1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-03 16:13:22 +08:00
hl2sdk/public/mathlib/compressed_vector.h
2013-06-26 15:22:04 -07:00

609 lines
14 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef COMPRESSED_VECTOR_H
#define COMPRESSED_VECTOR_H
#ifdef _WIN32
#pragma once
#endif
#include <math.h>
#include <float.h>
// For vec_t, put this somewhere else?
#include "basetypes.h"
// For rand(). We really need a library!
#include <stdlib.h>
#include "tier0/dbg.h"
#include "mathlib/vector.h"
#include "mathlib/mathlib.h"
#if defined( _X360 )
#pragma bitfield_order( push, lsb_to_msb )
#endif
//=========================================================
// fit a 3D vector into 32 bits
//=========================================================
class Vector32
{
public:
// Construction/destruction:
Vector32(void);
Vector32(vec_t X, vec_t Y, vec_t Z);
// assignment
Vector32& operator=(const Vector &vOther);
operator Vector ();
private:
unsigned short x:10;
unsigned short y:10;
unsigned short z:10;
unsigned short exp:2;
};
inline Vector32& Vector32::operator=(const Vector &vOther)
{
CHECK_VALID(vOther);
static float expScale[4] = { 4.0f, 16.0f, 32.f, 64.f };
float fmax = Max( fabs( vOther.x ), fabs( vOther.y ) );
fmax = Max( fmax, (float)fabs( vOther.z ) );
for (exp = 0; exp < 3; exp++)
{
if (fmax < expScale[exp])
break;
}
Assert( fmax < expScale[exp] );
float fexp = 512.0f / expScale[exp];
x = Clamp( (int)(vOther.x * fexp) + 512, 0, 1023 );
y = Clamp( (int)(vOther.y * fexp) + 512, 0, 1023 );
z = Clamp( (int)(vOther.z * fexp) + 512, 0, 1023 );
return *this;
}
inline Vector32::operator Vector ()
{
Vector tmp;
static float expScale[4] = { 4.0f, 16.0f, 32.f, 64.f };
float fexp = expScale[exp] / 512.0f;
tmp.x = (((int)x) - 512) * fexp;
tmp.y = (((int)y) - 512) * fexp;
tmp.z = (((int)z) - 512) * fexp;
return tmp;
}
//=========================================================
// Fit a unit vector into 32 bits
//=========================================================
class Normal32
{
public:
// Construction/destruction:
Normal32(void);
Normal32(vec_t X, vec_t Y, vec_t Z);
// assignment
Normal32& operator=(const Vector &vOther);
operator Vector ();
private:
unsigned short x:15;
unsigned short y:15;
unsigned short zneg:1;
};
inline Normal32& Normal32::operator=(const Vector &vOther)
{
CHECK_VALID(vOther);
x = Clamp( (int)(vOther.x * 16384) + 16384, 0, 32767 );
y = Clamp( (int)(vOther.y * 16384) + 16384, 0, 32767 );
zneg = (vOther.z < 0);
//x = vOther.x;
//y = vOther.y;
//z = vOther.z;
return *this;
}
inline Normal32::operator Vector ()
{
Vector tmp;
tmp.x = ((int)x - 16384) * (1 / 16384.0);
tmp.y = ((int)y - 16384) * (1 / 16384.0);
tmp.z = sqrt( 1 - tmp.x * tmp.x - tmp.y * tmp.y );
if (zneg)
tmp.z = -tmp.z;
return tmp;
}
//=========================================================
// 64 bit Quaternion
//=========================================================
class Quaternion64
{
public:
// Construction/destruction:
Quaternion64(void);
Quaternion64(vec_t X, vec_t Y, vec_t Z);
// assignment
// Quaternion& operator=(const Quaternion64 &vOther);
Quaternion64& operator=(const Quaternion &vOther);
operator Quaternion ();
private:
uint64 x:21;
uint64 y:21;
uint64 z:21;
uint64 wneg:1;
};
inline Quaternion64::operator Quaternion ()
{
Quaternion tmp;
// shift to -1048576, + 1048575, then round down slightly to -1.0 < x < 1.0
tmp.x = ((int)x - 1048576) * (1 / 1048576.5f);
tmp.y = ((int)y - 1048576) * (1 / 1048576.5f);
tmp.z = ((int)z - 1048576) * (1 / 1048576.5f);
tmp.w = sqrt( 1 - tmp.x * tmp.x - tmp.y * tmp.y - tmp.z * tmp.z );
if (wneg)
tmp.w = -tmp.w;
return tmp;
}
inline Quaternion64& Quaternion64::operator=(const Quaternion &vOther)
{
CHECK_VALID(vOther);
x = Clamp( (int)(vOther.x * 1048576) + 1048576, 0, 2097151 );
y = Clamp( (int)(vOther.y * 1048576) + 1048576, 0, 2097151 );
z = Clamp( (int)(vOther.z * 1048576) + 1048576, 0, 2097151 );
wneg = (vOther.w < 0);
return *this;
}
//=========================================================
// 48 bit Quaternion
//=========================================================
class Quaternion48
{
public:
// Construction/destruction:
Quaternion48(void);
Quaternion48(vec_t X, vec_t Y, vec_t Z);
// assignment
// Quaternion& operator=(const Quaternion48 &vOther);
Quaternion48& operator=(const Quaternion &vOther);
operator Quaternion ();
private:
unsigned short x:16;
unsigned short y:16;
unsigned short z:15;
unsigned short wneg:1;
};
inline Quaternion48::operator Quaternion ()
{
Quaternion tmp;
tmp.x = ((int)x - 32768) * (1 / 32768.0);
tmp.y = ((int)y - 32768) * (1 / 32768.0);
tmp.z = ((int)z - 16384) * (1 / 16384.0);
tmp.w = sqrt( 1 - tmp.x * tmp.x - tmp.y * tmp.y - tmp.z * tmp.z );
if (wneg)
tmp.w = -tmp.w;
return tmp;
}
inline Quaternion48& Quaternion48::operator=(const Quaternion &vOther)
{
CHECK_VALID(vOther);
x = Clamp( (int)(vOther.x * 32768) + 32768, 0, 65535 );
y = Clamp( (int)(vOther.y * 32768) + 32768, 0, 65535 );
z = Clamp( (int)(vOther.z * 16384) + 16384, 0, 32767 );
wneg = (vOther.w < 0);
return *this;
}
//=========================================================
// 32 bit Quaternion
//=========================================================
class Quaternion32
{
public:
// Construction/destruction:
Quaternion32(void);
Quaternion32(vec_t X, vec_t Y, vec_t Z);
// assignment
// Quaternion& operator=(const Quaternion48 &vOther);
Quaternion32& operator=(const Quaternion &vOther);
operator Quaternion ();
private:
unsigned int x:11;
unsigned int y:10;
unsigned int z:10;
unsigned int wneg:1;
};
inline Quaternion32::operator Quaternion ()
{
Quaternion tmp;
tmp.x = ((int)x - 1024) * (1 / 1024.0);
tmp.y = ((int)y - 512) * (1 / 512.0);
tmp.z = ((int)z - 512) * (1 / 512.0);
tmp.w = sqrt( 1 - tmp.x * tmp.x - tmp.y * tmp.y - tmp.z * tmp.z );
if (wneg)
tmp.w = -tmp.w;
return tmp;
}
inline Quaternion32& Quaternion32::operator=(const Quaternion &vOther)
{
CHECK_VALID(vOther);
x = Clamp( (int)(vOther.x * 1024) + 1024, 0, 2047 );
y = Clamp( (int)(vOther.y * 512) + 512, 0, 1023 );
z = Clamp( (int)(vOther.z * 512) + 512, 0, 1023 );
wneg = (vOther.w < 0);
return *this;
}
//=========================================================
// 16 bit float
//=========================================================
const int float32bias = 127;
const int float16bias = 15;
const float maxfloat16bits = 65504.0f;
class float16
{
public:
//float16() {}
//float16( float f ) { m_storage.rawWord = ConvertFloatTo16bits(f); }
void Init() { m_storage.rawWord = 0; }
// float16& operator=(const float16 &other) { m_storage.rawWord = other.m_storage.rawWord; return *this; }
// float16& operator=(const float &other) { m_storage.rawWord = ConvertFloatTo16bits(other); return *this; }
// operator unsigned short () { return m_storage.rawWord; }
// operator float () { return Convert16bitFloatTo32bits( m_storage.rawWord ); }
unsigned short GetBits() const
{
return m_storage.rawWord;
}
float GetFloat() const
{
return Convert16bitFloatTo32bits( m_storage.rawWord );
}
void SetFloat( float in )
{
m_storage.rawWord = ConvertFloatTo16bits( in );
}
bool IsInfinity() const
{
return m_storage.bits.biased_exponent == 31 && m_storage.bits.mantissa == 0;
}
bool IsNaN() const
{
return m_storage.bits.biased_exponent == 31 && m_storage.bits.mantissa != 0;
}
bool operator==(const float16 other) const { return m_storage.rawWord == other.m_storage.rawWord; }
bool operator!=(const float16 other) const { return m_storage.rawWord != other.m_storage.rawWord; }
// bool operator< (const float other) const { return GetFloat() < other; }
// bool operator> (const float other) const { return GetFloat() > other; }
protected:
union float32bits
{
float rawFloat;
struct
{
unsigned int mantissa : 23;
unsigned int biased_exponent : 8;
unsigned int sign : 1;
} bits;
};
union float16bits
{
unsigned short rawWord;
struct
{
unsigned short mantissa : 10;
unsigned short biased_exponent : 5;
unsigned short sign : 1;
} bits;
};
static bool IsNaN( float16bits in )
{
return in.bits.biased_exponent == 31 && in.bits.mantissa != 0;
}
static bool IsInfinity( float16bits in )
{
return in.bits.biased_exponent == 31 && in.bits.mantissa == 0;
}
// 0x0001 - 0x03ff
static unsigned short ConvertFloatTo16bits( float input )
{
if ( input > maxfloat16bits )
input = maxfloat16bits;
else if ( input < -maxfloat16bits )
input = -maxfloat16bits;
float16bits output;
float32bits inFloat;
inFloat.rawFloat = input;
output.bits.sign = inFloat.bits.sign;
if ( (inFloat.bits.biased_exponent==0) && (inFloat.bits.mantissa==0) )
{
// zero
output.bits.mantissa = 0;
output.bits.biased_exponent = 0;
}
else if ( (inFloat.bits.biased_exponent==0) && (inFloat.bits.mantissa!=0) )
{
// denorm -- denorm float maps to 0 half
output.bits.mantissa = 0;
output.bits.biased_exponent = 0;
}
else if ( (inFloat.bits.biased_exponent==0xff) && (inFloat.bits.mantissa==0) )
{
#if 0
// infinity
output.bits.mantissa = 0;
output.bits.biased_exponent = 31;
#else
// infinity maps to maxfloat
output.bits.mantissa = 0x3ff;
output.bits.biased_exponent = 0x1e;
#endif
}
else if ( (inFloat.bits.biased_exponent==0xff) && (inFloat.bits.mantissa!=0) )
{
#if 0
// NaN
output.bits.mantissa = 1;
output.bits.biased_exponent = 31;
#else
// NaN maps to zero
output.bits.mantissa = 0;
output.bits.biased_exponent = 0;
#endif
}
else
{
// regular number
int new_exp = inFloat.bits.biased_exponent-127;
if (new_exp<-24)
{
// this maps to 0
output.bits.mantissa = 0;
output.bits.biased_exponent = 0;
}
if (new_exp<-14)
{
// this maps to a denorm
output.bits.biased_exponent = 0;
unsigned int exp_val = ( unsigned int )( -14 - ( inFloat.bits.biased_exponent - float32bias ) );
if( exp_val > 0 && exp_val < 11 )
{
output.bits.mantissa = ( 1 << ( 10 - exp_val ) ) + ( inFloat.bits.mantissa >> ( 13 + exp_val ) );
}
}
else if (new_exp>15)
{
#if 0
// map this value to infinity
output.bits.mantissa = 0;
output.bits.biased_exponent = 31;
#else
// to big. . . maps to maxfloat
output.bits.mantissa = 0x3ff;
output.bits.biased_exponent = 0x1e;
#endif
}
else
{
output.bits.biased_exponent = new_exp+15;
output.bits.mantissa = (inFloat.bits.mantissa >> 13);
}
}
return output.rawWord;
}
static float Convert16bitFloatTo32bits( unsigned short input )
{
float32bits output;
const float16bits &inFloat = *((float16bits *)&input);
if( IsInfinity( inFloat ) )
{
return maxfloat16bits * ( ( inFloat.bits.sign == 1 ) ? -1.0f : 1.0f );
}
if( IsNaN( inFloat ) )
{
return 0.0;
}
if( inFloat.bits.biased_exponent == 0 && inFloat.bits.mantissa != 0 )
{
// denorm
const float half_denorm = (1.0f/16384.0f); // 2^-14
float mantissa = ((float)(inFloat.bits.mantissa)) / 1024.0f;
float sgn = (inFloat.bits.sign)? -1.0f :1.0f;
output.rawFloat = sgn*mantissa*half_denorm;
}
else
{
// regular number
unsigned mantissa = inFloat.bits.mantissa;
unsigned biased_exponent = inFloat.bits.biased_exponent;
unsigned sign = ((unsigned)inFloat.bits.sign) << 31;
biased_exponent = ( (biased_exponent - float16bias + float32bias) * (biased_exponent != 0) ) << 23;
mantissa <<= (23-10);
*((unsigned *)&output) = ( mantissa | biased_exponent | sign );
}
return output.rawFloat;
}
float16bits m_storage;
};
class float16_with_assign : public float16
{
public:
float16_with_assign() {}
float16_with_assign( float f ) { m_storage.rawWord = ConvertFloatTo16bits(f); }
float16& operator=(const float16 &other) { m_storage.rawWord = ((float16_with_assign &)other).m_storage.rawWord; return *this; }
float16& operator=(const float &other) { m_storage.rawWord = ConvertFloatTo16bits(other); return *this; }
// operator unsigned short () const { return m_storage.rawWord; }
operator float () const { return Convert16bitFloatTo32bits( m_storage.rawWord ); }
};
//=========================================================
// Fit a 3D vector in 48 bits
//=========================================================
class Vector48
{
public:
// Construction/destruction:
Vector48(void) {}
Vector48(vec_t X, vec_t Y, vec_t Z) { x.SetFloat( X ); y.SetFloat( Y ); z.SetFloat( Z ); }
// assignment
Vector48& operator=(const Vector &vOther);
operator Vector ();
const float operator[]( int i ) const { return (((float16 *)this)[i]).GetFloat(); }
float16 x;
float16 y;
float16 z;
};
inline Vector48& Vector48::operator=(const Vector &vOther)
{
CHECK_VALID(vOther);
x.SetFloat( vOther.x );
y.SetFloat( vOther.y );
z.SetFloat( vOther.z );
return *this;
}
inline Vector48::operator Vector ()
{
Vector tmp;
tmp.x = x.GetFloat();
tmp.y = y.GetFloat();
tmp.z = z.GetFloat();
return tmp;
}
//=========================================================
// Fit a 2D vector in 32 bits
//=========================================================
class Vector2d32
{
public:
// Construction/destruction:
Vector2d32(void) {}
Vector2d32(vec_t X, vec_t Y) { x.SetFloat( X ); y.SetFloat( Y ); }
// assignment
Vector2d32& operator=(const Vector &vOther);
Vector2d32& operator=(const Vector2D &vOther);
operator Vector2D ();
void Init( vec_t ix = 0.f, vec_t iy = 0.f);
float16_with_assign x;
float16_with_assign y;
};
inline Vector2d32& Vector2d32::operator=(const Vector2D &vOther)
{
x.SetFloat( vOther.x );
y.SetFloat( vOther.y );
return *this;
}
inline Vector2d32::operator Vector2D ()
{
Vector2D tmp;
tmp.x = x.GetFloat();
tmp.y = y.GetFloat();
return tmp;
}
inline void Vector2d32::Init( vec_t ix, vec_t iy )
{
x.SetFloat(ix);
y.SetFloat(iy);
}
#if defined( _X360 )
#pragma bitfield_order( pop )
#endif
#endif