1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-04 00:23:25 +08:00
hl2sdk/game/server/physics_prop_statue.cpp
2010-07-22 01:46:14 -05:00

551 lines
16 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#include "cbase.h"
#include "physics_prop_statue.h"
#include "baseanimating.h"
#include "studio.h"
#include "bone_setup.h"
#include "EntityFreezing.h"
//#include "particle_parse.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Networking
//-----------------------------------------------------------------------------
LINK_ENTITY_TO_CLASS( physics_prop_statue, CStatueProp );
IMPLEMENT_SERVERCLASS_ST( CStatueProp, DT_StatueProp )
SendPropEHandle( SENDINFO( m_hInitBaseAnimating ) ),
SendPropBool( SENDINFO( m_bShatter ) ),
SendPropInt( SENDINFO( m_nShatterFlags ), 3 ),
SendPropVector( SENDINFO( m_vShatterPosition ) ),
SendPropVector( SENDINFO( m_vShatterForce ) ),
END_SEND_TABLE()
BEGIN_DATADESC( CStatueProp )
DEFINE_FIELD( m_hInitBaseAnimating, FIELD_EHANDLE ),
DEFINE_FIELD( m_bShatter, FIELD_BOOLEAN ),
DEFINE_FIELD( m_nShatterFlags, FIELD_INTEGER ),
DEFINE_FIELD( m_vShatterPosition, FIELD_VECTOR ),
DEFINE_FIELD( m_vShatterForce, FIELD_VECTOR ),
DEFINE_THINKFUNC( CollisionPartnerThink ),
END_DATADESC()
ConVarRef *s_vcollide_wireframe = NULL;
CStatueProp::CStatueProp( void )
{
static ConVarRef vcollide_wireframe( "vcollide_wireframe" );
s_vcollide_wireframe = &vcollide_wireframe;
m_pInitOBBs = NULL;
}
void CStatueProp::Spawn( void )
{
// Make it breakable
SetBreakableModel( MAKE_STRING( "ConcreteChunks" ) );
SetBreakableCount( 6 );
SetHealth( 5 );
BaseClass::Spawn();
m_flFrozen = 1.0f;
}
void CStatueProp::Precache( void )
{
}
bool CStatueProp::CreateVPhysics( void )
{
if ( m_pInitOBBs )
{
return CreateVPhysicsFromOBBs( m_hInitBaseAnimating );
}
else
{
if ( !CreateVPhysicsFromHitBoxes( m_hInitBaseAnimating ) )
{
// Init model didn't work out, so just use our own
return CreateVPhysicsFromHitBoxes( this );
}
return true;
}
}
void CStatueProp::VPhysicsUpdate( IPhysicsObject *pPhysics )
{
BaseClass::VPhysicsUpdate( pPhysics );
if ( s_vcollide_wireframe->GetBool() )
{
const CPhysCollide *pCollide = pPhysics->GetCollide();
Vector vecOrigin;
QAngle angAngles;
pPhysics->GetPosition( &vecOrigin, &angAngles );
if ( pCollide )
{
Vector *outVerts;
int vertCount = physcollision->CreateDebugMesh( pCollide, &outVerts );
int triCount = vertCount / 3;
int vert = 0;
VMatrix tmp = SetupMatrixOrgAngles( vecOrigin, angAngles );
int i;
for ( i = 0; i < vertCount; i++ )
{
outVerts[i] = tmp.VMul4x3( outVerts[i] );
}
for ( i = 0; i < triCount; i++ )
{
NDebugOverlay::Line( outVerts[ vert + 0 ], outVerts[ vert + 1 ], 0, 255, 255, false, 0.0f );
NDebugOverlay::Line( outVerts[ vert + 1 ], outVerts[ vert + 2 ], 0, 255, 255, false, 0.0f );
NDebugOverlay::Line( outVerts[ vert + 2 ], outVerts[ vert + 0 ], 0, 255, 255, false, 0.0f );
vert += 3;
}
physcollision->DestroyDebugMesh( vertCount, outVerts );
}
}
}
void CStatueProp::ComputeWorldSpaceSurroundingBox( Vector *pMins, Vector *pMaxs )
{
CBaseAnimating *pBaseAnimating = m_hInitBaseAnimating;
if ( pBaseAnimating )
{
pBaseAnimating->CollisionProp()->WorldSpaceSurroundingBounds( pMins, pMaxs );
return;
}
CollisionProp()->WorldSpaceSurroundingBounds( pMins, pMaxs );
}
bool CStatueProp::TestCollision( const Ray_t &ray, unsigned int fContentsMask, trace_t& tr )
{
IPhysicsObject *pPhysObject = VPhysicsGetObject();
if ( pPhysObject )
{
Vector vecPosition;
QAngle vecAngles;
pPhysObject->GetPosition( &vecPosition, &vecAngles );
const CPhysCollide *pScaledCollide = pPhysObject->GetCollide();
physcollision->TraceBox( ray, pScaledCollide, vecPosition, vecAngles, &tr );
return tr.DidHit();
}
return false;
}
int CStatueProp::OnTakeDamage( const CTakeDamageInfo &info )
{
return BaseClass::OnTakeDamage( info );
}
void CStatueProp::Event_Killed( const CTakeDamageInfo &info )
{
IPhysicsObject *pPhysics = VPhysicsGetObject();
if ( pPhysics && !pPhysics->IsMoveable() )
{
pPhysics->EnableMotion( true );
VPhysicsTakeDamage( info );
}
m_nShatterFlags = 0; // If you have some flags to network for the shatter effect, put them here!
m_vShatterPosition = info.GetDamagePosition();
m_vShatterForce = info.GetDamageForce();
m_bShatter = true;
// Skip over breaking code!
//Break( info.GetInflictor(), info );
//BaseClass::Event_Killed( info );
// FIXME: Short delay before we actually remove so that the client statue gets a network update before we need it
// This isn't a reliable way to do this and needs to be rethought.
AddSolidFlags( FSOLID_NOT_SOLID );
SetNextThink( gpGlobals->curtime + 0.2f );
SetThink( &CBaseEntity::SUB_Remove );
}
void CStatueProp::Freeze( float flFreezeAmount, CBaseEntity *pFreezer, Ray_t *pFreezeRay )
{
// Can't freeze a statue
TakeDamage( CTakeDamageInfo( pFreezer, pFreezer, 1, DMG_GENERIC ) );
}
void CStatueProp::CollisionPartnerThink( void )
{
CBaseAnimating *pBaseAnimating = m_hInitBaseAnimating;
if ( !pBaseAnimating )
{
// Our partner died, I have no reason to live!
UTIL_Remove( this );
}
if ( GetHealth() <= 0 )
{
// Reset health here in case it was tweaked by the model parse
SetHealth( 5 );
m_takedamage = DAMAGE_YES;
}
SetNextThink( gpGlobals->curtime + 1.0f );
}
bool CStatueProp::CreateVPhysicsFromHitBoxes( CBaseAnimating *pInitBaseAnimating )
{
if ( !pInitBaseAnimating )
return false;
// Use the current animation sequence and cycle
CopyAnimationDataFrom( pInitBaseAnimating );
// Copy over any render color
color24 colorRender = pInitBaseAnimating->GetRenderColor();
SetRenderColor( colorRender.r, colorRender.g, colorRender.b );
SetRenderAlpha( pInitBaseAnimating->GetRenderAlpha() );
// Get hitbox data
CStudioHdr *pStudioHdr = GetModelPtr();
if ( !pStudioHdr )
return false;
mstudiohitboxset_t *set = pStudioHdr->pHitboxSet( m_nHitboxSet );
if ( !set )
return false;
Vector position;
QAngle angles;
// Make enough pointers to convexes for each hitbox
CPhysConvex **ppConvex = new (CPhysConvex*[ set->numhitboxes ]);
float flTotalVolume = 0.0f;
float flTotalSurfaceArea = 0.0f;
for ( int i = 0; i < set->numhitboxes; i++ )
{
// Get the hitbox info
mstudiobbox_t *pbox = set->pHitbox( i );
GetBonePosition( pbox->bone, position, angles );
// Accumulate volume and area
Vector flDimentions = pbox->bbmax - pbox->bbmin;
flTotalVolume += flDimentions.x * flDimentions.y * flDimentions.z;
flTotalSurfaceArea += 2.0f * ( flDimentions.x * flDimentions.y + flDimentions.x * flDimentions.z + flDimentions.y * flDimentions.z );
// Get angled min and max extents
Vector vecMins, vecMaxs;
VectorRotate( pbox->bbmin, angles, vecMins );
VectorRotate( pbox->bbmax, angles, vecMaxs );
// Get the corners in world space
Vector vecMinCorner = position + vecMins;
Vector vecMaxCorner = position + vecMaxs;
// Get the normals of the hitbox in world space
Vector vecForward, vecRight, vecUp;
AngleVectors( angles, &vecForward, &vecRight, &vecUp );
vecRight = -vecRight;
// Convert corners and normals to local space
Vector vecCornerLocal[ 2 ];
Vector vecNormalLocal[ 3 ];
matrix3x4_t matToWorld = EntityToWorldTransform();
VectorITransform( vecMaxCorner, matToWorld, vecCornerLocal[ 0 ] );
VectorITransform( vecMinCorner, matToWorld, vecCornerLocal[ 1 ] );
VectorIRotate( vecForward, matToWorld, vecNormalLocal[ 0 ] );
VectorIRotate( vecRight, matToWorld, vecNormalLocal[ 1 ] );
VectorIRotate( vecUp, matToWorld, vecNormalLocal[ 2 ] );
// Create 6 planes from the local oriented hit box data
float pPlanes[ 4 * 6 ];
for ( int iPlane = 0; iPlane < 6; ++iPlane )
{
int iPlaneMod2 = iPlane % 2;
int iPlaneDiv2 = iPlane / 2;
bool bOdd = ( iPlaneMod2 == 1 );
// Plane Normal
pPlanes[ iPlane * 4 + 0 ] = vecNormalLocal[ iPlaneDiv2 ].x * ( bOdd ? -1.0f : 1.0f );
pPlanes[ iPlane * 4 + 1 ] = vecNormalLocal[ iPlaneDiv2 ].y * ( bOdd ? -1.0f : 1.0f );
pPlanes[ iPlane * 4 + 2 ] = vecNormalLocal[ iPlaneDiv2 ].z * ( bOdd ? -1.0f : 1.0f );
// Plane D
pPlanes[ iPlane * 4 + 3 ] = ( vecCornerLocal[ iPlaneMod2 ].x * vecNormalLocal[ iPlaneDiv2 ].x +
vecCornerLocal[ iPlaneMod2 ].y * vecNormalLocal[ iPlaneDiv2 ].y +
vecCornerLocal[ iPlaneMod2 ].z * vecNormalLocal[ iPlaneDiv2 ].z ) * ( bOdd ? -1.0f : 1.0f );
}
// Create convex from the intersection of these planes
ppConvex[ i ] = physcollision->ConvexFromPlanes( pPlanes, 6, 0.0f );
}
// Make a single collide out of the group of convex boxes
CPhysCollide *pPhysCollide = physcollision->ConvertConvexToCollide( ppConvex, set->numhitboxes );
delete[] ppConvex;
// Create the physics object
objectparams_t params = g_PhysDefaultObjectParams;
params.pGameData = static_cast<void *>( this );
int nMaterialIndex = physprops->GetSurfaceIndex( "ice" ); // use ice material
IPhysicsObject* p = physenv->CreatePolyObject( pPhysCollide, nMaterialIndex, GetAbsOrigin(), GetAbsAngles(), &params );
Assert( p != NULL );
// Set velocity
Vector vecInitialVelocity = pInitBaseAnimating->GetAbsVelocity();
p->SetVelocity( &vecInitialVelocity, NULL );
// Compute mass
float flMass;
float flDensity, flThickness;
physprops->GetPhysicsProperties( nMaterialIndex, &flDensity, &flThickness, NULL, NULL );
// Make it more hollow
flThickness = MIN ( 1.0f, flThickness + 0.5f );
if ( flThickness > 0.0f )
{
flMass = flTotalSurfaceArea * flThickness * CUBIC_METERS_PER_CUBIC_INCH * flDensity;
}
else
{
// density is in kg/m^3, volume is in in^3
flMass = flTotalVolume * CUBIC_METERS_PER_CUBIC_INCH * flDensity;
}
// Mass is somewhere between the original and if it was all ice
p->SetMass( flMass );
// Yes, gravity
p->EnableGravity( true );
// Use this as our vphysics
VPhysicsSetObject( p );
SetSolid( SOLID_VPHYSICS );
AddSolidFlags( FSOLID_CUSTOMRAYTEST | FSOLID_CUSTOMBOXTEST );
SetMoveType( MOVETYPE_VPHYSICS );
if ( pInitBaseAnimating != this )
{
// Transfer children from the init base animating
TransferChildren( pInitBaseAnimating, this );
CBaseEntity *pChild = FirstMoveChild();
while ( pChild )
{
CEntityFreezing *pFreezing = dynamic_cast<CEntityFreezing*>( pChild );
if ( pFreezing )
{
pFreezing->FinishFreezing();
}
pChild = pChild->NextMovePeer();
}
}
return true;
}
bool CStatueProp::CreateVPhysicsFromOBBs( CBaseAnimating *pInitBaseAnimating )
{
// Make enough pointers to convexes for each hitbox
CPhysConvex **ppConvex = new (CPhysConvex*[ m_pInitOBBs->Count() ]);
float flTotalVolume = 0.0f;
float flTotalSurfaceArea = 0.0f;
for ( int i = 0; i < m_pInitOBBs->Count(); i++ )
{
const outer_collision_obb_t *pOBB = &((*m_pInitOBBs)[ i ]);
// Accumulate volume and area
Vector flDimentions = pOBB->vecMaxs - pOBB->vecMins;
flTotalVolume += flDimentions.x * flDimentions.y * flDimentions.z;
flTotalSurfaceArea += 2.0f * ( flDimentions.x * flDimentions.y + flDimentions.x * flDimentions.z + flDimentions.y * flDimentions.z );
// Get angled min and max extents
Vector vecMins, vecMaxs;
VectorRotate( pOBB->vecMins, pOBB->angAngles, vecMins );
VectorRotate( pOBB->vecMaxs, pOBB->angAngles, vecMaxs );
// Get the corners in world space
Vector vecMinCorner = pOBB->vecPos + vecMins;
Vector vecMaxCorner = pOBB->vecPos + vecMaxs;
// Get the normals of the hitbox in world space
Vector vecForward, vecRight, vecUp;
AngleVectors( pOBB->angAngles, &vecForward, &vecRight, &vecUp );
vecRight = -vecRight;
// Convert corners and normals to local space
Vector vecCornerLocal[ 2 ];
Vector vecNormalLocal[ 3 ];
matrix3x4_t matToWorld = EntityToWorldTransform();
VectorITransform( vecMaxCorner, matToWorld, vecCornerLocal[ 0 ] );
VectorITransform( vecMinCorner, matToWorld, vecCornerLocal[ 1 ] );
VectorIRotate( vecForward, matToWorld, vecNormalLocal[ 0 ] );
VectorIRotate( vecRight, matToWorld, vecNormalLocal[ 1 ] );
VectorIRotate( vecUp, matToWorld, vecNormalLocal[ 2 ] );
// Create 6 planes from the local oriented hit box data
float pPlanes[ 4 * 6 ];
for ( int iPlane = 0; iPlane < 6; ++iPlane )
{
int iPlaneMod2 = iPlane % 2;
int iPlaneDiv2 = iPlane / 2;
bool bOdd = ( iPlaneMod2 == 1 );
// Plane Normal
pPlanes[ iPlane * 4 + 0 ] = vecNormalLocal[ iPlaneDiv2 ].x * ( bOdd ? -1.0f : 1.0f );
pPlanes[ iPlane * 4 + 1 ] = vecNormalLocal[ iPlaneDiv2 ].y * ( bOdd ? -1.0f : 1.0f );
pPlanes[ iPlane * 4 + 2 ] = vecNormalLocal[ iPlaneDiv2 ].z * ( bOdd ? -1.0f : 1.0f );
// Plane D
pPlanes[ iPlane * 4 + 3 ] = ( vecCornerLocal[ iPlaneMod2 ].x * vecNormalLocal[ iPlaneDiv2 ].x +
vecCornerLocal[ iPlaneMod2 ].y * vecNormalLocal[ iPlaneDiv2 ].y +
vecCornerLocal[ iPlaneMod2 ].z * vecNormalLocal[ iPlaneDiv2 ].z ) * ( bOdd ? -1.0f : 1.0f );
}
// Create convex from the intersection of these planes
ppConvex[ i ] = physcollision->ConvexFromPlanes( pPlanes, 6, 0.0f );
}
// Make a single collide out of the group of convex boxes
CPhysCollide *pPhysCollide = physcollision->ConvertConvexToCollide( ppConvex, m_pInitOBBs->Count() );
delete[] ppConvex;
// Create the physics object
objectparams_t params = g_PhysDefaultObjectParams;
params.pGameData = static_cast<void *>( this );
int nMaterialIndex = physprops->GetSurfaceIndex( "ice" ); // use ice material
IPhysicsObject* p = physenv->CreatePolyObject( pPhysCollide, nMaterialIndex, GetAbsOrigin(), GetAbsAngles(), &params );
Assert( p != NULL );
// Set velocity
Vector vecInitialVelocity = pInitBaseAnimating->GetAbsVelocity();
p->SetVelocity( &vecInitialVelocity, NULL );
// Compute mass
float flMass;
float flDensity, flThickness;
physprops->GetPhysicsProperties( nMaterialIndex, &flDensity, &flThickness, NULL, NULL );
// Make it more hollow
flThickness = MIN ( 1.0f, flThickness + 0.5f );
if ( flThickness > 0.0f )
{
flMass = flTotalSurfaceArea * flThickness * CUBIC_METERS_PER_CUBIC_INCH * flDensity;
}
else
{
// density is in kg/m^3, volume is in in^3
flMass = flTotalVolume * CUBIC_METERS_PER_CUBIC_INCH * flDensity;
}
// Mass is somewhere between the original and if it was all ice
p->SetMass( flMass );
// Yes, gravity
p->EnableGravity( true );
// Use this as our vphysics
VPhysicsSetObject( p );
SetSolid( SOLID_VPHYSICS );
AddSolidFlags( FSOLID_CUSTOMRAYTEST | FSOLID_CUSTOMBOXTEST );
SetMoveType( MOVETYPE_VPHYSICS );
m_pInitOBBs = NULL;
return true;
}
CBaseEntity *CreateServerStatue( CBaseAnimating *pAnimating, int collisionGroup )
{
CStatueProp *pStatue = static_cast<CStatueProp *>( CreateEntityByName( "physics_prop_statue" ) );
if ( pStatue )
{
pStatue->m_hInitBaseAnimating = pAnimating;
pStatue->SetModelName( pAnimating->GetModelName() );
pStatue->SetAbsOrigin( pAnimating->GetAbsOrigin() );
pStatue->SetAbsAngles( pAnimating->GetAbsAngles() );
DispatchSpawn( pStatue );
pStatue->Activate();
}
return pStatue;
}
CBaseEntity *CreateServerStatueFromOBBs( const CUtlVector<outer_collision_obb_t> &vecSphereOrigins, CBaseAnimating *pAnimating )
{
Assert( vecSphereOrigins.Count() > 0 );
if ( vecSphereOrigins.Count() <= 0 )
return NULL;
CStatueProp *pStatue = static_cast<CStatueProp *>( CreateEntityByName( "physics_prop_statue" ) );
if ( pStatue )
{
pStatue->m_pInitOBBs = &vecSphereOrigins;
pStatue->m_hInitBaseAnimating = pAnimating;
pStatue->SetModelName( pAnimating->GetModelName() );
pStatue->SetAbsOrigin( pAnimating->GetAbsOrigin() );
pStatue->SetAbsAngles( pAnimating->GetAbsAngles() );
DispatchSpawn( pStatue );
pStatue->Activate();
pStatue->AddEffects( EF_NODRAW );
pStatue->CollisionProp()->SetSurroundingBoundsType( USE_GAME_CODE );
pStatue->AddSolidFlags( ( pAnimating->GetSolidFlags() & FSOLID_CUSTOMBOXTEST ) | ( pAnimating->GetSolidFlags() & FSOLID_CUSTOMRAYTEST ) );
pAnimating->SetParent( pStatue );
// You'll need to keep track of the child for collision rules
pStatue->SetThink( &CStatueProp::CollisionPartnerThink );
pStatue->SetNextThink( gpGlobals->curtime + 1.0f );
}
return pStatue;
}