1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-04 00:23:25 +08:00
hl2sdk/utils/phonemeextractor/phonemeextractor.cpp

1425 lines
37 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// extracephonemes.cpp : Defines the entry point for the console application.
//
#define PROTECTED_THINGS_DISABLE
#include "tier0/wchartypes.h"
#include <stdio.h>
#include <windows.h>
#include <tchar.h>
#include "sphelper.h"
#include "spddkhlp.h"
// ATL Header Files
#include <atlbase.h>
// Face poser and util includes
#include "utlvector.h"
#include "phonemeextractor/PhonemeExtractor.h"
#include "PhonemeConverter.h"
#include "sentence.h"
#include "tier0/dbg.h"
#include "tier0/icommandline.h"
#include "FileSystem.h"
// Extract phoneme grammar id
#define EP_GRAM_ID 101
// First rule of dynamic sentence rule set
#define DYN_SENTENCERULE 102
// # of milliseconds to allow for processing before timeout
#define SR_WAVTIMEOUT 4000
// Weight tag for rule to rule word/rule transitions
#define CONFIDENCE_WEIGHT 0.0f
//#define LOGGING 1
#define LOGFILE "c:\\fp.log"
void LogReset( void )
{
#if LOGGING
FILE *fp = fopen( LOGFILE, "w" );
if ( fp )
fclose( fp );
#endif
}
char *va( const char *fmt, ... );
//-----------------------------------------------------------------------------
// Purpose:
// Input : *words -
//-----------------------------------------------------------------------------
void LogWords( CSentence& sentence )
{
Log( "Wordcount == %i\n", sentence.m_Words.Size() );
for ( int i = 0; i < sentence.m_Words.Size(); i++ )
{
const CWordTag *w = sentence.m_Words[ i ];
Log( "Word %s %u to %u\n", w->GetWord(), w->m_uiStartByte, w->m_uiEndByte );
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *phonemes -
//-----------------------------------------------------------------------------
void LogPhonemes( CSentence& sentence )
{
return;
Log( "Phonemecount == %i\n", sentence.CountPhonemes() );
for ( int i = 0; i < sentence.m_Words.Size(); i++ )
{
const CWordTag *w = sentence.m_Words[ i ];
for ( int j = 0; j < w->m_Phonemes.Size(); j++ )
{
const CPhonemeTag *p = w->m_Phonemes[ j ];
Log( "Phoneme %s %u to %u\n", p->GetTag(), p->m_uiStartByte, p->m_uiEndByte );
}
}
}
#define NANO_CONVERT 10000000.0f;
//-----------------------------------------------------------------------------
// Purpose: Walk list of words and phonemes and create phoneme tags in CSentence object
// FIXME: Right now, phonemes are assumed to evenly space out across a word.
// Input : *converter -
// result -
// sentence -
//-----------------------------------------------------------------------------
void EnumeratePhonemes( ISpPhoneConverter *converter, const ISpRecoResult* result, CSentence& sentence )
{
USES_CONVERSION;
// Grab access to element container
ISpPhrase *phrase = ( ISpPhrase * )result;
if ( !phrase )
return;
SPPHRASE *pElements;
if ( !SUCCEEDED( phrase->GetPhrase( &pElements ) ) )
return;
// Only use it if it's better/same size as what we already had on-hand
if ( pElements->Rule.ulCountOfElements > 0 )
//(unsigned int)( sentence.m_Words.Size() - sentence.GetWordBase() ) )
{
sentence.ResetToBase();
// Walk list of words
for ( ULONG i = 0; i < pElements->Rule.ulCountOfElements; i++ )
{
unsigned int wordstart, wordend;
// Get start/end sample index
wordstart = pElements->pElements[i].ulAudioStreamOffset + (unsigned int)pElements->ullAudioStreamPosition;
wordend = wordstart + pElements->pElements[i].ulAudioSizeBytes;
// Create word tag
CWordTag *w = new CWordTag( W2T( pElements->pElements[i].pszDisplayText ) );
Assert( w );
w->m_uiStartByte = wordstart;
w->m_uiEndByte = wordend;
sentence.AddWordTag( w );
// Count # of phonemes in this word
SPPHONEID pstr[ 2 ];
pstr[ 1 ] = 0;
WCHAR wszPhoneme[ SP_MAX_PRON_LENGTH ];
const SPPHONEID *current;
SPPHONEID phoneme;
current = pElements->pElements[i].pszPronunciation;
float total_weight = 0.0f;
while ( 1 )
{
phoneme = *current++;
if ( !phoneme )
break;
pstr[ 0 ] = phoneme;
wszPhoneme[ 0 ] = L'\0';
converter->IdToPhone( pstr, wszPhoneme );
total_weight += WeightForPhoneme( W2A( wszPhoneme ) );
}
current = pElements->pElements[i].pszPronunciation;
// Decide # of bytes/phoneme weight
float psize = 0;
if ( total_weight )
{
psize = ( wordend - wordstart ) / total_weight;
}
int number = 0;
// Re-walk the phoneme list and create true phoneme tags
float startWeight = 0.0f;
while ( 1 )
{
phoneme = *current++;
if ( !phoneme )
break;
pstr[ 0 ] = phoneme;
wszPhoneme[ 0 ] = L'\0';
converter->IdToPhone( pstr, wszPhoneme );
CPhonemeTag *p = new CPhonemeTag( W2A( wszPhoneme ) );
Assert( p );
float weight = WeightForPhoneme( W2A( wszPhoneme ) );
p->m_uiStartByte = wordstart + (int)( startWeight * psize );
p->m_uiEndByte = p->m_uiStartByte + (int)( psize * weight );
startWeight += weight;
// Convert to IPA phoneme code
p->SetPhonemeCode( TextToPhoneme( p->GetTag() ) );
sentence.AddPhonemeTag( w, p );
number++;
}
}
}
// Free memory
::CoTaskMemFree(pElements);
}
//-----------------------------------------------------------------------------
// Purpose: Create rules for each word in the reference sentence
//-----------------------------------------------------------------------------
typedef struct
{
int ruleId;
SPSTATEHANDLE hRule;
CSpDynamicString word;
char plaintext[ 256 ];
} WORDRULETYPE;
//-----------------------------------------------------------------------------
// Purpose: Creates start for word of sentence
// Input : cpRecoGrammar -
// *root -
// *rules -
// word -
//-----------------------------------------------------------------------------
void AddWordRule( ISpRecoGrammar* cpRecoGrammar, SPSTATEHANDLE *root, CUtlVector< WORDRULETYPE > *rules, CSpDynamicString& word )
{
USES_CONVERSION;
HRESULT hr;
WORDRULETYPE *newrule;
int idx = (*rules).AddToTail();
newrule = &(*rules)[ idx ];
newrule->ruleId = DYN_SENTENCERULE + idx + 1;
newrule->word = word;
strcpy( newrule->plaintext, W2T( word ) );
// Create empty rule
hr = cpRecoGrammar->CreateNewState( *root, &newrule->hRule );
Assert( !FAILED( hr ) );
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : cpRecoGrammar -
// *from -
// *to -
//-----------------------------------------------------------------------------
void AddWordTransitionRule( ISpRecoGrammar* cpRecoGrammar, WORDRULETYPE *from, WORDRULETYPE *to )
{
USES_CONVERSION;
HRESULT hr;
Assert( from );
if ( from && !to )
{
OutputDebugString( va( "Transition from %s to TERM\r\n", from->plaintext ) );
}
else
{
OutputDebugString( va( "Transition from %s to %s\r\n", from->plaintext, to->plaintext ) );
}
hr = cpRecoGrammar->AddWordTransition( from->hRule, to ? to->hRule : NULL, (WCHAR *)from->word, NULL, SPWT_LEXICAL, CONFIDENCE_WEIGHT, NULL );
Assert( !FAILED( hr ) );
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : cpRecoGrammar -
// *from -
// *to -
//-----------------------------------------------------------------------------
void AddOptionalTransitionRule( ISpRecoGrammar* cpRecoGrammar, WORDRULETYPE *from, WORDRULETYPE *to )
{
USES_CONVERSION;
HRESULT hr;
Assert( from );
if ( from && !to )
{
OutputDebugString( va( "Opt transition from %s to TERM\r\n", from->plaintext ) );
}
else
{
OutputDebugString( va( "Opt transition from %s to %s\r\n", from->plaintext, to->plaintext ) );
}
hr = cpRecoGrammar->AddWordTransition( from->hRule, to ? to->hRule : NULL, NULL, NULL, SPWT_LEXICAL, CONFIDENCE_WEIGHT, NULL );
Assert( !FAILED( hr ) );
}
#define MAX_WORD_SKIP 1
//-----------------------------------------------------------------------------
// Purpose: Links together all word rule states into a sentence rule CFG
// Input : singleword -
// cpRecoGrammar -
// *root -
// *rules -
//-----------------------------------------------------------------------------
bool BuildRules( ISpRecoGrammar* cpRecoGrammar, SPSTATEHANDLE *root, CUtlVector< WORDRULETYPE > *rules )
{
HRESULT hr;
WORDRULETYPE *rule, *next;
int numrules = (*rules).Size();
rule = &(*rules)[ 0 ];
// Add transition
hr = cpRecoGrammar->AddWordTransition( *root, rule->hRule, NULL, NULL, SPWT_LEXICAL, CONFIDENCE_WEIGHT, NULL );
Assert( !FAILED( hr ) );
for ( int i = 0; i < numrules; i++ )
{
rule = &(*rules)[ i ];
if ( i < numrules - 1 )
{
next = &(*rules)[ i + 1 ];
}
else
{
next = NULL;
}
AddWordTransitionRule( cpRecoGrammar, rule, next );
}
if ( numrules > 1 )
{
for ( int skip = 1; skip <= MIN( MAX_WORD_SKIP, numrules ); skip++ )
{
OutputDebugString( va( "Opt transition from Root to %s\r\n", (*rules)[ 0 ].plaintext ) );
hr = cpRecoGrammar->AddWordTransition( *root, (*rules)[ 0 ].hRule, NULL, NULL, SPWT_LEXICAL, CONFIDENCE_WEIGHT, NULL );
// Now build rules where you can skip 1 to N intervening words
for ( int i = 1; i < numrules; i++ )
{
// Start at the beginning?
rule = &(*rules)[ i ];
if ( i < numrules - skip )
{
next = &(*rules)[ i + skip ];
}
else
{
continue;
}
// Add transition
AddOptionalTransitionRule( cpRecoGrammar, rule, next );
}
// Go from final rule to end point
AddOptionalTransitionRule( cpRecoGrammar, rule, NULL );
}
}
// Store it
hr = cpRecoGrammar->Commit(NULL);
if ( FAILED( hr ) )
return false;
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Debugging, prints alternate list if one is created
// Input : cpResult -
// (*pfnPrint -
//-----------------------------------------------------------------------------
void PrintAlternates( ISpRecoResult* cpResult, void (*pfnPrint)( const char *fmt, ... ) )
{
ISpPhraseAlt *rgPhraseAlt[ 32 ];
memset( rgPhraseAlt, 0, sizeof( rgPhraseAlt ) );
ULONG ulCount;
ISpPhrase *phrase = ( ISpPhrase * )cpResult;
if ( phrase )
{
SPPHRASE *pElements;
if ( SUCCEEDED( phrase->GetPhrase( &pElements ) ) )
{
if ( pElements->Rule.ulCountOfElements > 0 )
{
HRESULT hr = cpResult->GetAlternates(
pElements->Rule.ulFirstElement,
pElements->Rule.ulCountOfElements,
32,
rgPhraseAlt,
&ulCount);
Assert( !FAILED( hr ) );
for ( ULONG r = 0 ; r < ulCount; r++ )
{
CSpDynamicString dstrText;
hr = rgPhraseAlt[ r ]->GetText( (ULONG)SP_GETWHOLEPHRASE, (ULONG)SP_GETWHOLEPHRASE, TRUE, &dstrText, NULL);
Assert( !FAILED( hr ) );
pfnPrint( "[ ALT ]" );
pfnPrint( dstrText.CopyToChar() );
pfnPrint( "\r\n" );
}
}
}
}
for ( int i = 0; i < 32; i++ )
{
if ( rgPhraseAlt[ i ] )
{
rgPhraseAlt[ i ]->Release();
rgPhraseAlt[ i ] = NULL;
}
}
}
void PrintWordsAndPhonemes( CSentence& sentence, void (*pfnPrint)( const char *fmt, ... ) )
{
char sz[ 256 ];
int i;
pfnPrint( "WORDS\r\n\r\n" );
for ( i = 0 ; i < sentence.m_Words.Size(); i++ )
{
CWordTag *word = sentence.m_Words[ i ];
if ( !word )
continue;
sprintf( sz, "<%u - %u> %s\r\n",
word->m_uiStartByte, word->m_uiEndByte, word->GetWord() );
pfnPrint( sz );
for ( int j = 0 ; j < word->m_Phonemes.Size(); j++ )
{
CPhonemeTag *phoneme = word->m_Phonemes[ j ];
if ( !phoneme )
continue;
sprintf( sz, " <%u - %u> %s\r\n",
phoneme->m_uiStartByte, phoneme->m_uiEndByte, phoneme->GetTag() );
pfnPrint( sz );
}
}
pfnPrint( "\r\n" );
}
//-----------------------------------------------------------------------------
// Purpose: Given a wave file and a string of words "text", creates a CFG from the
// sentence and stores the resulting words/phonemes in CSentence
// Input : *wavname -
// text -
// sentence -
// (*pfnPrint -
// Output : SR_RESULT
//-----------------------------------------------------------------------------
SR_RESULT ExtractPhonemes( const char *wavname, CSpDynamicString& text, CSentence& sentence, void (*pfnPrint)( const char *fmt, ...) )
{
// Assume failure
SR_RESULT result = SR_RESULT_ERROR;
if ( text.Length() <= 0 )
{
pfnPrint( "Error: no rule / text specified\n" );
return result;
}
USES_CONVERSION;
HRESULT hr;
CUtlVector < WORDRULETYPE > wordRules;
CComPtr<ISpStream> cpInputStream;
CComPtr<ISpRecognizer> cpRecognizer;
CComPtr<ISpRecoContext> cpRecoContext;
CComPtr<ISpRecoGrammar> cpRecoGrammar;
CComPtr<ISpPhoneConverter> cpPhoneConv;
// Create basic SAPI stream object
// NOTE: The helper SpBindToFile can be used to perform the following operations
hr = cpInputStream.CoCreateInstance(CLSID_SpStream);
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Stream object not installed?\n" );
return result;
}
CSpStreamFormat sInputFormat;
// setup stream object with wav file MY_WAVE_AUDIO_FILENAME
// for read-only access, since it will only be access by the SR engine
hr = cpInputStream->BindToFile(
T2W(wavname),
SPFM_OPEN_READONLY,
NULL,
sInputFormat.WaveFormatExPtr(),
SPFEI_ALL_EVENTS );
if ( FAILED( hr ) )
{
pfnPrint( "Error: couldn't open wav file %s\n", wavname );
return result;
}
// Create in-process speech recognition engine
hr = cpRecognizer.CoCreateInstance(CLSID_SpInprocRecognizer);
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 In process recognizer object not installed?\n" );
return result;
}
// Create recognition context to receive events
hr = cpRecognizer->CreateRecoContext(&cpRecoContext);
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to create recognizer context\n" );
return result;
}
// Create a grammar
hr = cpRecoContext->CreateGrammar( EP_GRAM_ID, &cpRecoGrammar );
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to create recognizer grammar\n" );
return result;
}
LANGID englishID = 0x409; // 1033 decimal
bool userSpecified = false;
LANGID langID = SpGetUserDefaultUILanguage();
// Allow commandline override
if ( CommandLine()->FindParm( "-languageid" ) != 0 )
{
userSpecified = true;
langID = CommandLine()->ParmValue( "-languageid", langID );
}
// Create a phoneme converter ( so we can convert to IPA codes )
hr = SpCreatePhoneConverter( langID, NULL, NULL, &cpPhoneConv );
if ( FAILED( hr ) )
{
if ( langID != englishID )
{
if ( userSpecified )
{
pfnPrint( "Warning: SAPI 5.1 Unable to create phoneme converter for command line override -languageid %i\n", langID );
}
else
{
pfnPrint( "Warning: SAPI 5.1 Unable to create phoneme converter for default UI language %i\n",langID );
}
// Try english!!!
langID = englishID;
hr = SpCreatePhoneConverter( langID, NULL, NULL, &cpPhoneConv );
}
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to create phoneme converter for English language id %i\n", langID );
return result;
}
else
{
pfnPrint( "Note: SAPI 5.1 Falling back to use english -languageid %i\n", langID );
}
}
else if ( userSpecified )
{
pfnPrint( "Note: SAPI 5.1 Using user specified -languageid %i\n",langID );
}
SPSTATEHANDLE hStateRoot;
// create/re-create Root level rule of grammar
hr = cpRecoGrammar->GetRule(L"Root", 0, SPRAF_TopLevel | SPRAF_Active, TRUE, &hStateRoot);
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to create root rule\n" );
return result;
}
// Inactivate it so we can alter it
hr = cpRecoGrammar->SetRuleState( NULL, NULL, SPRS_INACTIVE );
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to deactivate grammar rules\n" );
return result;
}
// Create the rule set from the words in text
{
CSpDynamicString currentWord;
WCHAR *pos = ( WCHAR * )text;
WCHAR str[ 2 ];
str[1]= 0;
while ( *pos )
{
if ( *pos == L' ' /*|| *pos == L'.' || *pos == L'-'*/ )
{
// Add word to rule set
if ( currentWord.Length() > 0 )
{
AddWordRule( cpRecoGrammar, &hStateRoot, &wordRules, currentWord );
currentWord.Clear();
}
pos++;
continue;
}
// Skip anything that's inside a [ xxx ] pair.
if ( *pos == L'[' )
{
while ( *pos && *pos != L']' )
{
pos++;
}
if ( *pos )
{
pos++;
}
continue;
}
str[ 0 ] = *pos;
currentWord.Append( str );
pos++;
}
if ( currentWord.Length() > 0 )
{
AddWordRule( cpRecoGrammar, &hStateRoot, &wordRules, currentWord );
}
if ( wordRules.Size() <= 0 )
{
pfnPrint( "Error: Text %s contained no usable words\n", text );
return result;
}
// Build all word to word transitions in the grammar
if ( !BuildRules( cpRecoGrammar, &hStateRoot, &wordRules ) )
{
pfnPrint( "Error: Rule set for %s could not be generated\n", text );
return result;
}
}
// check for recognitions and end of stream event
const ULONGLONG ullInterest =
SPFEI(SPEI_RECOGNITION) | SPFEI(SPEI_END_SR_STREAM) | SPFEI(SPEI_FALSE_RECOGNITION) |
SPFEI(SPEI_PHRASE_START ) | SPFEI(SPEI_HYPOTHESIS ) | SPFEI(SPEI_INTERFERENCE) ;
hr = cpRecoContext->SetInterest( ullInterest, ullInterest );
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to set interest level\n" );
return result;
}
// use Win32 events for command-line style application
hr = cpRecoContext->SetNotifyWin32Event();
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to set win32 notify event\n" );
return result;
}
// connect wav input to recognizer
// SAPI will negotiate mismatched engine/input audio formats using system audio codecs, so second parameter is not important - use default of TRUE
hr = cpRecognizer->SetInput(cpInputStream, TRUE);
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to associate input stream\n" );
return result;
}
// Activate the CFG ( rather than using dictation )
hr = cpRecoGrammar->SetRuleState( NULL, NULL, SPRS_ACTIVE );
if ( FAILED( hr ) )
{
switch ( hr )
{
case E_INVALIDARG:
pfnPrint( "pszName is invalid or bad. Alternatively, pReserved is non-NULL\n" );
break;
case SP_STREAM_UNINITIALIZED:
pfnPrint( "ISpRecognizer::SetInput has not been called with the InProc recognizer\n" );
break;
case SPERR_UNINITIALIZED:
pfnPrint( "The object has not been properly initialized.\n");
break;
case SPERR_UNSUPPORTED_FORMAT:
pfnPrint( "Audio format is bad or is not recognized. Alternatively, the device driver may be busy by another application and cannot be accessed.\n" );
break;
case SPERR_NOT_TOPLEVEL_RULE:
pfnPrint( "The rule pszName exists, but is not a top-level rule.\n" );
break;
default:
pfnPrint( "Unknown error\n" );
break;
}
pfnPrint( "Error: SAPI 5.1 Unable to activate rule set\n" );
return result;
}
// while events occur, continue processing
// timeout should be greater than the audio stream length, or a reasonable amount of time expected to pass before no more recognitions are expected in an audio stream
BOOL fEndStreamReached = FALSE;
while (!fEndStreamReached && S_OK == cpRecoContext->WaitForNotifyEvent( SR_WAVTIMEOUT ))
{
CSpEvent spEvent;
// pull all queued events from the reco context's event queue
while (!fEndStreamReached && S_OK == spEvent.GetFrom(cpRecoContext))
{
// Check event type
switch (spEvent.eEventId)
{
case SPEI_INTERFERENCE:
{
SPINTERFERENCE interference = spEvent.Interference();
switch ( interference )
{
case SPINTERFERENCE_NONE:
pfnPrint( "[ I None ]\r\n" );
break;
case SPINTERFERENCE_NOISE:
pfnPrint( "[ I Noise ]\r\n" );
break;
case SPINTERFERENCE_NOSIGNAL:
pfnPrint( "[ I No Signal ]\r\n" );
break;
case SPINTERFERENCE_TOOLOUD:
pfnPrint( "[ I Too Loud ]\r\n" );
break;
case SPINTERFERENCE_TOOQUIET:
pfnPrint( "[ I Too Quiet ]\r\n" );
break;
case SPINTERFERENCE_TOOFAST:
pfnPrint( "[ I Too Fast ]\r\n" );
break;
case SPINTERFERENCE_TOOSLOW:
pfnPrint( "[ I Too Slow ]\r\n" );
break;
default:
break;
}
}
break;
case SPEI_PHRASE_START:
pfnPrint( "Phrase Start\r\n" );
sentence.MarkNewPhraseBase();
break;
case SPEI_HYPOTHESIS:
case SPEI_RECOGNITION:
case SPEI_FALSE_RECOGNITION:
{
CComPtr<ISpRecoResult> cpResult;
cpResult = spEvent.RecoResult();
CSpDynamicString dstrText;
if (spEvent.eEventId == SPEI_FALSE_RECOGNITION)
{
dstrText = L"(Unrecognized)";
result = SR_RESULT_FAILED;
// It's possible that the failed recog might have more words, so see if that's the case
EnumeratePhonemes( cpPhoneConv, cpResult, sentence );
}
else
{
// Hypothesis or recognition success
cpResult->GetText( (ULONG)SP_GETWHOLEPHRASE, (ULONG)SP_GETWHOLEPHRASE, TRUE, &dstrText, NULL);
EnumeratePhonemes( cpPhoneConv, cpResult, sentence );
if ( spEvent.eEventId == SPEI_RECOGNITION )
{
result = SR_RESULT_SUCCESS;
}
pfnPrint( va( "%s%s\r\n", spEvent.eEventId == SPEI_HYPOTHESIS ? "[ Hypothesis ] " : "", dstrText.CopyToChar() ) );
}
cpResult.Release();
}
break;
// end of the wav file was reached by the speech recognition engine
case SPEI_END_SR_STREAM:
fEndStreamReached = TRUE;
break;
}
// clear any event data/object references
spEvent.Clear();
}// END event pulling loop - break on empty event queue OR end stream
}// END event polling loop - break on event timeout OR end stream
// Deactivate rule
hr = cpRecoGrammar->SetRuleState( NULL, NULL, SPRS_INACTIVE );
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to deactivate rule set\n" );
return result;
}
// close the input stream, since we're done with it
// NOTE: smart pointer will call SpStream's destructor, and consequently ::Close, but code may want to check for errors on ::Close operation
hr = cpInputStream->Close();
if ( FAILED( hr ) )
{
pfnPrint( "Error: SAPI 5.1 Unable to close input stream\n" );
return result;
}
return result;
}
//-----------------------------------------------------------------------------
// Purpose: HACK HACK: We have to delete the RecoContext key or sapi starts to train
// itself on each iteration which was causing some problems.
// Input : hKey -
//-----------------------------------------------------------------------------
void RecursiveRegDelKey(HKEY hKey)
{
char keyname[256]={0};
DWORD namesize=256;
//base case: no subkeys when RegEnumKeyEx returns error on index 0
LONG lResult=RegEnumKeyEx(hKey,0,keyname,&namesize,NULL,NULL,NULL,NULL);
if (lResult!=ERROR_SUCCESS)
{
return;
}
do
{
HKEY subkey;
LONG lResult2;
LONG lDelResult;
lResult2=RegOpenKeyEx(hKey,keyname,0,KEY_ALL_ACCESS,&subkey);
if (lResult2==ERROR_SUCCESS)
{
RecursiveRegDelKey(subkey);
RegCloseKey(subkey);
lDelResult=RegDeleteKey(hKey,keyname);
namesize=256;
//use 0 in the next function call because when you delete one, the rest shift down!
lResult=RegEnumKeyEx(hKey,0,keyname,&namesize,NULL,NULL,NULL,NULL);
}
else
{
break;
}
} while (lResult!=ERROR_NO_MORE_ITEMS);
}
bool IsUseable( CWordTag *word )
{
if ( word->m_uiStartByte || word->m_uiEndByte )
return true;
return false;
}
int FindLastUsableWord( CSentence& outwords )
{
int numwords = outwords.m_Words.Size();
if ( numwords < 1 )
{
Assert( 0 );
return -1;
}
for ( int i = numwords-1; i >= 0; i-- )
{
CWordTag *check = outwords.m_Words[ i ];
if ( IsUseable( check ) )
{
return i;
}
}
return -1;
}
int FindFirstUsableWord( CSentence& outwords )
{
int numwords = outwords.m_Words.Size();
if ( numwords < 1 )
{
Assert( 0 );
return -1;
}
for ( int i = 0; i < numwords; i++ )
{
CWordTag *check = outwords.m_Words[ i ];
if ( IsUseable( check ) )
{
return i;
}
}
return -1;
}
//-----------------------------------------------------------------------------
// Purpose: Counts words which have either a valid start or end byte
// Input : *outwords -
// Output : int
//-----------------------------------------------------------------------------
int CountUsableWords( CSentence& outwords )
{
int count = 0;
int numwords = outwords.m_Words.Size();
// Nothing to do
if ( numwords <= 0 )
return count;
for ( int i = 0; i < numwords; i++ )
{
CWordTag *word = outwords.m_Words[ i ];
if ( !IsUseable( word ) )
continue;
count++;
}
return count;
}
//-----------------------------------------------------------------------------
// Purpose: Counts words which have either a valid start or end byte
// Input : *outwords -
// Output : int
//-----------------------------------------------------------------------------
int CountUnuseableWords( CSentence& outwords )
{
int count = 0;
int numwords = outwords.m_Words.Size();
// Nothing to do
if ( numwords <= 0 )
return count;
for ( int i = 0; i < numwords; i++ )
{
CWordTag *word = outwords.m_Words[ i ];
if ( IsUseable( word ) )
continue;
count++;
}
return count;
}
// Keeps same relative spacing, but rebases list
void RepartitionPhonemes( CWordTag *word, unsigned int oldStart, unsigned int oldEnd )
{
// Repartition phonemes based on old range
float oldRange = ( float )( oldEnd - oldStart );
float newRange = ( float )( word->m_uiEndByte - word->m_uiStartByte );
for ( int i = 0; i < word->m_Phonemes.Size(); i++ )
{
CPhonemeTag *tag = word->m_Phonemes[ i ];
Assert( tag );
float frac1 = 0.0f, frac2 = 0.0f;
float delta1, delta2;
delta1 = ( float ) ( tag->m_uiStartByte - oldStart );
delta2 = ( float ) ( tag->m_uiEndByte - oldStart );
if ( oldRange > 0.0f )
{
frac1 = delta1 / oldRange;
frac2 = delta2 / oldRange;
}
tag->m_uiStartByte = word->m_uiStartByte + ( unsigned int ) ( frac1 * newRange );
tag->m_uiEndByte = word->m_uiStartByte + ( unsigned int ) ( frac2 * newRange );
}
}
void PartitionWords( CSentence& outwords, int start, int end, int sampleStart, int sampleEnd )
{
int wordCount = end - start + 1;
Assert( wordCount >= 1 );
int stepSize = ( sampleEnd - sampleStart ) / wordCount;
int currentStart = sampleStart;
for ( int i = start; i <= end; i++ )
{
CWordTag *word = outwords.m_Words[ i ];
Assert( word );
unsigned int oldStart = word->m_uiStartByte;
unsigned int oldEnd = word->m_uiEndByte;
word->m_uiStartByte = currentStart;
word->m_uiEndByte = currentStart + stepSize;
RepartitionPhonemes( word, oldStart, oldEnd );
currentStart += stepSize;
}
}
void MergeWords( CWordTag *w1, CWordTag *w2 )
{
unsigned int start, end;
start = MIN( w1->m_uiStartByte, w2->m_uiStartByte );
end = MAX( w1->m_uiEndByte, w2->m_uiEndByte );
unsigned int mid = ( start + end ) / 2;
unsigned int oldw1start, oldw2start, oldw1end, oldw2end;
oldw1start = w1->m_uiStartByte;
oldw2start = w2->m_uiStartByte;
oldw1end = w1->m_uiEndByte;
oldw2end = w2->m_uiEndByte;
w1->m_uiStartByte = start;
w1->m_uiEndByte = mid;
w2->m_uiStartByte = mid;
w2->m_uiEndByte = end;
RepartitionPhonemes( w1, oldw1start, oldw1end );
RepartitionPhonemes( w2, oldw2start, oldw2end );
}
void FixupZeroLengthWords( CSentence& outwords )
{
while ( 1 )
{
int i;
for ( i = 0 ; i < outwords.m_Words.Size() - 1; i++ )
{
CWordTag *current, *next;
current = outwords.m_Words[ i ];
next = outwords.m_Words[ i + 1 ];
if ( current->m_uiEndByte - current->m_uiStartByte <= 0 )
{
MergeWords( current, next );
break;
}
if ( next->m_uiEndByte - next->m_uiStartByte <= 0 )
{
MergeWords( current, next );
break;
}
}
if ( i >= outwords.m_Words.Size() - 1 )
{
break;
}
}
}
void ComputeMissingByteSpans( int numsamples, CSentence& outwords )
{
int numwords = outwords.m_Words.Size();
// Nothing to do
if ( numwords <= 0 )
return;
int interationcount = 1;
while( 1 )
{
Log( "\nCompute %i\n", interationcount++ );
LogWords( outwords );
int wordNumber;
// Done!
if ( !CountUnuseableWords( outwords ) )
{
FixupZeroLengthWords( outwords );
break;
}
if ( !CountUsableWords( outwords ) )
{
// Evenly space words across full sample time
PartitionWords( outwords, 0, numwords - 1, 0, numsamples );
break;
}
wordNumber = FindFirstUsableWord( outwords );
// Not the first word
if ( wordNumber > 0 )
{
// Repartition all of the unusables and the first one starting at zero over the range
CWordTag *firstUsable = outwords.m_Words[ wordNumber ];
Assert( firstUsable );
if ( firstUsable->m_uiStartByte != 0 )
{
PartitionWords( outwords, 0, wordNumber - 1, 0, firstUsable->m_uiStartByte );
}
else
{
PartitionWords( outwords, 0, wordNumber, 0, firstUsable->m_uiEndByte );
}
// Start over
continue;
}
wordNumber = FindLastUsableWord( outwords );
// Not the last word
if ( wordNumber >= 0 && wordNumber < numwords - 1 )
{
// Repartition all of the unusables and the first one starting at zero over the range
CWordTag *lastUsable = outwords.m_Words[ wordNumber ];
Assert( lastUsable );
if ( lastUsable->m_uiEndByte != (unsigned int)numsamples )
{
PartitionWords( outwords, wordNumber + 1, numwords-1, lastUsable->m_uiEndByte, numsamples );
}
else
{
PartitionWords( outwords, wordNumber, numwords-1, lastUsable->m_uiStartByte, numsamples );
}
// Start over
continue;
}
// If we get here it means that the start and end of the list are okay and we just have to
// iterate across the list and fix things in the middle
int startByte = 0;
int endByte = 0;
for ( int i = 0; i < numwords ; i++ )
{
CWordTag *word = outwords.m_Words[ i ];
if ( IsUseable( word ) )
{
startByte = word->m_uiEndByte;
continue;
}
// Found the start of a chain of 1 or more unusable words
// Find the startbyte of the next usable word and count how many words we check
int wordCount = 1;
for ( int j = i + 1; j < numwords; j++ )
{
CWordTag *next = outwords.m_Words[ j ];
if ( IsUseable( next ) )
{
endByte = next->m_uiStartByte;
break;
}
wordCount++;
}
// Now partition words across the gap and go to start again
PartitionWords( outwords, i, i + wordCount - 1, startByte, endByte );
break;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Given a wavfile and a list of inwords, determines the word/phonene
// sample counts for the sentce
// Input : *wavfile -
// *inwords -
// *outphonemes{ text.Clear( -
// Output : SR_RESULT
//-----------------------------------------------------------------------------
static SR_RESULT SAPI_ExtractPhonemes(
const char *wavfile,
int numsamples,
void (*pfnPrint)( const char *fmt, ... ),
CSentence& inwords,
CSentence& outwords )
{
LogReset();
USES_CONVERSION;
CSpDynamicString text;
text.Clear();
HKEY hkwipe;
LONG lResult = RegOpenKeyEx( HKEY_CURRENT_USER, "Software\\Microsoft\\Speech\\RecoProfiles", 0, KEY_ALL_ACCESS, &hkwipe );
if ( lResult == ERROR_SUCCESS )
{
RecursiveRegDelKey( hkwipe );
RegCloseKey( hkwipe );
}
if ( strlen( inwords.GetText() ) <= 0 )
{
inwords.SetTextFromWords();
}
// Construct a string from the inwords array
text.Append( T2W( inwords.GetText() ) );
// Assume failure
SR_RESULT result = SR_RESULT_ERROR;
if ( text.Length() > 0 )
{
CSentence sentence;
pfnPrint( "Processing...\r\n" );
// Give it a try
result = ExtractPhonemes( wavfile, text, sentence, pfnPrint );
pfnPrint( "Finished.\r\n" );
// PrintWordsAndPhonemes( sentence, pfnPrint );
// Copy results to outputs
outwords.Reset();
outwords.SetText( inwords.GetText() );
Log( "Starting\n" );
LogWords( inwords );
if ( SR_RESULT_ERROR != result )
{
int i;
Log( "Hypothesized\n" );
LogWords( sentence );
for( i = 0 ; i < sentence.m_Words.Size(); i++ )
{
CWordTag *tag = sentence.m_Words[ i ];
if ( tag )
{
// Skip '...' tag
if ( stricmp( tag->GetWord(), "..." ) )
{
CWordTag *newTag = new CWordTag( *tag );
outwords.m_Words.AddToTail( newTag );
}
}
}
// Now insert unrecognized/skipped words from original list
//
int frompos = 0, topos = 0;
while( 1 )
{
// End of source list
if ( frompos >= inwords.m_Words.Size() )
break;
const CWordTag *fromTag = inwords.m_Words[ frompos ];
// Reached end of destination list, just copy words over from from source list until
// we run out of source words
if ( topos >= outwords.m_Words.Size() )
{
// Just copy words over
CWordTag *newWord = new CWordTag( *fromTag );
// Remove phonemes
while ( newWord->m_Phonemes.Size() > 0 )
{
CPhonemeTag *kill = newWord->m_Phonemes[ 0 ];
newWord->m_Phonemes.Remove( 0 );
delete kill;
}
outwords.m_Words.AddToTail( newWord );
frompos++;
topos++;
continue;
}
// Destination word
const CWordTag *toTag = outwords.m_Words[ topos ];
// Words match, just skip ahead
if ( !stricmp( fromTag->GetWord(), toTag->GetWord() ) )
{
frompos++;
topos++;
continue;
}
// The only case we handle is that something in the source wasn't in the destination
// Find the next source word that appears in the destination
int skipAhead = frompos + 1;
bool found = false;
while ( skipAhead < inwords.m_Words.Size() )
{
const CWordTag *sourceWord = inwords.m_Words[ skipAhead ];
if ( !stricmp( sourceWord->GetWord(), toTag->GetWord() ) )
{
found = true;
break;
}
skipAhead++;
}
// Uh oh destination has words that are not in source, just skip to next destination word?
if ( !found )
{
topos++;
}
else
{
// Copy words from from source list into destination
//
int skipCount = skipAhead - frompos;
while ( --skipCount>= 0 )
{
const CWordTag *sourceWord = inwords.m_Words[ frompos++ ];
CWordTag *newWord = new CWordTag( *sourceWord );
// Remove phonemes
while ( newWord->m_Phonemes.Size() > 0 )
{
CPhonemeTag *kill = newWord->m_Phonemes[ 0 ];
newWord->m_Phonemes.Remove( 0 );
delete kill;
}
outwords.m_Words.InsertBefore( topos, newWord );
topos++;
}
frompos++;
topos++;
}
}
Log( "\nDone simple check\n" );
LogWords( outwords );
LogPhonemes( outwords );
ComputeMissingByteSpans( numsamples, outwords );
Log( "\nFinal check\n" );
LogWords( outwords );
LogPhonemes( outwords );
}
}
else
{
pfnPrint( "Input sentence is empty!\n" );
}
// Return results
return result;
}
//-----------------------------------------------------------------------------
// Purpose: Expose the interface
//-----------------------------------------------------------------------------
class CPhonemeExtractorSAPI : public IPhonemeExtractor
{
public:
virtual PE_APITYPE GetAPIType() const
{
return SPEECH_API_SAPI;
}
// Used for menus, etc
virtual char const *GetName() const
{
return "MS SAPI 5.1";
}
SR_RESULT Extract(
const char *wavfile,
int numsamples,
void (*pfnPrint)( const char *fmt, ... ),
CSentence& inwords,
CSentence& outwords )
{
return SAPI_ExtractPhonemes( wavfile, numsamples, pfnPrint, inwords, outwords );
}
};
EXPOSE_SINGLE_INTERFACE( CPhonemeExtractorSAPI, IPhonemeExtractor, VPHONEME_EXTRACTOR_INTERFACE );