1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2024-12-22 09:38:56 +08:00
hl2sdk/tier1/strtools.cpp

2983 lines
77 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: String Tools
//
//===========================================================================//
// These are redefined in the project settings to prevent anyone from using them.
// We in this module are of a higher caste and thus are privileged in their use.
#ifdef strncpy
#undef strncpy
#endif
#ifdef _snprintf
#undef _snprintf
#endif
#if defined( sprintf )
#undef sprintf
#endif
#if defined( vsprintf )
#undef vsprintf
#endif
#ifdef _vsnprintf
#ifdef _WIN32
#undef _vsnprintf
#endif
#endif
#ifdef vsnprintf
#ifndef _WIN32
#undef vsnprintf
#endif
#endif
#if defined( strcat )
#undef strcat
#endif
#ifdef strncat
#undef strncat
#endif
// NOTE: I have to include stdio + stdarg first so vsnprintf gets compiled in
#include <stdio.h>
#include <stdarg.h>
#ifdef POSIX
#include <iconv.h>
#include <ctype.h>
#include <unistd.h>
#include <stdlib.h>
#define _getcwd getcwd
#elif _WIN32
#include <direct.h>
#if !defined( _X360 )
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#endif
#ifdef _WIN32
#ifndef CP_UTF8
#define CP_UTF8 65001
#endif
#endif
#include "tier0/dbg.h"
#include "tier1/strtools.h"
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include "tier0/basetypes.h"
#include "tier1/utldict.h"
#if defined( _X360 )
#include "xbox/xbox_win32stubs.h"
#endif
#include "tier0/memdbgon.h"
static int FastToLower( char c )
{
int i = (unsigned char) c;
if ( i < 0x80 )
{
// Brutally fast branchless ASCII tolower():
i += (((('A'-1) - i) & (i - ('Z'+1))) >> 26) & 0x20;
}
else
{
i += isupper( i ) ? 0x20 : 0;
}
return i;
}
void _V_memset (const char* file, int line, void *dest, int fill, int count)
{
Assert( count >= 0 );
AssertValidWritePtr( dest, count );
memset(dest,fill,count);
}
void _V_memcpy (const char* file, int line, void *dest, const void *src, int count)
{
Assert( count >= 0 );
AssertValidReadPtr( src, count );
AssertValidWritePtr( dest, count );
memcpy( dest, src, count );
}
void _V_memmove(const char* file, int line, void *dest, const void *src, int count)
{
Assert( count >= 0 );
AssertValidReadPtr( src, count );
AssertValidWritePtr( dest, count );
memmove( dest, src, count );
}
int _V_memcmp (const char* file, int line, const void *m1, const void *m2, int count)
{
Assert( count >= 0 );
AssertValidReadPtr( m1, count );
AssertValidReadPtr( m2, count );
return memcmp( m1, m2, count );
}
int _V_strlen(const char* file, int line, const char *str)
{
AssertValidStringPtr(str);
return strlen( str );
}
void _V_strcpy (const char* file, int line, char *dest, const char *src)
{
AssertValidWritePtr(dest);
AssertValidStringPtr(src);
strcpy( dest, src );
}
int _V_wcslen(const char* file, int line, const wchar_t *pwch)
{
return wcslen( pwch );
}
char *_V_strrchr(const char* file, int line, const char *s, char c)
{
AssertValidStringPtr( s );
int len = V_strlen(s);
s += len;
while (len--)
if (*--s == c) return (char *)s;
return 0;
}
int _V_strcmp (const char* file, int line, const char *s1, const char *s2)
{
AssertValidStringPtr( s1 );
AssertValidStringPtr( s2 );
return strcmp( s1, s2 );
}
int _V_wcscmp (const char* file, int line, const wchar_t *s1, const wchar_t *s2)
{
AssertValidReadPtr( s1 );
AssertValidReadPtr( s2 );
while ( *s1 == *s2 )
{
if ( !*s1 )
return 0; // strings are equal
s1++;
s2++;
}
return *s1 > *s2 ? 1 : -1; // strings not equal
}
char *_V_strstr(const char* file, int line, const char *s1, const char *search )
{
AssertValidStringPtr( s1 );
AssertValidStringPtr( search );
#if defined( _X360 )
return (char *)strstr( (char *)s1, search );
#else
return (char *)strstr( s1, search );
#endif
}
wchar_t *_V_wcsupr (const char* file, int line, wchar_t *start)
{
return _wcsupr( start );
}
wchar_t *_V_wcslower (const char* file, int line, wchar_t *start)
{
return _wcslwr(start);
}
char *V_strupr( char *start )
{
unsigned char *str = (unsigned char*)start;
while( *str )
{
if ( (unsigned char)(*str - 'a') <= ('z' - 'a') )
*str -= 'a' - 'A';
else if ( (unsigned char)*str >= 0x80 ) // non-ascii, fall back to CRT
*str = toupper( *str );
str++;
}
return start;
}
char *V_strlower( char *start )
{
unsigned char *str = (unsigned char*)start;
while( *str )
{
if ( (unsigned char)(*str - 'A') <= ('Z' - 'A') )
*str += 'a' - 'A';
else if ( (unsigned char)*str >= 0x80 ) // non-ascii, fall back to CRT
*str = tolower( *str );
str++;
}
return start;
}
char *V_strnlwr(char *s, size_t count)
{
// Assert( count >= 0 ); tautology since size_t is unsigned
AssertValidStringPtr( s, count );
char* pRet = s;
if ( !s || !count )
return s;
while ( -- count > 0 )
{
if ( !*s )
return pRet; // reached end of string
*s = tolower( *s );
++s;
}
*s = 0; // null-terminate original string at "count-1"
return pRet;
}
int V_stricmp( const char *str1, const char *str2 )
{
// It is not uncommon to compare a string to itself. See
// VPanelWrapper::GetPanel which does this a lot. Since stricmp
// is expensive and pointer comparison is cheap, this simple test
// can save a lot of cycles, and cache pollution.
if ( str1 == str2 )
{
return 0;
}
const unsigned char *s1 = (const unsigned char*)str1;
const unsigned char *s2 = (const unsigned char*)str2;
for ( ; *s1; ++s1, ++s2 )
{
if ( *s1 != *s2 )
{
// in ascii char set, lowercase = uppercase | 0x20
unsigned char c1 = *s1 | 0x20;
unsigned char c2 = *s2 | 0x20;
if ( c1 != c2 || (unsigned char)(c1 - 'a') > ('z' - 'a') )
{
// if non-ascii mismatch, fall back to CRT for locale
if ( (c1 | c2) >= 0x80 ) return stricmp( (const char*)s1, (const char*)s2 );
// ascii mismatch. only use the | 0x20 value if alphabetic.
if ((unsigned char)(c1 - 'a') > ('z' - 'a')) c1 = *s1;
if ((unsigned char)(c2 - 'a') > ('z' - 'a')) c2 = *s2;
return c1 > c2 ? 1 : -1;
}
}
}
return *s2 ? -1 : 0;
}
int V_strnicmp( const char *str1, const char *str2, int n )
{
const unsigned char *s1 = (const unsigned char*)str1;
const unsigned char *s2 = (const unsigned char*)str2;
for ( ; n > 0 && *s1; --n, ++s1, ++s2 )
{
if ( *s1 != *s2 )
{
// in ascii char set, lowercase = uppercase | 0x20
unsigned char c1 = *s1 | 0x20;
unsigned char c2 = *s2 | 0x20;
if ( c1 != c2 || (unsigned char)(c1 - 'a') > ('z' - 'a') )
{
// if non-ascii mismatch, fall back to CRT for locale
if ( (c1 | c2) >= 0x80 ) return strnicmp( (const char*)s1, (const char*)s2, n );
// ascii mismatch. only use the | 0x20 value if alphabetic.
if ((unsigned char)(c1 - 'a') > ('z' - 'a')) c1 = *s1;
if ((unsigned char)(c2 - 'a') > ('z' - 'a')) c2 = *s2;
return c1 > c2 ? 1 : -1;
}
}
}
return (n > 0 && *s2) ? -1 : 0;
}
int V_strncmp( const char *s1, const char *s2, int count )
{
Assert( count >= 0 );
AssertValidStringPtr( s1, count );
AssertValidStringPtr( s2, count );
while ( count > 0 )
{
if ( *s1 != *s2 )
return (unsigned char)*s1 < (unsigned char)*s2 ? -1 : 1; // string different
if ( *s1 == '\0' )
return 0; // null terminator hit - strings the same
s1++;
s2++;
count--;
}
return 0; // count characters compared the same
}
const char *StringAfterPrefix( const char *str, const char *prefix )
{
AssertValidStringPtr( str );
AssertValidStringPtr( prefix );
do
{
if ( !*prefix )
return str;
}
while ( FastToLower( *str++ ) == FastToLower( *prefix++ ) );
return NULL;
}
const char *StringAfterPrefixCaseSensitive( const char *str, const char *prefix )
{
AssertValidStringPtr( str );
AssertValidStringPtr( prefix );
do
{
if ( !*prefix )
return str;
}
while ( *str++ == *prefix++ );
return NULL;
}
int64 V_atoi64( const char *str )
{
AssertValidStringPtr( str );
int64 val;
int64 sign;
int64 c;
Assert( str );
if (*str == '-')
{
sign = -1;
str++;
}
else
sign = 1;
val = 0;
//
// check for hex
//
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X') )
{
str += 2;
while (1)
{
c = *str++;
if (c >= '0' && c <= '9')
val = (val<<4) + c - '0';
else if (c >= 'a' && c <= 'f')
val = (val<<4) + c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
val = (val<<4) + c - 'A' + 10;
else
return val*sign;
}
}
//
// check for character
//
if (str[0] == '\'')
{
return sign * str[1];
}
//
// assume decimal
//
while (1)
{
c = *str++;
if (c <'0' || c > '9')
return val*sign;
val = val*10 + c - '0';
}
return 0;
}
uint64 V_atoui64( const char *str )
{
AssertValidStringPtr( str );
uint64 val;
uint64 c;
Assert( str );
val = 0;
//
// check for hex
//
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X') )
{
str += 2;
while (1)
{
c = *str++;
if (c >= '0' && c <= '9')
val = (val<<4) + c - '0';
else if (c >= 'a' && c <= 'f')
val = (val<<4) + c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
val = (val<<4) + c - 'A' + 10;
else
return val;
}
}
//
// check for character
//
if (str[0] == '\'')
{
return str[1];
}
//
// assume decimal
//
while (1)
{
c = *str++;
if (c <'0' || c > '9')
return val;
val = val*10 + c - '0';
}
return 0;
}
int V_atoi( const char *str )
{
return (int)V_atoi64( str );
}
float V_atof (const char *str)
{
AssertValidStringPtr( str );
double val;
int sign;
int c;
int decimal, total;
if (*str == '-')
{
sign = -1;
str++;
}
else if (*str == '+')
{
sign = 1;
str++;
}
else
{
sign = 1;
}
val = 0;
//
// check for hex
//
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X') )
{
str += 2;
while (1)
{
c = *str++;
if (c >= '0' && c <= '9')
val = (val*16) + c - '0';
else if (c >= 'a' && c <= 'f')
val = (val*16) + c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
val = (val*16) + c - 'A' + 10;
else
return val*sign;
}
}
//
// check for character
//
if (str[0] == '\'')
{
return sign * str[1];
}
//
// assume decimal
//
decimal = -1;
total = 0;
int exponent = 0;
while (1)
{
c = *str++;
if (c == '.')
{
if ( decimal != -1 )
{
break;
}
decimal = total;
continue;
}
if (c <'0' || c > '9')
{
if ( c == 'e' || c == 'E' )
{
exponent = V_atoi(str);
}
break;
}
val = val*10 + c - '0';
total++;
}
if ( exponent != 0 )
{
val *= pow( 10.0, exponent );
}
if (decimal == -1)
return val*sign;
while (total > decimal)
{
val /= 10;
total--;
}
return val*sign;
}
//-----------------------------------------------------------------------------
// Normalizes a float string in place.
//
// (removes leading zeros, trailing zeros after the decimal point, and the decimal point itself where possible)
//-----------------------------------------------------------------------------
void V_normalizeFloatString( char* pFloat )
{
// If we have a decimal point, remove trailing zeroes:
if( strchr( pFloat,'.' ) )
{
int len = V_strlen(pFloat);
while( len > 1 && pFloat[len - 1] == '0' )
{
pFloat[len - 1] = '\0';
len--;
}
if( len > 1 && pFloat[ len - 1 ] == '.' )
{
pFloat[len - 1] = '\0';
len--;
}
}
// TODO: Strip leading zeros
}
//-----------------------------------------------------------------------------
// Finds a string in another string with a case insensitive test
//-----------------------------------------------------------------------------
char const* V_stristr( char const* pStr, char const* pSearch )
{
AssertValidStringPtr(pStr);
AssertValidStringPtr(pSearch);
if (!pStr || !pSearch)
return 0;
char const* pLetter = pStr;
// Check the entire string
while (*pLetter != 0)
{
// Skip over non-matches
if (FastToLower((unsigned char)*pLetter) == FastToLower((unsigned char)*pSearch))
{
// Check for match
char const* pMatch = pLetter + 1;
char const* pTest = pSearch + 1;
while (*pTest != 0)
{
// We've run off the end; don't bother.
if (*pMatch == 0)
return 0;
if (FastToLower((unsigned char)*pMatch) != FastToLower((unsigned char)*pTest))
break;
++pMatch;
++pTest;
}
// Found a match!
if (*pTest == 0)
return pLetter;
}
++pLetter;
}
return 0;
}
char* V_stristr( char* pStr, char const* pSearch )
{
AssertValidStringPtr( pStr );
AssertValidStringPtr( pSearch );
return (char*)V_stristr( (char const*)pStr, pSearch );
}
//-----------------------------------------------------------------------------
// Finds a string in another string with a case insensitive test w/ length validation
//-----------------------------------------------------------------------------
char const* V_strnistr( char const* pStr, char const* pSearch, int n )
{
AssertValidStringPtr(pStr);
AssertValidStringPtr(pSearch);
if (!pStr || !pSearch)
return 0;
char const* pLetter = pStr;
// Check the entire string
while (*pLetter != 0)
{
if ( n <= 0 )
return 0;
// Skip over non-matches
if (FastToLower(*pLetter) == FastToLower(*pSearch))
{
int n1 = n - 1;
// Check for match
char const* pMatch = pLetter + 1;
char const* pTest = pSearch + 1;
while (*pTest != 0)
{
if ( n1 <= 0 )
return 0;
// We've run off the end; don't bother.
if (*pMatch == 0)
return 0;
if (FastToLower(*pMatch) != FastToLower(*pTest))
break;
++pMatch;
++pTest;
--n1;
}
// Found a match!
if (*pTest == 0)
return pLetter;
}
++pLetter;
--n;
}
return 0;
}
const char* V_strnchr( const char* pStr, char c, int n )
{
char const* pLetter = pStr;
char const* pLast = pStr + n;
// Check the entire string
while ( (pLetter < pLast) && (*pLetter != 0) )
{
if (*pLetter == c)
return pLetter;
++pLetter;
}
return NULL;
}
void V_strncpy( char *pDest, char const *pSrc, int maxLen )
{
Assert( maxLen >= sizeof( *pDest ) );
AssertValidWritePtr( pDest, maxLen );
AssertValidStringPtr( pSrc );
strncpy( pDest, pSrc, maxLen );
if ( maxLen > 0 )
{
pDest[maxLen-1] = 0;
}
}
// warning C6053: Call to 'wcsncpy' might not zero-terminate string 'pDest'
// warning C6059: Incorrect length parameter in call to 'strncat'. Pass the number of remaining characters, not the buffer size of 'argument 1'
// warning C6386: Buffer overrun: accessing 'argument 1', the writable size is 'destBufferSize' bytes, but '1000' bytes might be written
// These warnings were investigated through code inspection and writing of tests and they are
// believed to all be spurious.
#ifdef _PREFAST_
#pragma warning( push )
#pragma warning( disable : 6053 6059 6386 )
#endif
void V_wcsncpy( wchar_t *pDest, wchar_t const *pSrc, int maxLenInBytes )
{
Assert( maxLenInBytes >= sizeof( *pDest ) );
AssertValidWritePtr( pDest, maxLenInBytes );
AssertValidReadPtr( pSrc );
int maxLen = maxLenInBytes / sizeof(wchar_t);
wcsncpy( pDest, pSrc, maxLen );
if( maxLen )
{
pDest[maxLen-1] = 0;
}
}
int V_snwprintf( wchar_t *pDest, int maxLen, const wchar_t *pFormat, ... )
{
Assert( maxLen > 0 );
AssertValidWritePtr( pDest, maxLen );
AssertValidReadPtr( pFormat );
va_list marker;
va_start( marker, pFormat );
#ifdef _WIN32
int len = _vsnwprintf( pDest, maxLen, pFormat, marker );
#elif POSIX
int len = vswprintf( pDest, maxLen, pFormat, marker );
#else
#error "define vsnwprintf type."
#endif
va_end( marker );
// Len > maxLen represents an overflow on POSIX, < 0 is an overflow on windows
if( len < 0 || len >= maxLen )
{
len = maxLen;
pDest[maxLen-1] = 0;
}
return len;
}
int V_vsnwprintf( wchar_t *pDest, int maxLen, const wchar_t *pFormat, va_list params )
{
Assert( maxLen > 0 );
#ifdef _WIN32
int len = _vsnwprintf( pDest, maxLen, pFormat, params );
#elif POSIX
int len = vswprintf( pDest, maxLen, pFormat, params );
#else
#error "define vsnwprintf type."
#endif
// Len < 0 represents an overflow
// Len == maxLen represents exactly fitting with no NULL termination
// Len >= maxLen represents overflow on POSIX
if ( len < 0 || len >= maxLen )
{
len = maxLen;
pDest[maxLen-1] = 0;
}
return len;
}
int V_snprintf( char *pDest, int maxLen, char const *pFormat, ... )
{
Assert( maxLen > 0 );
AssertValidWritePtr( pDest, maxLen );
AssertValidStringPtr( pFormat );
va_list marker;
va_start( marker, pFormat );
#ifdef _WIN32
int len = _vsnprintf( pDest, maxLen, pFormat, marker );
#elif POSIX
int len = vsnprintf( pDest, maxLen, pFormat, marker );
#else
#error "define vsnprintf type."
#endif
va_end( marker );
// Len > maxLen represents an overflow on POSIX, < 0 is an overflow on windows
if( len < 0 || len >= maxLen )
{
len = maxLen;
pDest[maxLen-1] = 0;
}
return len;
}
int V_vsnprintf( char *pDest, int maxLen, char const *pFormat, va_list params )
{
Assert( maxLen > 0 );
AssertValidWritePtr( pDest, maxLen );
AssertValidStringPtr( pFormat );
int len = _vsnprintf( pDest, maxLen, pFormat, params );
// Len > maxLen represents an overflow on POSIX, < 0 is an overflow on windows
if( len < 0 || len >= maxLen )
{
len = maxLen;
pDest[maxLen-1] = 0;
}
return len;
}
int V_vsnprintfRet( char *pDest, int maxLen, const char *pFormat, va_list params, bool *pbTruncated )
{
Assert( maxLen > 0 );
AssertValidWritePtr( pDest, maxLen );
AssertValidStringPtr( pFormat );
int len = _vsnprintf( pDest, maxLen, pFormat, params );
if ( pbTruncated )
{
*pbTruncated = ( len < 0 || len >= maxLen );
}
if ( len < 0 || len >= maxLen )
{
len = maxLen;
pDest[maxLen-1] = 0;
}
return len;
}
//-----------------------------------------------------------------------------
// Purpose: If COPY_ALL_CHARACTERS == max_chars_to_copy then we try to add the whole pSrc to the end of pDest, otherwise
// we copy only as many characters as are specified in max_chars_to_copy (or the # of characters in pSrc if thats's less).
// Input : *pDest - destination buffer
// *pSrc - string to append
// destBufferSize - sizeof the buffer pointed to by pDest
// max_chars_to_copy - COPY_ALL_CHARACTERS in pSrc or max # to copy
// Output : char * the copied buffer
//-----------------------------------------------------------------------------
char *V_strncat(char *pDest, const char *pSrc, size_t destBufferSize, int max_chars_to_copy )
{
size_t charstocopy = (size_t)0;
Assert( (ptrdiff_t)destBufferSize >= 0 );
AssertValidStringPtr( pDest);
AssertValidStringPtr( pSrc );
size_t len = strlen(pDest);
size_t srclen = strlen( pSrc );
if ( max_chars_to_copy <= COPY_ALL_CHARACTERS )
{
charstocopy = srclen;
}
else
{
charstocopy = (size_t)V_min( max_chars_to_copy, (int)srclen );
}
if ( len + charstocopy >= destBufferSize )
{
charstocopy = destBufferSize - len - 1;
}
if ( (int)charstocopy <= 0 )
{
return pDest;
}
ANALYZE_SUPPRESS( 6059 ); // warning C6059: : Incorrect length parameter in call to 'strncat'. Pass the number of remaining characters, not the buffer size of 'argument 1'
char *pOut = strncat( pDest, pSrc, charstocopy );
return pOut;
}
wchar_t *V_wcsncat( INOUT_Z_CAP(cchDest) wchar_t *pDest, const wchar_t *pSrc, size_t cchDest, int max_chars_to_copy )
{
size_t charstocopy = (size_t)0;
Assert( (ptrdiff_t)cchDest >= 0 );
size_t len = wcslen(pDest);
size_t srclen = wcslen( pSrc );
if ( max_chars_to_copy <= COPY_ALL_CHARACTERS )
{
charstocopy = srclen;
}
else
{
charstocopy = (size_t)V_min( max_chars_to_copy, (int)srclen );
}
if ( len + charstocopy >= cchDest )
{
charstocopy = cchDest - len - 1;
}
if ( (int)charstocopy <= 0 )
{
return pDest;
}
ANALYZE_SUPPRESS( 6059 ); // warning C6059: : Incorrect length parameter in call to 'strncat'. Pass the number of remaining characters, not the buffer size of 'argument 1'
wchar_t *pOut = wcsncat( pDest, pSrc, charstocopy );
return pOut;
}
//-----------------------------------------------------------------------------
// Purpose: Converts value into x.xx MB/ x.xx KB, x.xx bytes format, including commas
// Input : value -
// 2 -
// false -
// Output : char
//-----------------------------------------------------------------------------
#define NUM_PRETIFYMEM_BUFFERS 8
char *V_pretifymem( float value, int digitsafterdecimal /*= 2*/, bool usebinaryonek /*= false*/ )
{
static char output[ NUM_PRETIFYMEM_BUFFERS ][ 32 ];
static int current;
float onekb = usebinaryonek ? 1024.0f : 1000.0f;
float onemb = onekb * onekb;
char *out = output[ current ];
current = ( current + 1 ) & ( NUM_PRETIFYMEM_BUFFERS -1 );
char suffix[ 8 ];
// First figure out which bin to use
if ( value > onemb )
{
value /= onemb;
V_snprintf( suffix, sizeof( suffix ), " MB" );
}
else if ( value > onekb )
{
value /= onekb;
V_snprintf( suffix, sizeof( suffix ), " KB" );
}
else
{
V_snprintf( suffix, sizeof( suffix ), " bytes" );
}
char val[ 32 ];
// Clamp to >= 0
digitsafterdecimal = V_max( digitsafterdecimal, 0 );
// If it's basically integral, don't do any decimals
if ( FloatMakePositive( value - (int)value ) < 0.00001 )
{
V_snprintf( val, sizeof( val ), "%i%s", (int)value, suffix );
}
else
{
char fmt[ 32 ];
// Otherwise, create a format string for the decimals
V_snprintf( fmt, sizeof( fmt ), "%%.%if%s", digitsafterdecimal, suffix );
V_snprintf( val, sizeof( val ), fmt, value );
}
// Copy from in to out
char *i = val;
char *o = out;
// Search for decimal or if it was integral, find the space after the raw number
char *dot = strstr( i, "." );
if ( !dot )
{
dot = strstr( i, " " );
}
// Compute position of dot
int pos = dot - i;
// Don't put a comma if it's <= 3 long
pos -= 3;
while ( *i )
{
// If pos is still valid then insert a comma every third digit, except if we would be
// putting one in the first spot
if ( pos >= 0 && !( pos % 3 ) )
{
// Never in first spot
if ( o != out )
{
*o++ = ',';
}
}
// Count down comma position
pos--;
// Copy rest of data as normal
*o++ = *i++;
}
// Terminate
*o = 0;
return out;
}
//-----------------------------------------------------------------------------
// Purpose: Returns a string representation of an integer with commas
// separating the 1000s (ie, 37,426,421)
// Input : value - Value to convert
// Output : Pointer to a static buffer containing the output
//-----------------------------------------------------------------------------
#define NUM_PRETIFYNUM_BUFFERS 8 // Must be a power of two
char *V_pretifynum( int64 inputValue )
{
static char output[ NUM_PRETIFYMEM_BUFFERS ][ 32 ];
static int current;
// Point to the output buffer.
char * const out = output[ current ];
// Track the output buffer end for easy calculation of bytes-remaining.
const char* const outEnd = out + sizeof( output[ current ] );
// Point to the current output location in the output buffer.
char *pchRender = out;
// Move to the next output pointer.
current = ( current + 1 ) & ( NUM_PRETIFYMEM_BUFFERS -1 );
*out = 0;
// In order to handle the most-negative int64 we need to negate it
// into a uint64.
uint64 value;
// Render the leading minus sign, if necessary
if ( inputValue < 0 )
{
V_snprintf( pchRender, 32, "-" );
value = (uint64)-inputValue;
// Advance our output pointer.
pchRender += V_strlen( pchRender );
}
else
{
value = (uint64)inputValue;
}
// Now let's find out how big our number is. The largest number we can fit
// into 63 bits is about 9.2e18. So, there could potentially be six
// three-digit groups.
// We need the initial value of 'divisor' to be big enough to divide our
// number down to 1-999 range.
uint64 divisor = 1;
// Loop more than six times to avoid integer overflow.
for ( int i = 0; i < 6; ++i )
{
// If our divisor is already big enough then stop.
if ( value < divisor * 1000 )
break;
divisor *= 1000;
}
// Print the leading batch of one to three digits.
int toPrint = value / divisor;
V_snprintf( pchRender, outEnd - pchRender, "%d", toPrint );
for (;;)
{
// Advance our output pointer.
pchRender += V_strlen( pchRender );
// Adjust our value to be printed and our divisor.
value -= toPrint * divisor;
divisor /= 1000;
if ( !divisor )
break;
// The remaining blocks of digits always include a comma and three digits.
toPrint = value / divisor;
V_snprintf( pchRender, outEnd - pchRender, ",%03d", toPrint );
}
return out;
}
//-----------------------------------------------------------------------------
// Purpose: returns true if a wide character is a "mean" space; that is,
// if it is technically a space or punctuation, but causes disruptive
// behavior when used in names, web pages, chat windows, etc.
//
// characters in this set are removed from the beginning and/or end of strings
// by Q_AggressiveStripPrecedingAndTrailingWhitespaceW()
//-----------------------------------------------------------------------------
bool Q_IsMeanSpaceW( wchar_t wch )
{
bool bIsMean = false;
switch ( wch )
{
case L'\x0082': // BREAK PERMITTED HERE
case L'\x0083': // NO BREAK PERMITTED HERE
case L'\x00A0': // NO-BREAK SPACE
case L'\x034F': // COMBINING GRAPHEME JOINER
case L'\x2000': // EN QUAD
case L'\x2001': // EM QUAD
case L'\x2002': // EN SPACE
case L'\x2003': // EM SPACE
case L'\x2004': // THICK SPACE
case L'\x2005': // MID SPACE
case L'\x2006': // SIX SPACE
case L'\x2007': // figure space
case L'\x2008': // PUNCTUATION SPACE
case L'\x2009': // THIN SPACE
case L'\x200A': // HAIR SPACE
case L'\x200B': // ZERO-WIDTH SPACE
case L'\x200C': // ZERO-WIDTH NON-JOINER
case L'\x200D': // ZERO WIDTH JOINER
case L'\x200E': // LEFT-TO-RIGHT MARK
case L'\x2028': // LINE SEPARATOR
case L'\x2029': // PARAGRAPH SEPARATOR
case L'\x202F': // NARROW NO-BREAK SPACE
case L'\x2060': // word joiner
case L'\xFEFF': // ZERO-WIDTH NO BREAK SPACE
case L'\xFFFC': // OBJECT REPLACEMENT CHARACTER
bIsMean = true;
break;
}
return bIsMean;
}
//-----------------------------------------------------------------------------
// Purpose: strips trailing whitespace; returns pointer inside string just past
// any leading whitespace.
//
// bAggresive = true causes this function to also check for "mean" spaces,
// which we don't want in persona names or chat strings as they're disruptive
// to the user experience.
//-----------------------------------------------------------------------------
static wchar_t *StripWhitespaceWorker( int cchLength, wchar_t *pwch, bool *pbStrippedWhitespace, bool bAggressive )
{
// walk backwards from the end of the string, killing any whitespace
*pbStrippedWhitespace = false;
wchar_t *pwchEnd = pwch + cchLength;
while ( --pwchEnd >= pwch )
{
if ( !iswspace( *pwchEnd ) && ( !bAggressive || !Q_IsMeanSpaceW( *pwchEnd ) ) )
break;
*pwchEnd = 0;
*pbStrippedWhitespace = true;
}
// walk forward in the string
while ( pwch < pwchEnd )
{
if ( !iswspace( *pwch ) )
break;
*pbStrippedWhitespace = true;
pwch++;
}
return pwch;
}
//-----------------------------------------------------------------------------
// Purpose: Strips all evil characters (ie. zero-width no-break space)
// from a string.
//-----------------------------------------------------------------------------
bool Q_RemoveAllEvilCharacters( char *pch )
{
// convert to unicode
int cch = Q_strlen( pch );
int cubDest = (cch + 1 ) * sizeof( wchar_t );
wchar_t *pwch = (wchar_t *)stackalloc( cubDest );
int cwch = Q_UTF8ToUnicode( pch, pwch, cubDest ) / sizeof( wchar_t );
bool bStrippedWhitespace = false;
// Walk through and skip over evil characters
int nWalk = 0;
for( int i=0; i<cwch; ++i )
{
if( !Q_IsMeanSpaceW( pwch[i] ) )
{
pwch[nWalk] = pwch[i];
++nWalk;
}
else
{
bStrippedWhitespace = true;
}
}
// Null terminate
pwch[nWalk-1] = L'\0';
// copy back, if necessary
if ( bStrippedWhitespace )
{
Q_UnicodeToUTF8( pwch, pch, cch );
}
return bStrippedWhitespace;
}
//-----------------------------------------------------------------------------
// Purpose: strips leading and trailing whitespace
//-----------------------------------------------------------------------------
bool Q_StripPrecedingAndTrailingWhitespaceW( wchar_t *pwch )
{
int cch = Q_wcslen( pwch );
// Early out and don't convert if we don't have any chars or leading/trailing ws.
if ( ( cch < 1 ) || ( !iswspace( pwch[ 0 ] ) && !iswspace( pwch[ cch - 1 ] ) ) )
return false;
// duplicate on stack
int cubDest = ( cch + 1 ) * sizeof( wchar_t );
wchar_t *pwchT = (wchar_t *)stackalloc( cubDest );
Q_wcsncpy( pwchT, pwch, cubDest );
bool bStrippedWhitespace = false;
pwchT = StripWhitespaceWorker( cch, pwch, &bStrippedWhitespace, false /* not aggressive */ );
// copy back, if necessary
if ( bStrippedWhitespace )
{
Q_wcsncpy( pwch, pwchT, cubDest );
}
return bStrippedWhitespace;
}
//-----------------------------------------------------------------------------
// Purpose: strips leading and trailing whitespace,
// and also strips punctuation and formatting characters with "clear"
// representations.
//-----------------------------------------------------------------------------
bool Q_AggressiveStripPrecedingAndTrailingWhitespaceW( wchar_t *pwch )
{
// duplicate on stack
int cch = Q_wcslen( pwch );
int cubDest = ( cch + 1 ) * sizeof( wchar_t );
wchar_t *pwchT = (wchar_t *)stackalloc( cubDest );
Q_wcsncpy( pwchT, pwch, cubDest );
bool bStrippedWhitespace = false;
pwchT = StripWhitespaceWorker( cch, pwch, &bStrippedWhitespace, true /* is aggressive */ );
// copy back, if necessary
if ( bStrippedWhitespace )
{
Q_wcsncpy( pwch, pwchT, cubDest );
}
return bStrippedWhitespace;
}
//-----------------------------------------------------------------------------
// Purpose: strips leading and trailing whitespace
//-----------------------------------------------------------------------------
bool Q_StripPrecedingAndTrailingWhitespace( char *pch )
{
int cch = Q_strlen( pch );
// Early out and don't convert if we don't have any chars or leading/trailing ws.
if ( ( cch < 1 ) || ( !isspace( (unsigned char)pch[ 0 ] ) && !isspace( (unsigned char)pch[ cch - 1 ] ) ) )
return false;
// convert to unicode
int cubDest = (cch + 1 ) * sizeof( wchar_t );
wchar_t *pwch = (wchar_t *)stackalloc( cubDest );
int cwch = Q_UTF8ToUnicode( pch, pwch, cubDest ) / sizeof( wchar_t );
bool bStrippedWhitespace = false;
pwch = StripWhitespaceWorker( cwch-1, pwch, &bStrippedWhitespace, false /* not aggressive */ );
// copy back, if necessary
if ( bStrippedWhitespace )
{
Q_UnicodeToUTF8( pwch, pch, cch );
}
return bStrippedWhitespace;
}
//-----------------------------------------------------------------------------
// Purpose: strips leading and trailing whitespace
//-----------------------------------------------------------------------------
bool Q_AggressiveStripPrecedingAndTrailingWhitespace( char *pch )
{
// convert to unicode
int cch = Q_strlen( pch );
int cubDest = (cch + 1 ) * sizeof( wchar_t );
wchar_t *pwch = (wchar_t *)stackalloc( cubDest );
int cwch = Q_UTF8ToUnicode( pch, pwch, cubDest ) / sizeof( wchar_t );
bool bStrippedWhitespace = false;
pwch = StripWhitespaceWorker( cwch-1, pwch, &bStrippedWhitespace, true /* is aggressive */ );
// copy back, if necessary
if ( bStrippedWhitespace )
{
Q_UnicodeToUTF8( pwch, pch, cch );
}
return bStrippedWhitespace;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a ucs2 string to a unicode (wchar_t) one, no-op on win32
//-----------------------------------------------------------------------------
int _V_UCS2ToUnicode( const ucs2 *pUCS2, wchar_t *pUnicode, int cubDestSizeInBytes )
{
Assert( cubDestSizeInBytes >= sizeof( *pUnicode ) );
AssertValidWritePtr(pUnicode);
AssertValidReadPtr(pUCS2);
pUnicode[0] = 0;
#ifdef _WIN32
int cchResult = V_wcslen( pUCS2 );
V_memcpy( pUnicode, pUCS2, cubDestSizeInBytes );
#else
iconv_t conv_t = iconv_open( "UCS-4LE", "UCS-2LE" );
int cchResult = -1;
size_t nLenUnicde = cubDestSizeInBytes;
size_t nMaxUTF8 = cubDestSizeInBytes;
char *pIn = (char *)pUCS2;
char *pOut = (char *)pUnicode;
if ( reinterpret_cast<int>(conv_t) > 0 )
{
cchResult = iconv( conv_t, &pIn, &nLenUnicde, &pOut, &nMaxUTF8 );
iconv_close( conv_t );
if ( (int)cchResult < 0 )
cchResult = 0;
else
cchResult = nMaxUTF8;
}
#endif
pUnicode[(cubDestSizeInBytes / sizeof(wchar_t)) - 1] = 0;
return cchResult;
}
#ifdef _PREFAST_
#pragma warning( pop ) // Restore the /analyze warnings
#endif
//-----------------------------------------------------------------------------
// Purpose: Converts a wchar_t string into a UCS2 string -noop on windows
//-----------------------------------------------------------------------------
int _V_UnicodeToUCS2( const wchar_t *pUnicode, int cubSrcInBytes, char *pUCS2, int cubDestSizeInBytes )
{
#ifdef _WIN32
// Figure out which buffer is smaller and convert from bytes to character
// counts.
int cchResult = V_min( (size_t)cubSrcInBytes/sizeof(wchar_t), cubDestSizeInBytes/sizeof(wchar_t) );
wchar_t *pDest = (wchar_t*)pUCS2;
wcsncpy( pDest, pUnicode, cchResult );
// Make sure we NULL-terminate.
pDest[ cchResult - 1 ] = 0;
#elif defined (POSIX)
iconv_t conv_t = iconv_open( "UCS-2LE", "UTF-32LE" );
size_t cchResult = -1;
size_t nLenUnicde = cubSrcInBytes;
size_t nMaxUCS2 = cubDestSizeInBytes;
char *pIn = (char*)pUnicode;
char *pOut = pUCS2;
if ( reinterpret_cast<int>(conv_t) > 0 )
{
cchResult = iconv( conv_t, &pIn, &nLenUnicde, &pOut, &nMaxUCS2 );
iconv_close( conv_t );
if ( (int)cchResult < 0 )
cchResult = 0;
else
cchResult = cubSrcInBytes / sizeof( wchar_t );
}
#else
#error Must be implemented for this platform
#endif
return cchResult;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a ucs-2 (windows wchar_t) string into a UTF8 (standard) string
//-----------------------------------------------------------------------------
int _V_UCS2ToUTF8( const ucs2 *pUCS2, char *pUTF8, int cubDestSizeInBytes )
{
AssertValidStringPtr(pUTF8, cubDestSizeInBytes);
AssertValidReadPtr(pUCS2);
pUTF8[0] = 0;
#ifdef _WIN32
// under win32 wchar_t == ucs2, sigh
int cchResult = WideCharToMultiByte( CP_UTF8, 0, pUCS2, -1, pUTF8, cubDestSizeInBytes, NULL, NULL );
#elif defined(POSIX)
iconv_t conv_t = iconv_open( "UTF-8", "UCS-2LE" );
size_t cchResult = -1;
// pUCS2 will be null-terminated so use that to work out the input
// buffer size. Note that we shouldn't assume iconv will stop when it
// finds a zero, and nLenUnicde should be given in bytes, so we multiply
// it by sizeof( ucs2 ) at the end.
size_t nLenUnicde = 0;
while ( pUCS2[nLenUnicde] )
{
++nLenUnicde;
}
nLenUnicde *= sizeof( ucs2 );
// Calculate number of bytes we want iconv to write, leaving space
// for the null-terminator
size_t nMaxUTF8 = cubDestSizeInBytes - 1;
char *pIn = (char *)pUCS2;
char *pOut = (char *)pUTF8;
if ( reinterpret_cast<int>(conv_t) > 0 )
{
const size_t nBytesToWrite = nMaxUTF8;
cchResult = iconv( conv_t, &pIn, &nLenUnicde, &pOut, &nMaxUTF8 );
// Calculate how many bytes were actually written and use that to
// null-terminate our output string.
const size_t nBytesWritten = nBytesToWrite - nMaxUTF8;
pUTF8[nBytesWritten] = 0;
iconv_close( conv_t );
if ( (int)cchResult < 0 )
cchResult = 0;
else
cchResult = nMaxUTF8;
}
#endif
pUTF8[cubDestSizeInBytes - 1] = 0;
return cchResult;
}
//-----------------------------------------------------------------------------
// Purpose: Converts a UTF8 to ucs-2 (windows wchar_t)
//-----------------------------------------------------------------------------
int _V_UTF8ToUCS2( const char *pUTF8, int cubSrcInBytes, ucs2 *pUCS2, int cubDestSizeInBytes )
{
Assert( cubDestSizeInBytes >= sizeof(pUCS2[0]) );
AssertValidStringPtr(pUTF8, cubDestSizeInBytes);
AssertValidReadPtr(pUCS2);
pUCS2[0] = 0;
#ifdef _WIN32
// under win32 wchar_t == ucs2, sigh
int cchResult = MultiByteToWideChar( CP_UTF8, 0, pUTF8, -1, pUCS2, cubDestSizeInBytes / sizeof(wchar_t) );
#elif defined( _PS3 ) // bugbug JLB
int cchResult = 0;
Assert( 0 );
#elif defined(POSIX)
iconv_t conv_t = iconv_open( "UCS-2LE", "UTF-8" );
size_t cchResult = -1;
size_t nLenUnicde = cubSrcInBytes;
size_t nMaxUTF8 = cubDestSizeInBytes;
char *pIn = (char *)pUTF8;
char *pOut = (char *)pUCS2;
if ( reinterpret_cast<int>(conv_t) > 0 )
{
cchResult = iconv( conv_t, &pIn, &nLenUnicde, &pOut, &nMaxUTF8 );
iconv_close( conv_t );
if ( (int)cchResult < 0 )
cchResult = 0;
else
cchResult = cubSrcInBytes;
}
#endif
pUCS2[ (cubDestSizeInBytes/sizeof(ucs2)) - 1] = 0;
return cchResult;
}
//-----------------------------------------------------------------------------
// Purpose: Returns the 4 bit nibble for a hex character
// Input : c -
// Output : unsigned char
//-----------------------------------------------------------------------------
unsigned char V_nibble( char c )
{
if ( ( c >= '0' ) &&
( c <= '9' ) )
{
return (unsigned char)(c - '0');
}
if ( ( c >= 'A' ) &&
( c <= 'F' ) )
{
return (unsigned char)(c - 'A' + 0x0a);
}
if ( ( c >= 'a' ) &&
( c <= 'f' ) )
{
return (unsigned char)(c - 'a' + 0x0a);
}
return '0';
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *in -
// numchars -
// *out -
// maxoutputbytes -
//-----------------------------------------------------------------------------
void V_hextobinary( char const *in, int numchars, byte *out, int maxoutputbytes )
{
int len = V_strlen( in );
numchars = V_min( len, numchars );
// Make sure it's even
numchars = ( numchars ) & ~0x1;
// Must be an even # of input characters (two chars per output byte)
Assert( numchars >= 2 );
memset( out, 0x00, maxoutputbytes );
byte *p;
int i;
p = out;
for ( i = 0;
( i < numchars ) && ( ( p - out ) < maxoutputbytes );
i+=2, p++ )
{
*p = ( V_nibble( in[i] ) << 4 ) | V_nibble( in[i+1] );
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *in -
// inputbytes -
// *out -
// outsize -
//-----------------------------------------------------------------------------
void V_binarytohex( const byte *in, int inputbytes, char *out, int outsize )
{
Assert( outsize >= 1 );
char doublet[10];
int i;
out[0]=0;
for ( i = 0; i < inputbytes; i++ )
{
unsigned char c = in[i];
V_snprintf( doublet, sizeof( doublet ), "%02x", c );
V_strncat( out, doublet, outsize, COPY_ALL_CHARACTERS );
}
}
// Even though \ on Posix (Linux&Mac) isn't techincally a path separator we are
// now counting it as one even Posix since so many times our filepaths aren't actual
// paths but rather text strings passed in from data files, treating \ as a pathseparator
// covers the full range of cases
bool PATHSEPARATOR( char c )
{
return c == '\\' || c == '/';
}
//-----------------------------------------------------------------------------
// Purpose: Extracts the base name of a file (no path, no extension, assumes '/' or '\' as path separator)
// Input : *in -
// *out -
// maxlen -
//-----------------------------------------------------------------------------
void V_FileBase( const char *in, char *out, int maxlen )
{
Assert( maxlen >= 1 );
Assert( in );
Assert( out );
if ( !in || !in[ 0 ] )
{
*out = 0;
return;
}
int len, start, end;
len = V_strlen( in );
// scan backward for '.'
end = len - 1;
while ( end&& in[end] != '.' && !PATHSEPARATOR( in[end] ) )
{
end--;
}
if ( in[end] != '.' ) // no '.', copy to end
{
end = len-1;
}
else
{
end--; // Found ',', copy to left of '.'
}
// Scan backward for '/'
start = len-1;
while ( start >= 0 && !PATHSEPARATOR( in[start] ) )
{
start--;
}
if ( start < 0 || !PATHSEPARATOR( in[start] ) )
{
start = 0;
}
else
{
start++;
}
// Length of new sting
len = end - start + 1;
int maxcopy = V_min( len + 1, maxlen );
// Copy partial string
V_strncpy( out, &in[start], maxcopy );
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *ppath -
//-----------------------------------------------------------------------------
void V_StripTrailingSlash( char *ppath )
{
Assert( ppath );
int len = V_strlen( ppath );
if ( len > 0 )
{
if ( PATHSEPARATOR( ppath[ len - 1 ] ) )
{
ppath[ len - 1 ] = 0;
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *in -
// *out -
// outSize -
//-----------------------------------------------------------------------------
void V_StripExtension( const char *in, char *out, int outSize )
{
// Find the last dot. If it's followed by a dot or a slash, then it's part of a
// directory specifier like ../../somedir/./blah.
// scan backward for '.'
int end = V_strlen( in ) - 1;
while ( end > 0 && in[end] != '.' && !PATHSEPARATOR( in[end] ) )
{
--end;
}
if (end > 0 && !PATHSEPARATOR( in[end] ) && end < outSize)
{
int nChars = V_min( end, outSize-1 );
if ( out != in )
{
memcpy( out, in, nChars );
}
out[nChars] = 0;
}
else
{
// nothing found
if ( out != in )
{
V_strncpy( out, in, outSize );
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *path -
// *extension -
// pathStringLength -
//-----------------------------------------------------------------------------
void V_DefaultExtension( char *path, const char *extension, int pathStringLength )
{
Assert( path );
Assert( pathStringLength >= 1 );
Assert( extension );
Assert( extension[0] == '.' );
char *src;
// if path doesn't have a .EXT, append extension
// (extension should include the .)
src = path + V_strlen(path) - 1;
while ( !PATHSEPARATOR( *src ) && ( src > path ) )
{
if (*src == '.')
{
// it has an extension
return;
}
src--;
}
// Concatenate the desired extension
V_strncat( path, extension, pathStringLength, COPY_ALL_CHARACTERS );
}
//-----------------------------------------------------------------------------
// Purpose: Force extension...
// Input : *path -
// *extension -
// pathStringLength -
//-----------------------------------------------------------------------------
void V_SetExtension( char *path, const char *extension, int pathStringLength )
{
V_StripExtension( path, path, pathStringLength );
// We either had an extension and stripped it, or didn't have an extension
// at all. Either way, we need to concatenate our extension now.
// extension is not required to start with '.', so if it's not there,
// then append that first.
if ( extension[0] != '.' )
{
V_strncat( path, ".", pathStringLength, COPY_ALL_CHARACTERS );
}
V_strncat( path, extension, pathStringLength, COPY_ALL_CHARACTERS );
}
//-----------------------------------------------------------------------------
// Purpose: Remove final filename from string
// Input : *path -
// Output : void V_StripFilename
//-----------------------------------------------------------------------------
void V_StripFilename (char *path)
{
int length;
length = V_strlen( path )-1;
if ( length <= 0 )
return;
while ( length > 0 &&
!PATHSEPARATOR( path[length] ) )
{
length--;
}
path[ length ] = 0;
}
#ifdef _WIN32
#define CORRECT_PATH_SEPARATOR '\\'
#define INCORRECT_PATH_SEPARATOR '/'
#elif POSIX
#define CORRECT_PATH_SEPARATOR '/'
#define INCORRECT_PATH_SEPARATOR '\\'
#endif
//-----------------------------------------------------------------------------
// Purpose: Changes all '/' or '\' characters into separator
// Input : *pname -
// separator -
//-----------------------------------------------------------------------------
void V_FixSlashes( char *pname, char separator /* = CORRECT_PATH_SEPARATOR */ )
{
while ( *pname )
{
if ( *pname == INCORRECT_PATH_SEPARATOR || *pname == CORRECT_PATH_SEPARATOR )
{
*pname = separator;
}
pname++;
}
}
//-----------------------------------------------------------------------------
// Purpose: This function fixes cases of filenames like materials\\blah.vmt or somepath\otherpath\\ and removes the extra double slash.
//-----------------------------------------------------------------------------
void V_FixDoubleSlashes( char *pStr )
{
int len = V_strlen( pStr );
for ( int i=1; i < len-1; i++ )
{
if ( (pStr[i] == '/' || pStr[i] == '\\') && (pStr[i+1] == '/' || pStr[i+1] == '\\') )
{
// This means there's a double slash somewhere past the start of the filename. That
// can happen in Hammer if they use a material in the root directory. You'll get a filename
// that looks like 'materials\\blah.vmt'
V_memmove( &pStr[i], &pStr[i+1], len - i );
--len;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Strip off the last directory from dirName
// Input : *dirName -
// maxlen -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool V_StripLastDir( char *dirName, int maxlen )
{
if( dirName[0] == 0 ||
!V_stricmp( dirName, "./" ) ||
!V_stricmp( dirName, ".\\" ) )
return false;
int len = V_strlen( dirName );
Assert( len < maxlen );
// skip trailing slash
if ( PATHSEPARATOR( dirName[len-1] ) )
{
len--;
}
while ( len > 0 )
{
if ( PATHSEPARATOR( dirName[len-1] ) )
{
dirName[len] = 0;
V_FixSlashes( dirName, CORRECT_PATH_SEPARATOR );
return true;
}
len--;
}
// Allow it to return an empty string and true. This can happen if something like "tf2/" is passed in.
// The correct behavior is to strip off the last directory ("tf2") and return true.
if( len == 0 )
{
V_snprintf( dirName, maxlen, ".%c", CORRECT_PATH_SEPARATOR );
return true;
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Returns a pointer to the beginning of the unqualified file name
// (no path information)
// Input: in - file name (may be unqualified, relative or absolute path)
// Output: pointer to unqualified file name
//-----------------------------------------------------------------------------
const char * V_UnqualifiedFileName( const char * in )
{
// back up until the character after the first path separator we find,
// or the beginning of the string
const char * out = in + strlen( in ) - 1;
while ( ( out > in ) && ( !PATHSEPARATOR( *( out-1 ) ) ) )
out--;
return out;
}
//-----------------------------------------------------------------------------
// Purpose: Composes a path and filename together, inserting a path separator
// if need be
// Input: path - path to use
// filename - filename to use
// dest - buffer to compose result in
// destSize - size of destination buffer
//-----------------------------------------------------------------------------
void V_ComposeFileName( const char *path, const char *filename, char *dest, int destSize )
{
V_strncpy( dest, path, destSize );
V_FixSlashes( dest );
V_AppendSlash( dest, destSize );
V_strncat( dest, filename, destSize, COPY_ALL_CHARACTERS );
V_FixSlashes( dest );
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *path -
// *dest -
// destSize -
// Output : void V_ExtractFilePath
//-----------------------------------------------------------------------------
bool V_ExtractFilePath (const char *path, char *dest, int destSize )
{
Assert( destSize >= 1 );
if ( destSize < 1 )
{
return false;
}
// Last char
int len = V_strlen(path);
const char *src = path + (len ? len-1 : 0);
// back up until a \ or the start
while ( src != path && !PATHSEPARATOR( *(src-1) ) )
{
src--;
}
int copysize = V_min( src - path, destSize - 1 );
memcpy( dest, path, copysize );
dest[copysize] = 0;
return copysize != 0 ? true : false;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *path -
// *dest -
// destSize -
// Output : void V_ExtractFileExtension
//-----------------------------------------------------------------------------
void V_ExtractFileExtension( const char *path, char *dest, int destSize )
{
*dest = NULL;
const char * extension = V_GetFileExtension( path );
if ( NULL != extension )
V_strncpy( dest, extension, destSize );
}
//-----------------------------------------------------------------------------
// Purpose: Returns a pointer to the file extension within a file name string
// Input: in - file name
// Output: pointer to beginning of extension (after the "."), or NULL
// if there is no extension
//-----------------------------------------------------------------------------
const char * V_GetFileExtension( const char * path )
{
const char *src;
src = path + strlen(path) - 1;
//
// back up until a . or the start
//
while (src != path && *(src-1) != '.' )
src--;
// check to see if the '.' is part of a pathname
if (src == path || PATHSEPARATOR( *src ) )
{
return NULL; // no extension
}
return src;
}
//-----------------------------------------------------------------------------
// Purpose: Returns a pointer to the filename part of a path string
// Input: in - file name
// Output: pointer to beginning of filename (after the "/"). If there were no /,
// output is identical to input
//-----------------------------------------------------------------------------
const char * V_GetFileName( const char * path )
{
return V_UnqualifiedFileName( path );
}
bool V_RemoveDotSlashes( char *pFilename, char separator, bool bRemoveDoubleSlashes /* = true */ )
{
char *pIn = pFilename;
char *pOut = pFilename;
bool bRetVal = true;
bool bBoundary = true;
while ( *pIn )
{
if ( bBoundary && pIn[0] == '.' && pIn[1] == '.' && ( PATHSEPARATOR( pIn[2] ) || !pIn[2] ) )
{
// Get rid of /../ or trailing /.. by backing pOut up to previous separator
// Eat the last separator (or repeated separators) we wrote out
while ( pOut != pFilename && pOut[-1] == separator )
{
--pOut;
}
while ( true )
{
if ( pOut == pFilename )
{
bRetVal = false; // backwards compat. return value, even though we continue handling
break;
}
--pOut;
if ( *pOut == separator )
{
break;
}
}
// Skip the '..' but not the slash, next loop iteration will handle separator
pIn += 2;
bBoundary = ( pOut == pFilename );
}
else if ( bBoundary && pIn[0] == '.' && ( PATHSEPARATOR( pIn[1] ) || !pIn[1] ) )
{
// Handle "./" by simply skipping this sequence. bBoundary is unchanged.
if ( PATHSEPARATOR( pIn[1] ) )
{
pIn += 2;
}
else
{
// Special case: if trailing "." is preceded by separator, eg "path/.",
// then the final separator should also be stripped. bBoundary may then
// be in an incorrect state, but we are at the end of processing anyway
// so we don't really care (the processing loop is about to terminate).
if ( pOut != pFilename && pOut[-1] == separator )
{
--pOut;
}
pIn += 1;
}
}
else if ( PATHSEPARATOR( pIn[0] ) )
{
*pOut = separator;
pOut += 1 - (bBoundary & bRemoveDoubleSlashes & (pOut != pFilename));
pIn += 1;
bBoundary = true;
}
else
{
if ( pOut != pIn )
{
*pOut = *pIn;
}
pOut += 1;
pIn += 1;
bBoundary = false;
}
}
*pOut = 0;
return bRetVal;
}
void V_AppendSlash( char *pStr, int strSize )
{
int len = V_strlen( pStr );
if ( len > 0 && !PATHSEPARATOR(pStr[len-1]) )
{
if ( len+1 >= strSize )
Error( "V_AppendSlash: ran out of space on %s.", pStr );
pStr[len] = CORRECT_PATH_SEPARATOR;
pStr[len+1] = 0;
}
}
void V_MakeAbsolutePath( char *pOut, int outLen, const char *pPath, const char *pStartingDir )
{
if ( V_IsAbsolutePath( pPath ) )
{
// pPath is not relative.. just copy it.
V_strncpy( pOut, pPath, outLen );
}
else
{
// Make sure the starting directory is absolute..
if ( pStartingDir && V_IsAbsolutePath( pStartingDir ) )
{
V_strncpy( pOut, pStartingDir, outLen );
}
else
{
if ( !_getcwd( pOut, outLen ) )
Error( "V_MakeAbsolutePath: _getcwd failed." );
if ( pStartingDir )
{
V_AppendSlash( pOut, outLen );
V_strncat( pOut, pStartingDir, outLen, COPY_ALL_CHARACTERS );
}
}
// Concatenate the paths.
V_AppendSlash( pOut, outLen );
V_strncat( pOut, pPath, outLen, COPY_ALL_CHARACTERS );
}
if ( !V_RemoveDotSlashes( pOut ) )
Error( "V_MakeAbsolutePath: tried to \"..\" past the root." );
//V_FixSlashes( pOut ); - handled by V_RemoveDotSlashes
}
//-----------------------------------------------------------------------------
// Makes a relative path
//-----------------------------------------------------------------------------
bool V_MakeRelativePath( const char *pFullPath, const char *pDirectory, char *pRelativePath, int nBufLen )
{
pRelativePath[0] = 0;
const char *pPath = pFullPath;
const char *pDir = pDirectory;
// Strip out common parts of the path
const char *pLastCommonPath = NULL;
const char *pLastCommonDir = NULL;
while ( *pPath && ( FastToLower( *pPath ) == FastToLower( *pDir ) ||
( PATHSEPARATOR( *pPath ) && ( PATHSEPARATOR( *pDir ) || (*pDir == 0) ) ) ) )
{
if ( PATHSEPARATOR( *pPath ) )
{
pLastCommonPath = pPath + 1;
pLastCommonDir = pDir + 1;
}
if ( *pDir == 0 )
{
--pLastCommonDir;
break;
}
++pDir; ++pPath;
}
// Nothing in common
if ( !pLastCommonPath )
return false;
// For each path separator remaining in the dir, need a ../
int nOutLen = 0;
bool bLastCharWasSeparator = true;
for ( ; *pLastCommonDir; ++pLastCommonDir )
{
if ( PATHSEPARATOR( *pLastCommonDir ) )
{
pRelativePath[nOutLen++] = '.';
pRelativePath[nOutLen++] = '.';
pRelativePath[nOutLen++] = CORRECT_PATH_SEPARATOR;
bLastCharWasSeparator = true;
}
else
{
bLastCharWasSeparator = false;
}
}
// Deal with relative paths not specified with a trailing slash
if ( !bLastCharWasSeparator )
{
pRelativePath[nOutLen++] = '.';
pRelativePath[nOutLen++] = '.';
pRelativePath[nOutLen++] = CORRECT_PATH_SEPARATOR;
}
// Copy the remaining part of the relative path over, fixing the path separators
for ( ; *pLastCommonPath; ++pLastCommonPath )
{
if ( PATHSEPARATOR( *pLastCommonPath ) )
{
pRelativePath[nOutLen++] = CORRECT_PATH_SEPARATOR;
}
else
{
pRelativePath[nOutLen++] = *pLastCommonPath;
}
// Check for overflow
if ( nOutLen == nBufLen - 1 )
break;
}
pRelativePath[nOutLen] = 0;
return true;
}
//-----------------------------------------------------------------------------
// small helper function shared by lots of modules
//-----------------------------------------------------------------------------
bool V_IsAbsolutePath( const char *pStr )
{
bool bIsAbsolute = ( pStr[0] && pStr[1] == ':' ) || pStr[0] == '/' || pStr[0] == '\\';
if ( IsX360() && !bIsAbsolute )
{
bIsAbsolute = ( V_stristr( pStr, ":" ) != NULL );
}
return bIsAbsolute;
}
// Copies at most nCharsToCopy bytes from pIn into pOut.
// Returns false if it would have overflowed pOut's buffer.
static bool CopyToMaxChars( char *pOut, int outSize, const char *pIn, int nCharsToCopy )
{
if ( outSize == 0 )
return false;
int iOut = 0;
while ( *pIn && nCharsToCopy > 0 )
{
if ( iOut == (outSize-1) )
{
pOut[iOut] = 0;
return false;
}
pOut[iOut] = *pIn;
++iOut;
++pIn;
--nCharsToCopy;
}
pOut[iOut] = 0;
return true;
}
//-----------------------------------------------------------------------------
// Fixes up a file name, removing dot slashes, fixing slashes, converting to lowercase, etc.
//-----------------------------------------------------------------------------
void V_FixupPathName( char *pOut, size_t nOutLen, const char *pPath )
{
V_strncpy( pOut, pPath, nOutLen );
V_RemoveDotSlashes( pOut, CORRECT_PATH_SEPARATOR, true );
#ifdef WIN32
V_strlower( pOut );
#endif
}
// Returns true if it completed successfully.
// If it would overflow pOut, it fills as much as it can and returns false.
bool V_StrSubst(
const char *pIn,
const char *pMatch,
const char *pReplaceWith,
char *pOut,
int outLen,
bool bCaseSensitive
)
{
int replaceFromLen = strlen( pMatch );
int replaceToLen = strlen( pReplaceWith );
const char *pInStart = pIn;
char *pOutPos = pOut;
pOutPos[0] = 0;
while ( 1 )
{
int nRemainingOut = outLen - (pOutPos - pOut);
const char *pTestPos = ( bCaseSensitive ? strstr( pInStart, pMatch ) : V_stristr( pInStart, pMatch ) );
if ( pTestPos )
{
// Found an occurence of pMatch. First, copy whatever leads up to the string.
int copyLen = pTestPos - pInStart;
if ( !CopyToMaxChars( pOutPos, nRemainingOut, pInStart, copyLen ) )
return false;
// Did we hit the end of the output string?
if ( copyLen > nRemainingOut-1 )
return false;
pOutPos += strlen( pOutPos );
nRemainingOut = outLen - (pOutPos - pOut);
// Now add the replacement string.
if ( !CopyToMaxChars( pOutPos, nRemainingOut, pReplaceWith, replaceToLen ) )
return false;
pInStart += copyLen + replaceFromLen;
pOutPos += replaceToLen;
}
else
{
// We're at the end of pIn. Copy whatever remains and get out.
int copyLen = strlen( pInStart );
V_strncpy( pOutPos, pInStart, nRemainingOut );
return ( copyLen <= nRemainingOut-1 );
}
}
}
char* AllocString( const char *pStr, int nMaxChars )
{
int allocLen;
if ( nMaxChars == -1 )
allocLen = strlen( pStr ) + 1;
else
allocLen = V_min( (int)strlen(pStr), nMaxChars ) + 1;
char *pOut = new char[allocLen];
V_strncpy( pOut, pStr, allocLen );
return pOut;
}
void V_SplitString2( const char *pString, const char **pSeparators, int nSeparators, CUtlVector<char*> &outStrings )
{
outStrings.Purge();
const char *pCurPos = pString;
while ( 1 )
{
int iFirstSeparator = -1;
const char *pFirstSeparator = 0;
for ( int i=0; i < nSeparators; i++ )
{
const char *pTest = V_stristr( pCurPos, pSeparators[i] );
if ( pTest && (!pFirstSeparator || pTest < pFirstSeparator) )
{
iFirstSeparator = i;
pFirstSeparator = pTest;
}
}
if ( pFirstSeparator )
{
// Split on this separator and continue on.
int separatorLen = strlen( pSeparators[iFirstSeparator] );
if ( pFirstSeparator > pCurPos )
{
outStrings.AddToTail( AllocString( pCurPos, pFirstSeparator-pCurPos ) );
}
pCurPos = pFirstSeparator + separatorLen;
}
else
{
// Copy the rest of the string
if ( strlen( pCurPos ) )
{
outStrings.AddToTail( AllocString( pCurPos, -1 ) );
}
return;
}
}
}
void V_SplitString( const char *pString, const char *pSeparator, CUtlVector<char*> &outStrings )
{
V_SplitString2( pString, &pSeparator, 1, outStrings );
}
bool V_GetCurrentDirectory( char *pOut, int maxLen )
{
return _getcwd( pOut, maxLen ) == pOut;
}
bool V_SetCurrentDirectory( const char *pDirName )
{
return _chdir( pDirName ) == 0;
}
// This function takes a slice out of pStr and stores it in pOut.
// It follows the Python slice convention:
// Negative numbers wrap around the string (-1 references the last character).
// Numbers are clamped to the end of the string.
void V_StrSlice( const char *pStr, int firstChar, int lastCharNonInclusive, char *pOut, int outSize )
{
if ( outSize == 0 )
return;
int length = strlen( pStr );
// Fixup the string indices.
if ( firstChar < 0 )
{
firstChar = length - (-firstChar % length);
}
else if ( firstChar >= length )
{
pOut[0] = 0;
return;
}
if ( lastCharNonInclusive < 0 )
{
lastCharNonInclusive = length - (-lastCharNonInclusive % length);
}
else if ( lastCharNonInclusive > length )
{
lastCharNonInclusive %= length;
}
if ( lastCharNonInclusive <= firstChar )
{
pOut[0] = 0;
return;
}
int copyLen = lastCharNonInclusive - firstChar;
if ( copyLen <= (outSize-1) )
{
memcpy( pOut, &pStr[firstChar], copyLen );
pOut[copyLen] = 0;
}
else
{
memcpy( pOut, &pStr[firstChar], outSize-1 );
pOut[outSize-1] = 0;
}
}
void V_StrLeft( const char *pStr, int nChars, char *pOut, int outSize )
{
if ( nChars == 0 )
{
if ( outSize != 0 )
pOut[0] = 0;
return;
}
V_StrSlice( pStr, 0, nChars, pOut, outSize );
}
void V_StrRight( const char *pStr, int nChars, char *pOut, int outSize )
{
int len = strlen( pStr );
if ( nChars >= len )
{
V_strncpy( pOut, pStr, outSize );
}
else
{
V_StrSlice( pStr, -nChars, strlen( pStr ), pOut, outSize );
}
}
//-----------------------------------------------------------------------------
// Convert multibyte to wchar + back
//-----------------------------------------------------------------------------
void V_strtowcs( const char *pString, int nInSize, wchar_t *pWString, int nOutSizeInBytes )
{
Assert( nOutSizeInBytes >= sizeof(pWString[0]) );
#ifdef _WIN32
int nOutSizeInChars = nOutSizeInBytes / sizeof(pWString[0]);
int result = MultiByteToWideChar( CP_UTF8, 0, pString, nInSize, pWString, nOutSizeInChars );
// If the string completely fails to fit then MultiByteToWideChar will return 0.
// If the string exactly fits but with no room for a null-terminator then MultiByteToWideChar
// will happily fill the buffer and omit the null-terminator, returning nOutSizeInChars.
// Either way we need to return an empty string rather than a bogus and possibly not
// null-terminated result.
if ( result <= 0 || result >= nOutSizeInChars )
{
// If nInSize includes the null-terminator then a result of nOutSizeInChars is
// legal. We check this by seeing if the last character in the output buffer is
// a zero.
if ( result == nOutSizeInChars && pWString[ nOutSizeInChars - 1 ] == 0)
{
// We're okay! Do nothing.
}
else
{
// The string completely to fit. Null-terminate the buffer.
*pWString = L'\0';
}
}
else
{
// We have successfully converted our string. Now we need to null-terminate it, because
// MultiByteToWideChar will only do that if nInSize includes the source null-terminator!
pWString[ result ] = 0;
}
#elif POSIX
if ( mbstowcs( pWString, pString, nOutSizeInBytes / sizeof(pWString[0]) ) <= 0 )
{
*pWString = 0;
}
#endif
}
void V_wcstostr( const wchar_t *pWString, int nInSize, char *pString, int nOutSizeInChars )
{
#ifdef _WIN32
int result = WideCharToMultiByte( CP_UTF8, 0, pWString, nInSize, pString, nOutSizeInChars, NULL, NULL );
// If the string completely fails to fit then MultiByteToWideChar will return 0.
// If the string exactly fits but with no room for a null-terminator then MultiByteToWideChar
// will happily fill the buffer and omit the null-terminator, returning nOutSizeInChars.
// Either way we need to return an empty string rather than a bogus and possibly not
// null-terminated result.
if ( result <= 0 || result >= nOutSizeInChars )
{
// If nInSize includes the null-terminator then a result of nOutSizeInChars is
// legal. We check this by seeing if the last character in the output buffer is
// a zero.
if ( result == nOutSizeInChars && pWString[ nOutSizeInChars - 1 ] == 0)
{
// We're okay! Do nothing.
}
else
{
*pString = '\0';
}
}
else
{
// We have successfully converted our string. Now we need to null-terminate it, because
// MultiByteToWideChar will only do that if nInSize includes the source null-terminator!
pString[ result ] = '\0';
}
#elif POSIX
if ( wcstombs( pString, pWString, nOutSizeInChars ) <= 0 )
{
*pString = '\0';
}
#endif
}
//--------------------------------------------------------------------------------
// backslashification
//--------------------------------------------------------------------------------
static char s_BackSlashMap[]="\tt\nn\rr\"\"\\\\";
char *V_AddBackSlashesToSpecialChars( char const *pSrc )
{
// first, count how much space we are going to need
int nSpaceNeeded = 0;
for( char const *pScan = pSrc; *pScan; pScan++ )
{
nSpaceNeeded++;
for(char const *pCharSet=s_BackSlashMap; *pCharSet; pCharSet += 2 )
{
if ( *pCharSet == *pScan )
nSpaceNeeded++; // we need to store a bakslash
}
}
char *pRet = new char[ nSpaceNeeded + 1 ]; // +1 for null
char *pOut = pRet;
for( char const *pScan = pSrc; *pScan; pScan++ )
{
bool bIsSpecial = false;
for(char const *pCharSet=s_BackSlashMap; *pCharSet; pCharSet += 2 )
{
if ( *pCharSet == *pScan )
{
*( pOut++ ) = '\\';
*( pOut++ ) = pCharSet[1];
bIsSpecial = true;
break;
}
}
if (! bIsSpecial )
{
*( pOut++ ) = *pScan;
}
}
*( pOut++ ) = 0;
return pRet;
}
//-----------------------------------------------------------------------------
// Purpose: Helper for converting a numeric value to a hex digit, value should be 0-15.
//-----------------------------------------------------------------------------
char cIntToHexDigit( int nValue )
{
Assert( nValue >= 0 && nValue <= 15 );
return "0123456789ABCDEF"[ nValue & 15 ];
}
//-----------------------------------------------------------------------------
// Purpose: Helper for converting a hex char value to numeric, return -1 if the char
// is not a valid hex digit.
//-----------------------------------------------------------------------------
int iHexCharToInt( char cValue )
{
int32 iValue = cValue;
if ( (uint32)( iValue - '0' ) < 10 )
return iValue - '0';
iValue |= 0x20;
if ( (uint32)( iValue - 'a' ) < 6 )
return iValue - 'a' + 10;
return -1;
}
//-----------------------------------------------------------------------------
// Purpose: Internal implementation of encode, works in the strict RFC manner, or
// with spaces turned to + like HTML form encoding.
//-----------------------------------------------------------------------------
void Q_URLEncodeInternal( char *pchDest, int nDestLen, const char *pchSource, int nSourceLen, bool bUsePlusForSpace )
{
if ( nDestLen < 3*nSourceLen )
{
pchDest[0] = '\0';
AssertMsg( false, "Target buffer for Q_URLEncode needs to be 3 times larger than source to guarantee enough space\n" );
return;
}
int iDestPos = 0;
for ( int i=0; i < nSourceLen; ++i )
{
// We allow only a-z, A-Z, 0-9, period, underscore, and hyphen to pass through unescaped.
// These are the characters allowed by both the original RFC 1738 and the latest RFC 3986.
// Current specs also allow '~', but that is forbidden under original RFC 1738.
if ( !( pchSource[i] >= 'a' && pchSource[i] <= 'z' ) && !( pchSource[i] >= 'A' && pchSource[i] <= 'Z' ) && !(pchSource[i] >= '0' && pchSource[i] <= '9' )
&& pchSource[i] != '-' && pchSource[i] != '_' && pchSource[i] != '.'
)
{
if ( bUsePlusForSpace && pchSource[i] == ' ' )
{
pchDest[iDestPos++] = '+';
}
else
{
pchDest[iDestPos++] = '%';
uint8 iValue = pchSource[i];
if ( iValue == 0 )
{
pchDest[iDestPos++] = '0';
pchDest[iDestPos++] = '0';
}
else
{
char cHexDigit1 = cIntToHexDigit( iValue % 16 );
iValue /= 16;
char cHexDigit2 = cIntToHexDigit( iValue );
pchDest[iDestPos++] = cHexDigit2;
pchDest[iDestPos++] = cHexDigit1;
}
}
}
else
{
pchDest[iDestPos++] = pchSource[i];
}
}
// Null terminate
pchDest[iDestPos++] = 0;
}
//-----------------------------------------------------------------------------
// Purpose: Internal implementation of decode, works in the strict RFC manner, or
// with spaces turned to + like HTML form encoding.
//
// Returns the amount of space used in the output buffer.
//-----------------------------------------------------------------------------
size_t Q_URLDecodeInternal( char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen, bool bUsePlusForSpace )
{
if ( nDecodeDestLen < nEncodedSourceLen )
{
AssertMsg( false, "Q_URLDecode needs a dest buffer at least as large as the source" );
return 0;
}
int iDestPos = 0;
for( int i=0; i < nEncodedSourceLen; ++i )
{
if ( bUsePlusForSpace && pchEncodedSource[i] == '+' )
{
pchDecodeDest[ iDestPos++ ] = ' ';
}
else if ( pchEncodedSource[i] == '%' )
{
// Percent signifies an encoded value, look ahead for the hex code, convert to numeric, and use that
// First make sure we have 2 more chars
if ( i < nEncodedSourceLen - 2 )
{
char cHexDigit1 = pchEncodedSource[i+1];
char cHexDigit2 = pchEncodedSource[i+2];
// Turn the chars into a hex value, if they are not valid, then we'll
// just place the % and the following two chars direct into the string,
// even though this really shouldn't happen, who knows what bad clients
// may do with encoding.
bool bValid = false;
int iValue = iHexCharToInt( cHexDigit1 );
if ( iValue != -1 )
{
iValue *= 16;
int iValue2 = iHexCharToInt( cHexDigit2 );
if ( iValue2 != -1 )
{
iValue += iValue2;
pchDecodeDest[ iDestPos++ ] = iValue;
bValid = true;
}
}
if ( !bValid )
{
pchDecodeDest[ iDestPos++ ] = '%';
pchDecodeDest[ iDestPos++ ] = cHexDigit1;
pchDecodeDest[ iDestPos++ ] = cHexDigit2;
}
}
// Skip ahead
i += 2;
}
else
{
pchDecodeDest[ iDestPos++ ] = pchEncodedSource[i];
}
}
// We may not have extra room to NULL terminate, since this can be used on raw data, but if we do
// go ahead and do it as this can avoid bugs.
if ( iDestPos < nDecodeDestLen )
{
pchDecodeDest[iDestPos] = 0;
}
return (size_t)iDestPos;
}
//-----------------------------------------------------------------------------
// Purpose: Encodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// This version of the call isn't a strict RFC implementation, but uses + for space as is
// the standard in HTML form encoding, despite it not being part of the RFC.
//
// Dest buffer should be at least as large as source buffer to guarantee room for decode.
//-----------------------------------------------------------------------------
void Q_URLEncode( char *pchDest, int nDestLen, const char *pchSource, int nSourceLen )
{
return Q_URLEncodeInternal( pchDest, nDestLen, pchSource, nSourceLen, true );
}
//-----------------------------------------------------------------------------
// Purpose: Decodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// This version of the call isn't a strict RFC implementation, but uses + for space as is
// the standard in HTML form encoding, despite it not being part of the RFC.
//
// Dest buffer should be at least as large as source buffer to guarantee room for decode.
// Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed.
//-----------------------------------------------------------------------------
size_t Q_URLDecode( char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen )
{
return Q_URLDecodeInternal( pchDecodeDest, nDecodeDestLen, pchEncodedSource, nEncodedSourceLen, true );
}
//-----------------------------------------------------------------------------
// Purpose: Encodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// This version will not encode space as + (which HTML form encoding uses despite not being part of the RFC)
//
// Dest buffer should be at least as large as source buffer to guarantee room for decode.
//-----------------------------------------------------------------------------
void Q_URLEncodeRaw( char *pchDest, int nDestLen, const char *pchSource, int nSourceLen )
{
return Q_URLEncodeInternal( pchDest, nDestLen, pchSource, nSourceLen, false );
}
//-----------------------------------------------------------------------------
// Purpose: Decodes a string (or binary data) from URL encoding format, see rfc1738 section 2.2.
// This version will not recognize + as a space (which HTML form encoding uses despite not being part of the RFC)
//
// Dest buffer should be at least as large as source buffer to guarantee room for decode.
// Dest buffer being the same as the source buffer (decode in-place) is explicitly allowed.
//-----------------------------------------------------------------------------
size_t Q_URLDecodeRaw( char *pchDecodeDest, int nDecodeDestLen, const char *pchEncodedSource, int nEncodedSourceLen )
{
return Q_URLDecodeInternal( pchDecodeDest, nDecodeDestLen, pchEncodedSource, nEncodedSourceLen, false );
}
#if defined( LINUX ) || defined( _PS3 )
extern "C" void qsort_s( void *base, size_t num, size_t width, int (*compare )(void *, const void *, const void *), void * context );
#endif
void V_qsort_s( void *base, size_t num, size_t width, int ( __cdecl *compare )(void *, const void *, const void *), void * context )
{
#if defined OSX
// the arguments are swapped 'round on the mac - awesome, huh?
return qsort_r( base, num, width, context, compare );
#else
return qsort_s( base, num, width, compare, context );
#endif
}
//-----------------------------------------------------------------------------
// Purpose: format the time and/or date with the user's current locale
// If timeVal is 0, gets the current time
//
// This is generally for use with chatroom dialogs, etc. which need to be
// able to say "Last message received: %date% at %time%"
//
// Note that this uses time_t because RTime32 is not hooked-up on the client
//-----------------------------------------------------------------------------
bool BGetLocalFormattedDateAndTime( time_t timeVal, char *pchDate, int cubDate, char *pchTime, int cubTime )
{
if ( 0 == timeVal || timeVal < 0 )
{
// get the current time
time( &timeVal );
}
if ( timeVal )
{
// Convert it to our local time
struct tm tmStruct;
struct tm tmToDisplay = *( Plat_localtime( ( const time_t* )&timeVal, &tmStruct ) );
#ifdef POSIX
if ( pchDate != NULL )
{
pchDate[ 0 ] = 0;
if ( 0 == strftime( pchDate, cubDate, "%A %b %d", &tmToDisplay ) )
return false;
}
if ( pchTime != NULL )
{
pchTime[ 0 ] = 0;
if ( 0 == strftime( pchTime, cubTime - 6, "%I:%M ", &tmToDisplay ) )
return false;
// append am/pm in lower case (since strftime doesn't have a lowercase formatting option)
if (tmToDisplay.tm_hour >= 12)
{
Q_strcat( pchTime, "p.m.", cubTime );
}
else
{
Q_strcat( pchTime, "a.m.", cubTime );
}
}
#else // WINDOWS
// convert time_t to a SYSTEMTIME
SYSTEMTIME st;
st.wHour = tmToDisplay.tm_hour;
st.wMinute = tmToDisplay.tm_min;
st.wSecond = tmToDisplay.tm_sec;
st.wDay = tmToDisplay.tm_mday;
st.wMonth = tmToDisplay.tm_mon + 1;
st.wYear = tmToDisplay.tm_year + 1900;
st.wDayOfWeek = tmToDisplay.tm_wday;
st.wMilliseconds = 0;
WCHAR rgwch[ MAX_PATH ];
if ( pchDate != NULL )
{
pchDate[ 0 ] = 0;
if ( !GetDateFormatW( LOCALE_USER_DEFAULT, DATE_LONGDATE, &st, NULL, rgwch, MAX_PATH ) )
return false;
Q_strncpy( pchDate, CStrAutoEncode( rgwch ).ToString(), cubDate );
}
if ( pchTime != NULL )
{
pchTime[ 0 ] = 0;
if ( !GetTimeFormatW( LOCALE_USER_DEFAULT, TIME_NOSECONDS, &st, NULL, rgwch, MAX_PATH ) )
return false;
Q_strncpy( pchTime, CStrAutoEncode( rgwch ).ToString(), cubTime );
}
#endif
return true;
}
return false;
}
// And a couple of helpers so people don't have to remember the order of the parameters in the above function
bool BGetLocalFormattedDate( time_t timeVal, char *pchDate, int cubDate )
{
return BGetLocalFormattedDateAndTime( timeVal, pchDate, cubDate, NULL, 0 );
}
bool BGetLocalFormattedTime( time_t timeVal, char *pchTime, int cubTime )
{
return BGetLocalFormattedDateAndTime( timeVal, NULL, 0, pchTime, cubTime );
}