1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2024-12-23 01:59:43 +08:00
hl2sdk/dlls/fourwheelvehiclephysics.cpp

1465 lines
48 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: A moving vehicle that is used as a battering ram
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "fourwheelvehiclephysics.h"
#include "engine/IEngineSound.h"
#include "soundenvelope.h"
#include "vcollide_parse.h"
#include "in_buttons.h"
#include "player.h"
#include "IEffects.h"
#include "physics_saverestore.h"
#include "vehicle_base.h"
#include "isaverestore.h"
#include "movevars_shared.h"
#include "te_effect_dispatch.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define STICK_EXTENTS 400.0f
#define DUST_SPEED 5 // speed at which dust starts
#define REAR_AXLE 1 // indexes of axlex
#define FRONT_AXLE 0
#define MAX_GUAGE_SPEED 100.0 // 100 mph is max speed shown on guage
#define BRAKE_MAX_VALUE 1.0f
#define BRAKE_BACK_FORWARD_SCALAR 2.0f
ConVar r_vehicleDrawDebug( "r_vehicleDrawDebug", "0", FCVAR_CHEAT );
ConVar r_vehicleBrakeRate( "r_vehicleBrakeRate", "1.5", FCVAR_CHEAT );
ConVar xbox_throttlebias("xbox_throttlebias", "100", FCVAR_ARCHIVE );
ConVar xbox_throttlespoof("xbox_throttlespoof", "200", FCVAR_ARCHIVE );
ConVar xbox_autothrottle("xbox_autothrottle", "1", FCVAR_ARCHIVE );
// remaps an angular variable to a 3 band function:
// 0 <= t < start : f(t) = 0
// start <= t <= end : f(t) = end * spline(( t-start) / (end-start) ) // s curve between clamped and linear
// end < t : f(t) = t
float RemapAngleRange( float startInterval, float endInterval, float value )
{
// Fixup the roll
value = AngleNormalize( value );
float absAngle = fabs(value);
// beneath cutoff?
if ( absAngle < startInterval )
{
value = 0;
}
// in spline range?
else if ( absAngle <= endInterval )
{
float newAngle = SimpleSpline( (absAngle - startInterval) / (endInterval-startInterval) ) * endInterval;
// grab the sign from the initial value
if ( value < 0 )
{
newAngle *= -1;
}
value = newAngle;
}
// else leave it alone, in linear range
return value;
}
enum vehicle_pose_params
{
VEH_FL_WHEEL_HEIGHT=0,
VEH_FR_WHEEL_HEIGHT,
VEH_RL_WHEEL_HEIGHT,
VEH_RR_WHEEL_HEIGHT,
VEH_FL_WHEEL_SPIN,
VEH_FR_WHEEL_SPIN,
VEH_RL_WHEEL_SPIN,
VEH_RR_WHEEL_SPIN,
VEH_STEER,
VEH_ACTION,
VEH_SPEEDO,
};
BEGIN_DATADESC_NO_BASE( CFourWheelVehiclePhysics )
// These two are reset every time
// DEFINE_FIELD( m_pOuter, FIELD_EHANDLE ),
// m_pOuterServerVehicle;
// Quiet down classcheck
// DEFINE_FIELD( m_controls, vehicle_controlparams_t ),
// Controls
DEFINE_FIELD( m_controls.throttle, FIELD_FLOAT ),
DEFINE_FIELD( m_controls.steering, FIELD_FLOAT ),
DEFINE_FIELD( m_controls.brake, FIELD_FLOAT ),
DEFINE_FIELD( m_controls.boost, FIELD_FLOAT ),
DEFINE_FIELD( m_controls.handbrake, FIELD_BOOLEAN ),
DEFINE_FIELD( m_controls.handbrakeLeft, FIELD_BOOLEAN ),
DEFINE_FIELD( m_controls.handbrakeRight, FIELD_BOOLEAN ),
DEFINE_FIELD( m_controls.brakepedal, FIELD_BOOLEAN ),
DEFINE_FIELD( m_controls.bHasBrakePedal, FIELD_BOOLEAN ),
// This has to be handled by the containing class owing to 'owner' issues
// DEFINE_PHYSPTR( m_pVehicle ),
DEFINE_FIELD( m_nSpeed, FIELD_INTEGER ),
DEFINE_FIELD( m_nLastSpeed, FIELD_INTEGER ),
DEFINE_FIELD( m_nRPM, FIELD_INTEGER ),
DEFINE_FIELD( m_fLastBoost, FIELD_FLOAT ),
DEFINE_FIELD( m_nBoostTimeLeft, FIELD_INTEGER ),
DEFINE_FIELD( m_nHasBoost, FIELD_INTEGER ),
DEFINE_FIELD( m_maxThrottle, FIELD_FLOAT ),
DEFINE_FIELD( m_flMaxRevThrottle, FIELD_FLOAT ),
DEFINE_FIELD( m_flThrottleReduction, FIELD_FLOAT ),
DEFINE_FIELD( m_flMaxSpeed, FIELD_FLOAT ),
DEFINE_FIELD( m_actionSpeed, FIELD_FLOAT ),
// This has to be handled by the containing class owing to 'owner' issues
// DEFINE_PHYSPTR_ARRAY( m_pWheels ),
DEFINE_FIELD( m_wheelCount, FIELD_INTEGER ),
DEFINE_ARRAY( m_wheelPosition, FIELD_VECTOR, 4 ),
DEFINE_ARRAY( m_wheelRotation, FIELD_VECTOR, 4 ),
DEFINE_ARRAY( m_wheelBaseHeight, FIELD_FLOAT, 4 ),
DEFINE_ARRAY( m_wheelTotalHeight, FIELD_FLOAT, 4 ),
DEFINE_ARRAY( m_poseParameters, FIELD_INTEGER, 12 ),
DEFINE_FIELD( m_actionValue, FIELD_FLOAT ),
DEFINE_KEYFIELD( m_actionScale, FIELD_FLOAT, "actionScale" ),
DEFINE_FIELD( m_debugRadius, FIELD_FLOAT ),
DEFINE_FIELD( m_throttleRate, FIELD_FLOAT ),
DEFINE_FIELD( m_throttleStartTime, FIELD_FLOAT ),
DEFINE_FIELD( m_throttleActiveTime, FIELD_FLOAT ),
DEFINE_FIELD( m_turboTimer, FIELD_FLOAT ),
DEFINE_FIELD( m_flVehicleVolume, FIELD_FLOAT ),
DEFINE_FIELD( m_bIsOn, FIELD_BOOLEAN ),
DEFINE_FIELD( m_bLastThrottle, FIELD_BOOLEAN ),
DEFINE_FIELD( m_bLastBoost, FIELD_BOOLEAN ),
DEFINE_FIELD( m_bLastSkid, FIELD_BOOLEAN ),
DEFINE_FIELD( m_nTurnLeftCount, FIELD_INTEGER ),
DEFINE_FIELD( m_nTurnRightCount, FIELD_INTEGER ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CFourWheelVehiclePhysics::CFourWheelVehiclePhysics( CBaseAnimating *pOuter )
{
m_flVehicleVolume = 0.5;
m_pOuter = NULL;
m_pOuterServerVehicle = NULL;
m_flMaxSpeed = 30;
m_flThrottleReduction = 0;
}
//-----------------------------------------------------------------------------
// Destructor
//-----------------------------------------------------------------------------
CFourWheelVehiclePhysics::~CFourWheelVehiclePhysics ()
{
physenv->DestroyVehicleController( m_pVehicle );
}
//-----------------------------------------------------------------------------
// A couple wrapper methods to perform common operations
//-----------------------------------------------------------------------------
inline int CFourWheelVehiclePhysics::LookupPoseParameter( const char *szName )
{
return m_pOuter->LookupPoseParameter( szName );
}
inline float CFourWheelVehiclePhysics::GetPoseParameter( int iParameter )
{
return m_pOuter->GetPoseParameter( iParameter );
}
inline float CFourWheelVehiclePhysics::SetPoseParameter( int iParameter, float flValue )
{
return m_pOuter->SetPoseParameter( iParameter, flValue );
}
inline bool CFourWheelVehiclePhysics::GetAttachment( const char *szName, Vector &origin, QAngle &angles )
{
return m_pOuter->GetAttachment( szName, origin, angles );
}
//-----------------------------------------------------------------------------
// Methods related to spawn
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::InitializePoseParameters()
{
m_poseParameters[VEH_FL_WHEEL_HEIGHT] = LookupPoseParameter( "vehicle_wheel_fl_height" );
m_poseParameters[VEH_FR_WHEEL_HEIGHT] = LookupPoseParameter( "vehicle_wheel_fr_height" );
m_poseParameters[VEH_RL_WHEEL_HEIGHT] = LookupPoseParameter( "vehicle_wheel_rl_height" );
m_poseParameters[VEH_RR_WHEEL_HEIGHT] = LookupPoseParameter( "vehicle_wheel_rr_height" );
m_poseParameters[VEH_FL_WHEEL_SPIN] = LookupPoseParameter( "vehicle_wheel_fl_spin" );
m_poseParameters[VEH_FR_WHEEL_SPIN] = LookupPoseParameter( "vehicle_wheel_fr_spin" );
m_poseParameters[VEH_RL_WHEEL_SPIN] = LookupPoseParameter( "vehicle_wheel_rl_spin" );
m_poseParameters[VEH_RR_WHEEL_SPIN] = LookupPoseParameter( "vehicle_wheel_rr_spin" );
m_poseParameters[VEH_STEER] = LookupPoseParameter( "vehicle_steer" );
m_poseParameters[VEH_ACTION] = LookupPoseParameter( "vehicle_action" );
m_poseParameters[VEH_SPEEDO] = LookupPoseParameter( "vehicle_guage" );
// move the wheels to a neutral position
SetPoseParameter( m_poseParameters[VEH_SPEEDO], 0 );
SetPoseParameter( m_poseParameters[VEH_STEER], 0 );
SetPoseParameter( m_poseParameters[VEH_FL_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_FR_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_RL_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_RR_WHEEL_HEIGHT], 0 );
m_pOuter->InvalidateBoneCache();
}
//-----------------------------------------------------------------------------
// Purpose: Parses the vehicle's script
//-----------------------------------------------------------------------------
bool CFourWheelVehiclePhysics::ParseVehicleScript( const char *pScriptName, solid_t &solid, vehicleparams_t &vehicle)
{
byte *pFile = UTIL_LoadFileForMe( pScriptName, NULL );
if ( !pFile )
return false;
IVPhysicsKeyParser *pParse = physcollision->VPhysicsKeyParserCreate( (char *)pFile );
while ( !pParse->Finished() )
{
const char *pBlock = pParse->GetCurrentBlockName();
if ( !strcmpi( pBlock, "vehicle" ) )
{
pParse->ParseVehicle( &vehicle, NULL );
}
else
{
pParse->SkipBlock();
}
}
physcollision->VPhysicsKeyParserDestroy( pParse );
UTIL_FreeFile( pFile );
m_debugRadius = vehicle.axles[0].wheels.radius;
CalcWheelData( vehicle );
PhysModelParseSolid( solid, m_pOuter, m_pOuter->GetModelIndex() );
// Allow the script to shift the center of mass
if ( vehicle.body.massCenterOverride != vec3_origin )
{
solid.massCenterOverride = vehicle.body.massCenterOverride;
solid.params.massCenterOverride = &solid.massCenterOverride;
}
// allow script to change the mass of the vehicle body
if ( vehicle.body.massOverride > 0 )
{
solid.params.mass = vehicle.body.massOverride;
}
return true;
}
void CFourWheelVehiclePhysics::CalcWheelData( vehicleparams_t &vehicle )
{
Vector left, right;
QAngle dummy;
SetPoseParameter( m_poseParameters[VEH_FL_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_FR_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_RL_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_RR_WHEEL_HEIGHT], 0 );
m_pOuter->InvalidateBoneCache();
if ( GetAttachment( "wheel_fl", left, dummy ) && GetAttachment( "wheel_fr", right, dummy ) )
{
VectorITransform( left, m_pOuter->EntityToWorldTransform(), left );
VectorITransform( right, m_pOuter->EntityToWorldTransform(), right );
Vector center = (left + right) * 0.5;
vehicle.axles[0].offset = center;
vehicle.axles[0].wheelOffset = right - center;
// Cache the base height of the wheels in body space
m_wheelBaseHeight[0] = left.z;
m_wheelBaseHeight[1] = right.z;
}
if ( GetAttachment( "wheel_rl", left, dummy ) && GetAttachment( "wheel_rr", right, dummy ) )
{
VectorITransform( left, m_pOuter->EntityToWorldTransform(), left );
VectorITransform( right, m_pOuter->EntityToWorldTransform(), right );
Vector center = (left + right) * 0.5;
vehicle.axles[1].offset = center;
vehicle.axles[1].wheelOffset = right - center;
// Cache the base height of the wheels in body space
m_wheelBaseHeight[2] = left.z;
m_wheelBaseHeight[3] = right.z;
}
SetPoseParameter( m_poseParameters[VEH_FL_WHEEL_HEIGHT], 1 );
SetPoseParameter( m_poseParameters[VEH_FR_WHEEL_HEIGHT], 1 );
SetPoseParameter( m_poseParameters[VEH_RL_WHEEL_HEIGHT], 1 );
SetPoseParameter( m_poseParameters[VEH_RR_WHEEL_HEIGHT], 1 );
m_pOuter->InvalidateBoneCache();
if ( GetAttachment( "wheel_fl", left, dummy ) && GetAttachment( "wheel_fr", right, dummy ) )
{
VectorITransform( left, m_pOuter->EntityToWorldTransform(), left );
VectorITransform( right, m_pOuter->EntityToWorldTransform(), right );
// Cache the height range of the wheels in body space
m_wheelTotalHeight[0] = m_wheelBaseHeight[0] - left.z;
m_wheelTotalHeight[1] = m_wheelBaseHeight[1] - right.z;
vehicle.axles[0].wheels.springAdditionalLength = m_wheelTotalHeight[0];
}
if ( GetAttachment( "wheel_rl", left, dummy ) && GetAttachment( "wheel_rr", right, dummy ) )
{
VectorITransform( left, m_pOuter->EntityToWorldTransform(), left );
VectorITransform( right, m_pOuter->EntityToWorldTransform(), right );
// Cache the height range of the wheels in body space
m_wheelTotalHeight[2] = m_wheelBaseHeight[0] - left.z;
m_wheelTotalHeight[3] = m_wheelBaseHeight[1] - right.z;
vehicle.axles[1].wheels.springAdditionalLength = m_wheelTotalHeight[2];
}
SetPoseParameter( m_poseParameters[VEH_FL_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_FR_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_RL_WHEEL_HEIGHT], 0 );
SetPoseParameter( m_poseParameters[VEH_RR_WHEEL_HEIGHT], 0 );
m_pOuter->InvalidateBoneCache();
// Get raytrace offsets if they exist.
if ( GetAttachment( "raytrace_fl", left, dummy ) && GetAttachment( "raytrace_fr", right, dummy ) )
{
VectorITransform( left, m_pOuter->EntityToWorldTransform(), left );
VectorITransform( right, m_pOuter->EntityToWorldTransform(), right );
Vector center = ( left + right ) * 0.5;
vehicle.axles[0].raytraceCenterOffset = center;
vehicle.axles[0].raytraceOffset = right - center;
}
if ( GetAttachment( "raytrace_rl", left, dummy ) && GetAttachment( "raytrace_rr", right, dummy ) )
{
VectorITransform( left, m_pOuter->EntityToWorldTransform(), left );
VectorITransform( right, m_pOuter->EntityToWorldTransform(), right );
Vector center = ( left + right ) * 0.5;
vehicle.axles[1].raytraceCenterOffset = center;
vehicle.axles[1].raytraceOffset = right - center;
}
}
//-----------------------------------------------------------------------------
// Spawns the vehicle
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::Spawn( )
{
Assert( m_pOuter );
m_actionValue = 0;
m_actionSpeed = 0;
m_bIsOn = false;
m_controls.handbrake = false;
m_controls.handbrakeLeft = false;
m_controls.handbrakeRight = false;
m_controls.bHasBrakePedal = true;
SetMaxThrottle( 1.0 );
SetMaxReverseThrottle( -1.0f );
InitializePoseParameters();
}
//-----------------------------------------------------------------------------
// Purpose: Initializes the vehicle physics
// Called by our outer vehicle in it's Spawn()
//-----------------------------------------------------------------------------
bool CFourWheelVehiclePhysics::Initialize( const char *pVehicleScript, unsigned int nVehicleType )
{
// Ok, turn on the simulation now
// FIXME: Disabling collisions here is necessary because we seem to be
// getting a one-frame collision between the old + new collision models
if ( m_pOuter->VPhysicsGetObject() )
{
m_pOuter->VPhysicsGetObject()->EnableCollisions(false);
}
m_pOuter->VPhysicsDestroyObject();
// Create the vphysics model + teleport it into position
solid_t solid;
vehicleparams_t vehicle;
if (!ParseVehicleScript( pVehicleScript, solid, vehicle ))
{
UTIL_Remove(m_pOuter);
return false;
}
// NOTE: this needs to be greater than your max framerate (so zero is still instant)
m_throttleRate = 10000.0;
if ( vehicle.engine.throttleTime > 0 )
{
m_throttleRate = 1.0 / vehicle.engine.throttleTime;
}
m_flMaxSpeed = vehicle.engine.maxSpeed;
IPhysicsObject *pBody = m_pOuter->VPhysicsInitNormal( SOLID_VPHYSICS, 0, false, &solid );
PhysSetGameFlags( pBody, FVPHYSICS_NO_SELF_COLLISIONS | FVPHYSICS_MULTIOBJECT_ENTITY );
m_pVehicle = physenv->CreateVehicleController( pBody, vehicle, nVehicleType, physgametrace );
m_wheelCount = m_pVehicle->GetWheelCount();
for ( int i = 0; i < m_wheelCount; i++ )
{
m_pWheels[i] = m_pVehicle->GetWheel( i );
}
return true;
}
//-----------------------------------------------------------------------------
// Various steering parameters
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetThrottle( float flThrottle )
{
m_controls.throttle = flThrottle;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetMaxThrottle( float flMaxThrottle )
{
m_maxThrottle = flMaxThrottle;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetMaxReverseThrottle( float flMaxThrottle )
{
m_flMaxRevThrottle = flMaxThrottle;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetSteering( float flSteering, float flSteeringRate )
{
if ( !flSteeringRate )
{
m_controls.steering = flSteering;
}
else
{
m_controls.steering = Approach( flSteering, m_controls.steering, flSteeringRate );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetSteeringDegrees( float flDegrees )
{
vehicleparams_t &vehicleParams = m_pVehicle->GetVehicleParamsForChange();
vehicleParams.steering.degrees = flDegrees;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetAction( float flAction )
{
m_actionSpeed = flAction;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::TurnOn( )
{
if ( IsEngineDisabled() )
return;
if ( !m_bIsOn )
{
m_pOuterServerVehicle->SoundStart();
m_bIsOn = true;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::TurnOff( )
{
ResetControls();
if ( m_bIsOn )
{
m_pOuterServerVehicle->SoundShutdown();
m_bIsOn = false;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetBoost( float flBoost )
{
if ( !IsEngineDisabled() )
{
m_controls.boost = flBoost;
}
}
//------------------------------------------------------
// UpdateBooster - Calls UpdateBooster() in the vphysics
// code to allow the timer to be updated
//
// Returns: false if timer has expired (can use again and
// can stop think
// true if timer still running
//------------------------------------------------------
bool CFourWheelVehiclePhysics::UpdateBooster( void )
{
float retval = m_pVehicle->UpdateBooster(gpGlobals->frametime );
return ( retval > 0 );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetHasBrakePedal( bool bHasBrakePedal )
{
m_controls.bHasBrakePedal = bHasBrakePedal;
}
//-----------------------------------------------------------------------------
// Teleport
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::Teleport( matrix3x4_t& relativeTransform )
{
// We basically just have to make sure the wheels are in the right place
// after teleportation occurs
for ( int i = 0; i < m_wheelCount; i++ )
{
matrix3x4_t matrix, newMatrix;
m_pWheels[i]->GetPositionMatrix( &matrix );
ConcatTransforms( relativeTransform, matrix, newMatrix );
m_pWheels[i]->SetPositionMatrix( newMatrix, true );
}
}
#if 1
// For the #if 0 debug code below!
#define HL2IVP_FACTOR METERS_PER_INCH
#define IVP2HL(x) (float)(x * (1.0f/HL2IVP_FACTOR))
#define HL2IVP(x) (double)(x * HL2IVP_FACTOR)
#endif
//-----------------------------------------------------------------------------
// Debugging methods
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::DrawDebugGeometryOverlays()
{
Vector vecRad(m_debugRadius,m_debugRadius,m_debugRadius);
for ( int i = 0; i < m_wheelCount; i++ )
{
NDebugOverlay::BoxAngles(m_wheelPosition[i], -vecRad, vecRad, m_wheelRotation[i], 0, 255, 45, 0 ,0);
}
for ( int iWheel = 0; iWheel < m_wheelCount; iWheel++ )
{
IPhysicsObject *pWheel = m_pVehicle->GetWheel( iWheel );
Vector vecPos;
QAngle vecRot;
pWheel->GetPosition( &vecPos, &vecRot );
NDebugOverlay::BoxAngles( vecPos, -vecRad, vecRad, vecRot, 0, 255, 45, 0 ,0 );
}
#if 1
// Render vehicle data.
IPhysicsObject *pBody = m_pOuter->VPhysicsGetObject();
if ( pBody )
{
const vehicleparams_t vehicleParams = m_pVehicle->GetVehicleParams();
// Draw a red cube as the "center" of the vehicle.
Vector vecBodyPosition;
QAngle angBodyDirection;
pBody->GetPosition( &vecBodyPosition, &angBodyDirection );
NDebugOverlay::BoxAngles( vecBodyPosition, Vector( -5, -5, -5 ), Vector( 5, 5, 5 ), angBodyDirection, 255, 0, 0, 0 ,0 );
matrix3x4_t matrix;
AngleMatrix( angBodyDirection, vecBodyPosition, matrix );
// Draw green cubes at axle centers.
Vector vecAxlePositions[2], vecAxlePositionsHL[2];
vecAxlePositions[0] = vehicleParams.axles[0].offset;
vecAxlePositions[1] = vehicleParams.axles[1].offset;
VectorTransform( vecAxlePositions[0], matrix, vecAxlePositionsHL[0] );
VectorTransform( vecAxlePositions[1], matrix, vecAxlePositionsHL[1] );
NDebugOverlay::BoxAngles( vecAxlePositionsHL[0], Vector( -3, -3, -3 ), Vector( 3, 3, 3 ), angBodyDirection, 0, 255, 0, 0 ,0 );
NDebugOverlay::BoxAngles( vecAxlePositionsHL[1], Vector( -3, -3, -3 ), Vector( 3, 3, 3 ), angBodyDirection, 0, 255, 0, 0 ,0 );
// Draw blue cubes at wheel centers.
Vector vecWheelPositions[4], vecWheelPositionsHL[4];
vecWheelPositions[0] = vehicleParams.axles[0].offset;
vecWheelPositions[0] += vehicleParams.axles[0].wheelOffset;
vecWheelPositions[1] = vehicleParams.axles[0].offset;
vecWheelPositions[1] -= vehicleParams.axles[0].wheelOffset;
vecWheelPositions[2] = vehicleParams.axles[1].offset;
vecWheelPositions[2] += vehicleParams.axles[1].wheelOffset;
vecWheelPositions[3] = vehicleParams.axles[1].offset;
vecWheelPositions[3] -= vehicleParams.axles[1].wheelOffset;
VectorTransform( vecWheelPositions[0], matrix, vecWheelPositionsHL[0] );
VectorTransform( vecWheelPositions[1], matrix, vecWheelPositionsHL[1] );
VectorTransform( vecWheelPositions[2], matrix, vecWheelPositionsHL[2] );
VectorTransform( vecWheelPositions[3], matrix, vecWheelPositionsHL[3] );
float flWheelRadius = vehicleParams.axles[0].wheels.radius;
flWheelRadius = IVP2HL( flWheelRadius );
Vector vecWheelRadius( flWheelRadius, flWheelRadius, flWheelRadius );
NDebugOverlay::BoxAngles( vecWheelPositionsHL[0], -vecWheelRadius, vecWheelRadius, angBodyDirection, 0, 0, 255, 0 ,0 );
NDebugOverlay::BoxAngles( vecWheelPositionsHL[1], -vecWheelRadius, vecWheelRadius, angBodyDirection, 0, 0, 255, 0 ,0 );
NDebugOverlay::BoxAngles( vecWheelPositionsHL[2], -vecWheelRadius, vecWheelRadius, angBodyDirection, 0, 0, 255, 0 ,0 );
NDebugOverlay::BoxAngles( vecWheelPositionsHL[3], -vecWheelRadius, vecWheelRadius, angBodyDirection, 0, 0, 255, 0 ,0 );
// Draw wheel raycasts in yellow
vehicle_debugcarsystem_t debugCarSystem;
m_pVehicle->GetCarSystemDebugData( debugCarSystem );
for ( int iWheel = 0; iWheel < 4; ++iWheel )
{
Vector vecStart, vecEnd, vecImpact;
// Hack for now.
float tmpY = IVP2HL( debugCarSystem.vecWheelRaycasts[iWheel][0].z );
vecStart.z = -IVP2HL( debugCarSystem.vecWheelRaycasts[iWheel][0].y );
vecStart.y = tmpY;
vecStart.x = IVP2HL( debugCarSystem.vecWheelRaycasts[iWheel][0].x );
tmpY = IVP2HL( debugCarSystem.vecWheelRaycasts[iWheel][1].z );
vecEnd.z = -IVP2HL( debugCarSystem.vecWheelRaycasts[iWheel][1].y );
vecEnd.y = tmpY;
vecEnd.x = IVP2HL( debugCarSystem.vecWheelRaycasts[iWheel][1].x );
tmpY = IVP2HL( debugCarSystem.vecWheelRaycastImpacts[iWheel].z );
vecImpact.z = -IVP2HL( debugCarSystem.vecWheelRaycastImpacts[iWheel].y );
vecImpact.y = tmpY;
vecImpact.x = IVP2HL( debugCarSystem.vecWheelRaycastImpacts[iWheel].x );
NDebugOverlay::BoxAngles( vecStart, Vector( -1 , -1, -1 ), Vector( 1, 1, 1 ), angBodyDirection, 0, 255, 0, 0, 0 );
NDebugOverlay::Line( vecStart, vecEnd, 255, 255, 0, true, 0 );
NDebugOverlay::BoxAngles( vecEnd, Vector( -1, -1, -1 ), Vector( 1, 1, 1 ), angBodyDirection, 255, 0, 0, 0, 0 );
NDebugOverlay::BoxAngles( vecImpact, Vector( -0.5f , -0.5f, -0.5f ), Vector( 0.5f, 0.5f, 0.5f ), angBodyDirection, 0, 0, 255, 0, 0 );
}
}
#endif
}
int CFourWheelVehiclePhysics::DrawDebugTextOverlays( int nOffset )
{
const vehicle_operatingparams_t &params = m_pVehicle->GetOperatingParams();
char tempstr[512];
Q_snprintf( tempstr,sizeof(tempstr), "Speed %.1f T/S/B (%.0f/%.0f/%.1f)", params.speed, m_controls.throttle, m_controls.steering, m_controls.brake );
m_pOuter->EntityText( nOffset, tempstr, 0 );
nOffset++;
Msg( "%s", tempstr );
Q_snprintf( tempstr,sizeof(tempstr), "Gear: %d, RPM %4d", params.gear, (int)params.engineRPM );
m_pOuter->EntityText( nOffset, tempstr, 0 );
nOffset++;
Msg( " %s\n", tempstr );
return nOffset;
}
//----------------------------------------------------
// Place dust at vector passed in
//----------------------------------------------------
void CFourWheelVehiclePhysics::PlaceWheelDust( int wheelIndex, bool ignoreSpeed )
{
Vector vecPos, vecVel;
m_pVehicle->GetWheelContactPoint( wheelIndex, vecPos );
vecVel.Random( -1.0f, 1.0f );
vecVel.z = random->RandomFloat( 0.3f, 1.0f );
VectorNormalize( vecVel );
// Higher speeds make larger dust clouds
float flSize;
if ( ignoreSpeed )
{
flSize = 1.0f;
}
else
{
flSize = RemapValClamped( m_nSpeed, DUST_SPEED, m_flMaxSpeed, 0.0f, 1.0f );
}
if ( flSize )
{
CEffectData data;
data.m_vOrigin = vecPos;
data.m_vNormal = vecVel;
data.m_flScale = flSize;
DispatchEffect( "WheelDust", data );
}
}
//-----------------------------------------------------------------------------
// Frame-based updating
//-----------------------------------------------------------------------------
bool CFourWheelVehiclePhysics::Think()
{
if (!m_pVehicle)
return false;
// Update sound + physics state
const vehicle_operatingparams_t &carState = m_pVehicle->GetOperatingParams();
const vehicleparams_t &vehicleData = m_pVehicle->GetVehicleParams();
// Set save data.
float carSpeed = fabs( INS2MPH( carState.speed ) );
m_nLastSpeed = m_nSpeed;
m_nSpeed = ( int )carSpeed;
m_nRPM = ( int )carState.engineRPM;
m_nHasBoost = static_cast<int>(vehicleData.engine.boostDelay); // if we have any boost delay, vehicle has boost ability
m_pVehicle->Update( gpGlobals->frametime, m_controls);
// boost sounds
if( IsBoosting() && !m_bLastBoost )
{
m_bLastBoost = true;
m_turboTimer = gpGlobals->curtime + 2.75f; // min duration for turbo sound
}
else if( !IsBoosting() && m_bLastBoost )
{
if ( gpGlobals->curtime >= m_turboTimer )
{
m_bLastBoost = false;
}
}
m_fLastBoost = carState.boostDelay;
m_nBoostTimeLeft = carState.boostTimeLeft;
// UNDONE: Use skid info from the physics system?
// Only check wheels if we're not being carried by a dropship
if ( m_pOuter->VPhysicsGetObject() && !m_pOuter->VPhysicsGetObject()->GetShadowController() )
{
// check for skidding, if we're skidding, need to play the sound
if ( carState.skidding && m_bIsOn )
{
if ( !m_bLastSkid ) // only play sound once
{
m_bLastSkid = true;
CPASAttenuationFilter filter( m_pOuter );
m_pOuterServerVehicle->PlaySound( VS_SKID_FRICTION_NORMAL );
}
// kick up dust from the wheels while skidding
for ( int i = 0; i < 4; i++ )
{
PlaceWheelDust( i, true );
}
}
else if ( m_bLastSkid == true )
{
m_bLastSkid = false;
m_pOuterServerVehicle->StopSound( VS_SKID_FRICTION_NORMAL );
}
// toss dust up from the wheels of the vehicle if we're moving fast enough
if ( m_nSpeed >= DUST_SPEED && vehicleData.steering.dustCloud && m_bIsOn )
{
for ( int i = 0; i < 4; i++ )
{
PlaceWheelDust( i );
}
}
}
// Make the steering wheel match the input, with a little dampening.
#define STEER_DAMPING 0.8
float flSteer = GetPoseParameter( m_poseParameters[VEH_STEER] );
SetPoseParameter( m_poseParameters[VEH_STEER], (STEER_DAMPING * flSteer) + ((1 - STEER_DAMPING) * m_controls.steering) );
m_actionValue += m_actionSpeed * m_actionScale * gpGlobals->frametime;
SetPoseParameter( m_poseParameters[VEH_ACTION], m_actionValue );
// setup speedometer
if ( m_bIsOn == true )
{
float displaySpeed = m_nSpeed / MAX_GUAGE_SPEED;
SetPoseParameter( m_poseParameters[VEH_SPEEDO], displaySpeed );
}
return m_bIsOn;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CFourWheelVehiclePhysics::VPhysicsUpdate( IPhysicsObject *pPhysics )
{
if ( r_vehicleDrawDebug.GetInt() )
{
DrawDebugGeometryOverlays();
}
// must be a wheel
if ( pPhysics == m_pOuter->VPhysicsGetObject() )
return true;
// This is here so we can make the pose parameters of the wheels
// reflect their current physics state
for ( int i = 0; i < m_wheelCount; i++ )
{
if ( pPhysics == m_pWheels[i] )
{
Vector tmp;
pPhysics->GetPosition( &m_wheelPosition[i], &m_wheelRotation[i] );
// transform the wheel into body space
VectorITransform( m_wheelPosition[i], m_pOuter->EntityToWorldTransform(), tmp );
SetPoseParameter( m_poseParameters[VEH_FL_WHEEL_HEIGHT + i], (m_wheelBaseHeight[i] - tmp.z) / m_wheelTotalHeight[i] );
SetPoseParameter( m_poseParameters[VEH_FL_WHEEL_SPIN + i], -m_wheelRotation[i].z );
return false;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Shared code to compute the vehicle view position
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::GetVehicleViewPosition( const char *pViewAttachment, float flPitchFactor, Vector *pAbsOrigin, QAngle *pAbsAngles )
{
matrix3x4_t vehicleEyePosToWorld;
Vector vehicleEyeOrigin;
QAngle vehicleEyeAngles;
GetAttachment( pViewAttachment, vehicleEyeOrigin, vehicleEyeAngles );
AngleMatrix( vehicleEyeAngles, vehicleEyePosToWorld );
#ifdef HL2_DLL
// View dampening.
if ( r_VehicleViewDampen.GetInt() )
{
m_pOuterServerVehicle->GetFourWheelVehicle()->DampenEyePosition( vehicleEyeOrigin, vehicleEyeAngles );
}
#endif
// Compute the relative rotation between the unperterbed eye attachment + the eye angles
matrix3x4_t cameraToWorld;
AngleMatrix( *pAbsAngles, cameraToWorld );
matrix3x4_t worldToEyePos;
MatrixInvert( vehicleEyePosToWorld, worldToEyePos );
matrix3x4_t vehicleCameraToEyePos;
ConcatTransforms( worldToEyePos, cameraToWorld, vehicleCameraToEyePos );
// Now perterb the attachment point
vehicleEyeAngles.x = RemapAngleRange( PITCH_CURVE_ZERO * flPitchFactor, PITCH_CURVE_LINEAR, vehicleEyeAngles.x );
vehicleEyeAngles.z = RemapAngleRange( ROLL_CURVE_ZERO * flPitchFactor, ROLL_CURVE_LINEAR, vehicleEyeAngles.z );
AngleMatrix( vehicleEyeAngles, vehicleEyeOrigin, vehicleEyePosToWorld );
// Now treat the relative eye angles as being relative to this new, perterbed view position...
matrix3x4_t newCameraToWorld;
ConcatTransforms( vehicleEyePosToWorld, vehicleCameraToEyePos, newCameraToWorld );
// output new view abs angles
MatrixAngles( newCameraToWorld, *pAbsAngles );
// UNDONE: *pOrigin would already be correct in single player if the HandleView() on the server ran after vphysics
MatrixGetColumn( newCameraToWorld, 3, *pAbsOrigin );
}
//-----------------------------------------------------------------------------
// Control initialization
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::ResetControls()
{
m_controls.handbrake = true;
m_controls.handbrakeLeft = false;
m_controls.handbrakeRight = false;
m_controls.boost = 0;
m_controls.brake = 0.0f;
m_controls.throttle = 0;
m_controls.steering = 0;
}
void CFourWheelVehiclePhysics::ReleaseHandbrake()
{
m_controls.handbrake = false;
}
void CFourWheelVehiclePhysics::SetHandbrake( bool bBrake )
{
m_controls.handbrake = bBrake;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::EnableMotion( void )
{
for( int iWheel = 0; iWheel < m_wheelCount; ++iWheel )
{
m_pWheels[iWheel]->EnableMotion( true );
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::DisableMotion( void )
{
Vector vecZero( 0.0f, 0.0f, 0.0f );
AngularImpulse angNone( 0.0f, 0.0f, 0.0f );
for( int iWheel = 0; iWheel < m_wheelCount; ++iWheel )
{
m_pWheels[iWheel]->SetVelocity( &vecZero, &angNone );
m_pWheels[iWheel]->EnableMotion( false );
}
}
float CFourWheelVehiclePhysics::GetHLSpeed() const
{
const vehicle_operatingparams_t &carState = m_pVehicle->GetOperatingParams();
return carState.speed;
}
float CFourWheelVehiclePhysics::GetSteering() const
{
return m_controls.steering;
}
float CFourWheelVehiclePhysics::GetSteeringDegrees() const
{
const vehicleparams_t vehicleParams = m_pVehicle->GetVehicleParams();
return vehicleParams.steering.degrees;
}
#define STEERING_BASE_RATE 2.0f
#define STEERING_REST_DECAY 0.5f
#define STEERING_REST_EPS 0.001f
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SteeringRest( float carSpeed, const vehicleparams_t &vehicleData )
{
float flSteeringRate = STEERING_BASE_RATE;
flSteeringRate *= gpGlobals->frametime;
// At rest.
float flSteering = m_controls.steering;
if ( fabsf( flSteering ) < STEERING_REST_EPS )
{
m_controls.steering = 0.0f;
return;
}
// Left and right reduce by 1/2 each time.
m_controls.steering *= ( STEERING_REST_DECAY * vehicleData.steering.steeringRestFactor );
m_nTurnLeftCount = 2;
m_nTurnRightCount = 2;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SteeringTurn( float carSpeed, const vehicleparams_t &vehicleData, bool bTurnLeft )
{
float flSteeringRate = STEERING_BASE_RATE;
if ( bTurnLeft )
{
// TODO: change the log function to an approx.
m_nTurnLeftCount = clamp( m_nTurnLeftCount, 2, 30 );
flSteeringRate *= log( (float) m_nTurnLeftCount );
flSteeringRate *= gpGlobals->frametime;
SetSteering( -1, flSteeringRate );
m_nTurnLeftCount++;
m_nTurnRightCount = 2;
}
else
{
// TODO: change the log function to an approx.
m_nTurnRightCount = clamp( m_nTurnRightCount, 2, 30 );
flSteeringRate *= log( (float) m_nTurnRightCount );
flSteeringRate *= gpGlobals->frametime;
SetSteering( 1, flSteeringRate );
m_nTurnLeftCount = 2;
m_nTurnRightCount++;
}
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SteeringTurnAnalog( float carSpeed, const vehicleparams_t &vehicleData, float sidemove )
{
// OLD Code
#if 0
float flSteeringRate = STEERING_BASE_RATE;
float factor = clamp( fabs( sidemove ) / STICK_EXTENTS, 0.0f, 1.0f );
factor *= 30;
flSteeringRate *= log( factor );
flSteeringRate *= gpGlobals->frametime;
SetSteering( sidemove < 0.0f ? -1 : 1, flSteeringRate );
#else
// This is tested with gamepads with analog sticks. It gives full analog control
// allowing the player to hold shallow turns.
float steering = sidemove / STICK_EXTENTS;
steering = clamp( steering, -1.0f, 1.0f );
SetSteering( steering, 0 );
#endif
// Neutralize
m_nTurnLeftCount = 2;
m_nTurnRightCount = 2;
}
//-----------------------------------------------------------------------------
// Methods related to actually driving the vehicle
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::UpdateDriverControls( CUserCmd *cmd, float flFrameTime )
{
int nButtons = cmd->buttons;
// Get vehicle data.
const vehicle_operatingparams_t &carState = m_pVehicle->GetOperatingParams();
const vehicleparams_t &vehicleData = m_pVehicle->GetVehicleParams();
// Get current speed in miles/hour.
float flCarSign = carState.speed >= 0.0f ? 1.0f : -1.0f;
float carSpeed = fabs(INS2MPH(carState.speed));
#ifdef _XBOX
float in = cmd->sidemove;
float out;
if( cmd->forwardmove >= 0.0f )
{
bool negative = (in < 0);
in = fabs(in);
if( in <= 150 )
{
out = RemapVal( in, 0, 150, 0, 100 );
}
else
{
out = RemapVal( in, 150, 400, 100, 400 );
}
if( negative )
{
out = -out;
}
cmd->sidemove = out;
}
// If going forward and turning hard, keep the throttle applied.
if( xbox_autothrottle.GetBool() && cmd->forwardmove > 0.0f )
{
if( carSpeed > GetMaxSpeed() * 0.75 )
{
if( fabs(cmd->sidemove) > cmd->forwardmove )
{
cmd->forwardmove = STICK_EXTENTS;
}
}
}
#endif//XBOX
#if 0
// Set save data.
m_nLastSpeed = m_nSpeed;
m_nSpeed = (int)carSpeed;
m_nRPM = (int)carState.engineRPM;
m_nHasBoost = vehicleData.engine.boostDelay; // if we have any boost delay, vehicle has boost ability
#endif
// If changing direction, use default "return to zero" speed to more quickly transition.
if ( ( nButtons & IN_MOVELEFT ) || ( nButtons & IN_MOVERIGHT ) )
{
SteeringTurn( carSpeed, vehicleData, ( ( nButtons & IN_MOVELEFT ) != 0 ) );
}
else if ( cmd->sidemove != 0.0f )
{
SteeringTurnAnalog( carSpeed, vehicleData, cmd->sidemove );
}
else
{
SteeringRest( carSpeed, vehicleData );
}
// Set vehicle control inputs.
m_controls.boost = 0;
m_controls.handbrake = false;
m_controls.handbrakeLeft = false;
m_controls.handbrakeRight = false;
m_controls.brakepedal = false;
bool bThrottle;
//-------------------------------------------------------------------------
// Analog throttle biasing - This code gives the player a bit of control stick
// 'slop' in the opposite direction that they are driving. If a player is
// driving forward and makes a hard turn in which the stick actually goes
// below neutral (toward reverse), this code continues to propel the car
// forward unless the player makes a significant motion towards reverse.
// (The inverse is true when driving in reverse and the stick is moved slightly forward)
//-------------------------------------------------------------------------
CBaseEntity *pDriver = m_pOuterServerVehicle->GetDriver();
CBasePlayer *pPlayerDriver;
float flBiasThreshold = xbox_throttlebias.GetFloat();
if( pDriver && pDriver->IsPlayer() )
{
pPlayerDriver = dynamic_cast<CBasePlayer*>(pDriver);
if( cmd->forwardmove == 0.0f && (fabs(cmd->sidemove) < 200.0f) )
{
// If the stick goes neutral, clear out the bias. When the bias is neutral, it will begin biasing
// in whichever direction the user next presses the analog stick.
pPlayerDriver->SetVehicleAnalogControlBias( VEHICLE_ANALOG_BIAS_NONE );
}
else if( cmd->forwardmove > 0.0f)
{
if( pPlayerDriver->GetVehicleAnalogControlBias() == VEHICLE_ANALOG_BIAS_REVERSE )
{
// Player is pushing forward, but the controller is currently biased for reverse driving.
// Must pass a threshold to be accepted as forward input. Otherwise we just spoof a reduced reverse input
// to keep the car moving in the direction the player probably expects.
if( cmd->forwardmove < flBiasThreshold )
{
cmd->forwardmove = -xbox_throttlespoof.GetFloat();
}
else
{
// Passed the threshold. Allow the direction change to occur.
pPlayerDriver->SetVehicleAnalogControlBias( VEHICLE_ANALOG_BIAS_FORWARD );
}
}
else if( pPlayerDriver->GetVehicleAnalogControlBias() == VEHICLE_ANALOG_BIAS_NONE )
{
pPlayerDriver->SetVehicleAnalogControlBias( VEHICLE_ANALOG_BIAS_FORWARD );
}
}
else if( cmd->forwardmove < 0.0f )
{
if( pPlayerDriver->GetVehicleAnalogControlBias() == VEHICLE_ANALOG_BIAS_FORWARD )
{
// Inverse of above logic
if( cmd->forwardmove > -flBiasThreshold )
{
cmd->forwardmove = xbox_throttlespoof.GetFloat();
}
else
{
pPlayerDriver->SetVehicleAnalogControlBias( VEHICLE_ANALOG_BIAS_REVERSE );
}
}
else if( pPlayerDriver->GetVehicleAnalogControlBias() == VEHICLE_ANALOG_BIAS_NONE )
{
pPlayerDriver->SetVehicleAnalogControlBias( VEHICLE_ANALOG_BIAS_REVERSE );
}
}
}
#ifdef _XBOX
//=========================
//=========================
if( cmd->forwardmove > 0.0f )
{
float flAnalogThrottle = cmd->forwardmove / STICK_EXTENTS;
flAnalogThrottle = clamp( flAnalogThrottle, 0.25f, 1.0f );
bThrottle = true;
if ( m_controls.throttle < 0 )
{
m_controls.throttle = 0;
}
float flMaxThrottle = MAX( 0.1, m_maxThrottle - ( m_maxThrottle * m_flThrottleReduction ) );
m_controls.throttle = Approach( flMaxThrottle * flAnalogThrottle, m_controls.throttle, flFrameTime * m_throttleRate );
// Apply the brake.
if ( ( flCarSign < 0.0f ) && m_controls.bHasBrakePedal )
{
m_controls.brake = Approach( BRAKE_MAX_VALUE, m_controls.brake, flFrameTime * r_vehicleBrakeRate.GetFloat() * BRAKE_BACK_FORWARD_SCALAR );
m_controls.brakepedal = true;
m_controls.throttle = 0.0f;
bThrottle = false;
}
else
{
m_controls.brake = 0.0f;
}
}
else if( cmd->forwardmove < 0.0f )
{
float flAnalogBrake = fabs(cmd->forwardmove / STICK_EXTENTS);
flAnalogBrake = clamp( flAnalogBrake, 0.25f, 1.0f );
bThrottle = true;
if ( m_controls.throttle > 0 )
{
m_controls.throttle = 0;
}
float flMaxThrottle = MIN( -0.1, m_flMaxRevThrottle - ( m_flMaxRevThrottle * m_flThrottleReduction ) );
m_controls.throttle = Approach( flMaxThrottle * flAnalogBrake, m_controls.throttle, flFrameTime * m_throttleRate );
// Apply the brake.
if ( ( flCarSign > 0.0f ) && m_controls.bHasBrakePedal )
{
m_controls.brake = Approach( BRAKE_MAX_VALUE, m_controls.brake, flFrameTime * r_vehicleBrakeRate.GetFloat() );
m_controls.brakepedal = true;
m_controls.throttle = 0.0f;
bThrottle = false;
}
else
{
m_controls.brake = 0.0f;
}
}
else
{
bThrottle = false;
m_controls.throttle = 0;
m_controls.brake = 0.0f;
}
//=========================
//=========================
#else
if ( nButtons & IN_FORWARD )
{
bThrottle = true;
if ( m_controls.throttle < 0 )
{
m_controls.throttle = 0;
}
float flMaxThrottle = MAX( 0.1, m_maxThrottle - ( m_maxThrottle * m_flThrottleReduction ) );
m_controls.throttle = Approach( flMaxThrottle, m_controls.throttle, flFrameTime * m_throttleRate );
// Apply the brake.
if ( ( flCarSign < 0.0f ) && m_controls.bHasBrakePedal )
{
m_controls.brake = Approach( BRAKE_MAX_VALUE, m_controls.brake, flFrameTime * r_vehicleBrakeRate.GetFloat() * BRAKE_BACK_FORWARD_SCALAR );
m_controls.brakepedal = true;
m_controls.throttle = 0.0f;
bThrottle = false;
}
else
{
m_controls.brake = 0.0f;
}
}
else if ( nButtons & IN_BACK )
{
bThrottle = true;
if ( m_controls.throttle > 0 )
{
m_controls.throttle = 0;
}
float flMaxThrottle = MIN( -0.1, m_flMaxRevThrottle - ( m_flMaxRevThrottle * m_flThrottleReduction ) );
m_controls.throttle = Approach( flMaxThrottle, m_controls.throttle, flFrameTime * m_throttleRate );
// Apply the brake.
if ( ( flCarSign > 0.0f ) && m_controls.bHasBrakePedal )
{
m_controls.brake = Approach( BRAKE_MAX_VALUE, m_controls.brake, flFrameTime * r_vehicleBrakeRate.GetFloat() );
m_controls.brakepedal = true;
m_controls.throttle = 0.0f;
bThrottle = false;
}
else
{
m_controls.brake = 0.0f;
}
}
else
{
bThrottle = false;
m_controls.throttle = 0;
m_controls.brake = 0.0f;
}
#endif//_XBOX
if ( ( nButtons & IN_SPEED ) && !IsEngineDisabled() )
{
m_controls.boost = 1.0f;
}
// Using has brakepedal for handbrake as well.
if ( ( nButtons & IN_JUMP ) && m_controls.bHasBrakePedal )
{
m_controls.handbrake = true;
if ( nButtons & IN_MOVELEFT )
{
m_controls.handbrakeLeft = true;
}
else if ( nButtons & IN_MOVERIGHT )
{
m_controls.handbrakeRight = true;
}
// Prevent playing of the engine revup when we're braking
bThrottle = false;
}
if ( IsEngineDisabled() )
{
m_controls.throttle = 0.0f;
m_controls.handbrake = true;
bThrottle = false;
}
// throttle sounds
// If we dropped a bunch of speed, restart the throttle
if ( bThrottle && (m_nLastSpeed > m_nSpeed && (m_nLastSpeed - m_nSpeed > 10)) )
{
m_bLastThrottle = false;
}
// throttle down now but not before??? (or we're braking)
if ( !m_controls.handbrake && !m_controls.brakepedal && bThrottle && !m_bLastThrottle )
{
m_throttleStartTime = gpGlobals->curtime; // need to track how long throttle is down
m_bLastThrottle = true;
}
// throttle up now but not before??
else if ( !bThrottle && m_bLastThrottle && IsEngineDisabled() == false )
{
m_throttleActiveTime = gpGlobals->curtime - m_throttleStartTime;
m_bLastThrottle = false;
}
float flSpeedPercentage = clamp( m_nSpeed / m_flMaxSpeed, 0, 1 );
vbs_sound_update_t params;
params.Defaults();
params.bReverse = (m_controls.throttle < 0);
params.bThrottleDown = bThrottle;
params.bTurbo = IsBoosting();
params.bVehicleInWater = m_pOuterServerVehicle->IsVehicleBodyInWater();
params.flCurrentSpeedFraction = flSpeedPercentage;
params.flFrameTime = flFrameTime;
params.flWorldSpaceSpeed = carState.speed;
m_pOuterServerVehicle->SoundUpdate( params );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::AddThrottleReduction( float flPercentage )
{
// We allow the speed reduction to go over 1, but extras have no effect.
m_flThrottleReduction = m_flThrottleReduction + flPercentage;
//Msg("Added speed reduction. Now %.2f\n", m_flThrottleReduction );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::RemoveThrottleReduction( float flPercentage )
{
m_flThrottleReduction = MAX( 0, m_flThrottleReduction - flPercentage );
//Msg("Removed speed reduction. Now %.2f\n", m_flThrottleReduction );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CFourWheelVehiclePhysics::IsBoosting( void )
{
const vehicleparams_t *pVehicleParams = &m_pVehicle->GetVehicleParams();
const vehicle_operatingparams_t *pVehicleOperating = &m_pVehicle->GetOperatingParams();
if ( pVehicleParams && pVehicleOperating )
{
if ( ( pVehicleOperating->boostDelay - pVehicleParams->engine.boostDelay ) > 0.0f )
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFourWheelVehiclePhysics::SetDisableEngine( bool bDisable )
{
// Set the engine state.
m_pVehicle->SetEngineDisabled( bDisable );
}
static int AddPhysToList( IPhysicsObject **pList, int listMax, int count, IPhysicsObject *pPhys )
{
if ( pPhys )
{
if ( count < listMax )
{
pList[count] = pPhys;
count++;
}
}
return count;
}
int CFourWheelVehiclePhysics::VPhysicsGetObjectList( IPhysicsObject **pList, int listMax )
{
int count = 0;
// add the body
count = AddPhysToList( pList, listMax, count, m_pOuter->VPhysicsGetObject() );
for ( int i = 0; i < 4; i++ )
{
count = AddPhysToList( pList, listMax, count, m_pWheels[i] );
}
return count;
}