1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-12 11:42:10 +08:00
hl2sdk/game/server/PointAngularVelocitySensor.cpp

530 lines
16 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Used to fire events based on the orientation of a given entity.
//
// Looks at its target's anglular velocity every frame and fires outputs
// as the angular velocity passes a given threshold value.
//
//=============================================================================//
#include "cbase.h"
#include "entityinput.h"
#include "entityoutput.h"
#include "eventqueue.h"
#include "mathlib/mathlib.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
enum
{
AVELOCITY_SENSOR_NO_LAST_RESULT = -2
};
ConVar g_debug_angularsensor( "g_debug_angularsensor", "0", FCVAR_CHEAT );
class CPointAngularVelocitySensor : public CPointEntity
{
DECLARE_CLASS( CPointAngularVelocitySensor, CPointEntity );
public:
CPointAngularVelocitySensor();
void Activate(void);
void Spawn(void);
void Think(void);
private:
float SampleAngularVelocity(CBaseEntity *pEntity);
int CompareToThreshold(CBaseEntity *pEntity, float flThreshold, bool bFireVelocityOutput);
void FireCompareOutput(int nCompareResult, CBaseEntity *pActivator);
void DrawDebugLines( void );
// Input handlers
void InputTest( inputdata_t &inputdata );
void InputTestWithInterval( inputdata_t &inputdata );
EHANDLE m_hTargetEntity; // Entity whose angles are being monitored.
float m_flThreshold; // The threshold angular velocity that we are looking for.
int m_nLastCompareResult; // The comparison result from our last measurement, expressed as -1, 0, or 1
int m_nLastFireResult; // The last result for which we fire the output.
float m_flFireTime;
float m_flFireInterval;
float m_flLastAngVelocity;
QAngle m_lastOrientation;
Vector m_vecAxis;
bool m_bUseHelper;
// Outputs
COutputFloat m_AngularVelocity;
// Compare the target's angular velocity to the threshold velocity and fire the appropriate output.
// These outputs are filtered by m_flFireInterval to ignore excessive oscillations.
COutputEvent m_OnLessThan;
COutputEvent m_OnLessThanOrEqualTo;
COutputEvent m_OnGreaterThan;
COutputEvent m_OnGreaterThanOrEqualTo;
COutputEvent m_OnEqualTo;
DECLARE_DATADESC();
};
LINK_ENTITY_TO_CLASS(point_angularvelocitysensor, CPointAngularVelocitySensor);
BEGIN_DATADESC( CPointAngularVelocitySensor )
// Fields
DEFINE_FIELD( m_hTargetEntity, FIELD_EHANDLE ),
DEFINE_KEYFIELD(m_flThreshold, FIELD_FLOAT, "threshold"),
DEFINE_FIELD(m_nLastCompareResult, FIELD_INTEGER),
DEFINE_FIELD( m_nLastFireResult, FIELD_INTEGER ),
DEFINE_FIELD( m_flFireTime, FIELD_TIME ),
DEFINE_KEYFIELD( m_flFireInterval, FIELD_FLOAT, "fireinterval" ),
DEFINE_FIELD( m_flLastAngVelocity, FIELD_FLOAT ),
DEFINE_FIELD( m_lastOrientation, FIELD_VECTOR ),
// Inputs
DEFINE_INPUTFUNC(FIELD_VOID, "Test", InputTest),
DEFINE_INPUTFUNC(FIELD_VOID, "TestWithInterval", InputTestWithInterval),
// Outputs
DEFINE_OUTPUT(m_OnLessThan, "OnLessThan"),
DEFINE_OUTPUT(m_OnLessThanOrEqualTo, "OnLessThanOrEqualTo"),
DEFINE_OUTPUT(m_OnGreaterThan, "OnGreaterThan"),
DEFINE_OUTPUT(m_OnGreaterThanOrEqualTo, "OnGreaterThanOrEqualTo"),
DEFINE_OUTPUT(m_OnEqualTo, "OnEqualTo"),
DEFINE_OUTPUT(m_AngularVelocity, "AngularVelocity"),
DEFINE_KEYFIELD( m_vecAxis, FIELD_VECTOR, "axis" ),
DEFINE_KEYFIELD( m_bUseHelper, FIELD_BOOLEAN, "usehelper" ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: constructor provides default values
//-----------------------------------------------------------------------------
CPointAngularVelocitySensor::CPointAngularVelocitySensor()
{
m_flFireInterval = 0.2f;
}
//-----------------------------------------------------------------------------
// Purpose: Called when spawning after parsing keyvalues.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::Spawn(void)
{
m_flThreshold = fabs(m_flThreshold);
m_nLastFireResult = AVELOCITY_SENSOR_NO_LAST_RESULT;
m_nLastCompareResult = AVELOCITY_SENSOR_NO_LAST_RESULT;
// m_flFireInterval = 0.2;
m_lastOrientation = vec3_angle;
}
//-----------------------------------------------------------------------------
// Purpose: Called after all entities in the map have spawned.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::Activate(void)
{
BaseClass::Activate();
m_hTargetEntity = gEntList.FindEntityByName( NULL, m_target );
if (m_hTargetEntity)
{
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose: Draws magic lines...
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::DrawDebugLines( void )
{
if ( m_hTargetEntity )
{
Vector vForward, vRight, vUp;
AngleVectors( m_hTargetEntity->GetAbsAngles(), &vForward, &vRight, &vUp );
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vForward * 64, 255, 0, 0, false, 0 );
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vRight * 64, 0, 255, 0, false, 0 );
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vUp * 64, 0, 0, 255, false, 0 );
}
if ( m_bUseHelper == true )
{
QAngle Angles;
Vector vAxisForward, vAxisRight, vAxisUp;
Vector vLine = m_vecAxis - GetAbsOrigin();
VectorNormalize( vLine );
VectorAngles( vLine, Angles );
AngleVectors( Angles, &vAxisForward, &vAxisRight, &vAxisUp );
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vAxisForward * 64, 255, 0, 0, false, 0 );
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vAxisRight * 64, 0, 255, 0, false, 0 );
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vAxisUp * 64, 0, 0, 255, false, 0 );
}
}
//-----------------------------------------------------------------------------
// Purpose: Returns the magnitude of the entity's angular velocity.
//-----------------------------------------------------------------------------
float CPointAngularVelocitySensor::SampleAngularVelocity(CBaseEntity *pEntity)
{
if (pEntity->GetMoveType() == MOVETYPE_VPHYSICS)
{
IPhysicsObject *pPhys = pEntity->VPhysicsGetObject();
if (pPhys != NULL)
{
Vector vecVelocity;
AngularImpulse vecAngVelocity;
pPhys->GetVelocity(&vecVelocity, &vecAngVelocity);
QAngle angles;
pPhys->GetPosition( NULL, &angles );
float dt = gpGlobals->curtime - GetLastThink();
if ( dt == 0 )
dt = 0.1;
// HACKHACK: We don't expect a real 'delta' orientation here, just enough of an error estimate to tell if this thing
// is trying to move, but failing.
QAngle delta = angles - m_lastOrientation;
if ( ( delta.Length() / dt ) < ( vecAngVelocity.Length() * 0.01 ) )
{
return 0.0f;
}
m_lastOrientation = angles;
if ( m_bUseHelper == false )
{
return vecAngVelocity.Length();
}
else
{
Vector vLine = m_vecAxis - GetAbsOrigin();
VectorNormalize( vLine );
Vector vecWorldAngVelocity;
pPhys->LocalToWorldVector( &vecWorldAngVelocity, vecAngVelocity );
float flDot = DotProduct( vecWorldAngVelocity, vLine );
return flDot;
}
}
}
else
{
QAngle vecAngVel = pEntity->GetLocalAngularVelocity();
float flMax = max(fabs(vecAngVel[PITCH]), fabs(vecAngVel[YAW]));
return max(flMax, fabs(vecAngVel[ROLL]));
}
return 0;
}
//-----------------------------------------------------------------------------
// Purpose: Compares the given entity's angular velocity to the threshold velocity.
// Input : pEntity - Entity whose angular velocity is being measured.
// flThreshold -
// Output : Returns -1 if less than, 0 if equal to, or 1 if greater than the threshold.
//-----------------------------------------------------------------------------
int CPointAngularVelocitySensor::CompareToThreshold(CBaseEntity *pEntity, float flThreshold, bool bFireVelocityOutput)
{
if (pEntity == NULL)
{
return 0;
}
float flAngVelocity = SampleAngularVelocity(pEntity);
if ( g_debug_angularsensor.GetBool() )
{
DrawDebugLines();
}
if (bFireVelocityOutput && (flAngVelocity != m_flLastAngVelocity))
{
m_AngularVelocity.Set(flAngVelocity, pEntity, this);
m_flLastAngVelocity = flAngVelocity;
}
if (flAngVelocity > flThreshold)
{
return 1;
}
if (flAngVelocity == flThreshold)
{
return 0;
}
return -1;
}
//-----------------------------------------------------------------------------
// Called every frame to sense the angular velocity of the target entity.
// Output is filtered by m_flFireInterval to ignore excessive oscillations.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::Think(void)
{
if (m_hTargetEntity != NULL)
{
//
// Check to see if the measure entity's angular velocity has been within
// tolerance of the threshold for the given period of time.
//
int nCompare = CompareToThreshold(m_hTargetEntity, m_flThreshold, true);
if (nCompare != m_nLastCompareResult)
{
// If we've oscillated back to where we last fired the output, don't
// fire the same output again.
if (nCompare == m_nLastFireResult)
{
m_flFireTime = 0;
}
else if (m_nLastCompareResult != AVELOCITY_SENSOR_NO_LAST_RESULT)
{
//
// The value has changed -- reset the timer. We'll fire the output if
// it stays at this value until the interval expires.
//
m_flFireTime = gpGlobals->curtime + m_flFireInterval;
}
m_nLastCompareResult = nCompare;
}
else if ((m_flFireTime != 0) && (gpGlobals->curtime >= m_flFireTime))
{
//
// The compare result has held steady long enough -- time to
// fire the output.
//
FireCompareOutput(nCompare, this);
m_nLastFireResult = nCompare;
m_flFireTime = 0;
}
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Fires the output after the fire interval if the velocity is stable.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::InputTestWithInterval( inputdata_t &inputdata )
{
if (m_hTargetEntity != NULL)
{
m_flFireTime = gpGlobals->curtime + m_flFireInterval;
m_nLastFireResult = AVELOCITY_SENSOR_NO_LAST_RESULT;
m_nLastCompareResult = CompareToThreshold(m_hTargetEntity, m_flThreshold, true);
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose: Input handler for forcing an instantaneous test of the condition.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::InputTest( inputdata_t &inputdata )
{
int nCompareResult = CompareToThreshold(m_hTargetEntity, m_flThreshold, false);
FireCompareOutput(nCompareResult, inputdata.pActivator);
}
//-----------------------------------------------------------------------------
// Purpose: Fires the appropriate output based on the given comparison result.
// Input : nCompareResult -
// pActivator -
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::FireCompareOutput( int nCompareResult, CBaseEntity *pActivator )
{
if (nCompareResult == -1)
{
m_OnLessThan.FireOutput(pActivator, this);
m_OnLessThanOrEqualTo.FireOutput(pActivator, this);
}
else if (nCompareResult == 1)
{
m_OnGreaterThan.FireOutput(pActivator, this);
m_OnGreaterThanOrEqualTo.FireOutput(pActivator, this);
}
else
{
m_OnEqualTo.FireOutput(pActivator, this);
m_OnLessThanOrEqualTo.FireOutput(pActivator, this);
m_OnGreaterThanOrEqualTo.FireOutput(pActivator, this);
}
}
// ============================================================================
//
// Simple velocity sensor
//
// ============================================================================
class CPointVelocitySensor : public CPointEntity
{
DECLARE_CLASS( CPointVelocitySensor, CPointEntity );
public:
void Spawn();
void Activate( void );
void Think( void );
private:
void SampleVelocity( void );
EHANDLE m_hTargetEntity; // Entity whose angles are being monitored.
Vector m_vecAxis; // Axis along which to measure the speed.
bool m_bEnabled; // Whether we're measuring or not
// Outputs
float m_fPrevVelocity; // stores velocity from last frame, so we only write the output if it has changed
COutputFloat m_Velocity;
void InputEnable( inputdata_t &inputdata );
void InputDisable( inputdata_t &inputdata );
DECLARE_DATADESC();
};
LINK_ENTITY_TO_CLASS( point_velocitysensor, CPointVelocitySensor );
BEGIN_DATADESC( CPointVelocitySensor )
// Fields
DEFINE_FIELD( m_hTargetEntity, FIELD_EHANDLE ),
DEFINE_KEYFIELD( m_vecAxis, FIELD_VECTOR, "axis" ),
DEFINE_KEYFIELD( m_bEnabled, FIELD_BOOLEAN, "enabled" ),
DEFINE_FIELD( m_fPrevVelocity, FIELD_FLOAT ),
// Outputs
DEFINE_OUTPUT( m_Velocity, "Velocity" ),
DEFINE_INPUTFUNC( FIELD_VOID, "Enable", InputEnable ),
DEFINE_INPUTFUNC( FIELD_VOID, "Disable", InputDisable ),
END_DATADESC()
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CPointVelocitySensor::Spawn()
{
Vector vLine = m_vecAxis - GetAbsOrigin();
VectorNormalize( vLine );
m_vecAxis = vLine;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointVelocitySensor::Activate( void )
{
BaseClass::Activate();
m_hTargetEntity = gEntList.FindEntityByName( NULL, m_target );
if ( m_bEnabled && m_hTargetEntity )
{
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointVelocitySensor::InputEnable( inputdata_t &inputdata )
{
// Don't interrupt us if we're already enabled
if ( m_bEnabled )
return;
m_bEnabled = true;
if ( m_hTargetEntity )
{
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointVelocitySensor::InputDisable( inputdata_t &inputdata )
{
m_bEnabled = false;
}
//-----------------------------------------------------------------------------
// Purpose: Called every frame
//-----------------------------------------------------------------------------
void CPointVelocitySensor::Think( void )
{
if ( m_hTargetEntity != NULL && m_bEnabled )
{
SampleVelocity();
SetNextThink( gpGlobals->curtime );
}
}
//-----------------------------------------------------------------------------
// Purpose: Returns the magnitude of the entity's angular velocity.
//-----------------------------------------------------------------------------
void CPointVelocitySensor::SampleVelocity( void )
{
if ( m_hTargetEntity == NULL )
return;
Vector vecVelocity;
if ( m_hTargetEntity->GetMoveType() == MOVETYPE_VPHYSICS )
{
IPhysicsObject *pPhys = m_hTargetEntity->VPhysicsGetObject();
if ( pPhys != NULL )
{
pPhys->GetVelocity( &vecVelocity, NULL );
}
}
else
{
vecVelocity = m_hTargetEntity->GetAbsVelocity();
}
/*
float flSpeed = VectorNormalize( vecVelocity );
float flDot = ( m_vecAxis != vec3_origin ) ? DotProduct( vecVelocity, m_vecAxis ) : 1.0f;
*/
// We want the component of the velocity vector in the direction of the axis, which since the
// axis is normalized is simply their dot product (eg V . A = |V|*|A|*cos(theta) )
m_fPrevVelocity = ( m_vecAxis != vec3_origin ) ? DotProduct( vecVelocity, m_vecAxis ) : 1.0f;
// if it's changed since the last frame, poke the output
if ( m_fPrevVelocity != m_Velocity.Get() )
{
m_Velocity.Set( m_fPrevVelocity, NULL, NULL );
}
}