1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2025-01-05 17:13:36 +08:00
hl2sdk/utils/vbsp/ivp.cpp

1651 lines
49 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include <stdio.h>
#include "mathlib/vector.h"
#include "bspfile.h"
#include "bsplib.h"
#include "cmdlib.h"
#include "physdll.h"
#include "utlvector.h"
#include "vbsp.h"
#include "phyfile.h"
#include <float.h>
#include "KeyValues.h"
#include "UtlBuffer.h"
#include "UtlSymbol.h"
#include "UtlRBTree.h"
#include "ivp.h"
#include "disp_ivp.h"
#include "materialpatch.h"
#include "bitvec.h"
// bit per leaf
typedef CBitVec<MAX_MAP_LEAFS> leafbitarray_t;
// parameters for conversion to vphysics
#define NO_SHRINK 0.0f
// NOTE: vphysics maintains a minimum separation radius between objects
// This radius is set to 0.25, but it's symmetric. So shrinking potentially moveable
// brushes by 0.5 in every direction ensures that these brushes can be constructed
// touching the world, and constrained in place without collisions or friction
// UNDONE: Add a key to disable this shrinking if necessary
#define VPHYSICS_SHRINK (0.5f) // shrink BSP brushes by this much for collision
#define VPHYSICS_MERGE 0.01f // merge verts closer than this
void EmitPhysCollision();
IPhysicsCollision *physcollision = NULL;
extern IPhysicsSurfaceProps *physprops;
// a list of all of the materials in the world model
static CUtlVector<int> s_WorldPropList;
//-----------------------------------------------------------------------------
// Purpose: Write key/value pairs out to a memory buffer
//-----------------------------------------------------------------------------
CTextBuffer::CTextBuffer( void )
{
}
CTextBuffer::~CTextBuffer( void )
{
}
void CTextBuffer::WriteText( const char *pText )
{
int len = strlen( pText );
CopyData( pText, len );
}
void CTextBuffer::WriteIntKey( const char *pKeyName, int outputData )
{
char tmp[1024];
// FAIL!
if ( strlen(pKeyName) > 1000 )
{
Msg("Error writing collision data %s\n", pKeyName );
return;
}
sprintf( tmp, "\"%s\" \"%d\"\n", pKeyName, outputData );
CopyData( tmp, strlen(tmp) );
}
void CTextBuffer::WriteStringKey( const char *pKeyName, const char *outputData )
{
CopyStringQuotes( pKeyName );
CopyData( " ", 1 );
CopyStringQuotes( outputData );
CopyData( "\n", 1 );
}
void CTextBuffer::WriteFloatKey( const char *pKeyName, float outputData )
{
char tmp[1024];
// FAIL!
if ( strlen(pKeyName) > 1000 )
{
Msg("Error writing collision data %s\n", pKeyName );
return;
}
sprintf( tmp, "\"%s\" \"%f\"\n", pKeyName, outputData );
CopyData( tmp, strlen(tmp) );
}
void CTextBuffer::WriteFloatArrayKey( const char *pKeyName, const float *outputData, int count )
{
char tmp[1024];
// FAIL!
if ( strlen(pKeyName) > 1000 )
{
Msg("Error writing collision data %s\n", pKeyName );
return;
}
sprintf( tmp, "\"%s\" \"", pKeyName );
for ( int i = 0; i < count; i++ )
{
char buf[80];
sprintf( buf, "%f ", outputData[i] );
strcat( tmp, buf );
}
strcat( tmp, "\"\n" );
CopyData( tmp, strlen(tmp) );
}
void CTextBuffer::CopyStringQuotes( const char *pString )
{
CopyData( "\"", 1 );
CopyData( pString, strlen(pString) );
CopyData( "\"", 1 );
}
void CTextBuffer::Terminate( void )
{
CopyData( "\0", 1 );
}
void CTextBuffer::CopyData( const char *pData, int len )
{
int offset = m_buffer.AddMultipleToTail( len );
memcpy( m_buffer.Base() + offset, pData, len );
}
//-----------------------------------------------------------------------------
// Purpose: Writes a glview text file containing the collision surface in question
// Input : *pCollide -
// *pFilename -
//-----------------------------------------------------------------------------
void DumpCollideToGlView( CPhysCollide *pCollide, const char *pFilename )
{
if ( !pCollide )
return;
Msg("Writing %s...\n", pFilename );
Vector *outVerts;
int vertCount = physcollision->CreateDebugMesh( pCollide, &outVerts );
FILE *fp = fopen( pFilename, "w" );
int triCount = vertCount / 3;
int vert = 0;
for ( int i = 0; i < triCount; i++ )
{
fprintf( fp, "3\n" );
fprintf( fp, "%6.3f %6.3f %6.3f 1 0 0\n", outVerts[vert].x, outVerts[vert].y, outVerts[vert].z );
vert++;
fprintf( fp, "%6.3f %6.3f %6.3f 0 1 0\n", outVerts[vert].x, outVerts[vert].y, outVerts[vert].z );
vert++;
fprintf( fp, "%6.3f %6.3f %6.3f 0 0 1\n", outVerts[vert].x, outVerts[vert].y, outVerts[vert].z );
vert++;
}
fclose( fp );
physcollision->DestroyDebugMesh( vertCount, outVerts );
}
void DumpCollideToPHY( CPhysCollide *pCollide, CTextBuffer *text, const char *pFilename )
{
Msg("Writing %s...\n", pFilename );
FILE *fp = fopen( pFilename, "wb" );
phyheader_t header;
header.size = sizeof(header);
header.id = 0;
header.checkSum = 0;
header.solidCount = 1;
fwrite( &header, sizeof(header), 1, fp );
int size = physcollision->CollideSize( pCollide );
fwrite( &size, sizeof(int), 1, fp );
char *buf = (char *)malloc( size );
physcollision->CollideWrite( buf, pCollide );
fwrite( buf, size, 1, fp );
fwrite( text->GetData(), text->GetSize(), 1, fp );
fclose( fp );
free( buf );
}
CPhysCollisionEntry::CPhysCollisionEntry( CPhysCollide *pCollide )
{
m_pCollide = pCollide;
}
unsigned int CPhysCollisionEntry::GetCollisionBinarySize()
{
return physcollision->CollideSize( m_pCollide );
}
unsigned int CPhysCollisionEntry::WriteCollisionBinary( char *pDest )
{
return physcollision->CollideWrite( pDest, m_pCollide );
}
void CPhysCollisionEntry::DumpCollideFileName( const char *pName, int modelIndex, CTextBuffer *pTextBuffer )
{
char tmp[128];
sprintf( tmp, "%s%03d.phy", pName, modelIndex );
DumpCollideToPHY( m_pCollide, pTextBuffer, tmp );
sprintf( tmp, "%s%03d.txt", pName, modelIndex );
DumpCollideToGlView( m_pCollide, tmp );
}
class CPhysCollisionEntrySolid : public CPhysCollisionEntry
{
public:
CPhysCollisionEntrySolid( CPhysCollide *pCollide, const char *pMaterialName, float mass );
virtual void WriteToTextBuffer( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex );
virtual void DumpCollide( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex );
private:
float m_volume;
float m_mass;
const char *m_pMaterial;
};
CPhysCollisionEntrySolid::CPhysCollisionEntrySolid( CPhysCollide *pCollide, const char *pMaterialName, float mass )
: CPhysCollisionEntry( pCollide )
{
m_volume = physcollision->CollideVolume( m_pCollide );
m_mass = mass;
m_pMaterial = pMaterialName;
}
void CPhysCollisionEntrySolid::DumpCollide( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex )
{
DumpCollideFileName( "collide", modelIndex, pTextBuffer );
}
void CPhysCollisionEntrySolid::WriteToTextBuffer( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex )
{
pTextBuffer->WriteText( "solid {\n" );
pTextBuffer->WriteIntKey( "index", collideIndex );
pTextBuffer->WriteFloatKey( "mass", m_mass );
if ( m_pMaterial )
{
pTextBuffer->WriteStringKey( "surfaceprop", m_pMaterial );
}
if ( m_volume != 0.f )
{
pTextBuffer->WriteFloatKey( "volume", m_volume );
}
pTextBuffer->WriteText( "}\n" );
}
class CPhysCollisionEntryStaticSolid : public CPhysCollisionEntry
{
public:
CPhysCollisionEntryStaticSolid ( CPhysCollide *pCollide, int contentsMask );
virtual void WriteToTextBuffer( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex );
virtual void DumpCollide( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex );
private:
int m_contentsMask;
};
CPhysCollisionEntryStaticSolid ::CPhysCollisionEntryStaticSolid ( CPhysCollide *pCollide, int contentsMask )
: CPhysCollisionEntry( pCollide ), m_contentsMask(contentsMask)
{
}
void CPhysCollisionEntryStaticSolid::DumpCollide( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex )
{
char tmp[128];
sprintf( tmp, "static%02d", modelIndex );
DumpCollideFileName( tmp, collideIndex, pTextBuffer );
}
void CPhysCollisionEntryStaticSolid::WriteToTextBuffer( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex )
{
pTextBuffer->WriteText( "staticsolid {\n" );
pTextBuffer->WriteIntKey( "index", collideIndex );
pTextBuffer->WriteIntKey( "contents", m_contentsMask );
pTextBuffer->WriteText( "}\n" );
}
CPhysCollisionEntryStaticMesh::CPhysCollisionEntryStaticMesh( CPhysCollide *pCollide, const char *pMaterialName )
: CPhysCollisionEntry( pCollide )
{
m_pMaterial = pMaterialName;
}
void CPhysCollisionEntryStaticMesh::DumpCollide( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex )
{
char tmp[128];
sprintf( tmp, "mesh%02d", modelIndex );
DumpCollideFileName( tmp, collideIndex, pTextBuffer );
}
void CPhysCollisionEntryStaticMesh::WriteToTextBuffer( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex )
{
pTextBuffer->WriteText( "staticsolid {\n" );
pTextBuffer->WriteIntKey( "index", collideIndex );
pTextBuffer->WriteText( "}\n" );
}
class CPhysCollisionEntryFluid : public CPhysCollisionEntry
{
public:
~CPhysCollisionEntryFluid();
CPhysCollisionEntryFluid( CPhysCollide *pCollide, const char *pSurfaceProp, float damping, const Vector &normal, float dist, int nContents );
virtual void WriteToTextBuffer( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex );
virtual void DumpCollide( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex );
private:
char *m_pSurfaceProp;
float m_damping;
Vector m_surfaceNormal;
float m_surfaceDist;
int m_contentsMask;
};
CPhysCollisionEntryFluid::CPhysCollisionEntryFluid( CPhysCollide *pCollide, const char *pSurfaceProp, float damping, const Vector &normal, float dist, int nContents )
: CPhysCollisionEntry( pCollide )
{
m_surfaceNormal = normal;
m_surfaceDist = dist;
m_pSurfaceProp = new char[strlen(pSurfaceProp)+1];
strcpy( m_pSurfaceProp, pSurfaceProp );
m_damping = damping;
m_contentsMask = nContents;
}
CPhysCollisionEntryFluid::~CPhysCollisionEntryFluid()
{
delete[] m_pSurfaceProp;
}
void CPhysCollisionEntryFluid::DumpCollide( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex )
{
char tmp[128];
sprintf( tmp, "water%02d", modelIndex );
DumpCollideFileName( tmp, collideIndex, pTextBuffer );
}
void CPhysCollisionEntryFluid::WriteToTextBuffer( CTextBuffer *pTextBuffer, int modelIndex, int collideIndex )
{
pTextBuffer->WriteText( "fluid {\n" );
pTextBuffer->WriteIntKey( "index", collideIndex );
pTextBuffer->WriteStringKey( "surfaceprop", m_pSurfaceProp ); // write out water material
pTextBuffer->WriteFloatKey( "damping", m_damping ); // write out water damping
pTextBuffer->WriteIntKey( "contents", m_contentsMask ); // write out water contents
float array[4];
m_surfaceNormal.CopyToArray( array );
array[3] = m_surfaceDist;
pTextBuffer->WriteFloatArrayKey( "surfaceplane", array, 4 ); // write out water surface plane
pTextBuffer->WriteFloatArrayKey( "currentvelocity", vec3_origin.Base(), 3 ); // write out water velocity
pTextBuffer->WriteText( "}\n" );
}
// Get an index into the prop list of this prop (add it if necessary)
static int PropIndex( CUtlVector<int> &propList, int propIndex )
{
for ( int i = 0; i < propList.Count(); i++ )
{
if ( propList[i] == propIndex )
return i+1;
}
if ( propList.Count() < 126 )
{
return propList.AddToTail( propIndex )+1;
}
return 0;
}
int RemapWorldMaterial( int materialIndexIn )
{
return PropIndex( s_WorldPropList, materialIndexIn );
}
typedef struct
{
float normal[3];
float dist;
} listplane_t;
static void AddListPlane( CUtlVector<listplane_t> *list, float x, float y, float z, float d )
{
listplane_t plane;
plane.normal[0] = x;
plane.normal[1] = y;
plane.normal[2] = z;
plane.dist = d;
list->AddToTail( plane );
}
class CPlaneList
{
public:
CPlaneList( float shrink, float merge );
~CPlaneList( void );
void AddConvex( CPhysConvex *pConvex );
// add the brushes to the model
int AddBrushes( void );
// Adds a single brush as a convex object
void ReferenceBrush( int brushnumber );
bool IsBrushReferenced( int brushnumber );
void ReferenceLeaf( int leafIndex );
bool IsLeafReferenced( int leafIndex );
int GetFirstBrushSide();
private:
CPhysConvex *CPlaneList::BuildConvexForBrush( int brushnumber, float shrink, CPhysCollide *pCollideTest, float shrinkMinimum );
public:
CUtlVector<CPhysConvex *> m_convex;
CUtlVector<int> m_leafList;
int m_contentsMask;
float m_shrink;
float m_merge;
bool *m_brushAdded;
float m_totalVolume;
};
CPlaneList::CPlaneList( float shrink, float merge )
{
m_shrink = shrink;
m_merge = merge;
m_contentsMask = MASK_SOLID;
m_brushAdded = new bool[numbrushes];
memset( m_brushAdded, 0, sizeof(bool) * numbrushes );
m_totalVolume = 0;
m_leafList.Purge();
}
CPlaneList::~CPlaneList( void )
{
delete[] m_brushAdded;
}
void CPlaneList::AddConvex( CPhysConvex *pConvex )
{
if ( pConvex )
{
m_totalVolume += physcollision->ConvexVolume( pConvex );
m_convex.AddToTail( pConvex );
}
}
// Adds a single brush as a convex object
void CPlaneList::ReferenceBrush( int brushnumber )
{
if ( !(dbrushes[brushnumber].contents & m_contentsMask) )
return;
m_brushAdded[brushnumber] = true;
}
bool CPlaneList::IsBrushReferenced( int brushnumber )
{
return m_brushAdded[brushnumber];
}
CPhysConvex *CPlaneList::BuildConvexForBrush( int brushnumber, float shrink, CPhysCollide *pCollideTest, float shrinkMinimum )
{
CUtlVector<listplane_t> temp( 0, 32 );
for ( int i = 0; i < dbrushes[brushnumber].numsides; i++ )
{
dbrushside_t *pside = dbrushsides + i + dbrushes[brushnumber].firstside;
if ( pside->bevel )
continue;
dplane_t *pplane = dplanes + pside->planenum;
float shrinkThisPlane = shrink;
if ( i < mapbrushes[brushnumber].numsides )
{
if ( !mapbrushes[brushnumber].original_sides[i].visible )
{
// don't shrink brush sides with no visible components.
// this produces something closer to the ideal shrink than simply shrinking all planes
shrinkThisPlane = 0;
}
}
// Make sure shrinking won't swallow geometry along this axis.
if ( pCollideTest && shrinkThisPlane != 0 )
{
Vector start = physcollision->CollideGetExtent( pCollideTest, vec3_origin, vec3_angle, pplane->normal );
Vector end = physcollision->CollideGetExtent( pCollideTest, vec3_origin, vec3_angle, -pplane->normal );
float thick = DotProduct( (end-start), pplane->normal );
// NOTE: The object must be at least "shrinkMinimum" inches wide on each axis
if ( fabs(thick) < shrinkMinimum )
{
#if _DEBUG
Warning("Can't shrink brush %d, plane %d (%.2f, %.2f, %.2f)\n", brushnumber, pside->planenum, pplane->normal[0], pplane->normal[1], pplane->normal[2] );
#endif
shrinkThisPlane = 0;
}
}
AddListPlane( &temp, pplane->normal[0], pplane->normal[1], pplane->normal[2], pplane->dist - shrinkThisPlane );
}
return physcollision->ConvexFromPlanes( (float *)temp.Base(), temp.Count(), m_merge );
}
int CPlaneList::AddBrushes( void )
{
int count = 0;
for ( int brushnumber = 0; brushnumber < numbrushes; brushnumber++ )
{
if ( IsBrushReferenced(brushnumber) )
{
CPhysConvex *pBrushConvex = NULL;
if ( m_shrink != 0 )
{
// Make sure shrinking won't swallow this brush.
CPhysConvex *pConvex = BuildConvexForBrush( brushnumber, 0, NULL, 0 );
CPhysCollide *pUnshrunkCollide = physcollision->ConvertConvexToCollide( &pConvex, 1 );
pBrushConvex = BuildConvexForBrush( brushnumber, m_shrink, pUnshrunkCollide, m_shrink * 3 );
physcollision->DestroyCollide( pUnshrunkCollide );
}
else
{
pBrushConvex = BuildConvexForBrush( brushnumber, m_shrink, NULL, 1.0 );
}
if ( pBrushConvex )
{
count++;
physcollision->SetConvexGameData( pBrushConvex, brushnumber );
AddConvex( pBrushConvex );
}
}
}
return count;
}
int CPlaneList::GetFirstBrushSide()
{
for ( int brushnumber = 0; brushnumber < numbrushes; brushnumber++ )
{
if ( IsBrushReferenced(brushnumber) )
{
for ( int i = 0; i < dbrushes[brushnumber].numsides; i++ )
{
int sideIndex = i + dbrushes[brushnumber].firstside;
dbrushside_t *pside = dbrushsides + sideIndex;
if ( pside->bevel )
continue;
return sideIndex;
}
}
}
return 0;
}
// UNDONE: Try using this kind of algorithm if we run into precision problems.
// NOTE: ConvexFromPlanes will be doing a bunch of matrix inversions that can suffer
// if plane normals are too close to each other...
#if 0
void CPlaneList::AddBrushes( void )
{
CUtlVector<listplane_t> temp;
for ( int brushnumber = 0; brushnumber < numbrushes; brushnumber++ )
{
if ( IsBrushReferenced(brushnumber) )
{
CUtlVector<winding_t *> windings;
for ( int i = 0; i < dbrushes[brushnumber].numsides; i++ )
{
dbrushside_t *pside = dbrushsides + i + dbrushes[brushnumber].firstside;
if (pside->bevel)
continue;
dplane_t *pplane = dplanes + pside->planenum;
winding_t *w = BaseWindingForPlane( pplane->normal, pplane->dist - m_shrink );
for ( int j = 0; j < dbrushes[brushnumber].numsides && w; j++ )
{
if (i == j)
continue;
dbrushside_t *pClipSide = dbrushsides + j + dbrushes[brushnumber].firstside;
if (pClipSide->bevel)
continue;
dplane_t *pClipPlane = dplanes + pClipSide->planenum;
ChopWindingInPlace (&w, -pClipPlane->normal, -pClipPlane->dist+m_shrink, 0); //CLIP_EPSILON);
}
if ( w )
{
windings.AddToTail( w );
}
}
CUtlVector<Vector *> vertList;
for ( int p = 0; p < windings.Count(); p++ )
{
for ( int v = 0; v < windings[p]->numpoints; v++ )
{
vertList.AddToTail( windings[p]->p + v );
}
}
CPhysConvex *pConvex = physcollision->ConvexFromVerts( vertList.Base(), vertList.Count() );
if ( pConvex )
{
physcollision->SetConvexGameData( pConvex, brushnumber );
AddConvex( pConvex );
}
temp.RemoveAll();
}
}
}
#endif
// If I have a list of leaves, make sure this leaf is in it.
// Otherwise, process all leaves
bool CPlaneList::IsLeafReferenced( int leafIndex )
{
if ( !m_leafList.Count() )
return true;
for ( int i = 0; i < m_leafList.Count(); i++ )
{
if ( m_leafList[i] == leafIndex )
return true;
}
return false;
}
// Add a leaf to my list of interesting leaves
void CPlaneList::ReferenceLeaf( int leafIndex )
{
m_leafList.AddToTail( leafIndex );
}
static void VisitLeaves_r( CPlaneList &planes, int node )
{
if ( node < 0 )
{
int leafIndex = -1 - node;
if ( planes.IsLeafReferenced(leafIndex) )
{
int i;
// Add the solids in the "empty" leaf
for ( i = 0; i < dleafs[leafIndex].numleafbrushes; i++ )
{
int brushIndex = dleafbrushes[dleafs[leafIndex].firstleafbrush + i];
planes.ReferenceBrush( brushIndex );
}
}
}
else
{
dnode_t *pnode = dnodes + node;
VisitLeaves_r( planes, pnode->children[0] );
VisitLeaves_r( planes, pnode->children[1] );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
struct waterleaf_t
{
Vector surfaceNormal;
float surfaceDist;
float minZ;
bool hasSurface;
int waterLeafIndex;// this is the submerged leaf
int planenum; //UNDONE: REMOVE
int surfaceTexInfo; // if hasSurface == true, this is the texinfo index for the water material
int outsideLeafIndex;// this is the leaf on the other side of the water surface
node_t *pNode;
};
// returns true if newleaf should appear before currentleaf in the list
static bool IsLowerLeaf( const waterleaf_t &newleaf, const waterleaf_t &currentleaf )
{
if ( newleaf.hasSurface && currentleaf.hasSurface )
{
// the one with the upmost pointing z goes first
if ( currentleaf.surfaceNormal.z > newleaf.surfaceNormal.z )
return false;
if ( fabs(currentleaf.surfaceNormal.z - newleaf.surfaceNormal.z) < 0.01 )
{
if ( newleaf.surfaceDist < currentleaf.surfaceDist )
return true;
}
return true;
}
else if ( newleaf.hasSurface ) // the leaf with a surface always goes first
return true;
return false;
}
//-----------------------------------------------------------------------------
// Purpose: Water surfaces are stored in an RB tree and the tree is used to
// create one-off .vmt files embedded in the .bsp for each surface so that the
// water depth effect occurs on a per-water surface level.
//-----------------------------------------------------------------------------
struct WaterTexInfo
{
// The mangled new .vmt name ( materials/levelename/oldmaterial_depth_xxx ) where xxx is
// the water depth (as an integer )
CUtlSymbol m_FullName;
// The original .vmt name
CUtlSymbol m_MaterialName;
// The depth of the water this texinfo refers to
int m_nWaterDepth;
// The texinfo id
int m_nTexInfo;
// The subdivision size for the water surface
// float m_SubdivSize;
};
//-----------------------------------------------------------------------------
// Purpose: Helper for RB tree operations ( we compare full mangled names )
// Input : src1 -
// src2 -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool WaterLessFunc( WaterTexInfo const& src1, WaterTexInfo const& src2 )
{
return src1.m_FullName < src2.m_FullName;
}
//-----------------------------------------------------------------------------
// Purpose: A growable RB tree of water surfaces
//-----------------------------------------------------------------------------
static CUtlRBTree< WaterTexInfo, int > g_WaterTexInfos( 0, 32, WaterLessFunc );
#if 0
float GetSubdivSizeForFogVolume( int fogVolumeID )
{
Assert( fogVolumeID >= 0 && fogVolumeID < g_WaterTexInfos.Count() );
return g_WaterTexInfos[fogVolumeID].m_SubdivSize;
}
#endif
//-----------------------------------------------------------------------------
// Purpose:
// Input : *mapname -
// *materialname -
// waterdepth -
// *fullname -
//-----------------------------------------------------------------------------
void GetWaterTextureName( char const *mapname, char const *materialname, int waterdepth, char *fullname )
{
char temp[ 512 ];
// Construct the full name (prepend mapname to reduce name collisions)
sprintf( temp, "maps/%s/%s_depth_%i", mapname, materialname, (int)waterdepth );
// Make sure it's lower case
strlwr( temp );
strcpy( fullname, temp );
}
//-----------------------------------------------------------------------------
// Purpose: Called to write procedural materials in the rb tree to the embedded
// pak file for this .bsp
//-----------------------------------------------------------------------------
void EmitWaterMaterialFile( WaterTexInfo *wti )
{
char waterTextureName[512];
if ( !wti )
{
return;
}
GetWaterTextureName( mapbase, wti->m_MaterialName.String(), ( int )wti->m_nWaterDepth, waterTextureName );
// Convert to string
char szDepth[ 32 ];
sprintf( szDepth, "%i", wti->m_nWaterDepth );
CreateMaterialPatch( wti->m_MaterialName.String(), waterTextureName, "$waterdepth", szDepth, PATCH_INSERT );
}
//-----------------------------------------------------------------------------
// Purpose: Takes the texinfo_t referenced by the .vmt and the computed depth for the
// surface and looks up or creates a texdata/texinfo for the mangled one-off water .vmt file
// Input : *pBaseInfo -
// depth -
// Output : int
//-----------------------------------------------------------------------------
int FindOrCreateWaterTexInfo( texinfo_t *pBaseInfo, float depth )
{
char fullname[ 512 ];
char materialname[ 512 ];
// Get the base texture/material name
char const *name = TexDataStringTable_GetString( GetTexData( pBaseInfo->texdata )->nameStringTableID );
GetWaterTextureName( mapbase, name, (int)depth, fullname );
// See if we already have an entry for this depth
WaterTexInfo lookup;
lookup.m_FullName = fullname;
int idx = g_WaterTexInfos.Find( lookup );
// If so, return the existing entry texinfo index
if ( idx != g_WaterTexInfos.InvalidIndex() )
{
return g_WaterTexInfos[ idx ].m_nTexInfo;
}
// Otherwise, fill in the rest of the data
lookup.m_nWaterDepth = (int)depth;
// Remember the current material name
sprintf( materialname, "%s", name );
strlwr( materialname );
lookup.m_MaterialName = materialname;
texinfo_t ti;
// Make a copy
ti = *pBaseInfo;
// Create a texdata that is based on the underlying existing entry
ti.texdata = FindAliasedTexData( fullname, GetTexData( pBaseInfo->texdata ) );
// Find or create a new index
lookup.m_nTexInfo = FindOrCreateTexInfo( ti );
// Add the new texinfo to the RB tree
idx = g_WaterTexInfos.Insert( lookup );
// Msg( "created texinfo for %s\n", lookup.m_FullName.String() );
// Go ahead and create the new vmt file.
EmitWaterMaterialFile( &g_WaterTexInfos[idx] );
// Return the new texinfo
return g_WaterTexInfos[ idx ].m_nTexInfo;
}
extern node_t *dfacenodes[MAX_MAP_FACES];
static void WriteFogVolumeIDs( dmodel_t *pModel )
{
int i;
// write fog volume ID to each face in this model
for( i = pModel->firstface; i < pModel->firstface + pModel->numfaces; i++ )
{
dface_t *pFace = &dfaces[i];
node_t *pFaceNode = dfacenodes[i];
texinfo_t *pTexInfo = &texinfo[pFace->texinfo];
pFace->surfaceFogVolumeID = -1;
if ( pFaceNode )
{
if ( (pTexInfo->flags & SURF_WARP ) && pFaceNode->planenum == PLANENUM_LEAF && pFaceNode->diskId >= 0 )
{
pFace->surfaceFogVolumeID = dleafs[pFaceNode->diskId].leafWaterDataID;
dleafwaterdata_t *pLeafWaterData = &dleafwaterdata[pFace->surfaceFogVolumeID];
// HACKHACK: Should probably mark these faces as water bottom or "bottommaterial" faces.
// HACKHACK: Use a heuristic, if it points up, it's the water top.
if ( dplanes[pFace->planenum].normal.z > 0 )
{
pFace->texinfo = pLeafWaterData->surfaceTexInfoID;
}
}
else
{
// missed this face somehow?
Assert( !(pTexInfo->flags & SURF_WARP ) );
}
}
}
}
static bool PortalCrossesWater( waterleaf_t &baseleaf, portal_t *portal )
{
if ( baseleaf.hasSurface )
{
int side = WindingOnPlaneSide( portal->winding, baseleaf.surfaceNormal, baseleaf.surfaceDist );
if ( side == SIDE_CROSS || side == SIDE_FRONT )
return true;
}
return false;
}
static int FindOrCreateLeafWaterData( float surfaceZ, float minZ, int surfaceTexInfoID )
{
int i;
for( i = 0; i < numleafwaterdata; i++ )
{
dleafwaterdata_t *pLeafWaterData = &dleafwaterdata[i];
if( pLeafWaterData->surfaceZ == surfaceZ &&
pLeafWaterData->minZ == minZ &&
pLeafWaterData->surfaceTexInfoID == surfaceTexInfoID )
{
return i;
}
}
dleafwaterdata_t *pLeafWaterData = &dleafwaterdata[numleafwaterdata];
pLeafWaterData->surfaceZ = surfaceZ;
pLeafWaterData->minZ = minZ;
pLeafWaterData->surfaceTexInfoID = surfaceTexInfoID;
numleafwaterdata++;
return numleafwaterdata - 1;
}
// Enumerate all leaves under node with contents in contentsMask and add them to list
void EnumLeaves_r( CUtlVector<node_t *> &list, node_t *node, int contentsMask )
{
if ( node->planenum != PLANENUM_LEAF )
{
EnumLeaves_r( list, node->children[0], contentsMask );
EnumLeaves_r( list, node->children[1], contentsMask );
return;
}
if ( !(node->contents & contentsMask) )
return;
// has the contents, put it in the list
list.AddToTail( node );
}
// Builds a waterleaf_t for the given leaf
static void BuildWaterLeaf( node_t *pLeafIn, waterleaf_t &waterLeafOut )
{
waterLeafOut.pNode = pLeafIn;
waterLeafOut.waterLeafIndex = pLeafIn->diskId;
waterLeafOut.outsideLeafIndex = -1;
waterLeafOut.hasSurface = false;
waterLeafOut.surfaceDist = MAX_COORD_INTEGER;
waterLeafOut.surfaceNormal.Init( 0.f, 0.f, 1.f );
waterLeafOut.planenum = -1;
waterLeafOut.surfaceTexInfo = -1;
waterLeafOut.minZ = MAX_COORD_INTEGER;
// search the list of portals out of this leaf for one that leaves water
// If you find one, this leaf has a surface, so fill out the surface data
int oppositeNodeIndex = 0;
for (portal_t *p = pLeafIn->portals ; p ; p = p->next[!oppositeNodeIndex])
{
oppositeNodeIndex = (p->nodes[0] == pLeafIn) ? 1 : 0;
// not visible, can't be the portals we're looking for...
if ( !p->side )
continue;
// See if this portal crosses into air
node_t *pOpposite = p->nodes[oppositeNodeIndex];
if ( !(pOpposite->contents & MASK_WATER) && !(pOpposite->contents & MASK_SOLID) )
{
// it does, there must be a surface here
plane_t *plane = &mapplanes[p->side->planenum];
if ( waterLeafOut.hasSurface )
{
// Sort to find the most upward facing normal (skips sides)
if ( waterLeafOut.surfaceNormal.z > plane->normal.z )
continue;
if ( (waterLeafOut.surfaceNormal.z == plane->normal.z) && waterLeafOut.surfaceDist >= plane->dist )
continue;
}
// water surface needs to point at least somewhat up, this is
// probably a map error
if ( plane->normal.z <= 0 )
continue;
waterLeafOut.surfaceDist = plane->dist;
waterLeafOut.surfaceNormal = plane->normal;
waterLeafOut.hasSurface = true;
waterLeafOut.outsideLeafIndex = p->nodes[oppositeNodeIndex]->diskId;
waterLeafOut.surfaceTexInfo = p->side->texinfo;
}
}
}
static void InsertSortWaterLeaf( CUtlVector<waterleaf_t> &list, const waterleaf_t &leafInsert )
{
// insertion sort the leaf (lowest leaves go first)
// leaves that aren't actually on the surface of the water will have leaf.hasSurface == false.
for ( int i = 0; i < list.Count(); i++ )
{
if ( IsLowerLeaf( leafInsert, list[i] ) )
{
list.InsertBefore( i, leafInsert );
return;
}
}
// must the highest one, so stick it at the end.
list.AddToTail( leafInsert );
}
// Flood fill the tree, finding neighboring water volumes and connecting them to this list
// Cut groups that try to cross the surface.
// Mark leaves that are in a group as "visited" so they won't be chosen by subsequent fills
static void Flood_FindConnectedWaterVolumes_r( CUtlVector<node_t *> &list, node_t *pLeaf, waterleaf_t &baseleaf, leafbitarray_t &visited )
{
// already visited, or not the same water contents
if ( pLeaf->diskId < 0 || visited.Get(pLeaf->diskId) || !(pLeaf->contents & (baseleaf.pNode->contents & MASK_WATER) ) )
return;
int oppositeNodeIndex = 0;
for (portal_t *p = pLeaf->portals ; p ; p = p->next[!oppositeNodeIndex])
{
oppositeNodeIndex = (p->nodes[0] == pLeaf) ? 1 : 0;
// If any portal crosses the water surface, don't flow through this leaf
if ( PortalCrossesWater( baseleaf, p ) )
return;
}
visited.Set( pLeaf->diskId );
list.AddToTail( pLeaf );
baseleaf.minZ = MIN( pLeaf->mins.z, baseleaf.minZ );
for (portal_t *p = pLeaf->portals ; p ; p = p->next[!oppositeNodeIndex])
{
oppositeNodeIndex = (p->nodes[0] == pLeaf) ? 1 : 0;
Flood_FindConnectedWaterVolumes_r( list, p->nodes[oppositeNodeIndex], baseleaf, visited );
}
}
// UNDONE: This is a bit of a hack to avoid crashing when we can't find an
// appropriate texinfo for a water model (to get physics properties)
int FirstWaterTexinfo( bspbrush_t *brushlist, int contents )
{
while (brushlist)
{
if ( brushlist->original->contents & contents )
{
for ( int i = 0; i < brushlist->original->numsides; i++ )
{
if ( brushlist->original->original_sides[i].contents & contents )
{
return brushlist->original->original_sides[i].texinfo;
}
}
}
brushlist = brushlist->next;
}
Assert(0);
return 0;
}
// This is a list of water data that will be turned into physics models
struct watermodel_t
{
int modelIndex;
int contents;
waterleaf_t waterLeafData;
int depthTexinfo;
int firstWaterLeafIndex;
int waterLeafCount;
int fogVolumeIndex;
};
static CUtlVector<watermodel_t> g_WaterModels;
static CUtlVector<int> g_WaterLeafList;
// Creates a list of watermodel_t for later processing by EmitPhysCollision
void EmitWaterVolumesForBSP( dmodel_t *pModel, node_t *node )
{
CUtlVector<node_t *> leafListAnyWater;
// build the list of all leaves containing water
EnumLeaves_r( leafListAnyWater, node, MASK_WATER );
// make a sorted list to flood fill
CUtlVector<waterleaf_t> list;
int i;
for ( i = 0; i < leafListAnyWater.Count(); i++ )
{
waterleaf_t waterLeaf;
BuildWaterLeaf( leafListAnyWater[i], waterLeaf );
InsertSortWaterLeaf( list, waterLeaf );
}
leafbitarray_t visited;
CUtlVector<node_t *> waterAreaList;
for ( i = 0; i < list.Count(); i++ )
{
Flood_FindConnectedWaterVolumes_r( waterAreaList, list[i].pNode, list[i], visited );
// did we find a list of leaves connected to this one?
// remember the list is sorted, so this one may have been attached to a previous
// leaf. So it could have nothing hanging off of it.
if ( waterAreaList.Count() )
{
// yes, emit a watermodel
watermodel_t tmp;
tmp.modelIndex = nummodels;
tmp.contents = list[i].pNode->contents;
tmp.waterLeafData = list[i];
tmp.firstWaterLeafIndex = g_WaterLeafList.Count();
tmp.waterLeafCount = waterAreaList.Count();
float waterDepth = tmp.waterLeafData.surfaceDist - tmp.waterLeafData.minZ;
if ( tmp.waterLeafData.surfaceTexInfo < 0 )
{
// the map has probably leaked in this case, but output something anyway.
Assert(list[i].pNode->planenum == PLANENUM_LEAF);
tmp.waterLeafData.surfaceTexInfo = FirstWaterTexinfo( list[i].pNode->brushlist, tmp.contents );
}
tmp.depthTexinfo = FindOrCreateWaterTexInfo( &texinfo[ tmp.waterLeafData.surfaceTexInfo ], waterDepth );
tmp.fogVolumeIndex = FindOrCreateLeafWaterData( tmp.waterLeafData.surfaceDist, tmp.waterLeafData.minZ, tmp.waterLeafData.surfaceTexInfo );
for ( int j = 0; j < waterAreaList.Count(); j++ )
{
g_WaterLeafList.AddToTail( waterAreaList[j]->diskId );
}
waterAreaList.RemoveAll();
g_WaterModels.AddToTail( tmp );
}
}
WriteFogVolumeIDs( pModel );
}
static void ConvertWaterModelToPhysCollide( CUtlVector<CPhysCollisionEntry *> &collisionList, int modelIndex,
float shrinkSize, float mergeTolerance )
{
dmodel_t *pModel = dmodels + modelIndex;
for ( int i = 0; i < g_WaterModels.Count(); i++ )
{
watermodel_t &waterModel = g_WaterModels[i];
if ( waterModel.modelIndex != modelIndex )
continue;
CPlaneList planes( shrinkSize, mergeTolerance );
int firstLeaf = waterModel.firstWaterLeafIndex;
planes.m_contentsMask = waterModel.contents;
// push all of the leaves into the collision list
for ( int j = 0; j < waterModel.waterLeafCount; j++ )
{
int leafIndex = g_WaterLeafList[firstLeaf + j];
dleaf_t *pLeaf = dleafs + leafIndex;
// fixup waterdata
pLeaf->leafWaterDataID = waterModel.fogVolumeIndex;
planes.ReferenceLeaf( leafIndex );
}
// visit the referenced leaves that belong to this model
VisitLeaves_r( planes, pModel->headnode );
// Now add the brushes from those leaves as convex
// BUGBUG: NOTE: If your map has a brush that crosses the surface, it will be added to two water
// volumes. This only happens with connected water volumes with multiple surface heights
// UNDONE: Right now map makers must cut such brushes. It could be automatically cut by adding the
// surface plane to the list for each brush before calling ConvexFromPlanes()
planes.AddBrushes();
int count = planes.m_convex.Count();
if ( !count )
continue;
// Save off the plane of the surface for this group as well as the collision model
// for all convex objects in the group.
CPhysCollide *pCollide = physcollision->ConvertConvexToCollide( planes.m_convex.Base(), count );
if ( pCollide )
{
int waterSurfaceTexInfoID = -1;
// use defaults
const char *pSurfaceProp = "water";
float damping = 0.01;
if ( waterSurfaceTexInfoID >= 0 )
{
// material override
int texdata = texinfo[waterSurfaceTexInfoID].texdata;
int prop = g_SurfaceProperties[texdata];
pSurfaceProp = physprops->GetPropName( prop );
}
if ( !waterModel.waterLeafData.hasSurface )
{
waterModel.waterLeafData.surfaceNormal.Init( 0,0,1 );
Vector top = physcollision->CollideGetExtent( pCollide, vec3_origin, vec3_angle, waterModel.waterLeafData.surfaceNormal );
waterModel.waterLeafData.surfaceDist = top.z;
}
CPhysCollisionEntryFluid *pCollisionEntryFuild = new CPhysCollisionEntryFluid( pCollide,
pSurfaceProp, damping, waterModel.waterLeafData.surfaceNormal, waterModel.waterLeafData.surfaceDist, waterModel.contents );
collisionList.AddToTail( pCollisionEntryFuild );
}
}
}
// compute a normal for a triangle of the given three points (points are clockwise, normal points out)
static Vector TriangleNormal( const Vector &p0, const Vector &p1, const Vector &p2 )
{
Vector e0 = p1 - p0;
Vector e1 = p2 - p0;
Vector normal = CrossProduct( e1, e0 );
VectorNormalize( normal );
return normal;
}
// find the side of the brush with the normal closest to the given normal
static dbrushside_t *FindBrushSide( int brushIndex, const Vector &normal )
{
dbrush_t *pbrush = &dbrushes[brushIndex];
dbrushside_t *out = NULL;
float best = -1.f;
for ( int i = 0; i < pbrush->numsides; i++ )
{
dbrushside_t *pside = dbrushsides + i + pbrush->firstside;
dplane_t *pplane = dplanes + pside->planenum;
float dot = DotProduct( normal, pplane->normal );
if ( dot > best )
{
best = dot;
out = pside;
}
}
return out;
}
static void ConvertWorldBrushesToPhysCollide( CUtlVector<CPhysCollisionEntry *> &collisionList, float shrinkSize, float mergeTolerance, int contentsMask )
{
CPlaneList planes( shrinkSize, mergeTolerance );
planes.m_contentsMask = contentsMask;
VisitLeaves_r( planes, dmodels[0].headnode );
planes.AddBrushes();
int count = planes.m_convex.Count();
if ( count )
{
CPhysCollide *pCollide = physcollision->ConvertConvexToCollide( planes.m_convex.Base(), count );
ICollisionQuery *pQuery = physcollision->CreateQueryModel( pCollide );
int convex = pQuery->ConvexCount();
for ( int i = 0; i < convex; i++ )
{
int triCount = pQuery->TriangleCount( i );
int brushIndex = pQuery->GetGameData( i );
Vector points[3];
for ( int j = 0; j < triCount; j++ )
{
pQuery->GetTriangleVerts( i, j, points );
Vector normal = TriangleNormal( points[0], points[1], points[2] );
dbrushside_t *pside = FindBrushSide( brushIndex, normal );
if ( pside->texinfo != TEXINFO_NODE )
{
int prop = g_SurfaceProperties[texinfo[pside->texinfo].texdata];
pQuery->SetTriangleMaterialIndex( i, j, RemapWorldMaterial( prop ) );
}
}
}
physcollision->DestroyQueryModel( pQuery );
pQuery = NULL;
collisionList.AddToTail( new CPhysCollisionEntryStaticSolid( pCollide, contentsMask ) );
}
}
// adds any world, terrain, and water collision models to the collision list
static void BuildWorldPhysModel( CUtlVector<CPhysCollisionEntry *> &collisionList, float shrinkSize, float mergeTolerance )
{
ConvertWorldBrushesToPhysCollide( collisionList, shrinkSize, mergeTolerance, MASK_SOLID );
ConvertWorldBrushesToPhysCollide( collisionList, shrinkSize, mergeTolerance, CONTENTS_PLAYERCLIP );
ConvertWorldBrushesToPhysCollide( collisionList, shrinkSize, mergeTolerance, CONTENTS_MONSTERCLIP );
// if there's terrain, save it off as a static mesh/polysoup
if ( g_bNoVirtualMesh || !physcollision->SupportsVirtualMesh() )
{
Disp_AddCollisionModels( collisionList, &dmodels[0], MASK_SOLID );
}
else
{
Disp_BuildVirtualMesh( MASK_SOLID );
}
ConvertWaterModelToPhysCollide( collisionList, 0, shrinkSize, mergeTolerance );
}
// adds a collision entry for this brush model
static void ConvertModelToPhysCollide( CUtlVector<CPhysCollisionEntry *> &collisionList, int modelIndex, int contents, float shrinkSize, float mergeTolerance )
{
int i;
CPlaneList planes( shrinkSize, mergeTolerance );
planes.m_contentsMask = contents;
dmodel_t *pModel = dmodels + modelIndex;
VisitLeaves_r( planes, pModel->headnode );
planes.AddBrushes();
int count = planes.m_convex.Count();
convertconvexparams_t params;
params.Defaults();
params.buildOuterConvexHull = count > 1 ? true : false;
params.buildDragAxisAreas = true;
Vector size = pModel->maxs - pModel->mins;
float minSurfaceArea = -1.0f;
for ( i = 0; i < 3; i++ )
{
int other = (i+1)%3;
int cross = (i+2)%3;
float surfaceArea = size[other] * size[cross];
if ( minSurfaceArea < 0 || surfaceArea < minSurfaceArea )
{
minSurfaceArea = surfaceArea;
}
}
// this can be really slow with super-large models and a low error tolerance
// Basically you get a ray cast through each square of epsilon surface area on each OBB side
// So compute it for 1% error (on the smallest side, less on larger sides)
params.dragAreaEpsilon = clamp( minSurfaceArea * 1e-2f, 1.0f, 1024.0f );
CPhysCollide *pCollide = physcollision->ConvertConvexToCollideParams( planes.m_convex.Base(), count, params );
if ( !pCollide )
return;
struct
{
int prop;
float area;
} proplist[256];
int numprops = 1;
proplist[0].prop = -1;
proplist[0].area = 1;
// compute the array of props on the surface of this model
// NODRAW brushes no longer have any faces
if ( !dmodels[modelIndex].numfaces )
{
int sideIndex = planes.GetFirstBrushSide();
int texdata = texinfo[dbrushsides[sideIndex].texinfo].texdata;
int prop = g_SurfaceProperties[texdata];
proplist[numprops].prop = prop;
proplist[numprops].area = 2;
numprops++;
}
for ( i = 0; i < dmodels[modelIndex].numfaces; i++ )
{
dface_t *face = dfaces + i + dmodels[modelIndex].firstface;
int texdata = texinfo[face->texinfo].texdata;
int prop = g_SurfaceProperties[texdata];
int j;
for ( j = 0; j < numprops; j++ )
{
if ( proplist[j].prop == prop )
{
proplist[j].area += face->area;
break;
}
}
if ( (!numprops || j >= numprops) && numprops < ARRAYSIZE(proplist) )
{
proplist[numprops].prop = prop;
proplist[numprops].area = face->area;
numprops++;
}
}
// choose the prop with the most surface area
int maxIndex = -1;
float maxArea = 0;
float totalArea = 0;
for ( i = 0; i < numprops; i++ )
{
if ( proplist[i].area > maxArea )
{
maxIndex = i;
maxArea = proplist[i].area;
}
// add up the total surface area
totalArea += proplist[i].area;
}
float mass = 1.0f;
const char *pMaterial = "default";
if ( maxIndex >= 0 )
{
int prop = proplist[maxIndex].prop;
// use default if this material has no prop
if ( prop < 0 )
prop = 0;
pMaterial = physprops->GetPropName( prop );
float density, thickness;
physprops->GetPhysicsProperties( prop, &density, &thickness, NULL, NULL );
// if this is a "shell" material (it is hollow and encloses some empty space)
// compute the mass with a constant surface thickness
if ( thickness != 0 )
{
mass = totalArea * thickness * density * CUBIC_METERS_PER_CUBIC_INCH;
}
else
{
// material is completely solid, compute total mass as if constant density throughout.
mass = planes.m_totalVolume * density * CUBIC_METERS_PER_CUBIC_INCH;
}
}
// Clamp mass to 100,000 kg
if ( mass > VPHYSICS_MAX_MASS )
{
mass = VPHYSICS_MAX_MASS;
}
collisionList.AddToTail( new CPhysCollisionEntrySolid( pCollide, pMaterial, mass ) );
}
static void ClearLeafWaterData( void )
{
int i;
for( i = 0; i < numleafs; i++ )
{
dleafs[i].leafWaterDataID = -1;
dleafs[i].contents &= ~CONTENTS_TESTFOGVOLUME;
}
}
// This is the only public entry to this file.
// The global data touched in the file is:
// from bsplib.h:
// g_pPhysCollide : This is an output from this file.
// g_PhysCollideSize : This is set in this file.
// g_numdispinfo : This is an input to this file.
// g_dispinfo : This is an input to this file.
// numnodewaterdata : This is an output from this file.
// dleafwaterdata : This is an output from this file.
// from vbsp.h:
// g_SurfaceProperties : This is an input to this file.
void EmitPhysCollision()
{
ClearLeafWaterData();
CreateInterfaceFn physicsFactory = GetPhysicsFactory();
if ( physicsFactory )
{
physcollision = (IPhysicsCollision *)physicsFactory( VPHYSICS_COLLISION_INTERFACE_VERSION, NULL );
}
if ( !physcollision )
{
Warning("!!! WARNING: Can't build collision data!\n" );
return;
}
CUtlVector<CPhysCollisionEntry *> collisionList[MAX_MAP_MODELS];
CTextBuffer *pTextBuffer[MAX_MAP_MODELS];
int physModelCount = 0, totalSize = 0;
int start = Plat_FloatTime();
Msg("Building Physics collision data...\n" );
int i, j;
for ( i = 0; i < nummodels; i++ )
{
// Build a list of collision models for this brush model section
if ( i == 0 )
{
// world is the only model that processes water separately.
// other brushes are assumed to be completely solid or completely liquid
BuildWorldPhysModel( collisionList[i], NO_SHRINK, VPHYSICS_MERGE);
}
else
{
ConvertModelToPhysCollide( collisionList[i], i, MASK_SOLID|CONTENTS_PLAYERCLIP|CONTENTS_MONSTERCLIP|MASK_WATER, VPHYSICS_SHRINK, VPHYSICS_MERGE );
}
pTextBuffer[i] = NULL;
if ( !collisionList[i].Count() )
continue;
// if we've got collision models, write their script for processing in the game
pTextBuffer[i] = new CTextBuffer;
for ( j = 0; j < collisionList[i].Count(); j++ )
{
// dump a text file for visualization
if ( dumpcollide )
{
collisionList[i][j]->DumpCollide( pTextBuffer[i], i, j );
}
// each model knows how to write its script
collisionList[i][j]->WriteToTextBuffer( pTextBuffer[i], i, j );
// total up the binary section's size
totalSize += collisionList[i][j]->GetCollisionBinarySize() + sizeof(int);
}
// These sections only appear in the world's collision text
if ( i == 0 )
{
if ( !g_bNoVirtualMesh && physcollision->SupportsVirtualMesh() )
{
pTextBuffer[i]->WriteText("virtualterrain {}\n");
}
if ( s_WorldPropList.Count() )
{
pTextBuffer[i]->WriteText( "materialtable {\n" );
for ( j = 0; j < s_WorldPropList.Count(); j++ )
{
int propIndex = s_WorldPropList[j];
if ( propIndex < 0 )
{
pTextBuffer[i]->WriteIntKey( "default", j+1 );
}
else
{
pTextBuffer[i]->WriteIntKey( physprops->GetPropName( propIndex ), j+1 );
}
}
pTextBuffer[i]->WriteText( "}\n" );
}
}
pTextBuffer[i]->Terminate();
// total lump size includes the text buffers (scripts)
totalSize += pTextBuffer[i]->GetSize();
physModelCount++;
}
// add one for tail of list marker
physModelCount++;
// DWORD align the lump because AddLump assumes that it is DWORD aligned.
byte *ptr ;
g_PhysCollideSize = totalSize + (physModelCount * sizeof(dphysmodel_t));
g_pPhysCollide = (byte *)malloc(( g_PhysCollideSize + 3 ) & ~3 );
memset( g_pPhysCollide, 0, g_PhysCollideSize );
ptr = g_pPhysCollide;
for ( i = 0; i < nummodels; i++ )
{
if ( pTextBuffer[i] )
{
int j;
dphysmodel_t model;
model.modelIndex = i;
model.solidCount = collisionList[i].Count();
model.dataSize = sizeof(int) * model.solidCount;
for ( j = 0; j < model.solidCount; j++ )
{
model.dataSize += collisionList[i][j]->GetCollisionBinarySize();
}
model.keydataSize = pTextBuffer[i]->GetSize();
// store the header
memcpy( ptr, &model, sizeof(model) );
ptr += sizeof(model);
for ( j = 0; j < model.solidCount; j++ )
{
int collideSize = collisionList[i][j]->GetCollisionBinarySize();
// write size
memcpy( ptr, &collideSize, sizeof(int) );
ptr += sizeof(int);
// now write the collision model
collisionList[i][j]->WriteCollisionBinary( reinterpret_cast<char *>(ptr) );
ptr += collideSize;
}
memcpy( ptr, pTextBuffer[i]->GetData(), pTextBuffer[i]->GetSize() );
ptr += pTextBuffer[i]->GetSize();
}
delete pTextBuffer[i];
}
dphysmodel_t model;
// Mark end of list
model.modelIndex = -1;
model.dataSize = -1;
model.keydataSize = 0;
model.solidCount = 0;
memcpy( ptr, &model, sizeof(model) );
ptr += sizeof(model);
Assert( (ptr-g_pPhysCollide) == g_PhysCollideSize);
Msg("done (%d) (%d bytes)\n", (int)(Plat_FloatTime() - start), g_PhysCollideSize );
// UNDONE: Collision models (collisionList) memory leak!
}