mirror of
https://github.com/alliedmodders/hl2sdk.git
synced 2024-12-22 17:47:38 +08:00
1079 lines
29 KiB
C++
1079 lines
29 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//=============================================================================//
|
|
|
|
#include "cbase.h"
|
|
#include "entitylist.h"
|
|
#include "physics.h"
|
|
#include "vphysics/constraints.h"
|
|
#include "physics_saverestore.h"
|
|
#include "phys_controller.h"
|
|
|
|
// memdbgon must be the last include file in a .cpp file!!!
|
|
#include "tier0/memdbgon.h"
|
|
|
|
#define SF_THRUST_STARTACTIVE 0x0001
|
|
#define SF_THRUST_FORCE 0x0002
|
|
#define SF_THRUST_TORQUE 0x0004
|
|
#define SF_THRUST_LOCAL_ORIENTATION 0x0008
|
|
#define SF_THRUST_MASS_INDEPENDENT 0x0010
|
|
#define SF_THRUST_IGNORE_POS 0x0020
|
|
|
|
class CPhysThruster;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: This class only implements the IMotionEvent-specific behavior
|
|
// It keeps track of the forces so they can be integrated
|
|
//-----------------------------------------------------------------------------
|
|
class CConstantForceController : public IMotionEvent
|
|
{
|
|
DECLARE_SIMPLE_DATADESC();
|
|
|
|
public:
|
|
void Init( IMotionEvent::simresult_e controlType )
|
|
{
|
|
m_controlType = controlType;
|
|
}
|
|
|
|
void SetConstantForce( const Vector &linear, const AngularImpulse &angular );
|
|
void ScaleConstantForce( float scale );
|
|
|
|
IMotionEvent::simresult_e Simulate( IPhysicsMotionController *pController, IPhysicsObject *pObject, float deltaTime, Vector &linear, AngularImpulse &angular );
|
|
IMotionEvent::simresult_e m_controlType;
|
|
Vector m_linear;
|
|
AngularImpulse m_angular;
|
|
Vector m_linearSave;
|
|
AngularImpulse m_angularSave;
|
|
};
|
|
|
|
BEGIN_SIMPLE_DATADESC( CConstantForceController )
|
|
DEFINE_FIELD( m_controlType, FIELD_INTEGER ),
|
|
DEFINE_FIELD( m_linear, FIELD_VECTOR ),
|
|
DEFINE_FIELD( m_angular, FIELD_VECTOR ),
|
|
DEFINE_FIELD( m_linearSave, FIELD_VECTOR ),
|
|
DEFINE_FIELD( m_angularSave, FIELD_VECTOR ),
|
|
END_DATADESC()
|
|
|
|
|
|
void CConstantForceController::SetConstantForce( const Vector &linear, const AngularImpulse &angular )
|
|
{
|
|
m_linear = linear;
|
|
m_angular = angular;
|
|
// cache these for scaling later
|
|
m_linearSave = linear;
|
|
m_angularSave = angular;
|
|
}
|
|
|
|
void CConstantForceController::ScaleConstantForce( float scale )
|
|
{
|
|
m_linear = m_linearSave * scale;
|
|
m_angular = m_angularSave * scale;
|
|
}
|
|
|
|
|
|
IMotionEvent::simresult_e CConstantForceController::Simulate( IPhysicsMotionController *pController, IPhysicsObject *pObject, float deltaTime, Vector &linear, AngularImpulse &angular )
|
|
{
|
|
linear = m_linear;
|
|
angular = m_angular;
|
|
|
|
return m_controlType;
|
|
}
|
|
|
|
// UNDONE: Make these logical entities
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: This is a general entity that has a force/motion controller that
|
|
// simply integrates a constant linear/angular acceleration
|
|
//-----------------------------------------------------------------------------
|
|
abstract_class CPhysForce : public CPointEntity
|
|
{
|
|
public:
|
|
DECLARE_CLASS( CPhysForce, CPointEntity );
|
|
|
|
CPhysForce();
|
|
~CPhysForce();
|
|
|
|
DECLARE_DATADESC();
|
|
|
|
virtual void OnRestore( );
|
|
void Spawn( void );
|
|
void Activate( void );
|
|
|
|
void ForceOn( void );
|
|
void ForceOff( void );
|
|
void ActivateForce( void );
|
|
|
|
// Input handlers
|
|
void InputActivate( inputdata_t &inputdata );
|
|
void InputDeactivate( inputdata_t &inputdata );
|
|
void InputForceScale( inputdata_t &inputdata );
|
|
|
|
void SaveForce( void );
|
|
void ScaleForce( float scale );
|
|
|
|
// MUST IMPLEMENT THIS IN DERIVED CLASS
|
|
virtual void SetupForces( IPhysicsObject *pPhys, Vector &linear, AngularImpulse &angular ) = 0;
|
|
|
|
// optional
|
|
virtual void OnActivate( void ) {}
|
|
|
|
protected:
|
|
IPhysicsMotionController *m_pController;
|
|
|
|
string_t m_nameAttach;
|
|
float m_force;
|
|
float m_forceTime;
|
|
EHANDLE m_attachedObject;
|
|
bool m_wasRestored;
|
|
|
|
CConstantForceController m_integrator;
|
|
};
|
|
|
|
BEGIN_DATADESC( CPhysForce )
|
|
|
|
DEFINE_PHYSPTR( m_pController ),
|
|
DEFINE_KEYFIELD( m_nameAttach, FIELD_STRING, "attach1" ),
|
|
DEFINE_KEYFIELD( m_force, FIELD_FLOAT, "force" ),
|
|
DEFINE_KEYFIELD( m_forceTime, FIELD_FLOAT, "forcetime" ),
|
|
|
|
DEFINE_FIELD( m_attachedObject, FIELD_EHANDLE ),
|
|
//DEFINE_FIELD( m_wasRestored, FIELD_BOOLEAN ), // NOTE: DO NOT save/load this - it's used to detect loads
|
|
DEFINE_EMBEDDED( m_integrator ),
|
|
|
|
DEFINE_INPUTFUNC( FIELD_VOID, "Activate", InputActivate ),
|
|
DEFINE_INPUTFUNC( FIELD_VOID, "Deactivate", InputDeactivate ),
|
|
DEFINE_INPUTFUNC( FIELD_FLOAT, "scale", InputForceScale ),
|
|
|
|
// Function Pointers
|
|
DEFINE_FUNCTION( ForceOff ),
|
|
|
|
END_DATADESC()
|
|
|
|
|
|
CPhysForce::CPhysForce( void )
|
|
{
|
|
m_pController = NULL;
|
|
m_wasRestored = false;
|
|
}
|
|
|
|
CPhysForce::~CPhysForce()
|
|
{
|
|
if ( m_pController )
|
|
{
|
|
physenv->DestroyMotionController( m_pController );
|
|
}
|
|
}
|
|
|
|
void CPhysForce::Spawn( void )
|
|
{
|
|
if ( m_spawnflags & SF_THRUST_LOCAL_ORIENTATION )
|
|
{
|
|
m_integrator.Init( IMotionEvent::SIM_LOCAL_ACCELERATION );
|
|
}
|
|
else
|
|
{
|
|
m_integrator.Init( IMotionEvent::SIM_GLOBAL_ACCELERATION );
|
|
}
|
|
}
|
|
|
|
void CPhysForce::OnRestore( )
|
|
{
|
|
BaseClass::OnRestore();
|
|
|
|
if ( m_pController )
|
|
{
|
|
m_pController->SetEventHandler( &m_integrator );
|
|
}
|
|
m_wasRestored = true;
|
|
}
|
|
|
|
void CPhysForce::Activate( void )
|
|
{
|
|
BaseClass::Activate();
|
|
|
|
if ( m_pController )
|
|
{
|
|
m_pController->WakeObjects();
|
|
}
|
|
if ( m_wasRestored )
|
|
return;
|
|
|
|
if ( m_attachedObject == NULL )
|
|
{
|
|
m_attachedObject = gEntList.FindEntityByName( NULL, m_nameAttach );
|
|
}
|
|
|
|
// Let the derived class set up before we throw the switch
|
|
OnActivate();
|
|
|
|
if ( m_spawnflags & SF_THRUST_STARTACTIVE )
|
|
{
|
|
ForceOn();
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CPhysForce::InputActivate( inputdata_t &inputdata )
|
|
{
|
|
ForceOn();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CPhysForce::InputDeactivate( inputdata_t &inputdata )
|
|
{
|
|
ForceOff();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CPhysForce::InputForceScale( inputdata_t &inputdata )
|
|
{
|
|
ScaleForce( inputdata.value.Float() );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose:
|
|
//-----------------------------------------------------------------------------
|
|
void CPhysForce::ForceOn( void )
|
|
{
|
|
if ( m_pController )
|
|
return;
|
|
|
|
ActivateForce();
|
|
if ( m_forceTime )
|
|
{
|
|
SetNextThink( gpGlobals->curtime + m_forceTime );
|
|
SetThink( &CPhysForce::ForceOff );
|
|
}
|
|
}
|
|
|
|
|
|
void CPhysForce::ActivateForce( void )
|
|
{
|
|
IPhysicsObject *pPhys = NULL;
|
|
if ( m_attachedObject )
|
|
{
|
|
pPhys = m_attachedObject->VPhysicsGetObject();
|
|
}
|
|
|
|
if ( !pPhys )
|
|
return;
|
|
|
|
Vector linear;
|
|
AngularImpulse angular;
|
|
|
|
SetupForces( pPhys, linear, angular );
|
|
|
|
m_integrator.SetConstantForce( linear, angular );
|
|
m_pController = physenv->CreateMotionController( &m_integrator );
|
|
m_pController->AttachObject( pPhys, true );
|
|
// Make sure the object is simulated
|
|
pPhys->Wake();
|
|
}
|
|
|
|
|
|
void CPhysForce::ForceOff( void )
|
|
{
|
|
if ( !m_pController )
|
|
return;
|
|
|
|
physenv->DestroyMotionController( m_pController );
|
|
m_pController = NULL;
|
|
SetThink( NULL );
|
|
SetNextThink( TICK_NEVER_THINK );
|
|
IPhysicsObject *pPhys = NULL;
|
|
if ( m_attachedObject )
|
|
{
|
|
pPhys = m_attachedObject->VPhysicsGetObject();
|
|
if ( pPhys )
|
|
{
|
|
pPhys->Wake();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CPhysForce::ScaleForce( float scale )
|
|
{
|
|
if ( !m_pController )
|
|
ForceOn();
|
|
|
|
m_integrator.ScaleConstantForce( scale );
|
|
m_pController->WakeObjects();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: A rocket-engine/thruster based on the force controller above
|
|
// Calculate the force (and optional torque) that the engine would create
|
|
//-----------------------------------------------------------------------------
|
|
class CPhysThruster : public CPhysForce
|
|
{
|
|
DECLARE_CLASS( CPhysThruster, CPhysForce );
|
|
public:
|
|
DECLARE_DATADESC();
|
|
|
|
virtual void OnActivate( void );
|
|
virtual void SetupForces( IPhysicsObject *pPhys, Vector &linear, AngularImpulse &angular );
|
|
|
|
private:
|
|
Vector m_localOrigin;
|
|
};
|
|
|
|
LINK_ENTITY_TO_CLASS( phys_thruster, CPhysThruster );
|
|
|
|
BEGIN_DATADESC( CPhysThruster )
|
|
|
|
DEFINE_FIELD( m_localOrigin, FIELD_VECTOR ),
|
|
|
|
END_DATADESC()
|
|
|
|
|
|
|
|
void CPhysThruster::OnActivate( void )
|
|
{
|
|
if ( m_attachedObject != NULL )
|
|
{
|
|
matrix3x4_t worldToAttached, thrusterToAttached;
|
|
MatrixInvert( m_attachedObject->EntityToWorldTransform(), worldToAttached );
|
|
ConcatTransforms( worldToAttached, EntityToWorldTransform(), thrusterToAttached );
|
|
MatrixGetColumn( thrusterToAttached, 3, m_localOrigin );
|
|
|
|
if ( HasSpawnFlags( SF_THRUST_LOCAL_ORIENTATION ) )
|
|
{
|
|
QAngle angles;
|
|
MatrixAngles( thrusterToAttached, angles );
|
|
SetLocalAngles( angles );
|
|
}
|
|
// maintain the local relationship with this entity
|
|
// it may move before the thruster is activated
|
|
if ( HasSpawnFlags( SF_THRUST_IGNORE_POS ) )
|
|
{
|
|
m_localOrigin.Init();
|
|
}
|
|
}
|
|
}
|
|
|
|
// utility function to duplicate this call in local space
|
|
void CalculateVelocityOffsetLocal( IPhysicsObject *pPhys, const Vector &forceLocal, const Vector &positionLocal, Vector &outVelLocal, AngularImpulse &outAngular )
|
|
{
|
|
Vector posWorld, forceWorld;
|
|
pPhys->LocalToWorld( &posWorld, positionLocal );
|
|
pPhys->LocalToWorldVector( &forceWorld, forceLocal );
|
|
Vector velWorld;
|
|
pPhys->CalculateVelocityOffset( forceWorld, posWorld, &velWorld, &outAngular );
|
|
pPhys->WorldToLocalVector( &outVelLocal, velWorld );
|
|
}
|
|
|
|
void CPhysThruster::SetupForces( IPhysicsObject *pPhys, Vector &linear, AngularImpulse &angular )
|
|
{
|
|
Vector thrustVector;
|
|
AngleVectors( GetLocalAngles(), &thrustVector );
|
|
thrustVector *= m_force;
|
|
|
|
// multiply the force by mass (it's actually just an acceleration)
|
|
if ( m_spawnflags & SF_THRUST_MASS_INDEPENDENT )
|
|
{
|
|
thrustVector *= pPhys->GetMass();
|
|
}
|
|
if ( m_spawnflags & SF_THRUST_LOCAL_ORIENTATION )
|
|
{
|
|
CalculateVelocityOffsetLocal( pPhys, thrustVector, m_localOrigin, linear, angular );
|
|
}
|
|
else
|
|
{
|
|
Vector position;
|
|
VectorTransform( m_localOrigin, m_attachedObject->EntityToWorldTransform(), position );
|
|
pPhys->CalculateVelocityOffset( thrustVector, position, &linear, &angular );
|
|
}
|
|
|
|
if ( !(m_spawnflags & SF_THRUST_FORCE) )
|
|
{
|
|
// clear out force
|
|
linear.Init();
|
|
}
|
|
|
|
if ( !(m_spawnflags & SF_THRUST_TORQUE) )
|
|
{
|
|
// clear out torque
|
|
angular.Init();
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: A controllable motor - exerts torque
|
|
//-----------------------------------------------------------------------------
|
|
class CPhysTorque : public CPhysForce
|
|
{
|
|
DECLARE_CLASS( CPhysTorque, CPhysForce );
|
|
public:
|
|
DECLARE_DATADESC();
|
|
void Spawn( void );
|
|
virtual void SetupForces( IPhysicsObject *pPhys, Vector &linear, AngularImpulse &angular );
|
|
private:
|
|
Vector m_axis;
|
|
};
|
|
|
|
BEGIN_DATADESC( CPhysTorque )
|
|
|
|
DEFINE_KEYFIELD( m_axis, FIELD_VECTOR, "axis" ),
|
|
|
|
END_DATADESC()
|
|
|
|
LINK_ENTITY_TO_CLASS( phys_torque, CPhysTorque );
|
|
|
|
void CPhysTorque::Spawn( void )
|
|
{
|
|
// force spawnflags to agree with implementation of this class
|
|
m_spawnflags |= SF_THRUST_TORQUE | SF_THRUST_MASS_INDEPENDENT;
|
|
m_spawnflags &= ~SF_THRUST_FORCE;
|
|
|
|
m_axis -= GetAbsOrigin();
|
|
VectorNormalize(m_axis);
|
|
UTIL_SnapDirectionToAxis( m_axis );
|
|
BaseClass::Spawn();
|
|
}
|
|
|
|
void CPhysTorque::SetupForces( IPhysicsObject *pPhys, Vector &linear, AngularImpulse &angular )
|
|
{
|
|
// clear out force
|
|
linear.Init();
|
|
|
|
matrix3x4_t matrix;
|
|
pPhys->GetPositionMatrix( &matrix );
|
|
|
|
// transform motor axis to local space
|
|
Vector axis_ls;
|
|
VectorIRotate( m_axis, matrix, axis_ls );
|
|
|
|
// Set torque to be around selected axis
|
|
angular = axis_ls * m_force;
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: This class only implements the IMotionEvent-specific behavior
|
|
// It keeps track of the forces so they can be integrated
|
|
//-----------------------------------------------------------------------------
|
|
class CMotorController : public IMotionEvent
|
|
{
|
|
DECLARE_SIMPLE_DATADESC();
|
|
|
|
public:
|
|
IMotionEvent::simresult_e Simulate( IPhysicsMotionController *pController, IPhysicsObject *pObject, float deltaTime, Vector &linear, AngularImpulse &angular );
|
|
float m_speed;
|
|
float m_maxTorque;
|
|
Vector m_axis;
|
|
float m_inertiaFactor;
|
|
|
|
float m_lastSpeed;
|
|
float m_lastAcceleration;
|
|
float m_lastForce;
|
|
float m_restistanceDamping;
|
|
};
|
|
|
|
BEGIN_SIMPLE_DATADESC( CMotorController )
|
|
|
|
DEFINE_FIELD( m_speed, FIELD_FLOAT ),
|
|
DEFINE_FIELD( m_maxTorque, FIELD_FLOAT ),
|
|
DEFINE_KEYFIELD( m_axis, FIELD_VECTOR, "axis" ),
|
|
DEFINE_KEYFIELD( m_inertiaFactor, FIELD_FLOAT, "inertiafactor" ),
|
|
DEFINE_FIELD( m_lastSpeed, FIELD_FLOAT ),
|
|
DEFINE_FIELD( m_lastAcceleration, FIELD_FLOAT ),
|
|
DEFINE_FIELD( m_lastForce, FIELD_FLOAT ),
|
|
DEFINE_FIELD( m_restistanceDamping, FIELD_FLOAT ),
|
|
|
|
END_DATADESC()
|
|
|
|
|
|
IMotionEvent::simresult_e CMotorController::Simulate( IPhysicsMotionController *pController, IPhysicsObject *pObject, float deltaTime, Vector &linear, AngularImpulse &angular )
|
|
{
|
|
linear = vec3_origin;
|
|
angular = vec3_origin;
|
|
|
|
if ( m_speed == 0 )
|
|
return SIM_NOTHING;
|
|
|
|
matrix3x4_t matrix;
|
|
pObject->GetPositionMatrix( &matrix );
|
|
AngularImpulse currentRotAxis;
|
|
|
|
// currentRotAxis is in local space
|
|
pObject->GetVelocity( NULL, ¤tRotAxis );
|
|
// transform motor axis to local space
|
|
Vector motorAxis_ls;
|
|
VectorIRotate( m_axis, matrix, motorAxis_ls );
|
|
float currentSpeed = DotProduct( currentRotAxis, motorAxis_ls );
|
|
|
|
float inertia = DotProductAbs( pObject->GetInertia(), motorAxis_ls );
|
|
|
|
// compute absolute acceleration, don't integrate over the timestep
|
|
float accel = m_speed - currentSpeed;
|
|
float rotForce = accel * inertia * m_inertiaFactor;
|
|
|
|
// BUGBUG: This heuristic is a little flaky
|
|
// UNDONE: Make a better heuristic for speed control
|
|
if ( fabsf(m_lastAcceleration) > 0 )
|
|
{
|
|
float deltaSpeed = currentSpeed - m_lastSpeed;
|
|
// make sure they are going the same way
|
|
if ( deltaSpeed * accel > 0 )
|
|
{
|
|
float factor = deltaSpeed / m_lastAcceleration;
|
|
factor = 1 - clamp( factor, 0.f, 1.f );
|
|
rotForce += m_lastForce * factor * m_restistanceDamping;
|
|
}
|
|
else
|
|
{
|
|
if ( currentSpeed != 0 )
|
|
{
|
|
// have we reached a steady state that isn't our target?
|
|
float increase = deltaSpeed / m_lastAcceleration;
|
|
if ( fabsf(increase) < 0.05 )
|
|
{
|
|
rotForce += m_lastForce * m_restistanceDamping;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// -------------------------------------------------------
|
|
|
|
|
|
if ( m_maxTorque != 0 )
|
|
{
|
|
if ( rotForce > m_maxTorque )
|
|
{
|
|
rotForce = m_maxTorque;
|
|
}
|
|
else if ( rotForce < -m_maxTorque )
|
|
{
|
|
rotForce = -m_maxTorque;
|
|
}
|
|
}
|
|
|
|
m_lastForce = rotForce;
|
|
m_lastAcceleration = (rotForce / inertia);
|
|
m_lastSpeed = currentSpeed;
|
|
|
|
// this is in local space
|
|
angular = motorAxis_ls * rotForce;
|
|
|
|
return SIM_LOCAL_FORCE;
|
|
}
|
|
|
|
#define SF_MOTOR_START_ON 0x0001 // starts on by default
|
|
#define SF_MOTOR_NOCOLLIDE 0x0002 // don't collide with world geometry
|
|
#define SF_MOTOR_HINGE 0x0004 // motor also acts as a hinge constraining the object to this axis
|
|
// NOTE: THIS DOESN'T WORK YET
|
|
#define SF_MOTOR_LOCAL 0x0008 // Maintain local relationship with the attached object
|
|
|
|
class CPhysMotor : public CLogicalEntity
|
|
{
|
|
DECLARE_CLASS( CPhysMotor, CLogicalEntity );
|
|
public:
|
|
~CPhysMotor();
|
|
DECLARE_DATADESC();
|
|
void Spawn( void );
|
|
void Activate( void );
|
|
void Think( void );
|
|
|
|
void TurnOn( void );
|
|
void TargetSpeedChanged( void );
|
|
void OnRestore();
|
|
|
|
void InputSetTargetSpeed( inputdata_t &inputdata );
|
|
void InputTurnOn( inputdata_t &inputdata );
|
|
void InputTurnOff( inputdata_t &inputdata );
|
|
void CalculateAcceleration();
|
|
|
|
string_t m_nameAttach;
|
|
EHANDLE m_attachedObject;
|
|
float m_spinUp;
|
|
float m_additionalAcceleration;
|
|
float m_angularAcceleration;
|
|
float m_lastTime;
|
|
// FIXME: can we remove m_flSpeed from CBaseEntity?
|
|
//float m_flSpeed;
|
|
|
|
IPhysicsConstraint *m_pHinge;
|
|
IPhysicsMotionController *m_pController;
|
|
CMotorController m_motor;
|
|
};
|
|
|
|
|
|
BEGIN_DATADESC( CPhysMotor )
|
|
|
|
DEFINE_KEYFIELD( m_nameAttach, FIELD_STRING, "attach1" ),
|
|
DEFINE_FIELD( m_attachedObject, FIELD_EHANDLE ),
|
|
DEFINE_KEYFIELD( m_spinUp, FIELD_FLOAT, "spinup" ),
|
|
DEFINE_KEYFIELD( m_additionalAcceleration, FIELD_FLOAT, "addangaccel" ),
|
|
DEFINE_FIELD( m_angularAcceleration, FIELD_FLOAT ),
|
|
DEFINE_FIELD( m_lastTime, FIELD_TIME ),
|
|
DEFINE_PHYSPTR( m_pHinge ),
|
|
DEFINE_PHYSPTR( m_pController ),
|
|
|
|
DEFINE_INPUTFUNC( FIELD_FLOAT, "SetSpeed", InputSetTargetSpeed ),
|
|
DEFINE_INPUTFUNC( FIELD_VOID, "TurnOn", InputTurnOn ),
|
|
DEFINE_INPUTFUNC( FIELD_VOID, "TurnOff", InputTurnOff ),
|
|
|
|
DEFINE_EMBEDDED( m_motor ),
|
|
|
|
END_DATADESC()
|
|
|
|
LINK_ENTITY_TO_CLASS( phys_motor, CPhysMotor );
|
|
|
|
|
|
void CPhysMotor::CalculateAcceleration()
|
|
{
|
|
if ( m_spinUp )
|
|
{
|
|
m_angularAcceleration = fabsf(m_flSpeed / m_spinUp);
|
|
}
|
|
else
|
|
{
|
|
m_angularAcceleration = fabsf(m_flSpeed);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Input handler that sets a speed to spin up or down to.
|
|
//-----------------------------------------------------------------------------
|
|
void CPhysMotor::InputSetTargetSpeed( inputdata_t &inputdata )
|
|
{
|
|
if ( m_flSpeed == inputdata.value.Float() )
|
|
return;
|
|
|
|
m_flSpeed = inputdata.value.Float();
|
|
TargetSpeedChanged();
|
|
CalculateAcceleration();
|
|
}
|
|
|
|
|
|
void CPhysMotor::TargetSpeedChanged( void )
|
|
{
|
|
SetNextThink( gpGlobals->curtime );
|
|
m_lastTime = gpGlobals->curtime;
|
|
m_pController->WakeObjects();
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Purpose: Input handler that turns the motor on.
|
|
//------------------------------------------------------------------------------
|
|
void CPhysMotor::InputTurnOn( inputdata_t &inputdata )
|
|
{
|
|
TurnOn();
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Purpose: Input handler that turns the motor off.
|
|
//------------------------------------------------------------------------------
|
|
void CPhysMotor::InputTurnOff( inputdata_t &inputdata )
|
|
{
|
|
m_motor.m_speed = 0;
|
|
SetNextThink( TICK_NEVER_THINK );
|
|
}
|
|
|
|
|
|
CPhysMotor::~CPhysMotor()
|
|
{
|
|
if ( m_attachedObject && m_pHinge )
|
|
{
|
|
IPhysicsObject *pPhys = m_attachedObject->VPhysicsGetObject();
|
|
if ( pPhys )
|
|
{
|
|
PhysClearGameFlags(pPhys, FVPHYSICS_NO_PLAYER_PICKUP);
|
|
}
|
|
}
|
|
|
|
physenv->DestroyConstraint( m_pHinge );
|
|
physenv->DestroyMotionController( m_pController );
|
|
}
|
|
|
|
|
|
void CPhysMotor::Spawn( void )
|
|
{
|
|
m_motor.m_axis -= GetLocalOrigin();
|
|
float axisLength = VectorNormalize(m_motor.m_axis);
|
|
// double check that the axis is at least a unit long. If not, warn and self-destruct.
|
|
if ( axisLength > 1.0f )
|
|
{
|
|
UTIL_SnapDirectionToAxis( m_motor.m_axis );
|
|
}
|
|
else
|
|
{
|
|
Warning("phys_motor %s does not have a valid axis helper, and self-destructed!\n", GetDebugName());
|
|
|
|
m_motor.m_speed = 0;
|
|
SetNextThink( TICK_NEVER_THINK );
|
|
|
|
UTIL_Remove(this);
|
|
}
|
|
}
|
|
|
|
|
|
void CPhysMotor::TurnOn( void )
|
|
{
|
|
CBaseEntity *pAttached = m_attachedObject;
|
|
if ( !pAttached )
|
|
return;
|
|
|
|
IPhysicsObject *pPhys = pAttached->VPhysicsGetObject();
|
|
if ( pPhys )
|
|
{
|
|
m_pController->WakeObjects();
|
|
// If the current speed is zero, the objects can run a tick without getting torque'd and go back to sleep
|
|
// so force a think now and have some acceleration happen before the controller gets called.
|
|
m_lastTime = gpGlobals->curtime - TICK_INTERVAL;
|
|
Think();
|
|
}
|
|
}
|
|
|
|
|
|
void CPhysMotor::Activate( void )
|
|
{
|
|
BaseClass::Activate();
|
|
|
|
// This gets called after all objects spawn and after all objects restore
|
|
if ( m_attachedObject == NULL )
|
|
{
|
|
CBaseEntity *pAttach = gEntList.FindEntityByName( NULL, m_nameAttach );
|
|
if ( pAttach && pAttach->GetMoveType() == MOVETYPE_VPHYSICS )
|
|
{
|
|
m_attachedObject = pAttach;
|
|
IPhysicsObject *pPhys = m_attachedObject->VPhysicsGetObject();
|
|
CalculateAcceleration();
|
|
matrix3x4_t matrix;
|
|
pPhys->GetPositionMatrix( &matrix );
|
|
Vector motorAxis_ls;
|
|
VectorIRotate( m_motor.m_axis, matrix, motorAxis_ls );
|
|
float inertia = DotProductAbs( pPhys->GetInertia(), motorAxis_ls );
|
|
m_motor.m_maxTorque = inertia * m_motor.m_inertiaFactor * (m_angularAcceleration + m_additionalAcceleration);
|
|
m_motor.m_restistanceDamping = 1.0f;
|
|
}
|
|
}
|
|
|
|
if ( m_attachedObject )
|
|
{
|
|
IPhysicsObject *pPhys = m_attachedObject->VPhysicsGetObject();
|
|
|
|
// create a hinge constraint for this object?
|
|
if ( m_spawnflags & SF_MOTOR_HINGE )
|
|
{
|
|
// UNDONE: Don't do this on restore?
|
|
if ( !m_pHinge )
|
|
{
|
|
constraint_hingeparams_t hingeParams;
|
|
hingeParams.Defaults();
|
|
hingeParams.worldAxisDirection = m_motor.m_axis;
|
|
hingeParams.worldPosition = GetLocalOrigin();
|
|
|
|
m_pHinge = physenv->CreateHingeConstraint( g_PhysWorldObject, pPhys, NULL, hingeParams );
|
|
m_pHinge->SetGameData( (void *)this );
|
|
// can't grab this object
|
|
PhysSetGameFlags(pPhys, FVPHYSICS_NO_PLAYER_PICKUP);
|
|
}
|
|
|
|
if ( m_spawnflags & SF_MOTOR_NOCOLLIDE )
|
|
{
|
|
PhysDisableEntityCollisions( g_PhysWorldObject, pPhys );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_pHinge = NULL;
|
|
}
|
|
|
|
// NOTE: On restore, this path isn't run because m_pController will not be NULL
|
|
if ( !m_pController )
|
|
{
|
|
m_pController = physenv->CreateMotionController( &m_motor );
|
|
m_pController->AttachObject( m_attachedObject->VPhysicsGetObject(), false );
|
|
|
|
if ( m_spawnflags & SF_MOTOR_START_ON )
|
|
{
|
|
TurnOn();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CPhysMotor::OnRestore()
|
|
{
|
|
BaseClass::OnRestore();
|
|
// Need to do this on restore since there's no good way to save this
|
|
if ( m_pController )
|
|
{
|
|
m_pController->SetEventHandler( &m_motor );
|
|
}
|
|
}
|
|
|
|
void CPhysMotor::Think( void )
|
|
{
|
|
// angular acceleration is always positive - it should be treated as a magnitude - the controller
|
|
// will apply it in the proper direction
|
|
Assert(m_angularAcceleration>=0);
|
|
|
|
m_motor.m_speed = UTIL_Approach( m_flSpeed, m_motor.m_speed, m_angularAcceleration*(gpGlobals->curtime-m_lastTime) );
|
|
m_lastTime = gpGlobals->curtime;
|
|
if ( m_motor.m_speed != m_flSpeed )
|
|
{
|
|
SetNextThink( gpGlobals->curtime );
|
|
}
|
|
}
|
|
|
|
//======================================================================================
|
|
// KEEPUPRIGHT CONTROLLER
|
|
//======================================================================================
|
|
|
|
class CKeepUpright : public CPointEntity, public IMotionEvent
|
|
{
|
|
DECLARE_CLASS( CKeepUpright, CPointEntity );
|
|
public:
|
|
DECLARE_DATADESC();
|
|
|
|
CKeepUpright();
|
|
~CKeepUpright();
|
|
void Spawn();
|
|
void Activate();
|
|
|
|
// IMotionEvent
|
|
virtual simresult_e Simulate( IPhysicsMotionController *pController, IPhysicsObject *pObject, float deltaTime, Vector &linear, AngularImpulse &angular );
|
|
|
|
// Inputs
|
|
void InputTurnOn( inputdata_t &inputdata )
|
|
{
|
|
m_bActive = true;
|
|
}
|
|
void InputTurnOff( inputdata_t &inputdata )
|
|
{
|
|
m_bActive = false;
|
|
}
|
|
|
|
void InputSetAngularLimit( inputdata_t &inputdata )
|
|
{
|
|
m_angularLimit = inputdata.value.Float();
|
|
}
|
|
|
|
private:
|
|
friend CBaseEntity *CreateKeepUpright( const Vector &vecOrigin, const QAngle &vecAngles, CBaseEntity *pOwner, float flAngularLimit, bool bActive );
|
|
|
|
Vector m_worldGoalAxis;
|
|
Vector m_localTestAxis;
|
|
IPhysicsMotionController *m_pController;
|
|
string_t m_nameAttach;
|
|
EHANDLE m_attachedObject;
|
|
float m_angularLimit;
|
|
bool m_bActive;
|
|
bool m_bDampAllRotation;
|
|
};
|
|
|
|
#define SF_KEEPUPRIGHT_START_INACTIVE 0x0001
|
|
|
|
LINK_ENTITY_TO_CLASS( phys_keepupright, CKeepUpright );
|
|
|
|
BEGIN_DATADESC( CKeepUpright )
|
|
|
|
DEFINE_FIELD( m_worldGoalAxis, FIELD_VECTOR ),
|
|
DEFINE_FIELD( m_localTestAxis, FIELD_VECTOR ),
|
|
DEFINE_PHYSPTR( m_pController ),
|
|
DEFINE_KEYFIELD( m_nameAttach, FIELD_STRING, "attach1" ),
|
|
DEFINE_FIELD( m_attachedObject, FIELD_EHANDLE ),
|
|
DEFINE_KEYFIELD( m_angularLimit, FIELD_FLOAT, "angularlimit" ),
|
|
DEFINE_FIELD( m_bActive, FIELD_BOOLEAN ),
|
|
DEFINE_FIELD( m_bDampAllRotation, FIELD_BOOLEAN ),
|
|
|
|
DEFINE_INPUTFUNC( FIELD_VOID, "TurnOn", InputTurnOn ),
|
|
DEFINE_INPUTFUNC( FIELD_VOID, "TurnOff", InputTurnOff ),
|
|
DEFINE_INPUTFUNC( FIELD_FLOAT, "SetAngularLimit", InputSetAngularLimit ),
|
|
|
|
END_DATADESC()
|
|
|
|
CKeepUpright::CKeepUpright()
|
|
{
|
|
// by default, recover from up to 15 degrees / sec angular velocity
|
|
m_angularLimit = 15;
|
|
m_attachedObject = NULL;
|
|
m_bDampAllRotation = false;
|
|
}
|
|
|
|
CKeepUpright::~CKeepUpright()
|
|
{
|
|
if ( m_pController )
|
|
{
|
|
physenv->DestroyMotionController( m_pController );
|
|
m_pController = NULL;
|
|
}
|
|
}
|
|
|
|
void CKeepUpright::Spawn()
|
|
{
|
|
// align the object's local Z axis
|
|
m_localTestAxis.Init( 0, 0, 1 );
|
|
// Use our Up axis so mapmakers can orient us arbitrarily
|
|
GetVectors( NULL, NULL, &m_worldGoalAxis );
|
|
|
|
SetMoveType( MOVETYPE_NONE );
|
|
|
|
if ( m_spawnflags & SF_KEEPUPRIGHT_START_INACTIVE )
|
|
{
|
|
m_bActive = false;
|
|
}
|
|
else
|
|
{
|
|
m_bActive = true;
|
|
}
|
|
}
|
|
|
|
void CKeepUpright::Activate()
|
|
{
|
|
BaseClass::Activate();
|
|
|
|
if ( !m_pController )
|
|
{
|
|
// This case occurs when spawning
|
|
IPhysicsObject *pPhys;
|
|
if ( m_attachedObject )
|
|
{
|
|
pPhys = m_attachedObject->VPhysicsGetObject();
|
|
}
|
|
else
|
|
{
|
|
pPhys = FindPhysicsObjectByName( STRING(m_nameAttach), this );
|
|
}
|
|
|
|
if ( !pPhys )
|
|
{
|
|
UTIL_Remove(this);
|
|
return;
|
|
}
|
|
// HACKHACK: Due to changes in the vehicle simulator the keepupright controller used in coast_01 is unstable
|
|
// force it to have perfect damping to compensate.
|
|
// detect it using the hack of angular limit == 150, attached to a vehicle
|
|
// Fixing it in the code is the simplest course of action presently
|
|
#ifdef HL2_DLL
|
|
if ( m_angularLimit == 150.0f )
|
|
{
|
|
CBaseEntity *pEntity = static_cast<CBaseEntity *>(pPhys->GetGameData());
|
|
if ( pEntity && pEntity->GetServerVehicle() && Q_stristr( gpGlobals->mapname.ToCStr(), "d2_coast_01" ) )
|
|
{
|
|
m_bDampAllRotation = true;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
m_pController = physenv->CreateMotionController( (IMotionEvent *)this );
|
|
m_pController->AttachObject( pPhys, false );
|
|
}
|
|
else
|
|
{
|
|
// This case occurs when restoring
|
|
m_pController->SetEventHandler( this );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Purpose: Use this to spawn a keepupright controller via code instead of map-placed
|
|
//-----------------------------------------------------------------------------
|
|
CBaseEntity *CreateKeepUpright( const Vector &vecOrigin, const QAngle &vecAngles, CBaseEntity *pOwner, float flAngularLimit, bool bActive )
|
|
{
|
|
CKeepUpright *pKeepUpright = (CKeepUpright*)CBaseEntity::Create( "phys_keepupright", vecOrigin, vecAngles, pOwner );
|
|
if ( pKeepUpright )
|
|
{
|
|
pKeepUpright->m_attachedObject = pOwner;
|
|
pKeepUpright->m_angularLimit = flAngularLimit;
|
|
if ( !bActive )
|
|
{
|
|
pKeepUpright->AddSpawnFlags( SF_KEEPUPRIGHT_START_INACTIVE );
|
|
}
|
|
pKeepUpright->Spawn();
|
|
pKeepUpright->Activate();
|
|
}
|
|
|
|
return pKeepUpright;
|
|
}
|
|
|
|
IMotionEvent::simresult_e CKeepUpright::Simulate( IPhysicsMotionController *pController, IPhysicsObject *pObject, float deltaTime, Vector &linear, AngularImpulse &angular )
|
|
{
|
|
if ( !m_bActive )
|
|
return SIM_NOTHING;
|
|
|
|
linear.Init();
|
|
|
|
AngularImpulse angVel;
|
|
pObject->GetVelocity( NULL, &angVel );
|
|
|
|
matrix3x4_t matrix;
|
|
// get the object's local to world transform
|
|
pObject->GetPositionMatrix( &matrix );
|
|
|
|
// Get the alignment axis in object space
|
|
Vector currentLocalTargetAxis;
|
|
VectorIRotate( m_worldGoalAxis, matrix, currentLocalTargetAxis );
|
|
|
|
float invDeltaTime = (1/deltaTime);
|
|
|
|
if ( m_bDampAllRotation )
|
|
{
|
|
angular = ComputeRotSpeedToAlignAxes( m_localTestAxis, currentLocalTargetAxis, angVel, 0, invDeltaTime, m_angularLimit );
|
|
angular -= angVel;
|
|
angular *= invDeltaTime;
|
|
return SIM_LOCAL_ACCELERATION;
|
|
}
|
|
|
|
angular = ComputeRotSpeedToAlignAxes( m_localTestAxis, currentLocalTargetAxis, angVel, 1.0, invDeltaTime, m_angularLimit );
|
|
angular *= invDeltaTime;
|
|
|
|
#if 0
|
|
Vector position, out, worldAxis;
|
|
MatrixGetColumn( matrix, 3, position );
|
|
out = angular * 0.1;
|
|
VectorRotate( m_localTestAxis, matrix, worldAxis );
|
|
NDebugOverlay::Line( position, position + worldAxis * 100, 255, 0, 0, 0, 0 );
|
|
NDebugOverlay::Line( position, position + m_worldGoalAxis * 100, 255, 0, 0, 0, 0 );
|
|
NDebugOverlay::Line( position, position + out, 255, 255, 0, 0, 0 );
|
|
#endif
|
|
|
|
return SIM_LOCAL_ACCELERATION;
|
|
}
|
|
|
|
|
|
// computes the torque necessary to align testAxis with alignAxis
|
|
AngularImpulse ComputeRotSpeedToAlignAxes( const Vector &testAxis, const Vector &alignAxis, const AngularImpulse ¤tSpeed, float damping, float scale, float maxSpeed )
|
|
{
|
|
Vector rotationAxis = CrossProduct( testAxis, alignAxis );
|
|
|
|
// atan2() is well defined, so do a Dot & Cross instead of asin(Cross)
|
|
float cosine = DotProduct( testAxis, alignAxis );
|
|
float sine = VectorNormalize( rotationAxis );
|
|
float angle = atan2( sine, cosine );
|
|
|
|
angle = RAD2DEG(angle);
|
|
AngularImpulse angular = rotationAxis * scale * angle;
|
|
angular -= rotationAxis * damping * DotProduct( currentSpeed, rotationAxis );
|
|
|
|
float len = VectorNormalize( angular );
|
|
|
|
if ( len > maxSpeed )
|
|
{
|
|
len = maxSpeed;
|
|
}
|
|
|
|
return angular * len;
|
|
}
|
|
|