1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-09 10:39:03 +08:00
hl2sdk/public/tier0/threadtools.h
vanz696 aaaaaf040b
Update CUtlMemoryPoolBase after 4/2/2024 update (#228)
Also updates tier0/tslist.h to sdk2013 variant and other minor stuff.
2024-04-06 23:49:28 +03:00

1842 lines
65 KiB
C++

//========== Copyright © 2005, Valve Corporation, All rights reserved. ========
//
// Purpose: A collection of utility classes to simplify thread handling, and
// as much as possible contain portability problems. Here avoiding
// including windows.h.
//
//=============================================================================
#ifndef THREADTOOLS_H
#define THREADTOOLS_H
#include <limits.h>
#include "tier0/platform.h"
#include "tier0/dbg.h"
#ifdef PLATFORM_WINDOWS_PC
#include <intrin.h>
#endif
#ifdef POSIX
#include <pthread.h>
#include <errno.h>
#define WAIT_OBJECT_0 0
#define WAIT_TIMEOUT 0x00000102
#define WAIT_FAILED -1
#define THREAD_PRIORITY_HIGHEST 2
#endif
#ifdef OSX
// Add some missing defines
#define PTHREAD_MUTEX_TIMED_NP PTHREAD_MUTEX_NORMAL
#define PTHREAD_MUTEX_RECURSIVE_NP PTHREAD_MUTEX_RECURSIVE
#define PTHREAD_MUTEX_ERRORCHECK_NP PTHREAD_MUTEX_ERRORCHECK
#define PTHREAD_MUTEX_ADAPTIVE_NP 3
#endif
#if defined( _WIN32 )
#pragma once
#pragma warning(push)
#pragma warning(disable:4251)
#endif
// #define THREAD_PROFILER 1
#define THREAD_MUTEX_TRACING_SUPPORTED
#if defined(_WIN32) && defined(_DEBUG)
#define THREAD_MUTEX_TRACING_ENABLED
#endif
#ifdef _WIN32
typedef void *HANDLE;
#endif
#ifdef _X360
#define MAX_THREADS_SUPPORTED 16
#else
#define MAX_THREADS_SUPPORTED 32
#endif
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
const unsigned TT_INFINITE = 0xffffffff;
#ifdef _WIN32
typedef uint32 ThreadId_t;
#else
typedef uint64 ThreadId_t;
#endif
//-----------------------------------------------------------------------------
//
// Simple thread creation. Differs from VCR mode/CreateThread/_beginthreadex
// in that it accepts a standard C function rather than compiler specific one.
//
//-----------------------------------------------------------------------------
FORWARD_DECLARE_HANDLE( ThreadHandle_t );
typedef uintp (*ThreadFunc_t)( void *pParam );
PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, unsigned stackSize = 0 );
PLATFORM_INTERFACE bool ReleaseThreadHandle( ThreadHandle_t );
//-----------------------------------------------------------------------------
PLATFORM_INTERFACE void ThreadSleep(unsigned duration = 0);
PLATFORM_INTERFACE ThreadId_t ThreadGetCurrentId();
PLATFORM_INTERFACE ThreadHandle_t ThreadGetCurrentHandle();
PLATFORM_INTERFACE int ThreadGetPriority( ThreadHandle_t hThread = NULL );
PLATFORM_INTERFACE bool ThreadSetPriority( ThreadHandle_t hThread, int priority );
inline bool ThreadSetPriority( int priority ) { return ThreadSetPriority( NULL, priority ); }
PLATFORM_INTERFACE bool ThreadInMainThread();
PLATFORM_INTERFACE void DeclareCurrentThreadIsMainThread();
// NOTE: ThreadedLoadLibraryFunc_t needs to return the sleep time in milliseconds or TT_INFINITE
typedef int (*ThreadedLoadLibraryFunc_t)();
PLATFORM_INTERFACE void SetThreadedLoadLibraryFunc( ThreadedLoadLibraryFunc_t func );
PLATFORM_INTERFACE ThreadedLoadLibraryFunc_t GetThreadedLoadLibraryFunc();
#if defined( PLATFORM_WINDOWS_PC )
DLL_IMPORT unsigned long STDCALL GetCurrentThreadId();
#define ThreadGetCurrentId GetCurrentThreadId
#endif
inline void ThreadPause()
{
#if defined( PLATFORM_WINDOWS_PC )
// Intrinsic for __asm pause; from <intrin.h>
_mm_pause();
#elif defined( POSIX )
__asm __volatile( "pause" );
#elif defined( _X360 )
#else
#error "implement me"
#endif
}
PLATFORM_INTERFACE bool ThreadJoin( ThreadHandle_t, unsigned timeout = TT_INFINITE );
PLATFORM_INTERFACE void ThreadSetDebugName( ThreadHandle_t hThread, const char *pszName );
inline void ThreadSetDebugName( const char *pszName ) { ThreadSetDebugName( NULL, pszName ); }
PLATFORM_INTERFACE void ThreadSetAffinity( ThreadHandle_t hThread, int nAffinityMask );
//-----------------------------------------------------------------------------
//
// Interlock methods. These perform very fast atomic thread
// safe operations. These are especially relevant in a multi-core setting.
//
//-----------------------------------------------------------------------------
#ifdef _WIN32
#define NOINLINE
#elif defined(POSIX)
#define NOINLINE __attribute__ ((noinline))
#endif
// ThreadMemoryBarrier is a fence/barrier sufficient for most uses. It prevents reads
// from moving past reads, and writes moving past writes. It is sufficient for
// read-acquire and write-release barriers. It is not a full barrier and it does
// not prevent reads from moving past writes -- that would require a full __sync()
// on PPC and is significantly more expensive.
#if defined( _X360 ) || defined( _PS3 )
#define ThreadMemoryBarrier() __lwsync()
#elif defined(_MSC_VER)
// Prevent compiler reordering across this barrier. This is
// sufficient for most purposes on x86/x64.
#if _MSC_VER < 1500
// !KLUDGE! For VC 2005
// http://connect.microsoft.com/VisualStudio/feedback/details/100051
#pragma intrinsic(_ReadWriteBarrier)
#endif
#define ThreadMemoryBarrier() _ReadWriteBarrier()
#elif defined(GNUC)
// Prevent compiler reordering across this barrier. This is
// sufficient for most purposes on x86/x64.
// http://preshing.com/20120625/memory-ordering-at-compile-time
#define ThreadMemoryBarrier() asm volatile("" ::: "memory")
#else
#error Every platform needs to define ThreadMemoryBarrier to at least prevent compiler reordering
#endif
#if defined( POSIX )
// linux implementation
inline int32 ThreadInterlockedIncrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return __sync_add_and_fetch( p, 1 ); }
inline int32 ThreadInterlockedDecrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return __sync_sub_and_fetch( p, 1 ); }
inline int32 ThreadInterlockedExchange( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return __sync_lock_test_and_set( p, value ); }
inline int32 ThreadInterlockedExchangeAdd( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return __sync_fetch_and_add( p, value ); }
inline int32 ThreadInterlockedCompareExchange( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return __sync_val_compare_and_swap( p, comperand, value ); }
inline bool ThreadInterlockedAssignIf( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return __sync_bool_compare_and_swap( p, comperand, value ); }
inline int64 ThreadInterlockedIncrement64( int64 volatile *p ) { Assert( (size_t)p % 8 == 0 ); return __sync_add_and_fetch( p, 1 ); }
inline int64 ThreadInterlockedDecrement64( int64 volatile *p ) { Assert( (size_t)p % 8 == 0 ); return __sync_sub_and_fetch( p, 1 ); }
inline int64 ThreadInterlockedExchange64( int64 volatile *p, int64 value ) { Assert( (size_t)p % 8 == 0 ); return __sync_lock_test_and_set( p, value ); }
inline int64 ThreadInterlockedExchangeAdd64( int64 volatile *p, int64 value ) { Assert( (size_t)p % 8 == 0 ); return __sync_fetch_and_add( p, value ); }
inline int64 ThreadInterlockedCompareExchange64( int64 volatile *p, int64 value, int64 comperand ) { Assert( (size_t)p % 8 == 0 ); return __sync_val_compare_and_swap( p, comperand, value ); }
inline bool ThreadInterlockedAssignIf64( int64 volatile *p, int64 value, int64 comperand ) { Assert( (size_t)p % 8 == 0 ); return __sync_bool_compare_and_swap( p, comperand, value ); }
inline void *ThreadInterlockedExchangePointer( void * volatile *p, void *value ) { Assert( (size_t)p % sizeof(void*) == 0 ); return __sync_lock_test_and_set( p, value ); }
inline void *ThreadInterlockedCompareExchangePointer( void * volatile *p, void *value, void *comperand ) { Assert( (size_t)p % sizeof(void*) == 0 ); return __sync_val_compare_and_swap( p, comperand, value ); }
inline bool ThreadInterlockedAssignPointerIf( void * volatile *p, void *value, void *comperand ) { Assert( (size_t)p % sizeof(void*) == 0 ); return __sync_bool_compare_and_swap( p, comperand, value ); }
#elif ( defined( PLATFORM_WINDOWS_PC ) && ( _MSC_VER >= 1310 ) )
// windows implemnetation using compiler intrinsics
#pragma intrinsic( _InterlockedIncrement )
#pragma intrinsic( _InterlockedDecrement )
#pragma intrinsic( _InterlockedExchange )
#pragma intrinsic( _InterlockedExchangeAdd )
#pragma intrinsic( _InterlockedCompareExchange )
inline int32 ThreadInterlockedIncrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedIncrement( (volatile long*)p ); }
inline int32 ThreadInterlockedDecrement( int32 volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedDecrement( (volatile long*)p ); }
inline int32 ThreadInterlockedExchange( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchange( (volatile long*)p, value ); }
inline int32 ThreadInterlockedExchangeAdd( int32 volatile *p, int32 value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchangeAdd( (volatile long*)p, value ); }
inline int32 ThreadInterlockedCompareExchange( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedCompareExchange( (volatile long*)p, value, comperand ); }
inline bool ThreadInterlockedAssignIf( int32 volatile *p, int32 value, int32 comperand ) { Assert( (size_t)p % 4 == 0 ); return ( _InterlockedCompareExchange( (volatile long*)p, value, comperand ) == comperand ); }
#if defined( PLATFORM_64BITS )
#pragma intrinsic( _InterlockedIncrement64 )
#pragma intrinsic( _InterlockedDecrement64 )
#pragma intrinsic( _InterlockedExchange64 )
#pragma intrinsic( _InterlockedExchangeAdd64 )
#pragma intrinsic( _InterlockedCompareExchange64 )
inline int64 ThreadInterlockedIncrement64( int64 volatile *p ) { Assert( (size_t)p % 8 == 0 ); return _InterlockedIncrement64( (volatile __int64*)p ); }
inline int64 ThreadInterlockedDecrement64( int64 volatile *p ) { Assert( (size_t)p % 8 == 0 ); return _InterlockedDecrement64( (volatile __int64*)p ); }
inline int64 ThreadInterlockedExchange64( int64 volatile *p, int64 value ) { Assert( (size_t)p % 8 == 0 ); return _InterlockedExchange64( (volatile __int64*)p, value ); }
inline int64 ThreadInterlockedExchangeAdd64( int64 volatile *p, int64 value ) { Assert( (size_t)p % 8 == 0 ); return _InterlockedExchangeAdd64( (volatile __int64*)p, value ); }
inline int64 ThreadInterlockedCompareExchange64( int64 volatile *p, int64 value, int64 comperand ) { Assert( (size_t)p % 8 == 0 ); return _InterlockedCompareExchange64( (volatile __int64*)p, value, comperand ); }
inline bool ThreadInterlockedAssignIf64( int64 volatile *p, int64 value, int64 comperand ) { Assert( (size_t)p % 8 == 0 ); return ( _InterlockedCompareExchange64( (volatile __int64*)p, value, comperand ) == comperand ); }
#else
PLATFORM_INTERFACE int64 ThreadInterlockedIncrement64( int64 volatile * ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedDecrement64( int64 volatile * ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedExchange64( int64 volatile *, int64 value ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedExchangeAdd64( int64 volatile *, int64 value ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedCompareExchange64( int64 volatile *, int64 value, int64 comperand ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf64(volatile int64 *pDest, int64 value, int64 comperand ) NOINLINE;
#endif
#pragma intrinsic( _InterlockedExchangePointer )
#pragma intrinsic( _InterlockedCompareExchangePointer )
inline void *ThreadInterlockedExchangePointer( void * volatile *p, void *value ) { Assert( (size_t)p % sizeof(void*) == 0 ); return _InterlockedExchangePointer( p, value ); }
inline void *ThreadInterlockedCompareExchangePointer( void * volatile *p, void *value, void *comperand ) { Assert( (size_t)p % sizeof(void*) == 0 ); return _InterlockedCompareExchangePointer( p, value, comperand ); }
inline bool ThreadInterlockedAssignPointerIf( void * volatile *p, void *value, void *comperand ) { Assert( (size_t)p % sizeof(void*) == 0 ); return ( _InterlockedCompareExchangePointer( p, value, comperand ) == comperand ); }
#else
// 360 implementation
PLATFORM_INTERFACE int32 ThreadInterlockedIncrement( int32 volatile * ) NOINLINE;
PLATFORM_INTERFACE int32 ThreadInterlockedDecrement( int32 volatile * ) NOINLINE;
PLATFORM_INTERFACE int32 ThreadInterlockedExchange( int32 volatile *, int32 value ) NOINLINE;
PLATFORM_INTERFACE int32 ThreadInterlockedExchangeAdd( int32 volatile *, int32 value ) NOINLINE;
PLATFORM_INTERFACE int32 ThreadInterlockedCompareExchange( int32 volatile *, int32 value, int32 comperand ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf( int32 volatile *, int32 value, int32 comperand ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedIncrement64( int64 volatile * ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedDecrement64( int64 volatile * ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedExchange64( int64 volatile *, int64 value ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedExchangeAdd64( int64 volatile *, int64 value ) NOINLINE;
PLATFORM_INTERFACE int64 ThreadInterlockedCompareExchange64( int64 volatile *, int64 value, int64 comperand ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignIf64(volatile int64 *pDest, int64 value, int64 comperand ) NOINLINE;
PLATFORM_INTERFACE void *ThreadInterlockedExchangePointer( void * volatile *, void *value ) NOINLINE;
PLATFORM_INTERFACE void *ThreadInterlockedCompareExchangePointer( void * volatile *, void *value, void *comperand ) NOINLINE;
PLATFORM_INTERFACE bool ThreadInterlockedAssignPointerIf( void * volatile *, void *value, void *comperand ) NOINLINE;
#endif
inline unsigned ThreadInterlockedExchangeSubtract( int32 volatile *p, int32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, -value ); }
inline void const *ThreadInterlockedExchangePointerToConst( void const * volatile *p, void const *value ) { return ThreadInterlockedExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ) ); }
inline void const *ThreadInterlockedCompareExchangePointerToConst( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedCompareExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); }
inline bool ThreadInterlockedAssignPointerToConstIf( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedAssignPointerIf( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); }
inline unsigned ThreadInterlockedExchangeSubtract( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); }
inline unsigned ThreadInterlockedIncrement( uint32 volatile *p ) { return ThreadInterlockedIncrement( (int32 volatile *)p ); }
inline unsigned ThreadInterlockedDecrement( uint32 volatile *p ) { return ThreadInterlockedDecrement( (int32 volatile *)p ); }
inline unsigned ThreadInterlockedExchange( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchange( (int32 volatile *)p, value ); }
inline unsigned ThreadInterlockedExchangeAdd( uint32 volatile *p, uint32 value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); }
inline unsigned ThreadInterlockedCompareExchange( uint32 volatile *p, uint32 value, uint32 comperand ) { return ThreadInterlockedCompareExchange( (int32 volatile *)p, value, comperand ); }
inline bool ThreadInterlockedAssignIf( uint32 volatile *p, uint32 value, uint32 comperand ) { return ThreadInterlockedAssignIf( (int32 volatile *)p, value, comperand ); }
//inline int ThreadInterlockedExchangeSubtract( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); }
//inline int ThreadInterlockedIncrement( int volatile *p ) { return ThreadInterlockedIncrement( (int32 volatile *)p ); }
//inline int ThreadInterlockedDecrement( int volatile *p ) { return ThreadInterlockedDecrement( (int32 volatile *)p ); }
//inline int ThreadInterlockedExchange( int volatile *p, int value ) { return ThreadInterlockedExchange( (int32 volatile *)p, value ); }
//inline int ThreadInterlockedExchangeAdd( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (int32 volatile *)p, value ); }
//inline int ThreadInterlockedCompareExchange( int volatile *p, int value, int comperand ) { return ThreadInterlockedCompareExchange( (int32 volatile *)p, value, comperand ); }
//inline bool ThreadInterlockedAssignIf( int volatile *p, int value, int comperand ) { return ThreadInterlockedAssignIf( (int32 volatile *)p, value, comperand ); }
#if defined( PLATFORM_64BITS )
#if defined (_WIN32)
typedef __m128i int128;
inline int128 int128_zero() { return _mm_setzero_si128(); }
#pragma intrinsic( _InterlockedCompareExchange128 )
inline bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand )
{
Assert( (size_t)pDest % 16 == 0 );
volatile int64 *pDest64 = ( volatile int64 * )pDest;
int64 *pValue64 = ( int64 * )&value;
int64 *pComperand64 = ( int64 * )&comperand;
int64 local_comperand[2] = { pComperand64[0], pComperand64[1] };
return _InterlockedCompareExchange128( pDest64, pValue64[1], pValue64[0], local_comperand ) == 1;
}
#else
typedef __int128_t int128;
#define int128_zero() 0
inline bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand )
{
Assert( (size_t)pDest % 16 == 0 );
int128 local_comperand = comperand;
return __sync_bool_compare_and_swap( pDest, local_comperand, value );
}
#endif
#endif
//-----------------------------------------------------------------------------
// Access to VTune thread profiling
//-----------------------------------------------------------------------------
#if defined(_WIN32) && defined(THREAD_PROFILER)
PLATFORM_INTERFACE void ThreadNotifySyncPrepare(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncCancel(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncAcquired(void *p);
PLATFORM_INTERFACE void ThreadNotifySyncReleasing(void *p);
#else
#define ThreadNotifySyncPrepare(p) ((void)0)
#define ThreadNotifySyncCancel(p) ((void)0)
#define ThreadNotifySyncAcquired(p) ((void)0)
#define ThreadNotifySyncReleasing(p) ((void)0)
#endif
//-----------------------------------------------------------------------------
// Encapsulation of a thread local datum (needed because THREAD_LOCAL doesn't
// work in a DLL loaded with LoadLibrary()
//-----------------------------------------------------------------------------
#ifndef NO_THREAD_LOCAL
#ifdef _LINUX
// linux totally supports compiler thread locals, even across dll's.
#define PLAT_COMPILER_SUPPORTED_THREADLOCALS 1
#define CTHREADLOCALINTEGER( typ ) __thread int
#define CTHREADLOCALINT __thread int
#define CTHREADLOCALPTR( typ ) __thread typ *
#define CTHREADLOCAL( typ ) __thread typ
#define GETLOCAL( x ) ( x )
#endif
#if defined( _WIN32 ) || defined( OSX )
#ifndef __AFXTLS_H__ // not compatible with some Windows headers
#define CTHREADLOCALINT GenericThreadLocals::CThreadLocalInt<int>
#define CTHREADLOCALINTEGER( typ ) GenericThreadLocals::CThreadLocalInt<typ>
#define CTHREADLOCALPTR( typ ) GenericThreadLocals::CThreadLocalPtr<typ>
#define CTHREADLOCAL( typ ) GenericThreadLocals::CThreadLocal<typ>
#define GETLOCAL( x ) ( x.Get() )
namespace GenericThreadLocals
{
// a (not so efficient) implementation of thread locals for compilers without full support (i.e. visual c).
// don't use this explicity - instead, use the CTHREADxxx macros above.
class PLATFORM_CLASS CThreadLocalBase
{
public:
CThreadLocalBase();
~CThreadLocalBase();
void * Get() const;
void Set(void *);
private:
#if defined(POSIX)
pthread_key_t m_index;
#else
uint32 m_index;
#endif
};
//---------------------------------------------------------
template <class T>
class CThreadLocal : public CThreadLocalBase
{
public:
CThreadLocal()
{
#ifdef PLATFORM_64BITS
COMPILE_TIME_ASSERT( sizeof(T) <= sizeof(void *) );
#else
COMPILE_TIME_ASSERT( sizeof(T) == sizeof(void *) );
#endif
}
void operator=( T i ) { Set( i ); }
T Get() const
{
#ifdef PLATFORM_64BITS
void *pData = CThreadLocalBase::Get();
return *reinterpret_cast<T*>( &pData );
#else
#ifdef COMPILER_MSVC
#pragma warning ( disable : 4311 )
#endif
return reinterpret_cast<T>( CThreadLocalBase::Get() );
#ifdef COMPILER_MSVC
#pragma warning ( default : 4311 )
#endif
#endif
}
void Set(T val)
{
#ifdef PLATFORM_64BITS
void* pData = 0;
*reinterpret_cast<T*>( &pData ) = val;
CThreadLocalBase::Set( pData );
#else
#ifdef COMPILER_MSVC
#pragma warning ( disable : 4312 )
#endif
CThreadLocalBase::Set( reinterpret_cast<void *>(val) );
#ifdef COMPILER_MSVC
#pragma warning ( default : 4312 )
#endif
#endif
}
};
//---------------------------------------------------------
template <class T = int32>
class CThreadLocalInt : public CThreadLocal<T>
{
public:
operator const T() const { return this->Get(); }
int operator=( T i ) { Set( i ); return i; }
T operator++() { T i = this->Get(); this->Set( ++i ); return i; }
T operator++(int) { T i = this->Get(); this->Set( i + 1 ); return i; }
T operator--() { T i = this->Get(); this->Set( --i ); return i; }
T operator--(int) { T i = this->Get(); this->Set( i - 1 ); return i; }
inline CThreadLocalInt( ) { }
inline CThreadLocalInt( const T &initialvalue )
{
this->Set( initialvalue );
}
};
//---------------------------------------------------------
template <class T>
class CThreadLocalPtr : private CThreadLocalBase
{
public:
CThreadLocalPtr() {}
operator const void *() const { return (const T *)Get(); }
operator void *() { return (T *)Get(); }
operator const T *() const { return (const T *)Get(); }
operator const T *() { return (const T *)Get(); }
operator T *() { return (T *)Get(); }
T * operator=( T *p ) { Set( p ); return p; }
bool operator !() const { return (!Get()); }
bool operator!=( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() != NULL); }
bool operator==( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() == NULL); }
bool operator==( const void *p ) const { return (Get() == p); }
bool operator!=( const void *p ) const { return (Get() != p); }
bool operator==( const T *p ) const { return operator==((const void*)p); }
bool operator!=( const T *p ) const { return operator!=((const void*)p); }
T * operator->() { return (T *)Get(); }
T & operator *() { return *((T *)Get()); }
const T * operator->() const { return (const T *)Get(); }
const T & operator *() const { return *((const T *)Get()); }
const T & operator[]( int i ) const { return *((const T *)Get() + i); }
T & operator[]( int i ) { return *((T *)Get() + i); }
private:
// Disallowed operations
CThreadLocalPtr( T *pFrom );
CThreadLocalPtr( const CThreadLocalPtr<T> &from );
T **operator &();
T * const *operator &() const;
void operator=( const CThreadLocalPtr<T> &from );
bool operator==( const CThreadLocalPtr<T> &p ) const;
bool operator!=( const CThreadLocalPtr<T> &p ) const;
};
}
#ifdef _OSX
PLATFORM_INTERFACE GenericThreadLocals::CThreadLocalInt<int> g_nThreadID;
#else // _OSX
#ifndef TIER0_DLL_EXPORT
__declspec( dllimport ) GenericThreadLocals::CThreadLocalInt<int> g_nThreadID;
#endif
#endif // _OSX
#endif /// afx32
#endif //__win32
#endif // NO_THREAD_LOCAL
//-----------------------------------------------------------------------------
//
// A super-fast thread-safe integer A simple class encapsulating the notion of an
// atomic integer used across threads that uses the built in and faster
// "interlocked" functionality rather than a full-blown mutex. Useful for simple
// things like reference counts, etc.
//
//-----------------------------------------------------------------------------
template <typename T>
class CInterlockedIntT
{
public:
CInterlockedIntT() : m_value( 0 ) { COMPILE_TIME_ASSERT( sizeof(T) == sizeof(int32) ); }
CInterlockedIntT( T value ) : m_value( value ) {}
T operator()( void ) const { return m_value; }
operator T() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); }
bool operator==( T rhs ) const { return ( m_value == rhs ); }
bool operator!=( T rhs ) const { return ( m_value != rhs ); }
T operator++() { return (T)ThreadInterlockedIncrement( (int32 *)&m_value ); }
T operator++(int) { return operator++() - 1; }
T operator--() { return (T)ThreadInterlockedDecrement( (int32 *)&m_value ); }
T operator--(int) { return operator--() + 1; }
bool AssignIf( T conditionValue, T newValue ) { return ThreadInterlockedAssignIf( (int32 *)&m_value, (int32)newValue, (int32)conditionValue ); }
T operator=( T newValue ) { ThreadInterlockedExchange((int32 *)&m_value, newValue); return m_value; }
// Atomic add is like += except it returns the previous value as its return value
T AtomicAdd( T add ) { return (T)ThreadInterlockedExchangeAdd( (int32 *)&m_value, (int32)add ); }
void operator+=( T add ) { ThreadInterlockedExchangeAdd( (int32 *)&m_value, (int32)add ); }
void operator-=( T subtract ) { operator+=( -subtract ); }
void operator*=( T multiplier ) {
T original, result;
do
{
original = m_value;
result = original * multiplier;
} while ( !AssignIf( original, result ) );
}
void operator/=( T divisor ) {
T original, result;
do
{
original = m_value;
result = original / divisor;
} while ( !AssignIf( original, result ) );
}
T operator+( T rhs ) const { return m_value + rhs; }
T operator-( T rhs ) const { return m_value - rhs; }
private:
volatile T m_value;
};
typedef CInterlockedIntT<int> CInterlockedInt;
typedef CInterlockedIntT<unsigned> CInterlockedUInt;
//-----------------------------------------------------------------------------
template <typename T>
class CInterlockedPtr
{
public:
CInterlockedPtr() : m_value( 0 )
{
#ifdef PLATFORM_64BITS
COMPILE_TIME_ASSERT( sizeof(T *) == sizeof(int64) );
#define THREADINTERLOCKEDEXCHANGEADD( _dest, _value ) ThreadInterlockedExchangeAdd64( (volatile int64 *)_dest, _value )
#else // PLATFORM_64BITS
COMPILE_TIME_ASSERT( sizeof(T *) == sizeof(int32) );
#define THREADINTERLOCKEDEXCHANGEADD( _dest, _value ) ThreadInterlockedExchangeAdd( (volatile int32 *)_dest, _value )
#endif // PLATFORM_64BITS
}
CInterlockedPtr( T *value ) : m_value( value ) {}
operator T *() const { return m_value; }
bool operator!() const { return ( m_value == 0 ); }
bool operator==( T *rhs ) const { return ( m_value == rhs ); }
bool operator!=( T *rhs ) const { return ( m_value != rhs ); }
T *operator++() { return ((T *)THREADINTERLOCKEDEXCHANGEADD( &m_value, sizeof(T) )) + 1; }
T *operator++(int) { return (T *)THREADINTERLOCKEDEXCHANGEADD( &m_value, sizeof(T) ); }
T *operator--() { return ((T *)THREADINTERLOCKEDEXCHANGEADD( &m_value, -sizeof(T) )) - 1; }
T *operator--(int) { return (T *)THREADINTERLOCKEDEXCHANGEADD( &m_value, -sizeof(T) ); }
bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); }
T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; }
void operator+=( int add ) { THREADINTERLOCKEDEXCHANGEADD( &m_value, add * sizeof(T) ); }
void operator-=( int subtract ) { operator+=( -subtract ); }
// Atomic add is like += except it returns the previous value as its return value
T *AtomicAdd( int add ) { return ( T * ) THREADINTERLOCKEDEXCHANGEADD( &m_value, add * sizeof(T) ); }
T *operator+( int rhs ) const { return m_value + rhs; }
T *operator-( int rhs ) const { return m_value - rhs; }
T *operator+( unsigned rhs ) const { return m_value + rhs; }
T *operator-( unsigned rhs ) const { return m_value - rhs; }
size_t operator-( T *p ) const { return m_value - p; }
size_t operator-( const CInterlockedPtr<T> &p ) const { return m_value - p.m_value; }
private:
T * volatile m_value;
#undef THREADINTERLOCKEDEXCHANGEADD
};
//-----------------------------------------------------------------------------
//
// Platform independent for critical sections management
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadMutex
{
public:
CThreadMutex( const char* pDebugName = NULL );
~CThreadMutex();
//------------------------------------------------------
// Mutex acquisition/release. Const intentionally defeated.
//------------------------------------------------------
void Lock( const char *pFileName = NULL, int nLine = -1 );
void Lock( const char *pFileName = NULL, int nLine = -1 ) const { (const_cast<CThreadMutex *>(this))->Lock( pFileName, nLine ); }
void Unlock( const char *pFileName = NULL, int nLine = -1 );
void Unlock( const char *pFileName = NULL, int nLine = -1 ) const { (const_cast<CThreadMutex *>(this))->Unlock( pFileName, nLine ); }
bool TryLock( const char *pFileName = NULL, int nLine = -1 );
bool TryLock( const char *pFileName = NULL, int nLine = -1 ) const { return (const_cast<CThreadMutex *>(this))->TryLock( pFileName, nLine ); }
void LockSilent( const char *pFileName = NULL, int nLine = -1 ); // A Lock() operation which never spews. Required by the logging system to prevent badness.
void UnlockSilent( const char *pFileName = NULL, int nLine = -1 ); // An Unlock() operation which never spews. Required by the logging system to prevent badness.
//------------------------------------------------------
// Use this to make deadlocks easier to track by asserting
// when it is expected that the current thread owns the mutex
//------------------------------------------------------
bool AssertOwnedByCurrentThread();
//------------------------------------------------------
// Enable tracing to track deadlock problems
//------------------------------------------------------
void SetTrace( bool );
private:
// Disallow copying
CThreadMutex( const CThreadMutex & );
CThreadMutex &operator=( const CThreadMutex & );
#if defined( _WIN32 )
// Efficient solution to breaking the windows.h dependency, invariant is tested.
#ifdef _WIN64
#define TT_SIZEOF_CRITICALSECTION 40
#else
#ifndef _X360
#define TT_SIZEOF_CRITICALSECTION 24
#else
#define TT_SIZEOF_CRITICALSECTION 28
#endif // !_X360
#endif // _WIN64
byte m_CriticalSection[TT_SIZEOF_CRITICALSECTION];
#elif defined(POSIX)
pthread_mutex_t m_Mutex;
pthread_mutexattr_t m_Attr;
#else
#error
#endif
// Debugging (always herge to allow mixed debug/release builds w/o changing size)
ThreadId_t m_currentOwnerID;
uint16 m_lockCount;
bool m_bTrace;
const char* m_pDebugName;
};
//-----------------------------------------------------------------------------
//
// An alternative mutex that is useful for cases when thread contention is
// rare, but a mutex is required. Instances should be declared volatile.
// Sleep of 0 may not be sufficient to keep high priority threads from starving
// lesser threads. This class is not a suitable replacement for a critical
// section if the resource contention is high.
//
//-----------------------------------------------------------------------------
#if !defined(THREAD_PROFILER)
class CThreadSpinMutex
{
public:
CThreadSpinMutex( const char* pDebugName = NULL )
: m_ownerID( 0 ),
m_depth( 0 ),
m_pDebugName( NULL/*pDebugName*/ )
{
}
private:
FORCEINLINE bool TryLockInline( const char *pFileName, int nLine, const ThreadId_t threadId ) volatile
{
if ( threadId != m_ownerID && ( m_ownerID ||
#ifdef _WIN32
!ThreadInterlockedAssignIf( (volatile int32 *)&m_ownerID, (int32)threadId, 0 ) ) )
#else
!ThreadInterlockedAssignIf64( (volatile int64 *)&m_ownerID, (int64)threadId, 0 ) ) )
#endif
return false;
ThreadMemoryBarrier();
m_depth = m_depth + 1;
return true;
}
bool TryLock( const char *pFileName, int nLine, const ThreadId_t threadId ) volatile
{
return TryLockInline( pFileName, nLine, threadId );
}
PLATFORM_CLASS void Lock( const char *pFileName, int nLine, const ThreadId_t threadId, unsigned nSpinSleepTime ) volatile;
public:
bool TryLock( const char *pFileName = NULL, int nLine = -1 ) volatile
{
#ifdef _DEBUG
if ( m_depth == INT_MAX )
DebuggerBreak();
if ( m_depth < 0 )
DebuggerBreak();
#endif
return TryLockInline( pFileName, nLine, ThreadGetCurrentId() );
}
#ifndef _DEBUG
FORCEINLINE
#endif
void Lock( const char *pFileName = NULL, int nLine = -1, unsigned int nSpinSleepTime = 0 ) volatile
{
const ThreadId_t threadId = ThreadGetCurrentId();
if ( !TryLockInline( pFileName, nLine, threadId ) )
{
ThreadPause();
Lock( pFileName, nLine, threadId, nSpinSleepTime );
}
#ifdef _DEBUG
if ( m_ownerID != ThreadGetCurrentId() )
DebuggerBreak();
if ( m_depth == INT_MAX )
DebuggerBreak();
if ( m_depth < 0 )
DebuggerBreak();
#endif
}
#ifndef _DEBUG
FORCEINLINE
#endif
void Unlock( const char *pFileName = NULL, int nLine = -1 ) volatile
{
#ifdef _DEBUG
if ( m_ownerID != ThreadGetCurrentId() )
DebuggerBreak();
if ( m_depth <= 0 )
DebuggerBreak();
#endif
m_depth = m_depth - 1;
if ( !m_depth )
{
ThreadMemoryBarrier();
#ifdef _WIN32
ThreadInterlockedExchange( (volatile int32 *)&m_ownerID, 0 );
#else
ThreadInterlockedExchange64( (volatile int64 *)&m_ownerID, 0 );
#endif
}
}
bool TryLock( const char *pFileName = NULL, int nLine = -1 ) const volatile { return (const_cast<CThreadSpinMutex *>(this))->TryLock( pFileName, nLine ); }
void Lock( const char *pFileName = NULL, int nLine = -1, unsigned nSpinSleepTime = 0 ) const volatile { (const_cast<CThreadSpinMutex *>(this))->Lock( pFileName, nLine, nSpinSleepTime ); }
void Unlock( const char *pFileName = NULL, int nLine = -1 ) const volatile { (const_cast<CThreadSpinMutex *>(this))->Unlock( pFileName, nLine ); }
// To match regular CThreadMutex:
bool AssertOwnedByCurrentThread() { return true; }
void SetTrace( bool ) {}
ThreadId_t GetOwnerId() const { return m_ownerID; }
int GetDepth() const { return m_depth; }
private:
volatile ThreadId_t m_ownerID;
int m_depth;
const char* m_pDebugName;
};
class ALIGN128 CAlignedThreadFastMutex : public CThreadSpinMutex
{
public:
CAlignedThreadFastMutex( const char* pDebugName = NULL ) : CThreadSpinMutex( pDebugName )
{
Assert( (size_t)this % 128 == 0 && sizeof(*this) == 128 );
}
private:
uint8 pad[128-sizeof(CThreadSpinMutex)];
} ALIGN128_POST;
#else
typedef CThreadMutex CThreadSpinMutex;
#endif
typedef CThreadSpinMutex CThreadFastMutex;
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class CThreadNullMutex
{
public:
CThreadNullMutex( const char* pDebugName = NULL ) {}
static void Lock( const char *pFileName = NULL, int nLine = -1 ) {}
static void Unlock( const char *pFileName = NULL, int nLine = -1 ) {}
static bool TryLock( const char *pFileName = NULL, int nLine = -1 ) { return true; }
static bool AssertOwnedByCurrentThread() { return true; }
static void SetTrace( bool b ) {}
static ThreadId_t GetOwnerId() { return 0; }
static int GetDepth() { return 0; }
};
//-----------------------------------------------------------------------------
//
// A mutex decorator class used to control the use of a mutex, to make it
// less expensive when not multithreading
//
//-----------------------------------------------------------------------------
template <class BaseClass, bool *pCondition>
class CThreadConditionalMutex : public BaseClass
{
public:
CThreadConditionalMutex( const char* pDebugName = NULL ) : BaseClass( pDebugName ) {}
void Lock( const char *pFileName = NULL, int nLine = -1 ) { if ( *pCondition ) BaseClass::Lock( pFileName, nLine ); }
void Lock( const char *pFileName = NULL, int nLine = -1 ) const { if ( *pCondition ) BaseClass::Lock( pFileName, nLine ); }
void Unlock( const char *pFileName = NULL, int nLine = -1 ) { if ( *pCondition ) BaseClass::Unlock( pFileName, nLine ); }
void Unlock( const char *pFileName = NULL, int nLine = -1 ) const { if ( *pCondition ) BaseClass::Unlock( pFileName, nLine ); }
bool TryLock( const char *pFileName = NULL, int nLine = -1 ) { if ( *pCondition ) return BaseClass::TryLock( pFileName, nLine ); else return true; }
bool TryLock( const char *pFileName = NULL, int nLine = -1 ) const { if ( *pCondition ) return BaseClass::TryLock( pFileName, nLine ); else return true; }
bool AssertOwnedByCurrentThread() { if ( *pCondition ) return BaseClass::AssertOwnedByCurrentThread(); else return true; }
void SetTrace( bool b ) { if ( *pCondition ) BaseClass::SetTrace( b ); }
};
//-----------------------------------------------------------------------------
// Mutex decorator that blows up if another thread enters
//-----------------------------------------------------------------------------
template <class BaseClass>
class CThreadTerminalMutex : public BaseClass
{
public:
CThreadTerminalMutex( const char* pDebugName = NULL ) : BaseClass( pDebugName ) {}
bool TryLock( const char *pFileName = NULL, int nLine = -1 ) { if ( !BaseClass::TryLock( pFileName, nLine ) ) { DebuggerBreak(); return false; } return true; }
bool TryLock( const char *pFileName = NULL, int nLine = -1 ) const { if ( !BaseClass::TryLock( pFileName, nLine ) ) { DebuggerBreak(); return false; } return true; }
void Lock( const char *pFileName = NULL, int nLine = -1 ) { if ( !TryLock( pFileName, nLine ) ) BaseClass::Lock( pFileName, nLine ); }
void Lock( const char *pFileName = NULL, int nLine = -1 ) const { if ( !TryLock( pFileName, nLine ) ) BaseClass::Lock( pFileName, nLine ); }
};
//-----------------------------------------------------------------------------
//
// Class to Lock a critical section, and unlock it automatically
// when the lock goes out of scope
//
//-----------------------------------------------------------------------------
template <class MUTEX_TYPE = CThreadMutex>
class CAutoLockT
{
public:
FORCEINLINE CAutoLockT( MUTEX_TYPE &lock, const char *pFileName, int nLine )
: m_lock(lock)
{
m_lock.Lock( pFileName, nLine );
}
FORCEINLINE CAutoLockT( const MUTEX_TYPE &lock, const char *pFileName, int nLine )
: m_lock(const_cast<MUTEX_TYPE &>(lock))
{
m_lock.Lock( pFileName, nLine );
}
FORCEINLINE ~CAutoLockT()
{
m_lock.Unlock();
}
private:
MUTEX_TYPE &m_lock;
// Disallow copying
CAutoLockT<MUTEX_TYPE>( const CAutoLockT<MUTEX_TYPE> & );
CAutoLockT<MUTEX_TYPE> &operator=( const CAutoLockT<MUTEX_TYPE> & );
};
typedef CAutoLockT<CThreadMutex> CAutoLock;
//---------------------------------------------------------
#define AUTO_LOCK_( type, mutex ) \
CAutoLockT< type > UNIQUE_ID( static_cast<const type &>( mutex ), __FILE__, __LINE__ )
template<typename T> T strip_cv_quals_for_mutex(T&);
template<typename T> T strip_cv_quals_for_mutex(const T&);
template<typename T> T strip_cv_quals_for_mutex(volatile T&);
template<typename T> T strip_cv_quals_for_mutex(const volatile T&);
#define AUTO_LOCK( mutex ) \
AUTO_LOCK_( decltype(::strip_cv_quals_for_mutex(mutex)), mutex )
#define AUTO_LOCK_FM( mutex ) \
AUTO_LOCK_( CThreadFastMutex, mutex )
#define LOCAL_THREAD_LOCK_( tag ) \
; \
static CThreadFastMutex autoMutex_##tag; \
AUTO_LOCK( autoMutex_##tag )
#define LOCAL_THREAD_LOCK() \
LOCAL_THREAD_LOCK_(_)
//-----------------------------------------------------------------------------
//
// Base class for event, semaphore and mutex objects.
//
//-----------------------------------------------------------------------------
#define TW_TIMEOUT 0xFFFF
#define TW_FAILED 0xFFFE
class PLATFORM_CLASS CThreadSyncObject
{
public:
~CThreadSyncObject();
//-----------------------------------------------------
// Query if object is useful
//-----------------------------------------------------
bool operator!() const;
//-----------------------------------------------------
// Access handle
//-----------------------------------------------------
#ifdef _WIN32
operator HANDLE() { return GetHandle(); }
const HANDLE GetHandle() const { return m_hSyncObject; }
#endif
//-----------------------------------------------------
// Wait for a signal from the object
//-----------------------------------------------------
bool Wait( uint32 dwTimeout = TT_INFINITE );
//-----------------------------------------------------
// Wait for a signal from any of the specified objects.
//
// Returns the index of the object that signaled the event
// or THREADSYNC_TIMEOUT if the timeout was hit before the wait condition was met.
//
// Returns TW_FAILED if an incoming object is invalid.
//
// If bWaitAll=true, then it'll return 0 if all the objects were set.
//-----------------------------------------------------
static uint32 WaitForMultiple( int nObjects, CThreadSyncObject **ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE );
// This builds a list of pointers and calls straight through to the other WaitForMultiple.
static uint32 WaitForMultiple( int nObjects, CThreadSyncObject *ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE );
protected:
CThreadSyncObject();
void AssertUseable();
#ifdef _WIN32
HANDLE m_hSyncObject;
#elif defined(POSIX)
pthread_mutex_t m_Mutex;
pthread_cond_t m_Condition;
bool m_bInitalized;
CInterlockedInt m_cSet;
bool m_bManualReset;
#else
#error "Implement me"
#endif
private:
CThreadSyncObject( const CThreadSyncObject & );
CThreadSyncObject &operator=( const CThreadSyncObject & );
};
//-----------------------------------------------------------------------------
//
// Wrapper for unnamed event objects
//
//-----------------------------------------------------------------------------
#if defined( _WIN32 )
//-----------------------------------------------------------------------------
//
// CThreadSemaphore
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadSemaphore : public CThreadSyncObject
{
public:
CThreadSemaphore(int32 initialValue, int32 maxValue);
//-----------------------------------------------------
// Increases the count of the semaphore object by a specified
// amount. Wait() decreases the count by one on return.
//-----------------------------------------------------
bool Release(int32 releaseCount = 1, int32 * pPreviousCount = NULL );
private:
CThreadSemaphore(const CThreadSemaphore &);
CThreadSemaphore &operator=(const CThreadSemaphore &);
};
//-----------------------------------------------------------------------------
//
// A mutex suitable for out-of-process, multi-processor usage
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadFullMutex : public CThreadSyncObject
{
public:
CThreadFullMutex( bool bEstablishInitialOwnership = false, const char * pszName = NULL );
//-----------------------------------------------------
// Release ownership of the mutex
//-----------------------------------------------------
bool Release();
// To match regular CThreadMutex:
void Lock() { Wait(); }
void Lock( unsigned timeout ) { Wait( timeout ); }
void Unlock() { Release(); }
bool AssertOwnedByCurrentThread() { return true; }
void SetTrace( bool ) {}
private:
CThreadFullMutex( const CThreadFullMutex & );
CThreadFullMutex &operator=( const CThreadFullMutex & );
};
#endif
enum NamedEventResult_t
{
TT_EventDoesntExist = 0,
TT_EventNotSignaled,
TT_EventSignaled
};
class PLATFORM_CLASS CThreadEvent : public CThreadSyncObject
{
public:
CThreadEvent( bool fManualReset = false );
#ifdef PLATFORM_WINDOWS
CThreadEvent( const char *name, bool initialState = false, bool bManualReset = false );
static NamedEventResult_t CheckNamedEvent( const char *name, uint32 dwTimeout = 0 );
#endif
#ifdef WIN32
CThreadEvent( HANDLE hHandle );
#endif
//-----------------------------------------------------
// Set the state to signaled
//-----------------------------------------------------
bool Set();
//-----------------------------------------------------
// Set the state to nonsignaled
//-----------------------------------------------------
bool Reset();
//-----------------------------------------------------
// Check if the event is signaled
//-----------------------------------------------------
bool Check();
bool Wait( uint32 dwTimeout = TT_INFINITE );
// See CThreadSyncObject for definitions of these functions.
static uint32 WaitForMultiple( int nObjects, CThreadEvent **ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE );
static uint32 WaitForMultiple( int nObjects, CThreadEvent *ppObjects, bool bWaitAll, uint32 dwTimeout = TT_INFINITE );
private:
CThreadEvent( const CThreadEvent & );
CThreadEvent &operator=( const CThreadEvent & );
};
// Hard-wired manual event for use in array declarations
class CThreadManualEvent : public CThreadEvent
{
public:
CThreadManualEvent()
: CThreadEvent( true )
{
}
};
//-----------------------------------------------------------------------------
//
// CThreadRWLock
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThreadRWLock
{
public:
CThreadRWLock();
void LockForRead();
void UnlockRead();
void LockForWrite();
void UnlockWrite();
void LockForRead() const { const_cast<CThreadRWLock *>(this)->LockForRead(); }
void UnlockRead() const { const_cast<CThreadRWLock *>(this)->UnlockRead(); }
void LockForWrite() const { const_cast<CThreadRWLock *>(this)->LockForWrite(); }
void UnlockWrite() const { const_cast<CThreadRWLock *>(this)->UnlockWrite(); }
private:
void WaitForRead();
CThreadFastMutex m_mutex;
CThreadEvent m_CanWrite;
CThreadEvent m_CanRead;
int m_nWriters;
int m_nActiveReaders;
int m_nPendingReaders;
};
//-----------------------------------------------------------------------------
//
// CThreadSpinRWLock
//
//-----------------------------------------------------------------------------
#ifdef _WIN32
class ALIGN8 CThreadSpinRWLock
#else
class ALIGN16 CThreadSpinRWLock
#endif
{
public:
CThreadSpinRWLock( const char* pDebugName = NULL )
{
#ifdef _WIN32
COMPILE_TIME_ASSERT( sizeof( LockInfo_t ) == sizeof( int64 ) ); Assert( (intp)this % 8 == 0 );
#else
COMPILE_TIME_ASSERT( sizeof( LockInfo_t ) == sizeof( int128 ) ); Assert( (intp)this % 16 == 0 );
#endif
memset( (void*)this, 0, sizeof( *this ) );
//m_pDebugName = pDebugName;
}
bool TryLockForWrite( const char *pFileName = NULL, int nLine = -1 );
bool TryLockForRead( const char *pFileName = NULL, int nLine = -1 );
PLATFORM_CLASS void LockForRead( const char *pFileName = NULL, int nLine = -1 );
PLATFORM_CLASS void UnlockRead( const char *pFileName = NULL, int nLine = -1 );
void LockForWrite( const char *pFileName = NULL, int nLine = -1 );
PLATFORM_CLASS void UnlockWrite( const char *pFileName = NULL, int nLine = -1 );
bool TryLockForWrite( const char *pFileName = NULL, int nLine = -1 ) const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForWrite( pFileName, nLine ); }
bool TryLockForRead( const char *pFileName = NULL, int nLine = -1 ) const { return const_cast<CThreadSpinRWLock *>(this)->TryLockForRead( pFileName, nLine ); }
void LockForRead( const char *pFileName = NULL, int nLine = -1 ) const { const_cast<CThreadSpinRWLock *>(this)->LockForRead( pFileName, nLine ); }
void UnlockRead( const char *pFileName = NULL, int nLine = -1 ) const { const_cast<CThreadSpinRWLock *>(this)->UnlockRead( pFileName, nLine ); }
void LockForWrite( const char *pFileName = NULL, int nLine = -1 ) const { const_cast<CThreadSpinRWLock *>(this)->LockForWrite( pFileName, nLine ); }
void UnlockWrite( const char *pFileName = NULL, int nLine = -1 ) const { const_cast<CThreadSpinRWLock *>(this)->UnlockWrite( pFileName, nLine ); }
private:
struct LockInfo_t
{
ThreadId_t m_writerId;
#ifdef _WIN32
int32 m_nReaders;
#else
int64 m_nReaders;
#endif
};
bool AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand );
bool TryLockForWrite( const char *pFileName, int nLine, const ThreadId_t threadId );
PLATFORM_CLASS void SpinLockForWrite( const char *pFileName, int nLine, const ThreadId_t threadId );
volatile LockInfo_t m_lockInfo;
CInterlockedInt m_nWriters;
const char* m_pDebugName;
#ifdef _WIN32
} ALIGN8_POST;
#else
} ALIGN16_POST;
#endif
//-----------------------------------------------------------------------------
//
// A thread wrapper similar to a Java thread.
//
//-----------------------------------------------------------------------------
class PLATFORM_CLASS CThread
{
public:
CThread();
virtual ~CThread();
//-----------------------------------------------------
const char *GetName();
void SetName( const char * );
size_t CalcStackDepth( void *pStackVariable ) { return ((byte *)m_pStackBase - (byte *)pStackVariable); }
//-----------------------------------------------------
// Functions for the other threads
//-----------------------------------------------------
// Start thread running - error if already running
virtual bool Start( unsigned nBytesStack = 0 );
// Returns true if thread has been created and hasn't yet exited
bool IsAlive();
// This method causes the current thread to wait until this thread
// is no longer alive.
bool Join( unsigned timeout = TT_INFINITE );
// Access the thread handle directly
ThreadHandle_t GetThreadHandle();
#ifdef _WIN32
uint GetThreadId();
#endif
//-----------------------------------------------------
int GetResult();
//-----------------------------------------------------
// Functions for both this, and maybe, and other threads
//-----------------------------------------------------
// Forcibly, abnormally, but relatively cleanly stop the thread
void Stop( int exitCode = 0 );
// Get the priority
int GetPriority() const;
// Set the priority
bool SetPriority( int );
// Suspend a thread
unsigned Suspend();
// Resume a suspended thread
unsigned Resume();
// Force hard-termination of thread. Used for critical failures.
bool Terminate( int exitCode = 0 );
//-----------------------------------------------------
// Global methods
//-----------------------------------------------------
// Get the Thread object that represents the current thread, if any.
// Can return NULL if the current thread was not created using
// CThread
static CThread *GetCurrentCThread();
// Offer a context switch. Under Win32, equivalent to Sleep(0)
#ifdef Yield
#undef Yield
#endif
static void Yield();
// This method causes the current thread to yield and not to be
// scheduled for further execution until a certain amount of real
// time has elapsed, more or less. Duration is in milliseconds
static void Sleep( unsigned duration );
protected:
// Optional pre-run call, with ability to fail-create. Note Init()
// is forced synchronous with Start()
virtual bool Init();
// Thread will run this function on startup, must be supplied by
// derived class, performs the intended action of the thread.
virtual int Run() = 0;
// Called when the thread exits
virtual void OnExit();
#ifdef _WIN32
// Allow for custom start waiting
virtual bool WaitForCreateComplete( CThreadEvent *pEvent );
#endif
CThreadMutex m_Lock;
CThreadEvent m_ExitEvent; // Set right before the thread's function exits.
private:
enum Flags
{
SUPPORT_STOP_PROTOCOL = 1 << 0
};
// Thread initially runs this. param is actually 'this'. function
// just gets this and calls ThreadProc
struct ThreadInit_t
{
CThread * pThread;
#ifdef _WIN32
CThreadEvent *pInitCompleteEvent;
#endif
bool * pfInitSuccess;
};
#ifdef PLATFORM_WINDOWS
static unsigned long __stdcall ThreadProc( void * pv );
#else
static void* ThreadProc( void * pv );
#endif
// make copy constructor and assignment operator inaccessible
CThread( const CThread & );
CThread &operator=( const CThread & );
#ifdef _WIN32
HANDLE m_hThread;
#elif defined(_POSIX)
pthread_t m_threadId;
CInterlockedInt m_nSuspendCount;
#endif
int m_result;
char m_szName[32];
void * m_pStackBase;
unsigned m_flags;
};
//-----------------------------------------------------------------------------
// Simple thread class encompasses the notion of a worker thread, handing
// synchronized communication.
//-----------------------------------------------------------------------------
// These are internal reserved error results from a call attempt
enum WTCallResult_t
{
WTCR_FAIL = -1,
WTCR_TIMEOUT = -2,
WTCR_THREAD_GONE = -3,
};
class PLATFORM_CLASS CWorkerThread : public CThread
{
public:
CWorkerThread();
//-----------------------------------------------------
//
// Inter-thread communication
//
// Calls in either direction take place on the same "channel."
// Seperate functions are specified to make identities obvious
//
//-----------------------------------------------------
// Master: Signal the thread, and block for a response
int CallWorker( unsigned, unsigned timeout = TT_INFINITE, bool fBoostWorkerPriorityToMaster = true );
// Worker: Signal the thread, and block for a response
int CallMaster( unsigned, unsigned timeout = TT_INFINITE );
// Wait for the next request
bool WaitForCall( unsigned dwTimeout, unsigned *pResult = NULL );
bool WaitForCall( unsigned *pResult = NULL );
// Is there a request?
bool PeekCall( unsigned *pParam = NULL );
// Reply to the request
void Reply( unsigned );
// Wait for a reply in the case when CallWorker() with timeout != TT_INFINITE
int WaitForReply( unsigned timeout = TT_INFINITE );
// If you want to do WaitForMultipleObjects you'll need to include
// this handle in your wait list or you won't be responsive
CThreadEvent& GetCallHandle(); // (returns m_EventSend)
// Find out what the request was
unsigned GetCallParam() const;
// Boost the worker thread to the master thread, if worker thread is lesser, return old priority
int BoostPriority();
protected:
int Call( unsigned, unsigned timeout, bool fBoost );
private:
CWorkerThread( const CWorkerThread & );
CWorkerThread &operator=( const CWorkerThread & );
CThreadEvent m_EventSend;
CThreadEvent m_EventComplete;
unsigned m_Param;
int m_ReturnVal;
};
// a unidirectional message queue. A queue of type T. Not especially high speed since each message
// is malloced/freed. Note that if your message class has destructors/constructors, they MUST be
// thread safe!
template<class T> class CMessageQueue
{
CThreadEvent SignalEvent; // signals presence of data
CThreadMutex QueueAccessMutex;
// the parts protected by the mutex
struct MsgNode
{
MsgNode *Next;
T Data;
};
MsgNode *Head;
MsgNode *Tail;
public:
CMessageQueue( void )
{
Head = Tail = NULL;
}
// check for a message. not 100% reliable - someone could grab the message first
bool MessageWaiting( void )
{
return ( Head != NULL );
}
void WaitMessage( T *pMsg )
{
for(;;)
{
while( ! MessageWaiting() )
SignalEvent.Wait();
QueueAccessMutex.Lock( __FILE__, __LINE__ );
if (! Head )
{
// multiple readers could make this null
QueueAccessMutex.Unlock( __FILE__, __LINE__ );
continue;
}
*( pMsg ) = Head->Data;
MsgNode *remove_this = Head;
Head = Head->Next;
if (! Head) // if empty, fix tail ptr
Tail = NULL;
QueueAccessMutex.Unlock( __FILE__, __LINE__ );
delete remove_this;
break;
}
}
void QueueMessage( T const &Msg)
{
MsgNode *new1=new MsgNode;
new1->Data=Msg;
new1->Next=NULL;
QueueAccessMutex.Lock( __FILE__, __LINE__ );
if ( Tail )
{
Tail->Next=new1;
Tail = new1;
}
else
{
Head = new1;
Tail = new1;
}
SignalEvent.Set();
QueueAccessMutex.Unlock( __FILE__, __LINE__ );
}
};
//-----------------------------------------------------------------------------
//
// CThreadMutex. Inlining to reduce overhead and to allow client code
// to decide debug status (tracing)
//
//-----------------------------------------------------------------------------
#ifdef MSVC
typedef struct _RTL_CRITICAL_SECTION RTL_CRITICAL_SECTION;
typedef RTL_CRITICAL_SECTION CRITICAL_SECTION;
#ifndef _X360
extern "C"
{
void __declspec(dllimport) __stdcall InitializeCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall EnterCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall LeaveCriticalSection(CRITICAL_SECTION *);
void __declspec(dllimport) __stdcall DeleteCriticalSection(CRITICAL_SECTION *);
};
#endif
//---------------------------------------------------------
inline void CThreadMutex::Lock( const char *pFileName, int nLine )
{
ThreadId_t thisThreadID = ThreadGetCurrentId();
#ifdef THREAD_MUTEX_TRACING_ENABLED
if ( m_bTrace && m_currentOwnerID && ( m_currentOwnerID != thisThreadID ) )
Msg( _T( "Thread %u about to wait for lock %p owned by %u\n" ), ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID );
#endif
LockSilent( pFileName, nLine );
if (m_lockCount == 0)
{
// we now own it for the first time. Set owner information
m_currentOwnerID = thisThreadID;
#ifdef THREAD_MUTEX_TRACING_ENABLED
if ( m_bTrace )
Msg( _T( "Thread %u now owns lock 0x%p\n" ), m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection );
#endif
}
m_lockCount++;
}
//---------------------------------------------------------
inline void CThreadMutex::Unlock( const char *pFileName, int nLine )
{
#ifdef THREAD_MUTEX_TRACING_ENABLED
AssertMsg( m_lockCount >= 1, "Invalid unlock of thread lock" );
#endif
m_lockCount--;
if (m_lockCount == 0)
{
#ifdef THREAD_MUTEX_TRACING_ENABLED
if ( m_bTrace )
Msg( _T( "Thread %u releasing lock 0x%p\n" ), m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection );
#endif
m_currentOwnerID = 0;
}
UnlockSilent( pFileName, nLine );
}
//---------------------------------------------------------
inline void CThreadMutex::LockSilent( const char *pFileName, int nLine )
{
EnterCriticalSection((CRITICAL_SECTION *)&m_CriticalSection);
}
//---------------------------------------------------------
inline void CThreadMutex::UnlockSilent( const char *pFileName, int nLine )
{
LeaveCriticalSection((CRITICAL_SECTION *)&m_CriticalSection);
}
//---------------------------------------------------------
inline bool CThreadMutex::AssertOwnedByCurrentThread()
{
if (ThreadGetCurrentId() == m_currentOwnerID)
return true;
#ifdef THREAD_MUTEX_TRACING_ENABLED
AssertMsg3( 0, "Expected thread %u as owner of lock 0x%p, but %u owns", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID );
#endif
return false;
}
//---------------------------------------------------------
inline void CThreadMutex::SetTrace( bool bTrace )
{
#ifdef THREAD_MUTEX_TRACING_ENABLED
m_bTrace = bTrace;
#endif
}
//---------------------------------------------------------
#elif defined(POSIX)
inline CThreadMutex::CThreadMutex( const char* pDebugName ) :
m_currentOwnerID(0), m_lockCount(0), m_pDebugName(NULL/*pDebugName*/)
{
// enable recursive locks as we need them
pthread_mutexattr_init( &m_Attr );
pthread_mutexattr_settype( &m_Attr, PTHREAD_MUTEX_RECURSIVE );
pthread_mutex_init( &m_Mutex, &m_Attr );
}
//---------------------------------------------------------
inline CThreadMutex::~CThreadMutex()
{
pthread_mutex_destroy( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::Lock( const char *pFileName, int nLine )
{
pthread_mutex_lock( &m_Mutex );
if (m_lockCount == 0)
m_currentOwnerID = ThreadGetCurrentId();
m_lockCount++;
}
//---------------------------------------------------------
inline void CThreadMutex::Unlock( const char *pFileName, int nLine )
{
m_lockCount--;
if (m_lockCount == 0)
m_currentOwnerID = 0;
pthread_mutex_unlock( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::LockSilent( const char *pFileName, int nLine )
{
pthread_mutex_lock( &m_Mutex );
}
//---------------------------------------------------------
inline void CThreadMutex::UnlockSilent( const char *pFileName, int nLine )
{
pthread_mutex_unlock( &m_Mutex );
}
//---------------------------------------------------------
inline bool CThreadMutex::AssertOwnedByCurrentThread()
{
if (ThreadGetCurrentId() == m_currentOwnerID)
return true;
return false;
}
//---------------------------------------------------------
inline void CThreadMutex::SetTrace(bool fTrace)
{
}
#endif // POSIX
//-----------------------------------------------------------------------------
//
// CThreadRWLock inline functions
//
//-----------------------------------------------------------------------------
inline CThreadRWLock::CThreadRWLock()
: m_CanRead( true ),
m_nWriters( 0 ),
m_nActiveReaders( 0 ),
m_nPendingReaders( 0 )
{
}
inline void CThreadRWLock::LockForRead()
{
m_mutex.Lock( __FILE__, __LINE__ );
if ( m_nWriters)
{
WaitForRead();
}
m_nActiveReaders++;
m_mutex.Unlock( __FILE__, __LINE__ );
}
inline void CThreadRWLock::UnlockRead()
{
m_mutex.Lock( __FILE__, __LINE__ );
m_nActiveReaders--;
if ( m_nActiveReaders == 0 && m_nWriters != 0 )
{
m_CanWrite.Set();
}
m_mutex.Unlock( __FILE__, __LINE__ );
}
//-----------------------------------------------------------------------------
//
// CThreadSpinRWLock inline functions
//
//-----------------------------------------------------------------------------
inline bool CThreadSpinRWLock::AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand )
{
#ifdef _WIN32
return ThreadInterlockedAssignIf64( (volatile int64 *)&m_lockInfo, *((int64 *)&newValue), *((int64 *)&comperand) );
#else
return ThreadInterlockedAssignIf128( (volatile int128 *)&m_lockInfo, *((int128 *)&newValue), *((int128 *)&comperand) );
#endif
}
FORCEINLINE bool CThreadSpinRWLock::TryLockForWrite( const char *pFileName, int nLine, const ThreadId_t threadId )
{
// In order to grab a write lock, there can be no readers and no owners of the write lock
if ( m_lockInfo.m_nReaders > 0 || ( m_lockInfo.m_writerId && m_lockInfo.m_writerId != threadId ) )
{
return false;
}
static const LockInfo_t oldValue = { 0, 0 };
LockInfo_t newValue = { threadId, 0 };
if ( AssignIf( newValue, oldValue ) )
{
ThreadMemoryBarrier();
return true;
}
return false;
}
inline bool CThreadSpinRWLock::TryLockForWrite( const char *pFileName, int nLine )
{
m_nWriters++;
if ( !TryLockForWrite( pFileName, nLine, ThreadGetCurrentId() ) )
{
m_nWriters--;
return false;
}
return true;
}
FORCEINLINE bool CThreadSpinRWLock::TryLockForRead( const char *pFileName, int nLine )
{
if ( m_nWriters != 0 )
{
return false;
}
// In order to grab a write lock, the number of readers must not change and no thread can own the write
LockInfo_t oldValue;
LockInfo_t newValue;
oldValue.m_nReaders = m_lockInfo.m_nReaders;
oldValue.m_writerId = 0;
newValue.m_nReaders = oldValue.m_nReaders + 1;
newValue.m_writerId = 0;
if ( AssignIf( newValue, oldValue ) )
{
ThreadMemoryBarrier();
return true;
}
return false;
}
inline void CThreadSpinRWLock::LockForWrite( const char *pFileName, int nLine )
{
const ThreadId_t threadId = ThreadGetCurrentId();
m_nWriters++;
if ( !TryLockForWrite( pFileName, nLine, threadId ) )
{
ThreadPause();
SpinLockForWrite( pFileName, nLine, threadId );
}
}
// read data from a memory address
template<class T> FORCEINLINE T ReadVolatileMemory( T const *pPtr )
{
volatile const T * pVolatilePtr = ( volatile const T * ) pPtr;
return *pVolatilePtr;
}
//-----------------------------------------------------------------------------
#ifdef _LINUX
DLL_GLOBAL_IMPORT __thread int g_nThreadID;
#endif
#if defined( _WIN32 )
#pragma warning(pop)
#endif
#endif // THREADTOOLS_H