExtent3 axis, we don't care which
|
|
iAxisCrossings[2] = ((i - 1) & 3) + (i & 4); //cylce to the previous element while staying within the upper 4 or lower 4, this will cross the axis iAxisCrossings[1] didn't cross
|
|
|
|
for( int j = 0; j != 3; ++j )
|
|
{
|
|
if( iSides[iAxisCrossings[j]] == 1 ) //point in front of the plane
|
|
{
|
|
//line between ptOBB[i] and ptOBB[iAxisCrossings[j]] intersects the plane, generate a point at the intersection for further testing
|
|
float fTotalDist = fDists[iAxisCrossings[j]] - fDists[i]; //remember that fDists[i] is a negative value
|
|
ptPlaneIntersections[iPlaneIntersectionsCount] = (ptOBB[iAxisCrossings[j]] * (-fDists[i]/fTotalDist)) + (ptOBB[i] * (fDists[iAxisCrossings[j]]/fTotalDist));
|
|
|
|
Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane
|
|
|
|
++iPlaneIntersectionsCount;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Assert( iPlaneIntersectionsCount != 0 );
|
|
|
|
for( int i = 0; i != iPlaneIntersectionsCount; ++i )
|
|
{
|
|
//these points are guaranteed to be on the plane, now just check to see if they're within the quad's extents
|
|
Vector vToPointFromQuadCenter = ptPlaneIntersections[i] - ptQuadCenter;
|
|
|
|
float fExt1Dist = vQuadExtent1_Normalized.Dot( vToPointFromQuadCenter );
|
|
if( fabs( fExt1Dist ) > fQuadExtent1Length )
|
|
return false; //point is outside boundaries
|
|
|
|
//vToPointFromQuadCenter -= vQuadExtent1_Normalized * fExt1Dist; //to handle diamond shaped quads
|
|
|
|
float fExt2Dist = vQuadExtent2_Normalized.Dot( vToPointFromQuadCenter );
|
|
if( fabs( fExt2Dist ) > fQuadExtent2Length )
|
|
return false; //point is outside boundaries
|
|
}
|
|
|
|
return true; //there were lines crossing the quad plane, and every line crossing that plane had its intersection with the plane within the quad's boundaries
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute if the Ray intersects the quad plane, and whether the entire
|
|
// Ray/Quad intersection is contained within the quad itself
|
|
//
|
|
// False if no intersection exists, or if part of the intersection is
|
|
// outside the quad's extents
|
|
//-----------------------------------------------------------------------------
|
|
bool RayHasFullyContainedIntersectionWithQuad( const Ray_t &ray,
|
|
const Vector &vQuadNormal, float fQuadPlaneDist, const Vector &ptQuadCenter,
|
|
const Vector &vQuadExtent1_Normalized, float fQuadExtent1Length,
|
|
const Vector &vQuadExtent2_Normalized, float fQuadExtent2Length )
|
|
{
|
|
Vector ptPlaneIntersections[(12 + 12 + 8)]; //absolute max possible: 12 lines to connect the start box, 12 more to connect the end box, 8 to connect the boxes to eachother
|
|
|
|
//8 points to make an AABB, 8 lines to connect each point from it's start to end point along the ray, 8 possible intersections
|
|
int iPlaneIntersectionsCount = 0;
|
|
|
|
if( ray.m_IsRay )
|
|
{
|
|
//just 1 line
|
|
if( ray.m_IsSwept )
|
|
{
|
|
Vector ptEndPoints[2];
|
|
ptEndPoints[0] = ray.m_Start;
|
|
ptEndPoints[1] = ptEndPoints[0] + ray.m_Delta;
|
|
|
|
int i;
|
|
float fDists[2];
|
|
for( i = 0; i != 2; ++i )
|
|
fDists[i] = vQuadNormal.Dot( ptEndPoints[i] ) - fQuadPlaneDist;
|
|
|
|
for( i = 0; i != 2; ++i )
|
|
{
|
|
if( fDists[i] <= 0.0f )
|
|
{
|
|
int j = 1-i;
|
|
if( fDists[j] >= 0.0f )
|
|
{
|
|
float fInvTotalDist = 1.0f / (fDists[j] - fDists[i]); //fDists[i] <= 0, ray is swept so no chance that the denom was 0
|
|
ptPlaneIntersections[0] = (ptEndPoints[i] * (fDists[j] * fInvTotalDist)) - (ptEndPoints[j] * (fDists[i] * fInvTotalDist)); //fDists[i] <= 0
|
|
Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane
|
|
iPlaneIntersectionsCount = 1;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( i == 2 )
|
|
return false;
|
|
}
|
|
else //not swept, so this is actually a point on quad question
|
|
{
|
|
if( fabs( vQuadNormal.Dot( ray.m_Start ) - fQuadPlaneDist ) < 1e-6 )
|
|
{
|
|
ptPlaneIntersections[0] = ray.m_Start;
|
|
iPlaneIntersectionsCount = 1;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Vector ptEndPoints[2][8];
|
|
//this specific ordering helps us web out from a point to its 3 connecting points with some bit math (most importantly, no if's)
|
|
ptEndPoints[0][0] = ray.m_Start; ptEndPoints[0][0].x -= ray.m_Extents.x; ptEndPoints[0][0].y -= ray.m_Extents.y; ptEndPoints[0][0].z -= ray.m_Extents.z;
|
|
ptEndPoints[0][1] = ray.m_Start; ptEndPoints[0][1].x -= ray.m_Extents.x; ptEndPoints[0][1].y -= ray.m_Extents.y; ptEndPoints[0][1].z += ray.m_Extents.z;
|
|
ptEndPoints[0][2] = ray.m_Start; ptEndPoints[0][2].x -= ray.m_Extents.x; ptEndPoints[0][2].y += ray.m_Extents.y; ptEndPoints[0][2].z += ray.m_Extents.z;
|
|
ptEndPoints[0][3] = ray.m_Start; ptEndPoints[0][3].x -= ray.m_Extents.x; ptEndPoints[0][3].y += ray.m_Extents.y; ptEndPoints[0][3].z -= ray.m_Extents.z;
|
|
ptEndPoints[0][4] = ray.m_Start; ptEndPoints[0][4].x += ray.m_Extents.x; ptEndPoints[0][4].y -= ray.m_Extents.y; ptEndPoints[0][4].z -= ray.m_Extents.z;
|
|
ptEndPoints[0][5] = ray.m_Start; ptEndPoints[0][5].x += ray.m_Extents.x; ptEndPoints[0][5].y -= ray.m_Extents.y; ptEndPoints[0][5].z += ray.m_Extents.z;
|
|
ptEndPoints[0][6] = ray.m_Start; ptEndPoints[0][6].x += ray.m_Extents.x; ptEndPoints[0][6].y += ray.m_Extents.y; ptEndPoints[0][6].z += ray.m_Extents.z;
|
|
ptEndPoints[0][7] = ray.m_Start; ptEndPoints[0][7].x += ray.m_Extents.x; ptEndPoints[0][7].y += ray.m_Extents.y; ptEndPoints[0][7].z -= ray.m_Extents.z;
|
|
|
|
float fDists[2][8];
|
|
int iSides[2][8];
|
|
int iSideMask[2] = { 0, 0 };
|
|
for( int i = 0; i != 8; ++i )
|
|
{
|
|
fDists[0][i] = vQuadNormal.Dot( ptEndPoints[0][i] ) - fQuadPlaneDist;
|
|
if( fDists[0][i] > 0.0f )
|
|
{
|
|
iSides[0][i] = 1;
|
|
iSideMask[0] |= 1;
|
|
}
|
|
else
|
|
{
|
|
iSides[0][i] = 2;
|
|
iSideMask[0] |= 2;
|
|
}
|
|
}
|
|
|
|
if( ray.m_IsSwept )
|
|
{
|
|
for( int i = 0; i != 8; ++i )
|
|
ptEndPoints[1][i] = ptEndPoints[0][i] + ray.m_Delta;
|
|
|
|
for( int i = 0; i != 8; ++i )
|
|
{
|
|
fDists[1][i] = vQuadNormal.Dot( ptEndPoints[1][i] ) - fQuadPlaneDist;
|
|
if( fDists[1][i] > 0.0f )
|
|
{
|
|
iSides[1][i] = 1;
|
|
iSideMask[1] |= 1;
|
|
}
|
|
else
|
|
{
|
|
iSides[1][i] = 2;
|
|
iSideMask[1] |= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( (iSideMask[0] | iSideMask[1]) != 3 )
|
|
{
|
|
//Assert( (iSideMask[0] | iSideMask[1]) != 2 );
|
|
return false; //all points resides entirely on one side of the quad
|
|
}
|
|
|
|
|
|
//generate intersections for boxes split by the plane at either end of the ray
|
|
for( int k = 0; k != 2; ++k )
|
|
{
|
|
if( iSideMask[k] == 3 ) //box is split by the plane
|
|
{
|
|
for( int i = 0; i != 8; ++i )
|
|
{
|
|
if( iSides[k][i] == 2 ) //point behind the plane
|
|
{
|
|
int iAxisCrossings[3];
|
|
iAxisCrossings[0] = i ^ 4; //upper 4 vs lower 4 crosses X axis
|
|
iAxisCrossings[1] = ((i + 1) & 3) + (i & 4); //cycle to the next element while staying within the upper 4 or lower 4, this will cross either Y or Z axis, we don't care which
|
|
iAxisCrossings[2] = ((i - 1) & 3) + (i & 4); //cylce to the previous element while staying within the upper 4 or lower 4, this will cross the axis iAxisCrossings[1] didn't cross
|
|
|
|
for( int j = 0; j != 3; ++j )
|
|
{
|
|
if( iSides[k][iAxisCrossings[j]] == 1 ) //point in front of the plane
|
|
{
|
|
//line between ptEndPoints[i] and ptEndPoints[iAxisCrossings[j]] intersects the plane, generate a point at the intersection for further testing
|
|
float fInvTotalDist = 1.0f / (fDists[k][iAxisCrossings[j]] - fDists[k][i]); //remember that fDists[k][i] is a negative value
|
|
ptPlaneIntersections[iPlaneIntersectionsCount] = (ptEndPoints[k][iAxisCrossings[j]] * (-fDists[k][i] * fInvTotalDist)) + (ptEndPoints[k][i] * (fDists[k][iAxisCrossings[j]] * fInvTotalDist));
|
|
|
|
Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane
|
|
|
|
++iPlaneIntersectionsCount;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( ray.m_IsSwept )
|
|
{
|
|
for( int i = 0; i != 8; ++i )
|
|
{
|
|
if( iSides[0][i] != iSides[1][i] )
|
|
{
|
|
int iPosSide, iNegSide;
|
|
if( iSides[0][i] == 1 )
|
|
{
|
|
iPosSide = 0;
|
|
iNegSide = 1;
|
|
}
|
|
else
|
|
{
|
|
iPosSide = 1;
|
|
iNegSide = 0;
|
|
}
|
|
|
|
Assert( (fDists[iPosSide][i] >= 0.0f) && (fDists[iNegSide][i] <= 0.0f) );
|
|
|
|
float fInvTotalDist = 1.0f / (fDists[iPosSide][i] - fDists[iNegSide][i]); //remember that fDists[iNegSide][i] is a negative value
|
|
ptPlaneIntersections[iPlaneIntersectionsCount] = (ptEndPoints[iPosSide][i] * (-fDists[iNegSide][i] * fInvTotalDist)) + (ptEndPoints[iNegSide][i] * (fDists[iPosSide][i] * fInvTotalDist));
|
|
|
|
Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane
|
|
|
|
++iPlaneIntersectionsCount;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//down here, we should simply have a collection of plane intersections, now we see if they reside within the quad
|
|
Assert( iPlaneIntersectionsCount != 0 );
|
|
|
|
for( int i = 0; i != iPlaneIntersectionsCount; ++i )
|
|
{
|
|
//these points are guaranteed to be on the plane, now just check to see if they're within the quad's extents
|
|
Vector vToPointFromQuadCenter = ptPlaneIntersections[i] - ptQuadCenter;
|
|
|
|
float fExt1Dist = vQuadExtent1_Normalized.Dot( vToPointFromQuadCenter );
|
|
if( fabs( fExt1Dist ) > fQuadExtent1Length )
|
|
return false; //point is outside boundaries
|
|
|
|
//vToPointFromQuadCenter -= vQuadExtent1_Normalized * fExt1Dist; //to handle diamond shaped quads
|
|
|
|
float fExt2Dist = vQuadExtent2_Normalized.Dot( vToPointFromQuadCenter );
|
|
if( fabs( fExt2Dist ) > fQuadExtent2Length )
|
|
return false; //point is outside boundaries
|
|
}
|
|
|
|
return true; //there were lines crossing the quad plane, and every line crossing that plane had its intersection with the plane within the quad's boundaries
|
|
}
|
|
|
|
#endif // !_STATIC_LINKED || _SHARED_LIB
|