1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-04 00:23:25 +08:00
hl2sdk/public/studio.h
2014-11-09 10:29:08 -05:00

3091 lines
103 KiB
C++

//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#ifndef STUDIO_H
#define STUDIO_H
#ifdef _WIN32
#pragma once
#endif
#include "basetypes.h"
#include "mathlib/vector2d.h"
#include "mathlib/vector.h"
#include "mathlib/vector4d.h"
#include "mathlib/compressed_vector.h"
#include "tier0/dbg.h"
#include "tier0/threadtools.h"
#include "mathlib/mathlib.h"
#include "utlvector.h"
#include "utlhash.h"
#include "datamap.h"
#include "generichash.h"
#include "localflexcontroller.h"
#define STUDIO_ENABLE_PERF_COUNTERS
#define STUDIO_SEQUENCE_ACTIVITY_LOOKUPS_ARE_SLOW 0
// If this is set to 1, then the activity->sequence mapping inside
// the CStudioHdr will not be initialized until the first call to
// SelectWeightedSequence() or HaveSequenceForActivity(). If set
// to zero, the mapping will be initialized from CStudioHdr::Init()
// (itself called from the constructor).
// As of June 4 2007, this was set to 1 because physics, among other
// systems, extemporaneously declares CStudioHdrs inside local function
// scopes without querying their activity/sequence mapping at all.
#define STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE 1
//-----------------------------------------------------------------------------
// forward declarations
//-----------------------------------------------------------------------------
class IMaterial;
class IMesh;
class IMorph;
struct virtualmodel_t;
struct vertexFileHeader_t;
struct thinModelVertices_t;
namespace OptimizedModel
{
struct StripHeader_t;
}
/*
==============================================================================
STUDIO MODELS
Studio models are position independent, so the cache manager can move them.
==============================================================================
*/
#define STUDIO_VERSION 48
#ifndef _XBOX
#define MAXSTUDIOTRIANGLES 65536 // TODO: tune this
#define MAXSTUDIOVERTS 65536 // TODO: tune this
#define MAXSTUDIOFLEXVERTS 10000 // max number of verts that can be flexed per mesh. TODO: tune this
#else
#define MAXSTUDIOTRIANGLES 25000
#define MAXSTUDIOVERTS 10000
#define MAXSTUDIOFLEXVERTS 1000
#endif
#define MAXSTUDIOSKINS 32 // total textures
#define MAXSTUDIOBONES 128 // total bones actually used
#define MAXSTUDIOFLEXDESC 1024 // maximum number of low level flexes (actual morph targets)
#define MAXSTUDIOFLEXCTRL 96 // maximum number of flexcontrollers (input sliders)
#define MAXSTUDIOPOSEPARAM 24
#define MAXSTUDIOBONECTRLS 4
#define MAXSTUDIOANIMBLOCKS 256
#define MAXSTUDIOBONEBITS 7 // NOTE: MUST MATCH MAXSTUDIOBONES
// NOTE!!! : Changing this number also changes the vtx file format!!!!!
#define MAX_NUM_BONES_PER_VERT 3
//Adrian - Remove this when we completely phase out the old event system.
#define NEW_EVENT_STYLE ( 1 << 10 )
struct mstudiodata_t
{
int count;
int offset;
};
#define STUDIO_PROC_AXISINTERP 1
#define STUDIO_PROC_QUATINTERP 2
#define STUDIO_PROC_AIMATBONE 3
#define STUDIO_PROC_AIMATATTACH 4
#define STUDIO_PROC_JIGGLE 5
struct mstudioaxisinterpbone_t
{
DECLARE_BYTESWAP_DATADESC();
int control;// local transformation of this bone used to calc 3 point blend
int axis; // axis to check
Vector pos[6]; // X+, X-, Y+, Y-, Z+, Z-
Quaternion quat[6];// X+, X-, Y+, Y-, Z+, Z-
mstudioaxisinterpbone_t(){}
private:
// No copy constructors allowed
mstudioaxisinterpbone_t(const mstudioaxisinterpbone_t& vOther);
};
struct mstudioquatinterpinfo_t
{
DECLARE_BYTESWAP_DATADESC();
float inv_tolerance; // 1 / radian angle of trigger influence
Quaternion trigger; // angle to match
Vector pos; // new position
Quaternion quat; // new angle
mstudioquatinterpinfo_t(){}
private:
// No copy constructors allowed
mstudioquatinterpinfo_t(const mstudioquatinterpinfo_t& vOther);
};
struct mstudioquatinterpbone_t
{
DECLARE_BYTESWAP_DATADESC();
int control;// local transformation to check
int numtriggers;
int triggerindex;
inline mstudioquatinterpinfo_t *pTrigger( int i ) const { return (mstudioquatinterpinfo_t *)(((byte *)this) + triggerindex) + i; };
mstudioquatinterpbone_t(){}
private:
// No copy constructors allowed
mstudioquatinterpbone_t(const mstudioquatinterpbone_t& vOther);
};
#define JIGGLE_IS_FLEXIBLE 0x01
#define JIGGLE_IS_RIGID 0x02
#define JIGGLE_HAS_YAW_CONSTRAINT 0x04
#define JIGGLE_HAS_PITCH_CONSTRAINT 0x08
#define JIGGLE_HAS_ANGLE_CONSTRAINT 0x10
#define JIGGLE_HAS_LENGTH_CONSTRAINT 0x20
#define JIGGLE_HAS_BASE_SPRING 0x40
struct mstudiojigglebone_t
{
DECLARE_BYTESWAP_DATADESC();
int flags;
// general params
float length; // how from from bone base, along bone, is tip
float tipMass;
// flexible params
float yawStiffness;
float yawDamping;
float pitchStiffness;
float pitchDamping;
float alongStiffness;
float alongDamping;
// angle constraint
float angleLimit; // maximum deflection of tip in radians
// yaw constraint
float minYaw; // in radians
float maxYaw; // in radians
float yawFriction;
float yawBounce;
// pitch constraint
float minPitch; // in radians
float maxPitch; // in radians
float pitchFriction;
float pitchBounce;
// base spring
float baseMass;
float baseStiffness;
float baseDamping;
float baseMinLeft;
float baseMaxLeft;
float baseLeftFriction;
float baseMinUp;
float baseMaxUp;
float baseUpFriction;
float baseMinForward;
float baseMaxForward;
float baseForwardFriction;
private:
// No copy constructors allowed
//mstudiojigglebone_t(const mstudiojigglebone_t& vOther);
};
struct mstudioaimatbone_t
{
DECLARE_BYTESWAP_DATADESC();
int parent;
int aim; // Might be bone or attach
Vector aimvector;
Vector upvector;
Vector basepos;
mstudioaimatbone_t() {}
private:
// No copy constructors allowed
mstudioaimatbone_t(const mstudioaimatbone_t& vOther);
};
// bones
struct mstudiobone_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
int parent; // parent bone
int bonecontroller[6]; // bone controller index, -1 == none
// default values
Vector pos;
Quaternion quat;
RadianEuler rot;
// compression scale
Vector posscale;
Vector rotscale;
matrix3x4_t poseToBone;
Quaternion qAlignment;
int flags;
int proctype;
int procindex; // procedural rule
mutable int physicsbone; // index into physically simulated bone
inline void *pProcedure( ) const { if (procindex == 0) return NULL; else return (void *)(((byte *)this) + procindex); };
int surfacepropidx; // index into string tablefor property name
inline char * const pszSurfaceProp( void ) const { return ((char *)this) + surfacepropidx; }
int contents; // See BSPFlags.h for the contents flags
int unused[8]; // remove as appropriate
mstudiobone_t(){}
private:
// No copy constructors allowed
mstudiobone_t(const mstudiobone_t& vOther);
};
struct mstudiolinearbone_t
{
DECLARE_BYTESWAP_DATADESC();
int numbones;
int flagsindex;
inline int flags( int i ) const { Assert( i >= 0 && i < numbones); return *((int *)(((byte *)this) + flagsindex) + i); };
inline int *pflags( int i ) { Assert( i >= 0 && i < numbones); return ((int *)(((byte *)this) + flagsindex) + i); };
int parentindex;
inline int parent( int i ) const { Assert( i >= 0 && i < numbones); return *((int *)(((byte *)this) + parentindex) + i); };
int posindex;
inline Vector pos( int i ) const { Assert( i >= 0 && i < numbones); return *((Vector *)(((byte *)this) + posindex) + i); };
int quatindex;
inline Quaternion quat( int i ) const { Assert( i >= 0 && i < numbones); return *((Quaternion *)(((byte *)this) + quatindex) + i); };
int rotindex;
inline RadianEuler rot( int i ) const { Assert( i >= 0 && i < numbones); return *((RadianEuler *)(((byte *)this) + rotindex) + i); };
int posetoboneindex;
inline matrix3x4_t poseToBone( int i ) const { Assert( i >= 0 && i < numbones); return *((matrix3x4_t *)(((byte *)this) + posetoboneindex) + i); };
int posscaleindex;
inline Vector posscale( int i ) const { Assert( i >= 0 && i < numbones); return *((Vector *)(((byte *)this) + posscaleindex) + i); };
int rotscaleindex;
inline Vector rotscale( int i ) const { Assert( i >= 0 && i < numbones); return *((Vector *)(((byte *)this) + rotscaleindex) + i); };
int qalignmentindex;
inline Quaternion qalignment( int i ) const { Assert( i >= 0 && i < numbones); return *((Quaternion *)(((byte *)this) + qalignmentindex) + i); };
int unused[6];
mstudiolinearbone_t(){}
private:
// No copy constructors allowed
mstudiolinearbone_t(const mstudiolinearbone_t& vOther);
};
#define BONE_CALCULATE_MASK 0x1F
#define BONE_PHYSICALLY_SIMULATED 0x01 // bone is physically simulated when physics are active
#define BONE_PHYSICS_PROCEDURAL 0x02 // procedural when physics is active
#define BONE_ALWAYS_PROCEDURAL 0x04 // bone is always procedurally animated
#define BONE_SCREEN_ALIGN_SPHERE 0x08 // bone aligns to the screen, not constrained in motion.
#define BONE_SCREEN_ALIGN_CYLINDER 0x10 // bone aligns to the screen, constrained by it's own axis.
#define BONE_USED_MASK 0x0007FF00
#define BONE_USED_BY_ANYTHING 0x0007FF00
#define BONE_USED_BY_HITBOX 0x00000100 // bone (or child) is used by a hit box
#define BONE_USED_BY_ATTACHMENT 0x00000200 // bone (or child) is used by an attachment point
#define BONE_USED_BY_VERTEX_MASK 0x0003FC00
#define BONE_USED_BY_VERTEX_LOD0 0x00000400 // bone (or child) is used by the toplevel model via skinned vertex
#define BONE_USED_BY_VERTEX_LOD1 0x00000800
#define BONE_USED_BY_VERTEX_LOD2 0x00001000
#define BONE_USED_BY_VERTEX_LOD3 0x00002000
#define BONE_USED_BY_VERTEX_LOD4 0x00004000
#define BONE_USED_BY_VERTEX_LOD5 0x00008000
#define BONE_USED_BY_VERTEX_LOD6 0x00010000
#define BONE_USED_BY_VERTEX_LOD7 0x00020000
#define BONE_USED_BY_BONE_MERGE 0x00040000 // bone is available for bone merge to occur against it
#define BONE_USED_BY_VERTEX_AT_LOD(lod) ( BONE_USED_BY_VERTEX_LOD0 << (lod) )
#define BONE_USED_BY_ANYTHING_AT_LOD(lod) ( ( BONE_USED_BY_ANYTHING & ~BONE_USED_BY_VERTEX_MASK ) | BONE_USED_BY_VERTEX_AT_LOD(lod) )
#define MAX_NUM_LODS 8
#define BONE_TYPE_MASK 0x00F00000
#define BONE_FIXED_ALIGNMENT 0x00100000 // bone can't spin 360 degrees, all interpolation is normalized around a fixed orientation
#define BONE_HAS_SAVEFRAME_POS 0x00200000 // Vector48
#define BONE_HAS_SAVEFRAME_ROT 0x00400000 // Quaternion64
// bone controllers
struct mstudiobonecontroller_t
{
DECLARE_BYTESWAP_DATADESC();
int bone; // -1 == 0
int type; // X, Y, Z, XR, YR, ZR, M
float start;
float end;
int rest; // byte index value at rest
int inputfield; // 0-3 user set controller, 4 mouth
int unused[8];
};
// intersection boxes
struct mstudiobbox_t
{
DECLARE_BYTESWAP_DATADESC();
int bone;
int group; // intersection group
Vector bbmin; // bounding box
Vector bbmax;
int szhitboxnameindex; // offset to the name of the hitbox.
int unused[8];
const char* pszHitboxName()
{
if( szhitboxnameindex == 0 )
return "";
return ((char*)this) + szhitboxnameindex;
}
mstudiobbox_t() {}
private:
// No copy constructors allowed
mstudiobbox_t(const mstudiobbox_t& vOther);
};
// demand loaded sequence groups
struct mstudiomodelgroup_t
{
DECLARE_BYTESWAP_DATADESC();
int szlabelindex; // textual name
inline char * const pszLabel( void ) const { return ((char *)this) + szlabelindex; }
int sznameindex; // file name
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
};
struct mstudiomodelgrouplookup_t
{
int modelgroup;
int indexwithingroup;
};
// events
struct mstudioevent_t
{
DECLARE_BYTESWAP_DATADESC();
float cycle;
int event;
int type;
inline const char * pszOptions( void ) const { return options; }
char options[64];
int szeventindex;
inline char * const pszEventName( void ) const { return ((char *)this) + szeventindex; }
};
#define ATTACHMENT_FLAG_WORLD_ALIGN 0x10000
// attachment
struct mstudioattachment_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
unsigned int flags;
int localbone;
matrix3x4_t local; // attachment point
int unused[8];
};
#define IK_SELF 1
#define IK_WORLD 2
#define IK_GROUND 3
#define IK_RELEASE 4
#define IK_ATTACHMENT 5
#define IK_UNLATCH 6
struct mstudioikerror_t
{
DECLARE_BYTESWAP_DATADESC();
Vector pos;
Quaternion q;
mstudioikerror_t() {}
private:
// No copy constructors allowed
mstudioikerror_t(const mstudioikerror_t& vOther);
};
union mstudioanimvalue_t;
struct mstudiocompressedikerror_t
{
DECLARE_BYTESWAP_DATADESC();
float scale[6];
short offset[6];
inline mstudioanimvalue_t *pAnimvalue( int i ) const { if (offset[i] > 0) return (mstudioanimvalue_t *)(((byte *)this) + offset[i]); else return NULL; };
mstudiocompressedikerror_t(){}
private:
// No copy constructors allowed
mstudiocompressedikerror_t(const mstudiocompressedikerror_t& vOther);
};
struct mstudioikrule_t
{
DECLARE_BYTESWAP_DATADESC();
int index;
int type;
int chain;
int bone;
int slot; // iktarget slot. Usually same as chain.
float height;
float radius;
float floor;
Vector pos;
Quaternion q;
int compressedikerrorindex;
inline mstudiocompressedikerror_t *pCompressedError() const { return (mstudiocompressedikerror_t *)(((byte *)this) + compressedikerrorindex); };
int unused2;
int iStart;
int ikerrorindex;
inline mstudioikerror_t *pError( int i ) const { return (ikerrorindex) ? (mstudioikerror_t *)(((byte *)this) + ikerrorindex) + (i - iStart) : NULL; };
float start; // beginning of influence
float peak; // start of full influence
float tail; // end of full influence
float end; // end of all influence
float unused3; //
float contact; // frame footstep makes ground concact
float drop; // how far down the foot should drop when reaching for IK
float top; // top of the foot box
int unused6;
int unused7;
int unused8;
int szattachmentindex; // name of world attachment
inline char * const pszAttachment( void ) const { return ((char *)this) + szattachmentindex; }
int unused[7];
mstudioikrule_t() {}
private:
// No copy constructors allowed
mstudioikrule_t(const mstudioikrule_t& vOther);
};
struct mstudioiklock_t
{
DECLARE_BYTESWAP_DATADESC();
int chain;
float flPosWeight;
float flLocalQWeight;
int flags;
int unused[4];
};
struct mstudiolocalhierarchy_t
{
DECLARE_BYTESWAP_DATADESC();
int iBone; // bone being adjusted
int iNewParent; // the bones new parent
float start; // beginning of influence
float peak; // start of full influence
float tail; // end of full influence
float end; // end of all influence
int iStart; // first frame
int localanimindex;
inline mstudiocompressedikerror_t *pLocalAnim() const { return (mstudiocompressedikerror_t *)(((byte *)this) + localanimindex); };
int unused[4];
};
// animation frames
union mstudioanimvalue_t
{
struct
{
byte valid;
byte total;
} num;
short value;
};
struct mstudioanim_valueptr_t
{
DECLARE_BYTESWAP_DATADESC();
short offset[3];
inline mstudioanimvalue_t *pAnimvalue( int i ) const { if (offset[i] > 0) return (mstudioanimvalue_t *)(((byte *)this) + offset[i]); else return NULL; };
};
#define STUDIO_ANIM_RAWPOS 0x01 // Vector48
#define STUDIO_ANIM_RAWROT 0x02 // Quaternion48
#define STUDIO_ANIM_ANIMPOS 0x04 // mstudioanim_valueptr_t
#define STUDIO_ANIM_ANIMROT 0x08 // mstudioanim_valueptr_t
#define STUDIO_ANIM_DELTA 0x10
#define STUDIO_ANIM_RAWROT2 0x20 // Quaternion64
// per bone per animation DOF and weight pointers
struct mstudioanim_t
{
DECLARE_BYTESWAP_DATADESC();
byte bone;
byte flags; // weighing options
// valid for animating data only
inline byte *pData( void ) const { return (((byte *)this) + sizeof( struct mstudioanim_t )); };
inline mstudioanim_valueptr_t *pRotV( void ) const { return (mstudioanim_valueptr_t *)(pData()); };
inline mstudioanim_valueptr_t *pPosV( void ) const { return (mstudioanim_valueptr_t *)(pData()) + ((flags & STUDIO_ANIM_ANIMROT) != 0); };
// valid if animation unvaring over timeline
inline Quaternion48 *pQuat48( void ) const { return (Quaternion48 *)(pData()); };
inline Quaternion64 *pQuat64( void ) const { return (Quaternion64 *)(pData()); };
inline Vector48 *pPos( void ) const { return (Vector48 *)(pData() + ((flags & STUDIO_ANIM_RAWROT) != 0) * sizeof( *pQuat48() ) + ((flags & STUDIO_ANIM_RAWROT2) != 0) * sizeof( *pQuat64() ) ); };
short nextoffset;
inline mstudioanim_t *pNext( void ) const { if (nextoffset != 0) return (mstudioanim_t *)(((byte *)this) + nextoffset); else return NULL; };
};
struct mstudiomovement_t
{
DECLARE_BYTESWAP_DATADESC();
int endframe;
int motionflags;
float v0; // velocity at start of block
float v1; // velocity at end of block
float angle; // YAW rotation at end of this blocks movement
Vector vector; // movement vector relative to this blocks initial angle
Vector position; // relative to start of animation???
mstudiomovement_t(){}
private:
// No copy constructors allowed
mstudiomovement_t(const mstudiomovement_t& vOther);
};
struct studiohdr_t;
// used for piecewise loading of animation data
struct mstudioanimblock_t
{
DECLARE_BYTESWAP_DATADESC();
int datastart;
int dataend;
};
struct mstudioanimsections_t
{
DECLARE_BYTESWAP_DATADESC();
int animblock;
int animindex;
};
struct mstudioanimdesc_t
{
DECLARE_BYTESWAP_DATADESC();
int baseptr;
inline studiohdr_t *pStudiohdr( void ) const { return (studiohdr_t *)(((byte *)this) + baseptr); }
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
float fps; // frames per second
int flags; // looping/non-looping flags
int numframes;
// piecewise movement
int nummovements;
int movementindex;
inline mstudiomovement_t * const pMovement( int i ) const { return (mstudiomovement_t *)(((byte *)this) + movementindex) + i; };
int unused1[6]; // remove as appropriate (and zero if loading older versions)
int animblock;
int animindex; // non-zero when anim data isn't in sections
mstudioanim_t *pAnimBlock( int block, int index ) const; // returns pointer to a specific anim block (local or external)
mstudioanim_t *pAnim( int *piFrame, float &flStall ) const; // returns pointer to data and new frame index
mstudioanim_t *pAnim( int *piFrame ) const; // returns pointer to data and new frame index
int numikrules;
int ikruleindex; // non-zero when IK data is stored in the mdl
int animblockikruleindex; // non-zero when IK data is stored in animblock file
mstudioikrule_t *pIKRule( int i ) const;
int numlocalhierarchy;
int localhierarchyindex;
mstudiolocalhierarchy_t *pHierarchy( int i ) const;
int sectionindex;
int sectionframes; // number of frames used in each fast lookup section, zero if not used
inline mstudioanimsections_t * const pSection( int i ) const { return (mstudioanimsections_t *)(((byte *)this) + sectionindex) + i; }
short zeroframespan; // frames per span
short zeroframecount; // number of spans
int zeroframeindex;
byte *pZeroFrameData( ) const { if (zeroframeindex) return (((byte *)this) + zeroframeindex); else return NULL; };
mutable float zeroframestalltime; // saved during read stalls
mstudioanimdesc_t(){}
private:
// No copy constructors allowed
mstudioanimdesc_t(const mstudioanimdesc_t& vOther);
};
struct mstudioikrule_t;
struct mstudioautolayer_t
{
DECLARE_BYTESWAP_DATADESC();
//private:
short iSequence;
short iPose;
//public:
int flags;
float start; // beginning of influence
float peak; // start of full influence
float tail; // end of full influence
float end; // end of all influence
};
// sequence descriptions
struct mstudioseqdesc_t
{
DECLARE_BYTESWAP_DATADESC();
int baseptr;
inline studiohdr_t *pStudiohdr( void ) const { return (studiohdr_t *)(((byte *)this) + baseptr); }
int szlabelindex;
inline char * const pszLabel( void ) const { return ((char *)this) + szlabelindex; }
int szactivitynameindex;
inline char * const pszActivityName( void ) const { return ((char *)this) + szactivitynameindex; }
int flags; // looping/non-looping flags
int activity; // initialized at loadtime to game DLL values
int actweight;
int numevents;
int eventindex;
inline mstudioevent_t *pEvent( int i ) const { Assert( i >= 0 && i < numevents); return (mstudioevent_t *)(((byte *)this) + eventindex) + i; };
Vector bbmin; // per sequence bounding box
Vector bbmax;
int numblends;
// Index into array of shorts which is groupsize[0] x groupsize[1] in length
int animindexindex;
inline int anim( int x, int y ) const
{
if ( x >= groupsize[0] )
{
x = groupsize[0] - 1;
}
if ( y >= groupsize[1] )
{
y = groupsize[ 1 ] - 1;
}
int offset = y * groupsize[0] + x;
short *blends = (short *)(((byte *)this) + animindexindex);
int value = (int)blends[ offset ];
return value;
}
int movementindex; // [blend] float array for blended movement
int groupsize[2];
int paramindex[2]; // X, Y, Z, XR, YR, ZR
float paramstart[2]; // local (0..1) starting value
float paramend[2]; // local (0..1) ending value
int paramparent;
float fadeintime; // ideal cross fate in time (0.2 default)
float fadeouttime; // ideal cross fade out time (0.2 default)
int localentrynode; // transition node at entry
int localexitnode; // transition node at exit
int nodeflags; // transition rules
float entryphase; // used to match entry gait
float exitphase; // used to match exit gait
float lastframe; // frame that should generation EndOfSequence
int nextseq; // auto advancing sequences
int pose; // index of delta animation between end and nextseq
int numikrules;
int numautolayers; //
int autolayerindex;
inline mstudioautolayer_t *pAutolayer( int i ) const { Assert( i >= 0 && i < numautolayers); return (mstudioautolayer_t *)(((byte *)this) + autolayerindex) + i; };
int weightlistindex;
inline float *pBoneweight( int i ) const { return ((float *)(((byte *)this) + weightlistindex) + i); };
inline float weight( int i ) const { return *(pBoneweight( i)); };
// FIXME: make this 2D instead of 2x1D arrays
int posekeyindex;
float *pPoseKey( int iParam, int iAnim ) const { return (float *)(((byte *)this) + posekeyindex) + iParam * groupsize[0] + iAnim; }
float poseKey( int iParam, int iAnim ) const { return *(pPoseKey( iParam, iAnim )); }
int numiklocks;
int iklockindex;
inline mstudioiklock_t *pIKLock( int i ) const { Assert( i >= 0 && i < numiklocks); return (mstudioiklock_t *)(((byte *)this) + iklockindex) + i; };
// Key values
int keyvalueindex;
int keyvaluesize;
inline const char * KeyValueText( void ) const { return keyvaluesize != 0 ? ((char *)this) + keyvalueindex : NULL; }
int cycleposeindex; // index of pose parameter to use as cycle index
int unused[7]; // remove/add as appropriate (grow back to 8 ints on version change!)
mstudioseqdesc_t(){}
private:
// No copy constructors allowed
mstudioseqdesc_t(const mstudioseqdesc_t& vOther);
};
struct mstudioposeparamdesc_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
int flags; // ????
float start; // starting value
float end; // ending value
float loop; // looping range, 0 for no looping, 360 for rotations, etc.
};
struct mstudioflexdesc_t
{
DECLARE_BYTESWAP_DATADESC();
int szFACSindex;
inline char * const pszFACS( void ) const { return ((char *)this) + szFACSindex; }
};
struct mstudioflexcontroller_t
{
DECLARE_BYTESWAP_DATADESC();
int sztypeindex;
inline char * const pszType( void ) const { return ((char *)this) + sztypeindex; }
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
mutable int localToGlobal; // remapped at load time to master list
float min;
float max;
};
enum FlexControllerRemapType_t
{
FLEXCONTROLLER_REMAP_PASSTHRU = 0,
FLEXCONTROLLER_REMAP_2WAY, // Control 0 -> ramps from 1-0 from 0->0.5. Control 1 -> ramps from 0-1 from 0.5->1
FLEXCONTROLLER_REMAP_NWAY, // StepSize = 1 / (control count-1) Control n -> ramps from 0-1-0 from (n-1)*StepSize to n*StepSize to (n+1)*StepSize. A second control is needed to specify amount to use
FLEXCONTROLLER_REMAP_EYELID
};
class CStudioHdr;
struct mstudioflexcontrollerui_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
// These are used like a union to save space
// Here are the possible configurations for a UI controller
//
// SIMPLE NON-STEREO: 0: control 1: unused 2: unused
// STEREO: 0: left 1: right 2: unused
// NWAY NON-STEREO: 0: control 1: unused 2: value
// NWAY STEREO: 0: left 1: right 2: value
int szindex0;
int szindex1;
int szindex2;
inline const mstudioflexcontroller_t *pController( void ) const
{
return !stereo ? (mstudioflexcontroller_t *)( (char *)this + szindex0 ) : NULL;
}
inline char * const pszControllerName( void ) const { return !stereo ? pController()->pszName() : NULL; }
inline int controllerIndex( const CStudioHdr &cStudioHdr ) const;
inline const mstudioflexcontroller_t *pLeftController( void ) const
{
return stereo ? (mstudioflexcontroller_t *)( (char *)this + szindex0 ) : NULL;
}
inline char * const pszLeftName( void ) const { return stereo ? pLeftController()->pszName() : NULL; }
inline int leftIndex( const CStudioHdr &cStudioHdr ) const;
inline const mstudioflexcontroller_t *pRightController( void ) const
{
return stereo ? (mstudioflexcontroller_t *)( (char *)this + szindex1 ): NULL;
}
inline char * const pszRightName( void ) const { return stereo ? pRightController()->pszName() : NULL; }
inline int rightIndex( const CStudioHdr &cStudioHdr ) const;
inline const mstudioflexcontroller_t *pNWayValueController( void ) const
{
return remaptype == FLEXCONTROLLER_REMAP_NWAY ? (mstudioflexcontroller_t *)( (char *)this + szindex2 ) : NULL;
}
inline char * const pszNWayValueName( void ) const { return remaptype == FLEXCONTROLLER_REMAP_NWAY ? pNWayValueController()->pszName() : NULL; }
inline int nWayValueIndex( const CStudioHdr &cStudioHdr ) const;
// Number of controllers this ui description contains, 1, 2 or 3
inline int Count() const { return ( stereo ? 2 : 1 ) + ( remaptype == FLEXCONTROLLER_REMAP_NWAY ? 1 : 0 ); }
inline const mstudioflexcontroller_t *pController( int index ) const;
unsigned char remaptype; // See the FlexControllerRemapType_t enum
bool stereo; // Is this a stereo control?
byte unused[2];
};
// these are the on-disk format vertex anims
struct dstudiovertanim_t
{
unsigned short index;
byte speed; // 255/max_length_in_flex
byte side; // 255/left_right
Vector48 delta;
Vector48 ndelta;
private:
// No copy constructors allowed
dstudiovertanim_t(const dstudiovertanim_t& vOther);
};
struct dstudiovertanim_wrinkle_t : public dstudiovertanim_t
{
short wrinkledelta; // Encodes a range from -1 to 1. NOTE: -32768 == -32767 == -1.0f, 32767 = 1.0f
private:
// No copy constructors allowed
dstudiovertanim_wrinkle_t( const dstudiovertanim_t& vOther );
};
const float g_VertAnimFixedPointScale = 1.0f / 4096.0f;
const float g_VertAnimFixedPointScaleInv = 1.0f / g_VertAnimFixedPointScale;
// this is the memory image of vertex anims (16-bit fixed point)
struct mstudiovertanim_t
{
DECLARE_BYTESWAP_DATADESC();
unsigned short index;
byte speed; // 255/max_length_in_flex
byte side; // 255/left_right
protected:
// JasonM changing this type a lot, to prefer fixed point 16 bit...
union
{
short delta[3];
float16 flDelta[3];
};
union
{
short ndelta[3];
float16 flNDelta[3];
};
public:
inline Vector GetDeltaFixed()
{
return Vector( delta[0]*g_VertAnimFixedPointScale, delta[1]*g_VertAnimFixedPointScale, delta[2]*g_VertAnimFixedPointScale );
}
inline Vector GetNDeltaFixed()
{
return Vector( ndelta[0]*g_VertAnimFixedPointScale, ndelta[1]*g_VertAnimFixedPointScale, ndelta[2]*g_VertAnimFixedPointScale );
}
inline void GetDeltaFixed4DAligned( Vector4DAligned *vFillIn )
{
vFillIn->Set( delta[0]*g_VertAnimFixedPointScale, delta[1]*g_VertAnimFixedPointScale, delta[2]*g_VertAnimFixedPointScale, 0.0f );
}
inline void GetNDeltaFixed4DAligned( Vector4DAligned *vFillIn )
{
vFillIn->Set( ndelta[0]*g_VertAnimFixedPointScale, ndelta[1]*g_VertAnimFixedPointScale, ndelta[2]*g_VertAnimFixedPointScale, 0.0f );
}
inline Vector GetDeltaFloat()
{
return Vector (flDelta[0].GetFloat(), flDelta[1].GetFloat(), flDelta[2].GetFloat());
}
inline Vector GetNDeltaFloat()
{
return Vector (flNDelta[0].GetFloat(), flNDelta[1].GetFloat(), flNDelta[2].GetFloat());
}
inline void SetDeltaFixed( const Vector& vInput )
{
delta[0] = static_cast<short>(vInput.x * g_VertAnimFixedPointScaleInv);
delta[1] = static_cast<short>(vInput.y * g_VertAnimFixedPointScaleInv);
delta[2] = static_cast<short>(vInput.z * g_VertAnimFixedPointScaleInv);
}
inline void SetNDeltaFixed( const Vector& vInputNormal )
{
ndelta[0] = static_cast<short>(vInputNormal.x * g_VertAnimFixedPointScaleInv);
ndelta[1] = static_cast<short>(vInputNormal.y * g_VertAnimFixedPointScaleInv);
ndelta[2] = static_cast<short>(vInputNormal.z * g_VertAnimFixedPointScaleInv);
}
// Ick...can also force fp16 data into this structure for writing to file in legacy format...
inline void SetDeltaFloat( const Vector& vInput )
{
flDelta[0].SetFloat( vInput.x );
flDelta[1].SetFloat( vInput.y );
flDelta[2].SetFloat( vInput.z );
}
inline void SetNDeltaFloat( const Vector& vInputNormal )
{
flNDelta[0].SetFloat( vInputNormal.x );
flNDelta[1].SetFloat( vInputNormal.y );
flNDelta[2].SetFloat( vInputNormal.z );
}
mstudiovertanim_t(){}
private:
// No copy constructors allowed
mstudiovertanim_t(const mstudiovertanim_t& vOther);
};
// this is the memory image of vertex anims (16-bit fixed point)
struct mstudiovertanim_wrinkle_t : public mstudiovertanim_t
{
DECLARE_BYTESWAP_DATADESC();
short wrinkledelta;
inline void SetWrinkleFixed( float flWrinkle )
{
int nWrinkleDeltaInt = static_cast<int>(flWrinkle * g_VertAnimFixedPointScaleInv);
wrinkledelta = clamp( nWrinkleDeltaInt, -32767, 32767 );
}
inline Vector4D GetDeltaFixed()
{
return Vector4D( delta[0]*g_VertAnimFixedPointScale, delta[1]*g_VertAnimFixedPointScale, delta[2]*g_VertAnimFixedPointScale, wrinkledelta*g_VertAnimFixedPointScale );
}
inline void GetDeltaFixed4DAligned( Vector4DAligned *vFillIn )
{
vFillIn->Set( delta[0]*g_VertAnimFixedPointScale, delta[1]*g_VertAnimFixedPointScale, delta[2]*g_VertAnimFixedPointScale, wrinkledelta*g_VertAnimFixedPointScale );
}
};
enum StudioVertAnimType_t
{
STUDIO_VERT_ANIM_NORMAL = 0,
STUDIO_VERT_ANIM_WRINKLE,
};
struct mstudioflex_t
{
DECLARE_BYTESWAP_DATADESC();
int flexdesc; // input value
float target0; // zero
float target1; // one
float target2; // one
float target3; // zero
int numverts;
int vertindex;
inline mstudiovertanim_t *pVertanim( int i ) const { Assert( vertanimtype == STUDIO_VERT_ANIM_NORMAL ); return (mstudiovertanim_t *)(((byte *)this) + vertindex) + i; };
inline mstudiovertanim_wrinkle_t *pVertanimWrinkle( int i ) const { Assert( vertanimtype == STUDIO_VERT_ANIM_WRINKLE ); return (mstudiovertanim_wrinkle_t *)(((byte *)this) + vertindex) + i; };
inline byte *pBaseVertanim( ) const { return ((byte *)this) + vertindex; };
inline int VertAnimSizeBytes() const { return ( vertanimtype == STUDIO_VERT_ANIM_NORMAL ) ? sizeof(mstudiovertanim_t) : sizeof(mstudiovertanim_wrinkle_t); }
int flexpair; // second flex desc
unsigned char vertanimtype; // See StudioVertAnimType_t
unsigned char unusedchar[3];
int unused[6];
};
struct mstudioflexop_t
{
DECLARE_BYTESWAP_DATADESC();
int op;
union
{
int index;
float value;
} d;
};
struct mstudioflexrule_t
{
DECLARE_BYTESWAP_DATADESC();
int flex;
int numops;
int opindex;
inline mstudioflexop_t *iFlexOp( int i ) const { return (mstudioflexop_t *)(((byte *)this) + opindex) + i; };
};
// 16 bytes
struct mstudioboneweight_t
{
DECLARE_BYTESWAP_DATADESC();
float weight[MAX_NUM_BONES_PER_VERT];
char bone[MAX_NUM_BONES_PER_VERT];
byte numbones;
// byte material;
// short firstref;
// short lastref;
};
// NOTE: This is exactly 48 bytes
struct mstudiovertex_t
{
DECLARE_BYTESWAP_DATADESC();
mstudioboneweight_t m_BoneWeights;
Vector m_vecPosition;
Vector m_vecNormal;
Vector2D m_vecTexCoord;
mstudiovertex_t() {}
private:
// No copy constructors allowed
mstudiovertex_t(const mstudiovertex_t& vOther);
};
// skin info
struct mstudiotexture_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
int flags;
int used;
int unused1;
mutable IMaterial *material; // fixme: this needs to go away . .isn't used by the engine, but is used by studiomdl
mutable void *clientmaterial; // gary, replace with client material pointer if used
int unused[10];
};
// eyeball
struct mstudioeyeball_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
int bone;
Vector org;
float zoffset;
float radius;
Vector up;
Vector forward;
int texture;
int unused1;
float iris_scale;
int unused2;
int upperflexdesc[3]; // index of raiser, neutral, and lowerer flexdesc that is set by flex controllers
int lowerflexdesc[3];
float uppertarget[3]; // angle (radians) of raised, neutral, and lowered lid positions
float lowertarget[3];
int upperlidflexdesc; // index of flex desc that actual lid flexes look to
int lowerlidflexdesc;
int unused[4]; // These were used before, so not guaranteed to be 0
bool m_bNonFACS; // Never used before version 44
char unused3[3];
int unused4[7];
mstudioeyeball_t(){}
private:
// No copy constructors allowed
mstudioeyeball_t(const mstudioeyeball_t& vOther);
};
// ikinfo
struct mstudioiklink_t
{
DECLARE_BYTESWAP_DATADESC();
int bone;
Vector kneeDir; // ideal bending direction (per link, if applicable)
Vector unused0; // unused
mstudioiklink_t(){}
private:
// No copy constructors allowed
mstudioiklink_t(const mstudioiklink_t& vOther);
};
struct mstudioikchain_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
int linktype;
int numlinks;
int linkindex;
inline mstudioiklink_t *pLink( int i ) const { return (mstudioiklink_t *)(((byte *)this) + linkindex) + i; };
// FIXME: add unused entries
};
struct mstudioiface_t
{
unsigned short a, b, c; // Indices to vertices
};
struct mstudiomodel_t;
struct mstudio_modelvertexdata_t
{
DECLARE_BYTESWAP_DATADESC();
Vector *Position( int i ) const;
Vector *Normal( int i ) const;
Vector4D *TangentS( int i ) const;
Vector2D *Texcoord( int i ) const;
mstudioboneweight_t *BoneWeights( int i ) const;
mstudiovertex_t *Vertex( int i ) const;
bool HasTangentData( void ) const;
int GetGlobalVertexIndex( int i ) const;
int GetGlobalTangentIndex( int i ) const;
// base of external vertex data stores
const void *pVertexData;
const void *pTangentData;
};
struct mstudio_meshvertexdata_t
{
DECLARE_BYTESWAP_DATADESC();
Vector *Position( int i ) const;
Vector *Normal( int i ) const;
Vector4D *TangentS( int i ) const;
Vector2D *Texcoord( int i ) const;
mstudioboneweight_t *BoneWeights( int i ) const;
mstudiovertex_t *Vertex( int i ) const;
bool HasTangentData( void ) const;
int GetModelVertexIndex( int i ) const;
int GetGlobalVertexIndex( int i ) const;
// indirection to this mesh's model's vertex data
const mstudio_modelvertexdata_t *modelvertexdata;
// used for fixup calcs when culling top level lods
// expected number of mesh verts at desired lod
int numLODVertexes[MAX_NUM_LODS];
};
struct mstudiomesh_t
{
DECLARE_BYTESWAP_DATADESC();
int material;
int modelindex;
mstudiomodel_t *pModel() const;
int numvertices; // number of unique vertices/normals/texcoords
int vertexoffset; // vertex mstudiovertex_t
// Access thin/fat mesh vertex data (only one will return a non-NULL result)
const mstudio_meshvertexdata_t *GetVertexData( void *pModelData = NULL );
const thinModelVertices_t *GetThinVertexData( void *pModelData = NULL );
int numflexes; // vertex animation
int flexindex;
inline mstudioflex_t *pFlex( int i ) const { return (mstudioflex_t *)(((byte *)this) + flexindex) + i; };
// special codes for material operations
int materialtype;
int materialparam;
// a unique ordinal for this mesh
int meshid;
Vector center;
mstudio_meshvertexdata_t vertexdata;
int unused[8]; // remove as appropriate
mstudiomesh_t(){}
private:
// No copy constructors allowed
mstudiomesh_t(const mstudiomesh_t& vOther);
};
// studio models
struct mstudiomodel_t
{
DECLARE_BYTESWAP_DATADESC();
inline const char * pszName( void ) const { return name; }
char name[64];
int type;
float boundingradius;
int nummeshes;
int meshindex;
inline mstudiomesh_t *pMesh( int i ) const { return (mstudiomesh_t *)(((byte *)this) + meshindex) + i; };
// cache purposes
int numvertices; // number of unique vertices/normals/texcoords
int vertexindex; // vertex Vector
int tangentsindex; // tangents Vector
// These functions are defined in application-specific code:
const vertexFileHeader_t *CacheVertexData( void *pModelData );
// Access thin/fat mesh vertex data (only one will return a non-NULL result)
const mstudio_modelvertexdata_t *GetVertexData( void *pModelData = NULL );
const thinModelVertices_t *GetThinVertexData( void *pModelData = NULL );
int numattachments;
int attachmentindex;
int numeyeballs;
int eyeballindex;
inline mstudioeyeball_t *pEyeball( int i ) { return (mstudioeyeball_t *)(((byte *)this) + eyeballindex) + i; };
mstudio_modelvertexdata_t vertexdata;
int unused[8]; // remove as appropriate
};
inline bool mstudio_modelvertexdata_t::HasTangentData( void ) const
{
return (pTangentData != NULL);
}
inline int mstudio_modelvertexdata_t::GetGlobalVertexIndex( int i ) const
{
mstudiomodel_t *modelptr = (mstudiomodel_t *)((byte *)this - offsetof(mstudiomodel_t, vertexdata));
Assert( ( modelptr->vertexindex % sizeof( mstudiovertex_t ) ) == 0 );
return ( i + ( modelptr->vertexindex / sizeof( mstudiovertex_t ) ) );
}
inline int mstudio_modelvertexdata_t::GetGlobalTangentIndex( int i ) const
{
mstudiomodel_t *modelptr = (mstudiomodel_t *)((byte *)this - offsetof(mstudiomodel_t, vertexdata));
Assert( ( modelptr->tangentsindex % sizeof( Vector4D ) ) == 0 );
return ( i + ( modelptr->tangentsindex / sizeof( Vector4D ) ) );
}
inline mstudiovertex_t *mstudio_modelvertexdata_t::Vertex( int i ) const
{
return (mstudiovertex_t *)pVertexData + GetGlobalVertexIndex( i );
}
inline Vector *mstudio_modelvertexdata_t::Position( int i ) const
{
return &Vertex(i)->m_vecPosition;
}
inline Vector *mstudio_modelvertexdata_t::Normal( int i ) const
{
return &Vertex(i)->m_vecNormal;
}
inline Vector4D *mstudio_modelvertexdata_t::TangentS( int i ) const
{
// NOTE: The tangents vector is 16-bytes in a separate array
// because it only exists on the high end, and if I leave it out
// of the mstudiovertex_t, the vertex is 64-bytes (good for low end)
return (Vector4D *)pTangentData + GetGlobalTangentIndex( i );
}
inline Vector2D *mstudio_modelvertexdata_t::Texcoord( int i ) const
{
return &Vertex(i)->m_vecTexCoord;
}
inline mstudioboneweight_t *mstudio_modelvertexdata_t::BoneWeights( int i ) const
{
return &Vertex(i)->m_BoneWeights;
}
inline mstudiomodel_t *mstudiomesh_t::pModel() const
{
return (mstudiomodel_t *)(((byte *)this) + modelindex);
}
inline bool mstudio_meshvertexdata_t::HasTangentData( void ) const
{
return modelvertexdata->HasTangentData();
}
inline const mstudio_meshvertexdata_t *mstudiomesh_t::GetVertexData( void *pModelData )
{
// get this mesh's model's vertex data (allow for mstudiomodel_t::GetVertexData
// returning NULL if the data has been converted to 'thin' vertices)
this->pModel()->GetVertexData( pModelData );
vertexdata.modelvertexdata = &( this->pModel()->vertexdata );
if ( !vertexdata.modelvertexdata->pVertexData )
return NULL;
return &vertexdata;
}
inline const thinModelVertices_t * mstudiomesh_t::GetThinVertexData( void *pModelData )
{
// get this mesh's model's thin vertex data
return this->pModel()->GetThinVertexData( pModelData );
}
inline int mstudio_meshvertexdata_t::GetModelVertexIndex( int i ) const
{
mstudiomesh_t *meshptr = (mstudiomesh_t *)((byte *)this - offsetof(mstudiomesh_t,vertexdata));
return meshptr->vertexoffset + i;
}
inline int mstudio_meshvertexdata_t::GetGlobalVertexIndex( int i ) const
{
return modelvertexdata->GetGlobalVertexIndex( GetModelVertexIndex( i ) );
}
inline Vector *mstudio_meshvertexdata_t::Position( int i ) const
{
return modelvertexdata->Position( GetModelVertexIndex( i ) );
};
inline Vector *mstudio_meshvertexdata_t::Normal( int i ) const
{
return modelvertexdata->Normal( GetModelVertexIndex( i ) );
};
inline Vector4D *mstudio_meshvertexdata_t::TangentS( int i ) const
{
return modelvertexdata->TangentS( GetModelVertexIndex( i ) );
}
inline Vector2D *mstudio_meshvertexdata_t::Texcoord( int i ) const
{
return modelvertexdata->Texcoord( GetModelVertexIndex( i ) );
};
inline mstudioboneweight_t *mstudio_meshvertexdata_t::BoneWeights( int i ) const
{
return modelvertexdata->BoneWeights( GetModelVertexIndex( i ) );
};
inline mstudiovertex_t *mstudio_meshvertexdata_t::Vertex( int i ) const
{
return modelvertexdata->Vertex( GetModelVertexIndex( i ) );
}
// a group of studio model data
enum studiomeshgroupflags_t
{
MESHGROUP_IS_FLEXED = 0x1,
MESHGROUP_IS_HWSKINNED = 0x2,
MESHGROUP_IS_DELTA_FLEXED = 0x4
};
// ----------------------------------------------------------
// runtime stuff
// ----------------------------------------------------------
struct studiomeshgroup_t
{
IMesh *m_pMesh;
int m_NumStrips;
int m_Flags; // see studiomeshgroupflags_t
OptimizedModel::StripHeader_t *m_pStripData;
unsigned short *m_pGroupIndexToMeshIndex;
int m_NumVertices;
int *m_pUniqueTris; // for performance measurements
unsigned short *m_pIndices;
bool m_MeshNeedsRestore;
short m_ColorMeshID;
IMorph *m_pMorph;
inline unsigned short MeshIndex( int i ) const { return m_pGroupIndexToMeshIndex[m_pIndices[i]]; }
};
// studio model data
struct studiomeshdata_t
{
int m_NumGroup;
studiomeshgroup_t* m_pMeshGroup;
};
struct studioloddata_t
{
// not needed - this is really the same as studiohwdata_t.m_NumStudioMeshes
//int m_NumMeshes;
studiomeshdata_t *m_pMeshData; // there are studiohwdata_t.m_NumStudioMeshes of these.
float m_SwitchPoint;
// one of these for each lod since we can switch to simpler materials on lower lods.
int numMaterials;
IMaterial **ppMaterials; /* will have studiohdr_t.numtextures elements allocated */
// hack - this needs to go away.
int *pMaterialFlags; /* will have studiohdr_t.numtextures elements allocated */
// For decals on hardware morphing, we must actually do hardware skinning
// For this to work, we have to hope that the total # of bones used by
// hw flexed verts is < than the max possible for the dx level we're running under
int *m_pHWMorphDecalBoneRemap;
int m_nDecalBoneCount;
};
struct studiohwdata_t
{
int m_RootLOD; // calced and clamped, nonzero for lod culling
int m_NumLODs;
studioloddata_t *m_pLODs;
int m_NumStudioMeshes;
inline float LODMetric( float unitSphereSize ) const { return ( unitSphereSize != 0.0f ) ? (100.0f / unitSphereSize) : 0.0f; }
inline int GetLODForMetric( float lodMetric ) const
{
if ( !m_NumLODs )
return 0;
// shadow lod is specified on the last lod with a negative switch
// never consider shadow lod as viable candidate
int numLODs = (m_pLODs[m_NumLODs-1].m_SwitchPoint < 0.0f) ? m_NumLODs-1 : m_NumLODs;
for ( int i = m_RootLOD; i < numLODs-1; i++ )
{
if ( m_pLODs[i+1].m_SwitchPoint > lodMetric )
return i;
}
return numLODs-1;
}
};
// ----------------------------------------------------------
// ----------------------------------------------------------
// body part index
struct mstudiobodyparts_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
int nummodels;
int base;
int modelindex; // index into models array
inline mstudiomodel_t *pModel( int i ) const { return (mstudiomodel_t *)(((byte *)this) + modelindex) + i; };
};
struct mstudiomouth_t
{
DECLARE_BYTESWAP_DATADESC();
int bone;
Vector forward;
int flexdesc;
mstudiomouth_t(){}
private:
// No copy constructors allowed
mstudiomouth_t(const mstudiomouth_t& vOther);
};
struct mstudiohitboxset_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline char * const pszName( void ) const { return ((char *)this) + sznameindex; }
int numhitboxes;
int hitboxindex;
inline mstudiobbox_t *pHitbox( int i ) const { return (mstudiobbox_t *)(((byte *)this) + hitboxindex) + i; };
};
//-----------------------------------------------------------------------------
// Src bone transforms are transformations that will convert .dmx or .smd-based animations into .mdl-based animations
// NOTE: The operation you should apply is: pretransform * bone transform * posttransform
//-----------------------------------------------------------------------------
struct mstudiosrcbonetransform_t
{
DECLARE_BYTESWAP_DATADESC();
int sznameindex;
inline const char *pszName( void ) const { return ((char *)this) + sznameindex; }
matrix3x4_t pretransform;
matrix3x4_t posttransform;
};
// ----------------------------------------------------------
// Purpose: Load time results on model compositing
// ----------------------------------------------------------
class virtualgroup_t
{
public:
virtualgroup_t( void ) { cache = NULL; };
// tool dependant. In engine this is a model_t, in tool it's a direct pointer
void *cache;
// converts cache entry into a usable studiohdr_t *
const studiohdr_t *GetStudioHdr( void ) const;
CUtlVector< int > boneMap; // maps global bone to local bone
CUtlVector< int > masterBone; // maps local bone to global bone
CUtlVector< int > masterSeq; // maps local sequence to master sequence
CUtlVector< int > masterAnim; // maps local animation to master animation
CUtlVector< int > masterAttachment; // maps local attachment to global
CUtlVector< int > masterPose; // maps local pose parameter to global
CUtlVector< int > masterNode; // maps local transition nodes to global
};
struct virtualsequence_t
{
#ifdef _XBOX
short flags;
short activity;
short group;
short index;
#else
int flags;
int activity;
int group;
int index;
#endif
};
struct virtualgeneric_t
{
#ifdef _XBOX
short group;
short index;
#else
int group;
int index;
#endif
};
struct virtualmodel_t
{
void AppendSequences( int group, const studiohdr_t *pStudioHdr );
void AppendAnimations( int group, const studiohdr_t *pStudioHdr );
void AppendAttachments( int ground, const studiohdr_t *pStudioHdr );
void AppendPoseParameters( int group, const studiohdr_t *pStudioHdr );
void AppendBonemap( int group, const studiohdr_t *pStudioHdr );
void AppendNodes( int group, const studiohdr_t *pStudioHdr );
void AppendTransitions( int group, const studiohdr_t *pStudioHdr );
void AppendIKLocks( int group, const studiohdr_t *pStudioHdr );
void AppendModels( int group, const studiohdr_t *pStudioHdr );
void UpdateAutoplaySequences( const studiohdr_t *pStudioHdr );
virtualgroup_t *pAnimGroup( int animation ) { return &m_group[ m_anim[ animation ].group ]; }; // Note: user must manage mutex for this
virtualgroup_t *pSeqGroup( int sequence ) { return &m_group[ m_seq[ sequence ].group ]; }; // Note: user must manage mutex for this
CThreadFastMutex m_Lock;
CUtlVector< virtualsequence_t > m_seq;
CUtlVector< virtualgeneric_t > m_anim;
CUtlVector< virtualgeneric_t > m_attachment;
CUtlVector< virtualgeneric_t > m_pose;
CUtlVector< virtualgroup_t > m_group;
CUtlVector< virtualgeneric_t > m_node;
CUtlVector< virtualgeneric_t > m_iklock;
CUtlVector< unsigned short > m_autoplaySequences;
};
// 'thin' vertex data, used to do model decals (see Studio_CreateThinVertexes())
struct thinModelVertices_t
{
void Init( int numBoneInfluences, Vector *positions, unsigned short *normals, float *boneWeights, char *boneIndices )
{
Assert( positions != NULL );
Assert( normals != NULL );
Assert( ( numBoneInfluences >= 0 ) && ( numBoneInfluences <= 3 ) );
Assert( numBoneInfluences > 0 ? !!boneIndices : !boneIndices );
Assert( numBoneInfluences > 1 ? !!boneWeights : !boneWeights );
m_numBoneInfluences = numBoneInfluences;
m_vecPositions = positions;
m_vecNormals = normals;
m_boneWeights = boneWeights;
m_boneIndices = boneIndices;
}
void SetPosition( int vertIndex, const Vector & position )
{
Assert( m_vecPositions );
m_vecPositions[ vertIndex ] = position;
}
void SetNormal( int vertIndex, const Vector & normal )
{
Assert( m_vecNormals );
unsigned int packedNormal;
PackNormal_UBYTE4( normal.x, normal.y, normal.z, &packedNormal );
m_vecNormals[ vertIndex ] = (unsigned short)( 0x0000FFFF & packedNormal );
}
void SetBoneWeights( int vertIndex, const mstudioboneweight_t & boneWeights )
{
Assert( ( m_numBoneInfluences >= 1 ) && ( m_numBoneInfluences <= 3 ) );
Assert( ( boneWeights.numbones >= 1 ) && ( boneWeights.numbones <= m_numBoneInfluences ) );
int numStoredWeights = MAX( 0, ( m_numBoneInfluences - 1 ) );
float *pBaseWeight = m_boneWeights + vertIndex*numStoredWeights;
char *pBaseIndex = m_boneIndices + vertIndex*m_numBoneInfluences;
for ( int i = 0; i < m_numBoneInfluences; i++ )
{
pBaseIndex[i] = boneWeights.bone[i];
}
for ( int i = 0; i < numStoredWeights; i++ )
{
pBaseWeight[i] = boneWeights.weight[i];
}
}
void GetMeshPosition( mstudiomesh_t *pMesh, int meshIndex, Vector *pPosition ) const
{
Assert( pMesh );
GetPosition( pMesh->vertexdata.GetGlobalVertexIndex( meshIndex ), pPosition );
}
void GetMeshNormal( mstudiomesh_t *pMesh, int meshIndex, Vector *pNormal ) const
{
Assert( pMesh );
GetNormal( pMesh->vertexdata.GetGlobalVertexIndex( meshIndex ), pNormal );
}
void GetMeshBoneWeights( mstudiomesh_t *pMesh, int meshIndex, mstudioboneweight_t *pBoneWeights ) const
{
Assert( pMesh );
GetBoneWeights( pMesh->vertexdata.GetGlobalVertexIndex( meshIndex ), pBoneWeights );
}
void GetModelPosition( mstudiomodel_t *pModel, int modelIndex, Vector *pPosition ) const
{
Assert( pModel );
GetPosition( pModel->vertexdata.GetGlobalVertexIndex( modelIndex ), pPosition );
}
void GetModelNormal( mstudiomodel_t *pModel, int modelIndex, Vector *pNormal ) const
{
Assert( pModel );
GetNormal( pModel->vertexdata.GetGlobalVertexIndex( modelIndex ), pNormal );
}
void GetModelBoneWeights( mstudiomodel_t *pModel, int modelIndex, mstudioboneweight_t *pBoneWeights ) const
{
Assert( pModel );
GetBoneWeights( pModel->vertexdata.GetGlobalVertexIndex( modelIndex ), pBoneWeights );
}
private:
void GetPosition( int vertIndex, Vector *pPosition ) const
{
Assert( pPosition );
Assert( m_vecPositions );
*pPosition = m_vecPositions[ vertIndex ];
}
void GetNormal( int vertIndex, Vector *pNormal ) const
{
Assert( pNormal );
Assert( m_vecNormals );
unsigned int packedNormal = 0x0000FFFF & m_vecNormals[ vertIndex ];
UnpackNormal_UBYTE4( &packedNormal, pNormal->Base() );
}
void GetBoneWeights( int vertIndex, mstudioboneweight_t *pBoneWeights ) const
{
Assert( pBoneWeights );
Assert( ( m_numBoneInfluences <= 1 ) || ( m_boneWeights != NULL ) );
Assert( ( m_numBoneInfluences <= 0 ) || ( m_boneIndices != NULL ) );
int numStoredWeights = MAX( 0, ( m_numBoneInfluences - 1 ) );
float *pBaseWeight = m_boneWeights + vertIndex*numStoredWeights;
char *pBaseIndex = m_boneIndices + vertIndex*m_numBoneInfluences;
float sum = 0.0f;
for (int i = 0;i < MAX_NUM_BONES_PER_VERT;i++)
{
if ( i < ( m_numBoneInfluences - 1 ) )
pBoneWeights->weight[i] = pBaseWeight[i];
else
pBoneWeights->weight[i] = 1.0f - sum;
sum += pBoneWeights->weight[i];
pBoneWeights->bone[i] = ( i < m_numBoneInfluences ) ? pBaseIndex[i] : 0;
}
// Treat 'zero weights' as '100% binding to bone zero':
pBoneWeights->numbones = m_numBoneInfluences ? m_numBoneInfluences : 1;
}
int m_numBoneInfluences;// Number of bone influences per vertex, N
float *m_boneWeights; // This array stores (N-1) weights per vertex (unless N is zero)
char *m_boneIndices; // This array stores N indices per vertex
Vector *m_vecPositions;
unsigned short *m_vecNormals; // Normals are compressed into 16 bits apiece (see PackNormal_UBYTE4() )
};
// ----------------------------------------------------------
// Studio Model Vertex Data File
// Position independent flat data for cache manager
// ----------------------------------------------------------
// little-endian "IDSV"
#define MODEL_VERTEX_FILE_ID (('V'<<24)+('S'<<16)+('D'<<8)+'I')
#define MODEL_VERTEX_FILE_VERSION 4
// this id (IDCV) is used once the vertex data has been compressed (see CMDLCache::CreateThinVertexes)
#define MODEL_VERTEX_FILE_THIN_ID (('V'<<24)+('C'<<16)+('D'<<8)+'I')
struct vertexFileHeader_t
{
DECLARE_BYTESWAP_DATADESC();
int id; // MODEL_VERTEX_FILE_ID
int version; // MODEL_VERTEX_FILE_VERSION
long checksum; // same as studiohdr_t, ensures sync
int numLODs; // num of valid lods
int numLODVertexes[MAX_NUM_LODS]; // num verts for desired root lod
int numFixups; // num of vertexFileFixup_t
int fixupTableStart; // offset from base to fixup table
int vertexDataStart; // offset from base to vertex block
int tangentDataStart; // offset from base to tangent block
public:
// Accessor to fat vertex data
const mstudiovertex_t *GetVertexData() const
{
if ( ( id == MODEL_VERTEX_FILE_ID ) && ( vertexDataStart != 0 ) )
return ( mstudiovertex_t * ) ( vertexDataStart + (byte *)this );
else
return NULL;
}
// Accessor to (fat) tangent vertex data (tangents aren't stored in compressed data)
const Vector4D *GetTangentData() const
{
if ( ( id == MODEL_VERTEX_FILE_ID ) && ( tangentDataStart != 0 ) )
return ( Vector4D * ) ( tangentDataStart + (byte *)this );
else
return NULL;
}
// Accessor to thin vertex data
const thinModelVertices_t *GetThinVertexData() const
{
if ( ( id == MODEL_VERTEX_FILE_THIN_ID ) && ( vertexDataStart != 0 ) )
return ( thinModelVertices_t * ) ( vertexDataStart + (byte *)this );
else
return NULL;
}
};
// model vertex data accessor (defined here so vertexFileHeader_t can be used)
inline const mstudio_modelvertexdata_t * mstudiomodel_t::GetVertexData( void *pModelData )
{
const vertexFileHeader_t * pVertexHdr = CacheVertexData( pModelData );
if ( !pVertexHdr )
return NULL;
vertexdata.pVertexData = pVertexHdr->GetVertexData();
vertexdata.pTangentData = pVertexHdr->GetTangentData();
if ( !vertexdata.pVertexData )
return NULL;
return &vertexdata;
}
// model thin vertex data accessor (defined here so vertexFileHeader_t can be used)
inline const thinModelVertices_t * mstudiomodel_t::GetThinVertexData( void *pModelData )
{
const vertexFileHeader_t * pVertexHdr = CacheVertexData( pModelData );
if ( !pVertexHdr )
return NULL;
return pVertexHdr->GetThinVertexData();
}
// apply sequentially to lod sorted vertex and tangent pools to re-establish mesh order
struct vertexFileFixup_t
{
DECLARE_BYTESWAP_DATADESC();
int lod; // used to skip culled root lod
int sourceVertexID; // absolute index from start of vertex/tangent blocks
int numVertexes;
};
// This flag is set if no hitbox information was specified
#define STUDIOHDR_FLAGS_AUTOGENERATED_HITBOX ( 1 << 0 )
// NOTE: This flag is set at loadtime, not mdl build time so that we don't have to rebuild
// models when we change materials.
#define STUDIOHDR_FLAGS_USES_ENV_CUBEMAP ( 1 << 1 )
// Use this when there are translucent parts to the model but we're not going to sort it
#define STUDIOHDR_FLAGS_FORCE_OPAQUE ( 1 << 2 )
// Use this when we want to render the opaque parts during the opaque pass
// and the translucent parts during the translucent pass
#define STUDIOHDR_FLAGS_TRANSLUCENT_TWOPASS ( 1 << 3 )
// This is set any time the .qc files has $staticprop in it
// Means there's no bones and no transforms
#define STUDIOHDR_FLAGS_STATIC_PROP ( 1 << 4 )
// NOTE: This flag is set at loadtime, not mdl build time so that we don't have to rebuild
// models when we change materials.
#define STUDIOHDR_FLAGS_USES_FB_TEXTURE ( 1 << 5 )
// This flag is set by studiomdl.exe if a separate "$shadowlod" entry was present
// for the .mdl (the shadow lod is the last entry in the lod list if present)
#define STUDIOHDR_FLAGS_HASSHADOWLOD ( 1 << 6 )
// NOTE: This flag is set at loadtime, not mdl build time so that we don't have to rebuild
// models when we change materials.
#define STUDIOHDR_FLAGS_USES_BUMPMAPPING ( 1 << 7 )
// NOTE: This flag is set when we should use the actual materials on the shadow LOD
// instead of overriding them with the default one (necessary for translucent shadows)
#define STUDIOHDR_FLAGS_USE_SHADOWLOD_MATERIALS ( 1 << 8 )
// NOTE: This flag is set when we should use the actual materials on the shadow LOD
// instead of overriding them with the default one (necessary for translucent shadows)
#define STUDIOHDR_FLAGS_OBSOLETE ( 1 << 9 )
#define STUDIOHDR_FLAGS_UNUSED ( 1 << 10 )
// NOTE: This flag is set at mdl build time
#define STUDIOHDR_FLAGS_NO_FORCED_FADE ( 1 << 11 )
// NOTE: The npc will lengthen the viseme check to always include two phonemes
#define STUDIOHDR_FLAGS_FORCE_PHONEME_CROSSFADE ( 1 << 12 )
// This flag is set when the .qc has $constantdirectionallight in it
// If set, we use constantdirectionallightdot to calculate light intensity
// rather than the normal directional dot product
// only valid if STUDIOHDR_FLAGS_STATIC_PROP is also set
#define STUDIOHDR_FLAGS_CONSTANT_DIRECTIONAL_LIGHT_DOT ( 1 << 13 )
// Flag to mark delta flexes as already converted from disk format to memory format
#define STUDIOHDR_FLAGS_FLEXES_CONVERTED ( 1 << 14 )
// Indicates the studiomdl was built in preview mode
#define STUDIOHDR_FLAGS_BUILT_IN_PREVIEW_MODE ( 1 << 15 )
// Ambient boost (runtime flag)
#define STUDIOHDR_FLAGS_AMBIENT_BOOST ( 1 << 16 )
// Don't cast shadows from this model (useful on first-person models)
#define STUDIOHDR_FLAGS_DO_NOT_CAST_SHADOWS ( 1 << 17 )
// alpha textures should cast shadows in vrad on this model (ONLY prop_static!)
#define STUDIOHDR_FLAGS_CAST_TEXTURE_SHADOWS ( 1 << 18 )
// NOTE! Next time we up the .mdl file format, remove studiohdr2_t
// and insert all fields in this structure into studiohdr_t.
struct studiohdr2_t
{
// NOTE: For forward compat, make sure any methods in this struct
// are also available in studiohdr_t so no leaf code ever directly references
// a studiohdr2_t structure
DECLARE_BYTESWAP_DATADESC();
int numsrcbonetransform;
int srcbonetransformindex;
int illumpositionattachmentindex;
inline int IllumPositionAttachmentIndex() const { return illumpositionattachmentindex; }
float flMaxEyeDeflection;
inline float MaxEyeDeflection() const { return flMaxEyeDeflection != 0.0f ? flMaxEyeDeflection : 0.866f; } // default to cos(30) if not set
int linearboneindex;
inline mstudiolinearbone_t *pLinearBones() const { return (linearboneindex) ? (mstudiolinearbone_t *)(((byte *)this) + linearboneindex) : NULL; }
int reserved[59];
};
struct studiohdr_t
{
DECLARE_BYTESWAP_DATADESC();
int id;
int version;
long checksum; // this has to be the same in the phy and vtx files to load!
inline const char * pszName( void ) const { return name; }
char name[64];
int length;
Vector eyeposition; // ideal eye position
Vector illumposition; // illumination center
Vector hull_min; // ideal movement hull size
Vector hull_max;
Vector view_bbmin; // clipping bounding box
Vector view_bbmax;
int flags;
int numbones; // bones
int boneindex;
inline mstudiobone_t *pBone( int i ) const { Assert( i >= 0 && i < numbones); return (mstudiobone_t *)(((byte *)this) + boneindex) + i; };
int RemapSeqBone( int iSequence, int iLocalBone ) const; // maps local sequence bone to global bone
int RemapAnimBone( int iAnim, int iLocalBone ) const; // maps local animations bone to global bone
int numbonecontrollers; // bone controllers
int bonecontrollerindex;
inline mstudiobonecontroller_t *pBonecontroller( int i ) const { Assert( i >= 0 && i < numbonecontrollers); return (mstudiobonecontroller_t *)(((byte *)this) + bonecontrollerindex) + i; };
int numhitboxsets;
int hitboxsetindex;
// Look up hitbox set by index
mstudiohitboxset_t *pHitboxSet( int i ) const
{
Assert( i >= 0 && i < numhitboxsets);
return (mstudiohitboxset_t *)(((byte *)this) + hitboxsetindex ) + i;
};
// Calls through to hitbox to determine size of specified set
inline mstudiobbox_t *pHitbox( int i, int set ) const
{
mstudiohitboxset_t const *s = pHitboxSet( set );
if ( !s )
return NULL;
return s->pHitbox( i );
};
// Calls through to set to get hitbox count for set
inline int iHitboxCount( int set ) const
{
mstudiohitboxset_t const *s = pHitboxSet( set );
if ( !s )
return 0;
return s->numhitboxes;
};
// file local animations? and sequences
//private:
int numlocalanim; // animations/poses
int localanimindex; // animation descriptions
inline mstudioanimdesc_t *pLocalAnimdesc( int i ) const { if (i < 0 || i >= numlocalanim) i = 0; return (mstudioanimdesc_t *)(((byte *)this) + localanimindex) + i; };
int numlocalseq; // sequences
int localseqindex;
inline mstudioseqdesc_t *pLocalSeqdesc( int i ) const { if (i < 0 || i >= numlocalseq) i = 0; return (mstudioseqdesc_t *)(((byte *)this) + localseqindex) + i; };
//public:
bool SequencesAvailable() const;
int GetNumSeq() const;
mstudioanimdesc_t &pAnimdesc( int i ) const;
mstudioseqdesc_t &pSeqdesc( int i ) const;
int iRelativeAnim( int baseseq, int relanim ) const; // maps seq local anim reference to global anim index
int iRelativeSeq( int baseseq, int relseq ) const; // maps seq local seq reference to global seq index
//private:
mutable int activitylistversion; // initialization flag - have the sequences been indexed?
mutable int eventsindexed;
//public:
int GetSequenceActivity( int iSequence );
void SetSequenceActivity( int iSequence, int iActivity );
int GetActivityListVersion( void ) const;
void SetActivityListVersion( int version ) const;
int GetEventListVersion( void ) const;
void SetEventListVersion( int version ) const;
// raw textures
int numtextures;
int textureindex;
inline mstudiotexture_t *pTexture( int i ) const { Assert( i >= 0 && i < numtextures ); return (mstudiotexture_t *)(((byte *)this) + textureindex) + i; };
// raw textures search paths
int numcdtextures;
int cdtextureindex;
inline char *pCdtexture( int i ) const { return (((char *)this) + *((int *)(((byte *)this) + cdtextureindex) + i)); };
// replaceable textures tables
int numskinref;
int numskinfamilies;
int skinindex;
inline short *pSkinref( int i ) const { return (short *)(((byte *)this) + skinindex) + i; };
int numbodyparts;
int bodypartindex;
inline mstudiobodyparts_t *pBodypart( int i ) const { return (mstudiobodyparts_t *)(((byte *)this) + bodypartindex) + i; };
// queryable attachable points
//private:
int numlocalattachments;
int localattachmentindex;
inline mstudioattachment_t *pLocalAttachment( int i ) const { Assert( i >= 0 && i < numlocalattachments); return (mstudioattachment_t *)(((byte *)this) + localattachmentindex) + i; };
//public:
int GetNumAttachments( void ) const;
const mstudioattachment_t &pAttachment( int i ) const;
int GetAttachmentBone( int i ) const;
// used on my tools in hlmv, not persistant
void SetAttachmentBone( int iAttachment, int iBone );
// animation node to animation node transition graph
//private:
int numlocalnodes;
int localnodeindex;
int localnodenameindex;
inline char *pszLocalNodeName( int iNode ) const { Assert( iNode >= 0 && iNode < numlocalnodes); return (((char *)this) + *((int *)(((byte *)this) + localnodenameindex) + iNode)); }
inline byte *pLocalTransition( int i ) const { Assert( i >= 0 && i < (numlocalnodes * numlocalnodes)); return (byte *)(((byte *)this) + localnodeindex) + i; };
//public:
int EntryNode( int iSequence ) const;
int ExitNode( int iSequence ) const;
const char *pszNodeName( int iNode ) const;
int GetTransition( int iFrom, int iTo ) const;
int numflexdesc;
int flexdescindex;
inline mstudioflexdesc_t *pFlexdesc( int i ) const { Assert( i >= 0 && i < numflexdesc); return (mstudioflexdesc_t *)(((byte *)this) + flexdescindex) + i; };
int numflexcontrollers;
int flexcontrollerindex;
inline mstudioflexcontroller_t *pFlexcontroller( LocalFlexController_t i ) const { Assert( i >= 0 && i < numflexcontrollers); return (mstudioflexcontroller_t *)(((byte *)this) + flexcontrollerindex) + i; };
int numflexrules;
int flexruleindex;
inline mstudioflexrule_t *pFlexRule( int i ) const { Assert( i >= 0 && i < numflexrules); return (mstudioflexrule_t *)(((byte *)this) + flexruleindex) + i; };
int numikchains;
int ikchainindex;
inline mstudioikchain_t *pIKChain( int i ) const { Assert( i >= 0 && i < numikchains); return (mstudioikchain_t *)(((byte *)this) + ikchainindex) + i; };
int nummouths;
int mouthindex;
inline mstudiomouth_t *pMouth( int i ) const { Assert( i >= 0 && i < nummouths); return (mstudiomouth_t *)(((byte *)this) + mouthindex) + i; };
//private:
int numlocalposeparameters;
int localposeparamindex;
inline mstudioposeparamdesc_t *pLocalPoseParameter( int i ) const { Assert( i >= 0 && i < numlocalposeparameters); return (mstudioposeparamdesc_t *)(((byte *)this) + localposeparamindex) + i; };
//public:
int GetNumPoseParameters( void ) const;
const mstudioposeparamdesc_t &pPoseParameter( int i ) const;
int GetSharedPoseParameter( int iSequence, int iLocalPose ) const;
int surfacepropindex;
inline char * const pszSurfaceProp( void ) const { return ((char *)this) + surfacepropindex; }
// Key values
int keyvalueindex;
int keyvaluesize;
inline const char * KeyValueText( void ) const { return keyvaluesize != 0 ? ((char *)this) + keyvalueindex : NULL; }
int numlocalikautoplaylocks;
int localikautoplaylockindex;
inline mstudioiklock_t *pLocalIKAutoplayLock( int i ) const { Assert( i >= 0 && i < numlocalikautoplaylocks); return (mstudioiklock_t *)(((byte *)this) + localikautoplaylockindex) + i; };
int GetNumIKAutoplayLocks( void ) const;
const mstudioiklock_t &pIKAutoplayLock( int i ) const;
int CountAutoplaySequences() const;
int CopyAutoplaySequences( unsigned short *pOut, int outCount ) const;
int GetAutoplayList( unsigned short **pOut ) const;
// The collision model mass that jay wanted
float mass;
int contents;
// external animations, models, etc.
int numincludemodels;
int includemodelindex;
inline mstudiomodelgroup_t *pModelGroup( int i ) const { Assert( i >= 0 && i < numincludemodels); return (mstudiomodelgroup_t *)(((byte *)this) + includemodelindex) + i; };
// implementation specific call to get a named model
const studiohdr_t *FindModel( void **cache, char const *modelname ) const;
// implementation specific back pointer to virtual data
mutable void *virtualModel;
virtualmodel_t *GetVirtualModel( void ) const;
// for demand loaded animation blocks
int szanimblocknameindex;
inline char * const pszAnimBlockName( void ) const { return ((char *)this) + szanimblocknameindex; }
int numanimblocks;
int animblockindex;
inline mstudioanimblock_t *pAnimBlock( int i ) const { Assert( i > 0 && i < numanimblocks); return (mstudioanimblock_t *)(((byte *)this) + animblockindex) + i; };
mutable void *animblockModel;
byte * GetAnimBlock( int i ) const;
int bonetablebynameindex;
inline const byte *GetBoneTableSortedByName() const { return (byte *)this + bonetablebynameindex; }
// used by tools only that don't cache, but persist mdl's peer data
// engine uses virtualModel to back link to cache pointers
void *pVertexBase;
void *pIndexBase;
// if STUDIOHDR_FLAGS_CONSTANT_DIRECTIONAL_LIGHT_DOT is set,
// this value is used to calculate directional components of lighting
// on static props
byte constdirectionallightdot;
// set during load of mdl data to track *desired* lod configuration (not actual)
// the *actual* clamped root lod is found in studiohwdata
// this is stored here as a global store to ensure the staged loading matches the rendering
byte rootLOD;
// set in the mdl data to specify that lod configuration should only allow first numAllowRootLODs
// to be set as root LOD:
// numAllowedRootLODs = 0 means no restriction, any lod can be set as root lod.
// numAllowedRootLODs = N means that lod0 - lod(N-1) can be set as root lod, but not lodN or lower.
byte numAllowedRootLODs;
byte unused[1];
int unused4; // zero out if version < 47
int numflexcontrollerui;
int flexcontrolleruiindex;
mstudioflexcontrollerui_t *pFlexControllerUI( int i ) const { Assert( i >= 0 && i < numflexcontrollerui); return (mstudioflexcontrollerui_t *)(((byte *)this) + flexcontrolleruiindex) + i; }
int unused3[2];
// FIXME: Remove when we up the model version. Move all fields of studiohdr2_t into studiohdr_t.
int studiohdr2index;
studiohdr2_t* pStudioHdr2() const { return (studiohdr2_t *)( ( (byte *)this ) + studiohdr2index ); }
// Src bone transforms are transformations that will convert .dmx or .smd-based animations into .mdl-based animations
int NumSrcBoneTransforms() const { return studiohdr2index ? pStudioHdr2()->numsrcbonetransform : 0; }
const mstudiosrcbonetransform_t* SrcBoneTransform( int i ) const { Assert( i >= 0 && i < NumSrcBoneTransforms()); return (mstudiosrcbonetransform_t *)(((byte *)this) + pStudioHdr2()->srcbonetransformindex) + i; }
inline int IllumPositionAttachmentIndex() const { return studiohdr2index ? pStudioHdr2()->IllumPositionAttachmentIndex() : 0; }
inline float MaxEyeDeflection() const { return studiohdr2index ? pStudioHdr2()->MaxEyeDeflection() : 0.866f; } // default to cos(30) if not set
inline mstudiolinearbone_t *pLinearBones() const { return studiohdr2index ? pStudioHdr2()->pLinearBones() : NULL; }
// NOTE: No room to add stuff? Up the .mdl file format version
// [and move all fields in studiohdr2_t into studiohdr_t and kill studiohdr2_t],
// or add your stuff to studiohdr2_t. See NumSrcBoneTransforms/SrcBoneTransform for the pattern to use.
int unused2[1];
studiohdr_t() {}
private:
// No copy constructors allowed
studiohdr_t(const studiohdr_t& vOther);
friend struct virtualmodel_t;
};
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
class IDataCache;
class IMDLCache;
class CStudioHdr
{
public:
CStudioHdr( void );
CStudioHdr( const studiohdr_t *pStudioHdr, IMDLCache *mdlcache = NULL );
~CStudioHdr() { Term(); }
void Init( const studiohdr_t *pStudioHdr, IMDLCache *mdlcache = NULL );
void Term();
public:
inline bool IsVirtual( void ) { return (m_pVModel != NULL); };
inline bool IsValid( void ) { return (m_pStudioHdr != NULL); };
inline bool IsReadyForAccess( void ) const { return (m_pStudioHdr != NULL); };
inline virtualmodel_t *GetVirtualModel( void ) const { return m_pVModel; };
inline const studiohdr_t *GetRenderHdr( void ) const { return m_pStudioHdr; };
const studiohdr_t *pSeqStudioHdr( int sequence ) const;
const studiohdr_t *pAnimStudioHdr( int animation )const;
private:
mutable const studiohdr_t *m_pStudioHdr;
mutable virtualmodel_t *m_pVModel;
const virtualmodel_t * ResetVModel( const virtualmodel_t *pVModel ) const;
const studiohdr_t *GroupStudioHdr( int group ) const;
mutable CUtlVector< const studiohdr_t * > m_pStudioHdrCache;
mutable int m_nFrameUnlockCounter;
int * m_pFrameUnlockCounter;
CThreadFastMutex m_FrameUnlockCounterMutex;
public:
inline int numbones( void ) const { return m_pStudioHdr->numbones; };
inline mstudiobone_t *pBone( int i ) const { return m_pStudioHdr->pBone( i ); };
int RemapAnimBone( int iAnim, int iLocalBone ) const; // maps local animations bone to global bone
int RemapSeqBone( int iSequence, int iLocalBone ) const; // maps local sequence bone to global bone
bool SequencesAvailable() const;
int GetNumSeq( void ) const;
mstudioanimdesc_t &pAnimdesc( int i ) const;
mstudioseqdesc_t &pSeqdesc( int iSequence ) const;
int iRelativeAnim( int baseseq, int relanim ) const; // maps seq local anim reference to global anim index
int iRelativeSeq( int baseseq, int relseq ) const; // maps seq local seq reference to global seq index
int GetSequenceActivity( int iSequence );
void SetSequenceActivity( int iSequence, int iActivity );
int GetActivityListVersion( void ) const;
void SetActivityListVersion( int version );
int GetEventListVersion( void ) const;
void SetEventListVersion( int version );
int GetNumAttachments( void ) const;
const mstudioattachment_t &pAttachment( int i ) const;
int GetAttachmentBone( int i ) const;
// used on my tools in hlmv, not persistant
void SetAttachmentBone( int iAttachment, int iBone );
int EntryNode( int iSequence ) const;
int ExitNode( int iSequence ) const;
const char *pszNodeName( int iNode ) const;
// FIXME: where should this one be?
int GetTransition( int iFrom, int iTo ) const;
int GetNumPoseParameters( void ) const;
const mstudioposeparamdesc_t &pPoseParameter( int i ) const;
int GetSharedPoseParameter( int iSequence, int iLocalPose ) const;
int GetNumIKAutoplayLocks( void ) const;
const mstudioiklock_t &pIKAutoplayLock( int i ) const;
inline int CountAutoplaySequences() const { return m_pStudioHdr->CountAutoplaySequences(); };
inline int CopyAutoplaySequences( unsigned short *pOut, int outCount ) const { return m_pStudioHdr->CopyAutoplaySequences( pOut, outCount ); };
inline int GetAutoplayList( unsigned short **pOut ) const { return m_pStudioHdr->GetAutoplayList( pOut ); };
inline int GetNumBoneControllers( void ) const { return m_pStudioHdr->numbonecontrollers; };
inline mstudiobonecontroller_t *pBonecontroller( int i ) const { return m_pStudioHdr->pBonecontroller( i ); };
inline int numikchains() const { return m_pStudioHdr->numikchains; };
inline int GetNumIKChains( void ) const { return m_pStudioHdr->numikchains; };
inline mstudioikchain_t *pIKChain( int i ) const { return m_pStudioHdr->pIKChain( i ); };
inline int numflexrules() const { return m_pStudioHdr->numflexrules; };
inline mstudioflexrule_t *pFlexRule( int i ) const { return m_pStudioHdr->pFlexRule( i ); };
inline int numflexdesc() const{ return m_pStudioHdr->numflexdesc; };
inline mstudioflexdesc_t *pFlexdesc( int i ) const { return m_pStudioHdr->pFlexdesc( i ); };
inline LocalFlexController_t numflexcontrollers() const{ return (LocalFlexController_t)m_pStudioHdr->numflexcontrollers; };
inline mstudioflexcontroller_t *pFlexcontroller( LocalFlexController_t i ) const { return m_pStudioHdr->pFlexcontroller( i ); };
inline int numflexcontrollerui() const{ return m_pStudioHdr->numflexcontrollerui; };
inline mstudioflexcontrollerui_t *pFlexcontrollerUI( int i ) const { return m_pStudioHdr->pFlexControllerUI( i ); };
inline const char *name() const { return m_pStudioHdr->name; }; // deprecated -- remove after full xbox merge
inline const char *pszName() const { return m_pStudioHdr->pszName(); };
inline int numbonecontrollers() const { return m_pStudioHdr->numbonecontrollers; };
inline int numhitboxsets() const { return m_pStudioHdr->numhitboxsets; };
inline mstudiohitboxset_t *pHitboxSet( int i ) const { return m_pStudioHdr->pHitboxSet( i ); };
inline mstudiobbox_t *pHitbox( int i, int set ) const { return m_pStudioHdr->pHitbox( i, set ); };
inline int iHitboxCount( int set ) const { return m_pStudioHdr->iHitboxCount( set ); };
inline int numbodyparts() const { return m_pStudioHdr->numbodyparts; };
inline mstudiobodyparts_t *pBodypart( int i ) const { return m_pStudioHdr->pBodypart( i ); };
inline int numskinfamilies() const { return m_pStudioHdr->numskinfamilies; }
inline Vector eyeposition() const { return m_pStudioHdr->eyeposition; };
inline int flags() const { return m_pStudioHdr->flags; };
inline char *const pszSurfaceProp( void ) const { return m_pStudioHdr->pszSurfaceProp(); };
inline float mass() const { return m_pStudioHdr->mass; };
inline int contents() const { return m_pStudioHdr->contents; }
inline const byte *GetBoneTableSortedByName() const { return m_pStudioHdr->GetBoneTableSortedByName(); };
inline Vector illumposition() const { return m_pStudioHdr->illumposition; };
inline Vector hull_min() const { return m_pStudioHdr->hull_min; }; // ideal movement hull size
inline Vector hull_max() const { return m_pStudioHdr->hull_max; };
inline Vector view_bbmin() const { return m_pStudioHdr->view_bbmin; }; // clipping bounding box
inline Vector view_bbmax() const { return m_pStudioHdr->view_bbmax; };
inline int numtextures() const { return m_pStudioHdr->numtextures; };
inline int IllumPositionAttachmentIndex() const { return m_pStudioHdr->IllumPositionAttachmentIndex(); }
inline float MaxEyeDeflection() const { return m_pStudioHdr->MaxEyeDeflection(); }
inline mstudiolinearbone_t *pLinearBones() const { return m_pStudioHdr->pLinearBones(); }
public:
int IsSequenceLooping( int iSequence );
float GetSequenceCycleRate( int iSequence );
void RunFlexRules( const float *src, float *dest );
public:
inline int boneFlags( int iBone ) const { return m_boneFlags[ iBone ]; }
inline int boneParent( int iBone ) const { return m_boneParent[ iBone ]; }
private:
CUtlVector< int > m_boneFlags;
CUtlVector< int > m_boneParent;
public:
// This class maps an activity to sequences allowed for that activity, accelerating the resolution
// of SelectWeightedSequence(), especially on PowerPC. Iterating through every sequence
// attached to a model turned out to be a very destructive cache access pattern on 360.
//
// I've encapsulated this behavior inside a nested class for organizational reasons; there is
// no particular programmatic or efficiency benefit to it. It just makes clearer what particular
// code in the otherwise very complicated StudioHdr class has to do with this particular
// optimization, and it lets you collapse the whole definition down to a single line in Visual
// Studio.
class CActivityToSequenceMapping /* final */
{
public:
// A tuple of a sequence and its corresponding weight. Lists of these correspond to activities.
struct SequenceTuple
{
short seqnum;
short weight; // the absolute value of the weight from the sequence header
};
// The type of the hash's stored data, a composite of both key and value
// (because that's how CUtlHash works):
// key: an int, the activity #
// values: an index into the m_pSequenceTuples array, a count of the
// total sequences present for an activity, and the sum of their
// weights.
// Note this struct is 128-bits wide, exactly coincident to a PowerPC
// cache line and VMX register. Please consider very carefully the
// performance implications before adding any additional fields to this.
// You could probably do away with totalWeight if you really had to.
struct HashValueType
{
// KEY (hashed)
int activityIdx;
// VALUE (not hashed)
int startingIdx;
int count;
int totalWeight;
HashValueType(int _actIdx, int _stIdx, int _ct, int _tW) :
activityIdx(_actIdx), startingIdx(_stIdx), count(_ct), totalWeight(_tW) {}
// default constructor (ought not to be actually used)
HashValueType() : activityIdx(-1), startingIdx(-1), count(-1), totalWeight(-1)
{ AssertMsg(false, "Don't use default HashValueType()!"); }
class HashFuncs
{
public:
// dummy constructor (gndn)
HashFuncs( int ) {}
// COMPARE
// compare two entries for uniqueness. We should never have two different
// entries for the same activity, so we only compare the activity index;
// this allows us to use the utlhash as a dict by constructing dummy entries
// as hash lookup keys.
bool operator()( const HashValueType &lhs, const HashValueType &rhs ) const
{
return lhs.activityIdx == rhs.activityIdx;
}
// HASH
// We only hash on the activity index; everything else is data.
unsigned int operator()( const HashValueType &item ) const
{
return HashInt( item.activityIdx );
}
};
};
typedef CUtlHash<HashValueType, HashValueType::HashFuncs, HashValueType::HashFuncs> ActivityToValueIdxHash;
// ctor
CActivityToSequenceMapping( void )
: m_pSequenceTuples(NULL), m_iSequenceTuplesCount(0),
#if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE
m_bIsInitialized(false),
#endif
m_ActToSeqHash(8,0,0), m_expectedPStudioHdr(NULL), m_expectedVModel(NULL)
{};
// dtor -- not virtual because this class has no inheritors
~CActivityToSequenceMapping()
{
if ( m_pSequenceTuples != NULL )
{
delete[] m_pSequenceTuples;
}
}
/// Get the list of sequences for an activity. Returns the pointer to the
/// first sequence tuple. Output parameters are a count of sequences present,
/// and the total weight of all the sequences. (it would be more LHS-friendly
/// to return these on registers, if only C++ offered more than one return
/// value....)
const SequenceTuple *GetSequences( int forActivity, int *outSequenceCount, int *outTotalWeight );
/// The number of sequences available for an activity.
int NumSequencesForActivity( int forActivity );
#if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE
inline bool IsInitialized( void ) { return m_bIsInitialized; }
#endif
private:
/// Allocate my internal array. (It is freed in the destructor.) Also,
/// build the hash of activities to sequences and populate m_pSequenceTuples.
void Initialize( CStudioHdr *pstudiohdr );
/// Force Initialize() to occur again, even if it has already occured.
void Reinitialize( CStudioHdr *pstudiohdr );
/// A more efficient version of the old SelectWeightedSequence() function in animation.cpp.
int SelectWeightedSequence( CStudioHdr *pstudiohdr, int activity, int curSequence );
// Actually a big array, into which the hash values index.
SequenceTuple *m_pSequenceTuples;
unsigned int m_iSequenceTuplesCount; // (size of the whole array)
#if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE
bool m_bIsInitialized;
#endif
// we don't store an outer pointer because we can't initialize it at construction time
// (warning c4355) -- there are ways around this but it's easier to just pass in a
// pointer to the CStudioHdr when we need it, since this class isn't supposed to
// export its interface outside the studio header anyway.
// CStudioHdr * const m_pOuter;
ActivityToValueIdxHash m_ActToSeqHash;
// we store these so we can know if the contents of the studiohdr have changed
// from underneath our feet (this is an emergency data integrity check)
const void *m_expectedPStudioHdr;
const void *m_expectedVModel;
// double-check that the data I point to hasn't changed
bool ValidateAgainst( const CStudioHdr * RESTRICT pstudiohdr );
void SetValidationPair( const CStudioHdr *RESTRICT pstudiohdr );
friend class CStudioHdr;
};
CActivityToSequenceMapping m_ActivityToSequence;
/// A more efficient version of the old SelectWeightedSequence() function in animation.cpp.
/// Returns -1 on failure to find a sequence
inline int SelectWeightedSequence( int activity, int curSequence )
{
#if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE
// We lazy-initialize the header on demand here, because CStudioHdr::Init() is
// called from the constructor, at which time the this pointer is illegitimate.
if ( !m_ActivityToSequence.IsInitialized() )
{
m_ActivityToSequence.Initialize(this);
}
#endif
return m_ActivityToSequence.SelectWeightedSequence( this, activity, curSequence );
}
/// True iff there is at least one sequence for the given activity.
inline bool HaveSequenceForActivity( int activity )
{
#if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE
if ( !m_ActivityToSequence.IsInitialized() )
{
m_ActivityToSequence.Initialize(this);
}
#endif
return (m_ActivityToSequence.NumSequencesForActivity( activity ) > 0);
}
// Force this CStudioHdr's activity-to-sequence mapping to be reinitialized
inline void ReinitializeSequenceMapping(void)
{
m_ActivityToSequence.Reinitialize(this);
}
#ifdef STUDIO_ENABLE_PERF_COUNTERS
public:
inline void ClearPerfCounters( void )
{
m_nPerfAnimatedBones = 0;
m_nPerfUsedBones = 0;
m_nPerfAnimationLayers = 0;
};
// timing info
mutable int m_nPerfAnimatedBones;
mutable int m_nPerfUsedBones;
mutable int m_nPerfAnimationLayers;
#endif
};
/*
class CModelAccess
{
public:
CModelAccess(CStudioHdr *pSemaphore)
: m_pStudioHdr(pSemaphore)
{
m_pStudioHdr->IncrementAccess();
}
~CModelAccess()
{
m_pStudioHdr->DecrementAccess();
}
private:
CStudioHdr *m_pStudioHdr;
};
#define ENABLE_MODEL_ACCESS( a ) \
CModelAccess ModelAccess##__LINE__( a->m_pStudioHdr )
*/
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
struct flexweight_t
{
DECLARE_BYTESWAP_DATADESC();
int key;
float weight;
float influence;
};
struct flexsetting_t
{
DECLARE_BYTESWAP_DATADESC();
int nameindex;
inline char *pszName( void ) const
{
return (char *)(((byte *)this) + nameindex);
}
// Leaving this for legacy support
int obsolete1;
// Number of flex settings
int numsettings;
int index;
// OBSOLETE:
int obsolete2;
// Index of start of contiguous array of flexweight_t structures
int settingindex;
//-----------------------------------------------------------------------------
// Purpose: Retrieves a pointer to the flexweight_t, including resolving
// any markov chain hierarchy. Because of this possibility, we return
// the number of settings in the weights array returned. We'll generally
// call this function with i == 0
// Input : *base -
// i -
// **weights -
// Output : int
//-----------------------------------------------------------------------------
inline int psetting( byte *base, int i, flexweight_t **weights ) const;
};
struct flexsettinghdr_t
{
DECLARE_BYTESWAP_DATADESC();
int id;
int version;
inline const char * pszName( void ) const { return name; }
char name[64];
int length;
int numflexsettings;
int flexsettingindex;
inline flexsetting_t *pSetting( int i ) const { return (flexsetting_t *)(((byte *)this) + flexsettingindex) + i; };
int nameindex;
// look up flex settings by "index"
int numindexes;
int indexindex;
inline flexsetting_t *pIndexedSetting( int index ) const
{
if ( index < 0 || index >= numindexes )
{
return NULL;
}
int i = *((int *)(((byte *)this) + indexindex) + index);
if (i == -1)
{
return NULL;
}
return pSetting( i );
}
// index names of "flexcontrollers"
int numkeys;
int keynameindex;
inline char *pLocalName( int i ) const { return (char *)(((byte *)this) + *((int *)(((byte *)this) + keynameindex) + i)); };
int keymappingindex;
inline int *pLocalToGlobal( int i ) const { return (int *)(((byte *)this) + keymappingindex) + i; };
inline int LocalToGlobal( int i ) const { return *pLocalToGlobal( i ); };
};
//-----------------------------------------------------------------------------
// Purpose: Retrieves a pointer to the flexweight_t.
// Input : *base - flexsettinghdr_t * pointer
// i - index of flex setting to retrieve
// **weights - destination for weights array starting at index i.
// Output : int
//-----------------------------------------------------------------------------
inline int flexsetting_t::psetting( byte *base, int i, flexweight_t **weights ) const
{
// Grab array pointer
*weights = (flexweight_t *)(((byte *)this) + settingindex) + i;
// Return true number of settings
return numsettings;
};
//-----------------------------------------------------------------------------
// For a given flex controller ui struct, these return the index of the
// studiohdr_t flex controller that correspond to the the left and right
// flex controllers if the ui controller is a stereo control.
// nWayValueIndex returns the index of the flex controller that is the value
// flex controller for an NWAY combination
// If these functions are called and the ui controller isn't of the type
// specified then -1 is returned
//-----------------------------------------------------------------------------
inline int mstudioflexcontrollerui_t::controllerIndex( const CStudioHdr &cStudioHdr ) const
{
return !stereo ? pController() - cStudioHdr.pFlexcontroller( (LocalFlexController_t)0 ) : -1;
}
inline int mstudioflexcontrollerui_t::rightIndex( const CStudioHdr &cStudioHdr ) const
{
return stereo ? pRightController() - cStudioHdr.pFlexcontroller( (LocalFlexController_t)0 ) : -1;
}
inline int mstudioflexcontrollerui_t::leftIndex( const CStudioHdr &cStudioHdr ) const
{
return stereo ? pLeftController() - cStudioHdr.pFlexcontroller((LocalFlexController_t) 0 ) : -1;
}
inline int mstudioflexcontrollerui_t::nWayValueIndex( const CStudioHdr &cStudioHdr ) const
{
return remaptype == FLEXCONTROLLER_REMAP_NWAY ? pNWayValueController() - cStudioHdr.pFlexcontroller( (LocalFlexController_t)0 ) : -1;
}
inline const mstudioflexcontroller_t *mstudioflexcontrollerui_t::pController( int index ) const
{
if ( index < 0 || index > Count() )
return NULL;
if ( remaptype == FLEXCONTROLLER_REMAP_NWAY )
{
if ( stereo )
return (mstudioflexcontroller_t *)( ( char * ) this ) + *( &szindex0 + index );
if ( index == 0 )
return pController();
if ( index == 1 )
return pNWayValueController();
return NULL;
}
if ( index > 1 )
return NULL;
if ( stereo )
return (mstudioflexcontroller_t *)( ( char * ) this ) + *( &szindex0 + index );
if ( index > 0 )
return NULL;
return pController();
}
#define STUDIO_CONST 1 // get float
#define STUDIO_FETCH1 2 // get Flexcontroller value
#define STUDIO_FETCH2 3 // get flex weight
#define STUDIO_ADD 4
#define STUDIO_SUB 5
#define STUDIO_MUL 6
#define STUDIO_DIV 7
#define STUDIO_NEG 8 // not implemented
#define STUDIO_EXP 9 // not implemented
#define STUDIO_OPEN 10 // only used in token parsing
#define STUDIO_CLOSE 11
#define STUDIO_COMMA 12 // only used in token parsing
#define STUDIO_MAX 13
#define STUDIO_MIN 14
#define STUDIO_2WAY_0 15 // Fetch a value from a 2 Way slider for the 1st value RemapVal( 0.0, 0.5, 0.0, 1.0 )
#define STUDIO_2WAY_1 16 // Fetch a value from a 2 Way slider for the 2nd value RemapVal( 0.5, 1.0, 0.0, 1.0 )
#define STUDIO_NWAY 17 // Fetch a value from a 2 Way slider for the 2nd value RemapVal( 0.5, 1.0, 0.0, 1.0 )
#define STUDIO_COMBO 18 // Perform a combo operation (essentially multiply the last N values on the stack)
#define STUDIO_DOMINATE 19 // Performs a combination domination operation
#define STUDIO_DME_LOWER_EYELID 20 //
#define STUDIO_DME_UPPER_EYELID 21 //
// motion flags
#define STUDIO_X 0x00000001
#define STUDIO_Y 0x00000002
#define STUDIO_Z 0x00000004
#define STUDIO_XR 0x00000008
#define STUDIO_YR 0x00000010
#define STUDIO_ZR 0x00000020
#define STUDIO_LX 0x00000040
#define STUDIO_LY 0x00000080
#define STUDIO_LZ 0x00000100
#define STUDIO_LXR 0x00000200
#define STUDIO_LYR 0x00000400
#define STUDIO_LZR 0x00000800
#define STUDIO_LINEAR 0x00001000
#define STUDIO_TYPES 0x0003FFFF
#define STUDIO_RLOOP 0x00040000 // controller that wraps shortest distance
// sequence and autolayer flags
#define STUDIO_LOOPING 0x0001 // ending frame should be the same as the starting frame
#define STUDIO_SNAP 0x0002 // do not interpolate between previous animation and this one
#define STUDIO_DELTA 0x0004 // this sequence "adds" to the base sequences, not slerp blends
#define STUDIO_AUTOPLAY 0x0008 // temporary flag that forces the sequence to always play
#define STUDIO_POST 0x0010 //
#define STUDIO_ALLZEROS 0x0020 // this animation/sequence has no real animation data
// 0x0040
#define STUDIO_CYCLEPOSE 0x0080 // cycle index is taken from a pose parameter index
#define STUDIO_REALTIME 0x0100 // cycle index is taken from a real-time clock, not the animations cycle index
#define STUDIO_LOCAL 0x0200 // sequence has a local context sequence
#define STUDIO_HIDDEN 0x0400 // don't show in default selection views
#define STUDIO_OVERRIDE 0x0800 // a forward declared sequence (empty)
#define STUDIO_ACTIVITY 0x1000 // Has been updated at runtime to activity index
#define STUDIO_EVENT 0x2000 // Has been updated at runtime to event index
#define STUDIO_WORLD 0x4000 // sequence blends in worldspace
// autolayer flags
// 0x0001
// 0x0002
// 0x0004
// 0x0008
#define STUDIO_AL_POST 0x0010 //
// 0x0020
#define STUDIO_AL_SPLINE 0x0040 // convert layer ramp in/out curve is a spline instead of linear
#define STUDIO_AL_XFADE 0x0080 // pre-bias the ramp curve to compense for a non-1 weight, assuming a second layer is also going to accumulate
// 0x0100
#define STUDIO_AL_NOBLEND 0x0200 // animation always blends at 1.0 (ignores weight)
// 0x0400
// 0x0800
#define STUDIO_AL_LOCAL 0x1000 // layer is a local context sequence
// 0x2000
#define STUDIO_AL_POSE 0x4000 // layer blends using a pose parameter instead of parent cycle
// Insert this code anywhere that you need to allow for conversion from an old STUDIO_VERSION
// to a new one.
// If we only support the current version, this function should be empty.
inline bool Studio_ConvertStudioHdrToNewVersion( studiohdr_t *pStudioHdr )
{
COMPILE_TIME_ASSERT( STUDIO_VERSION == 48 ); // put this to make sure this code is updated upon changing version.
int version = pStudioHdr->version;
if ( version == STUDIO_VERSION )
return true;
bool bResult = true;
if (version < 46)
{
// some of the anim index data is incompatible
for (int i = 0; i < pStudioHdr->numlocalanim; i++)
{
mstudioanimdesc_t *pAnim = (mstudioanimdesc_t *)pStudioHdr->pLocalAnimdesc( i );
// old ANI files that used sections (v45 only) are not compatible
if ( pAnim->sectionframes != 0 )
{
// zero most everything out
memset( &(pAnim->numframes), 0, (byte *)(pAnim + 1) - (byte *)&(pAnim->numframes) );
pAnim->numframes = 1;
pAnim->animblock = -1; // disable animation fetching
bResult = false;
}
}
}
if (version < 47)
{
// used to contain zeroframe cache data
if (pStudioHdr->unused4 != 0)
{
pStudioHdr->unused4 = 0;
bResult = false;
}
for (int i = 0; i < pStudioHdr->numlocalanim; i++)
{
mstudioanimdesc_t *pAnim = (mstudioanimdesc_t *)pStudioHdr->pLocalAnimdesc( i );
pAnim->zeroframeindex = 0;
pAnim->zeroframespan = 0;
}
}
else if (version == 47)
{
for (int i = 0; i < pStudioHdr->numlocalanim; i++)
{
mstudioanimdesc_t *pAnim = (mstudioanimdesc_t *)pStudioHdr->pLocalAnimdesc( i );
if (pAnim->zeroframeindex != 0)
{
pAnim->zeroframeindex = 0;
pAnim->zeroframespan = 0;
bResult = false;
}
}
}
// for now, just slam the version number since they're compatible
pStudioHdr->version = STUDIO_VERSION;
return bResult;
}
// must be run to fixup with specified rootLOD
inline void Studio_SetRootLOD( studiohdr_t *pStudioHdr, int rootLOD )
{
// honor studiohdr restriction of root lod in case requested root lod exceeds restriction.
if ( pStudioHdr->numAllowedRootLODs > 0 &&
rootLOD >= pStudioHdr->numAllowedRootLODs )
{
rootLOD = pStudioHdr->numAllowedRootLODs - 1;
}
// run the lod fixups that culls higher detail lods
// vertexes are external, fixups ensure relative offsets and counts are cognizant of shrinking data
// indexes are built in lodN..lod0 order so higher detail lod data can be truncated at load
// the fixup lookup arrays are filled (or replicated) to ensure all slots valid
int vertexindex = 0;
int tangentsindex = 0;
int bodyPartID;
for ( bodyPartID = 0; bodyPartID < pStudioHdr->numbodyparts; bodyPartID++ )
{
mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart( bodyPartID );
int modelID;
for ( modelID = 0; modelID < pBodyPart->nummodels; modelID++ )
{
mstudiomodel_t *pModel = pBodyPart->pModel( modelID );
int totalMeshVertexes = 0;
int meshID;
for ( meshID = 0; meshID < pModel->nummeshes; meshID++ )
{
mstudiomesh_t *pMesh = pModel->pMesh( meshID );
// get the fixup, vertexes are reduced
pMesh->numvertices = pMesh->vertexdata.numLODVertexes[rootLOD];
pMesh->vertexoffset = totalMeshVertexes;
totalMeshVertexes += pMesh->numvertices;
}
// stay in sync
pModel->numvertices = totalMeshVertexes;
pModel->vertexindex = vertexindex;
pModel->tangentsindex = tangentsindex;
vertexindex += totalMeshVertexes*sizeof(mstudiovertex_t);
tangentsindex += totalMeshVertexes*sizeof(Vector4D);
}
}
// track the set desired configuration
pStudioHdr->rootLOD = rootLOD;
}
// Determines allocation requirements for vertexes
inline int Studio_VertexDataSize( const vertexFileHeader_t *pVvdHdr, int rootLOD, bool bNeedsTangentS )
{
// the quantity of vertexes necessary for root lod and all lower detail lods
// add one extra vertex to each section
// the extra vertex allows prefetch hints to read ahead 1 vertex without faulting
int numVertexes = pVvdHdr->numLODVertexes[rootLOD] + 1;
int dataLength = pVvdHdr->vertexDataStart + numVertexes*sizeof(mstudiovertex_t);
if (bNeedsTangentS)
{
dataLength += numVertexes*sizeof(Vector4D);
}
// allocate this much
return dataLength;
}
// Load the minimum quantity of verts and run fixups
inline int Studio_LoadVertexes( const vertexFileHeader_t *pTempVvdHdr, vertexFileHeader_t *pNewVvdHdr, int rootLOD, bool bNeedsTangentS )
{
int i;
int target;
int numVertexes;
vertexFileFixup_t *pFixupTable;
numVertexes = pTempVvdHdr->numLODVertexes[rootLOD];
// copy all data up to start of vertexes
memcpy((void*)pNewVvdHdr, (void*)pTempVvdHdr, pTempVvdHdr->vertexDataStart);
for ( i = 0; i < rootLOD; i++)
{
pNewVvdHdr->numLODVertexes[i] = pNewVvdHdr->numLODVertexes[rootLOD];
}
// fixup data starts
if (bNeedsTangentS)
{
// tangent data follows possibly reduced vertex data
pNewVvdHdr->tangentDataStart = pNewVvdHdr->vertexDataStart + numVertexes*sizeof(mstudiovertex_t);
}
else
{
// no tangent data will be available, mark for identification
pNewVvdHdr->tangentDataStart = 0;
}
if (!pNewVvdHdr->numFixups)
{
// fixups not required
// transfer vertex data
memcpy(
(byte *)pNewVvdHdr+pNewVvdHdr->vertexDataStart,
(byte *)pTempVvdHdr+pTempVvdHdr->vertexDataStart,
numVertexes*sizeof(mstudiovertex_t) );
if (bNeedsTangentS)
{
// transfer tangent data to cache memory
memcpy(
(byte *)pNewVvdHdr+pNewVvdHdr->tangentDataStart,
(byte *)pTempVvdHdr+pTempVvdHdr->tangentDataStart,
numVertexes*sizeof(Vector4D) );
}
return numVertexes;
}
// fixups required
// re-establish mesh ordered vertexes into cache memory, according to table
target = 0;
pFixupTable = (vertexFileFixup_t *)((byte *)pTempVvdHdr + pTempVvdHdr->fixupTableStart);
for (i=0; i<pTempVvdHdr->numFixups; i++)
{
if (pFixupTable[i].lod < rootLOD)
{
// working bottom up, skip over copying higher detail lods
continue;
}
// copy vertexes
memcpy(
(mstudiovertex_t *)((byte *)pNewVvdHdr+pNewVvdHdr->vertexDataStart) + target,
(mstudiovertex_t *)((byte *)pTempVvdHdr+pTempVvdHdr->vertexDataStart) + pFixupTable[i].sourceVertexID,
pFixupTable[i].numVertexes*sizeof(mstudiovertex_t) );
if (bNeedsTangentS)
{
// copy tangents
memcpy(
(Vector4D *)((byte *)pNewVvdHdr+pNewVvdHdr->tangentDataStart) + target,
(Vector4D *)((byte *)pTempVvdHdr+pTempVvdHdr->tangentDataStart) + pFixupTable[i].sourceVertexID,
pFixupTable[i].numVertexes*sizeof(Vector4D) );
}
// data is placed consecutively
target += pFixupTable[i].numVertexes;
}
pNewVvdHdr->numFixups = 0;
return target;
}
#endif // STUDIO_H