1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2024-12-23 01:59:43 +08:00
hl2sdk/public/jigglebones.cpp

549 lines
17 KiB
C++

//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
// $NoKeywords: $
//===========================================================================//
#include "tier1/convar.h"
#include "jigglebones.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
ConVar JiggleBoneDebug( "cl_jiggle_bone_debug", "0", FCVAR_CHEAT, "Display physics-based 'jiggle bone' debugging information" );
ConVar JiggleBoneDebugYawConstraints( "cl_jiggle_bone_debug_yaw_constraints", "0", FCVAR_CHEAT, "Display physics-based 'jiggle bone' debugging information" );
ConVar JiggleBoneDebugPitchConstraints( "cl_jiggle_bone_debug_pitch_constraints", "0", FCVAR_CHEAT, "Display physics-based 'jiggle bone' debugging information" );
class CDummyOverlay
{
public:
void AddLineOverlay(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration) {};
};
CDummyOverlay *debugoverlay = new CDummyOverlay;
//-----------------------------------------------------------------------------
JiggleData * CJiggleBones::GetJiggleData( int bone, float currenttime, const Vector &initBasePos, const Vector &initTipPos )
{
FOR_EACH_LL( m_jiggleBoneState, it )
{
if ( m_jiggleBoneState[it].bone == bone )
{
return &m_jiggleBoneState[it];
}
}
JiggleData data;
data.Init( bone, currenttime, initBasePos, initTipPos );
int idx = m_jiggleBoneState.AddToHead( data );
if ( idx == m_jiggleBoneState.InvalidIndex() )
return NULL;
return &m_jiggleBoneState[idx];
}
//-----------------------------------------------------------------------------
/**
* Do spring physics calculations and update "jiggle bone" matrix
* (Michael Booth, Turtle Rock Studios)
*/
void CJiggleBones::BuildJiggleTransformations( int boneIndex, float currenttime, const mstudiojigglebone_t *jiggleInfo, const matrix3x4_t &goalMX, matrix3x4_t &boneMX )
{
Vector goalBasePosition;
MatrixPosition( goalMX, goalBasePosition );
Vector goalForward, goalUp, goalLeft;
MatrixGetColumn( goalMX, 0, goalLeft );
MatrixGetColumn( goalMX, 1, goalUp );
MatrixGetColumn( goalMX, 2, goalForward );
// compute goal tip position
Vector goalTip = goalBasePosition + jiggleInfo->length * goalForward;
JiggleData *data = GetJiggleData( boneIndex, currenttime, goalBasePosition, goalTip );
if ( !data )
{
return;
}
if ( currenttime - data->lastUpdate > 0.5f )
{
data->Init( boneIndex, currenttime, goalBasePosition, goalTip );
}
//Vector bodyVel;
//EstimateAbsVelocity( bodyVel );
// limit maximum deltaT to avoid simulation blowups
// if framerate gets very low, jiggle will run in slow motion
const float thirtyHZ = 0.0333f;
const float thousandHZ = 0.001f;
float deltaT = clamp( currenttime - data->lastUpdate, thousandHZ, thirtyHZ );
data->lastUpdate = currenttime;
//
// Bone tip flex
//
if (jiggleInfo->flags & (JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID))
{
// apply gravity in global space
data->tipAccel.z -= jiggleInfo->tipMass;
if (jiggleInfo->flags & JIGGLE_IS_FLEXIBLE)
{
// decompose into local coordinates
Vector error = goalTip - data->tipPos;
Vector localError;
localError.x = DotProduct( goalLeft, error );
localError.y = DotProduct( goalUp, error );
localError.z = DotProduct( goalForward, error );
Vector localVel;
localVel.x = DotProduct( goalLeft, data->tipVel );
localVel.y = DotProduct( goalUp, data->tipVel );
// yaw spring
float yawAccel = jiggleInfo->yawStiffness * localError.x - jiggleInfo->yawDamping * localVel.x;
// pitch spring
float pitchAccel = jiggleInfo->pitchStiffness * localError.y - jiggleInfo->pitchDamping * localVel.y;
if (jiggleInfo->flags & JIGGLE_HAS_LENGTH_CONSTRAINT)
{
// drive tip towards goal tip position
data->tipAccel += yawAccel * goalLeft + pitchAccel * goalUp;
}
else
{
// allow flex along length of spring
localVel.z = DotProduct( goalForward, data->tipVel );
// along spring
float alongAccel = jiggleInfo->alongStiffness * localError.z - jiggleInfo->alongDamping * localVel.z;
// drive tip towards goal tip position
data->tipAccel += yawAccel * goalLeft + pitchAccel * goalUp + alongAccel * goalForward;
}
}
// simple euler integration
data->tipVel += data->tipAccel * deltaT;
data->tipPos += data->tipVel * deltaT;
// clear this timestep's accumulated accelerations
data->tipAccel = vec3_origin;
//
// Apply optional constraints
//
if (jiggleInfo->flags & (JIGGLE_HAS_YAW_CONSTRAINT | JIGGLE_HAS_PITCH_CONSTRAINT))
{
// find components of spring vector in local coordinate system
Vector along = data->tipPos - goalBasePosition;
Vector localAlong;
localAlong.x = DotProduct( goalLeft, along );
localAlong.y = DotProduct( goalUp, along );
localAlong.z = DotProduct( goalForward, along );
Vector localVel;
localVel.x = DotProduct( goalLeft, data->tipVel );
localVel.y = DotProduct( goalUp, data->tipVel );
localVel.z = DotProduct( goalForward, data->tipVel );
if (jiggleInfo->flags & JIGGLE_HAS_YAW_CONSTRAINT)
{
// enforce yaw constraints in local XZ plane
float yawError = atan2( localAlong.x, localAlong.z );
bool isAtLimit = false;
float yaw = 0.0f;
if (yawError < jiggleInfo->minYaw)
{
// at angular limit
isAtLimit = true;
yaw = jiggleInfo->minYaw;
}
else if (yawError > jiggleInfo->maxYaw)
{
// at angular limit
isAtLimit = true;
yaw = jiggleInfo->maxYaw;
}
if (isAtLimit)
{
float sy, cy;
SinCos( yaw, &sy, &cy );
// yaw matrix
matrix3x4_t yawMatrix;
yawMatrix[0][0] = cy;
yawMatrix[1][0] = 0;
yawMatrix[2][0] = -sy;
yawMatrix[0][1] = 0;
yawMatrix[1][1] = 1.0f;
yawMatrix[2][1] = 0;
yawMatrix[0][2] = sy;
yawMatrix[1][2] = 0;
yawMatrix[2][2] = cy;
yawMatrix[0][3] = 0;
yawMatrix[1][3] = 0;
yawMatrix[2][3] = 0;
// global coordinates of limit
matrix3x4_t limitMatrix;
ConcatTransforms( goalMX, yawMatrix, limitMatrix );
Vector limitLeft( limitMatrix.m_flMatVal[0][0],
limitMatrix.m_flMatVal[1][0],
limitMatrix.m_flMatVal[2][0] );
Vector limitUp( limitMatrix.m_flMatVal[0][1],
limitMatrix.m_flMatVal[1][1],
limitMatrix.m_flMatVal[2][1] );
Vector limitForward( limitMatrix.m_flMatVal[0][2],
limitMatrix.m_flMatVal[1][2],
limitMatrix.m_flMatVal[2][2] );
if (JiggleBoneDebugYawConstraints.GetBool())
{
float dT = 0.01f;
const float axisSize = 10.0f;
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitLeft, 0, 255, 255, true, dT );
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitUp, 255, 255, 0, true, dT );
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitForward, 255, 0, 255, true, dT );
}
Vector limitAlong( DotProduct( limitLeft, along ),
DotProduct( limitUp, along ),
DotProduct( limitForward, along ) );
// clip to limit plane
data->tipPos = goalBasePosition + limitAlong.y * limitUp + limitAlong.z * limitForward;
// yaw friction - rubbing along limit plane
Vector limitVel;
limitVel.y = DotProduct( limitUp, data->tipVel );
limitVel.z = DotProduct( limitForward, data->tipVel );
data->tipAccel -= jiggleInfo->yawFriction * (limitVel.y * limitUp + limitVel.z * limitForward);
// update velocity reaction to hitting constraint
data->tipVel = -jiggleInfo->yawBounce * limitVel.x * limitLeft + limitVel.y * limitUp + limitVel.z * limitForward;
// update along vectors for use by pitch constraint
along = data->tipPos - goalBasePosition;
localAlong.x = DotProduct( goalLeft, along );
localAlong.y = DotProduct( goalUp, along );
localAlong.z = DotProduct( goalForward, along );
localVel.x = DotProduct( goalLeft, data->tipVel );
localVel.y = DotProduct( goalUp, data->tipVel );
localVel.z = DotProduct( goalForward, data->tipVel );
}
}
if (jiggleInfo->flags & JIGGLE_HAS_PITCH_CONSTRAINT)
{
// enforce pitch constraints in local YZ plane
float pitchError = atan2( localAlong.y, localAlong.z );
bool isAtLimit = false;
float pitch = 0.0f;
if (pitchError < jiggleInfo->minPitch)
{
// at angular limit
isAtLimit = true;
pitch = jiggleInfo->minPitch;
}
else if (pitchError > jiggleInfo->maxPitch)
{
// at angular limit
isAtLimit = true;
pitch = jiggleInfo->maxPitch;
}
if (isAtLimit)
{
float sp, cp;
SinCos( pitch, &sp, &cp );
// pitch matrix
matrix3x4_t pitchMatrix;
pitchMatrix[0][0] = 1.0f;
pitchMatrix[1][0] = 0;
pitchMatrix[2][0] = 0;
pitchMatrix[0][1] = 0;
pitchMatrix[1][1] = cp;
pitchMatrix[2][1] = -sp;
pitchMatrix[0][2] = 0;
pitchMatrix[1][2] = sp;
pitchMatrix[2][2] = cp;
pitchMatrix[0][3] = 0;
pitchMatrix[1][3] = 0;
pitchMatrix[2][3] = 0;
// global coordinates of limit
matrix3x4_t limitMatrix;
ConcatTransforms( goalMX, pitchMatrix, limitMatrix );
Vector limitLeft( limitMatrix.m_flMatVal[0][0],
limitMatrix.m_flMatVal[1][0],
limitMatrix.m_flMatVal[2][0] );
Vector limitUp( limitMatrix.m_flMatVal[0][1],
limitMatrix.m_flMatVal[1][1],
limitMatrix.m_flMatVal[2][1] );
Vector limitForward( limitMatrix.m_flMatVal[0][2],
limitMatrix.m_flMatVal[1][2],
limitMatrix.m_flMatVal[2][2] );
if (JiggleBoneDebugPitchConstraints.GetBool())
{
float dT = 0.01f;
const float axisSize = 10.0f;
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitLeft, 0, 255, 255, true, dT );
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitUp, 255, 255, 0, true, dT );
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * limitForward, 255, 0, 255, true, dT );
}
Vector limitAlong( DotProduct( limitLeft, along ),
DotProduct( limitUp, along ),
DotProduct( limitForward, along ) );
// clip to limit plane
data->tipPos = goalBasePosition + limitAlong.x * limitLeft + limitAlong.z * limitForward;
// pitch friction - rubbing along limit plane
Vector limitVel;
limitVel.y = DotProduct( limitUp, data->tipVel );
limitVel.z = DotProduct( limitForward, data->tipVel );
data->tipAccel -= jiggleInfo->pitchFriction * (limitVel.x * limitLeft + limitVel.z * limitForward);
// update velocity reaction to hitting constraint
data->tipVel = limitVel.x * limitLeft - jiggleInfo->pitchBounce * limitVel.y * limitUp + limitVel.z * limitForward;
}
}
}
// needed for matrix assembly below
Vector forward = data->tipPos - goalBasePosition;
forward.NormalizeInPlace();
if (jiggleInfo->flags & JIGGLE_HAS_ANGLE_CONSTRAINT)
{
// enforce max angular error
Vector error = goalTip - data->tipPos;
float dot = DotProduct( forward, goalForward );
float angleBetween = acos( dot );
if (dot < 0.0f)
{
angleBetween = 2.0f * M_PI - angleBetween;
}
if (angleBetween > jiggleInfo->angleLimit)
{
// at angular limit
float maxBetween = jiggleInfo->length * sin( jiggleInfo->angleLimit );
Vector delta = goalTip - data->tipPos;
delta.NormalizeInPlace();
data->tipPos = goalTip - maxBetween * delta;
forward = data->tipPos - goalBasePosition;
forward.NormalizeInPlace();
}
}
if (jiggleInfo->flags & JIGGLE_HAS_LENGTH_CONSTRAINT)
{
// enforce spring length
data->tipPos = goalBasePosition + jiggleInfo->length * forward;
// zero velocity along forward bone axis
data->tipVel -= DotProduct( data->tipVel, forward ) * forward;
}
//
// Build bone matrix to align along current tip direction
//
Vector left = CrossProduct( goalUp, forward );
left.NormalizeInPlace();
Vector up = CrossProduct( forward, left );
boneMX[0][0] = left.x;
boneMX[1][0] = left.y;
boneMX[2][0] = left.z;
boneMX[0][1] = up.x;
boneMX[1][1] = up.y;
boneMX[2][1] = up.z;
boneMX[0][2] = forward.x;
boneMX[1][2] = forward.y;
boneMX[2][2] = forward.z;
boneMX[0][3] = goalBasePosition.x;
boneMX[1][3] = goalBasePosition.y;
boneMX[2][3] = goalBasePosition.z;
}
//
// Bone base flex
//
if (jiggleInfo->flags & JIGGLE_HAS_BASE_SPRING)
{
// gravity
data->baseAccel.z -= jiggleInfo->baseMass;
// simple spring
Vector error = goalBasePosition - data->basePos;
data->baseAccel += jiggleInfo->baseStiffness * error - jiggleInfo->baseDamping * data->baseVel;
data->baseVel += data->baseAccel * deltaT;
data->basePos += data->baseVel * deltaT;
// clear this timestep's accumulated accelerations
data->baseAccel = vec3_origin;
// constrain to limits
error = data->basePos - goalBasePosition;
Vector localError;
localError.x = DotProduct( goalLeft, error );
localError.y = DotProduct( goalUp, error );
localError.z = DotProduct( goalForward, error );
Vector localVel;
localVel.x = DotProduct( goalLeft, data->baseVel );
localVel.y = DotProduct( goalUp, data->baseVel );
localVel.z = DotProduct( goalForward, data->baseVel );
// horizontal constraint
if (localError.x < jiggleInfo->baseMinLeft)
{
localError.x = jiggleInfo->baseMinLeft;
// friction
data->baseAccel -= jiggleInfo->baseLeftFriction * (localVel.y * goalUp + localVel.z * goalForward);
}
else if (localError.x > jiggleInfo->baseMaxLeft)
{
localError.x = jiggleInfo->baseMaxLeft;
// friction
data->baseAccel -= jiggleInfo->baseLeftFriction * (localVel.y * goalUp + localVel.z * goalForward);
}
if (localError.y < jiggleInfo->baseMinUp)
{
localError.y = jiggleInfo->baseMinUp;
// friction
data->baseAccel -= jiggleInfo->baseUpFriction * (localVel.x * goalLeft + localVel.z * goalForward);
}
else if (localError.y > jiggleInfo->baseMaxUp)
{
localError.y = jiggleInfo->baseMaxUp;
// friction
data->baseAccel -= jiggleInfo->baseUpFriction * (localVel.x * goalLeft + localVel.z * goalForward);
}
if (localError.z < jiggleInfo->baseMinForward)
{
localError.z = jiggleInfo->baseMinForward;
// friction
data->baseAccel -= jiggleInfo->baseForwardFriction * (localVel.x * goalLeft + localVel.y * goalUp);
}
else if (localError.z > jiggleInfo->baseMaxForward)
{
localError.z = jiggleInfo->baseMaxForward;
// friction
data->baseAccel -= jiggleInfo->baseForwardFriction * (localVel.x * goalLeft + localVel.y * goalUp);
}
data->basePos = goalBasePosition + localError.x * goalLeft + localError.y * goalUp + localError.z * goalForward;
// fix up velocity
data->baseVel = (data->basePos - data->baseLastPos) / deltaT;
data->baseLastPos = data->basePos;
if (!(jiggleInfo->flags & (JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID)))
{
// no tip flex - use bone's goal orientation
boneMX = goalMX;
}
// update bone position
MatrixSetColumn( data->basePos, 3, boneMX );
}
else if (!(jiggleInfo->flags & (JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID)))
{
// no flex at all - just use goal matrix
boneMX = goalMX;
}
// debug display
if ( JiggleBoneDebug.GetBool() )
{
float dT = 0.01f;
const float axisSize = 5.0f;
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * goalLeft, 255, 0, 0, true, dT );
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * goalUp, 0, 255, 0, true, dT );
debugoverlay->AddLineOverlay( goalBasePosition, goalBasePosition + axisSize * goalForward, 0, 0, 255, true, dT );
const float sz = 1.0f;
if (jiggleInfo->flags & (JIGGLE_IS_FLEXIBLE | JIGGLE_IS_RIGID))
{
debugoverlay->AddLineOverlay( goalBasePosition,
data->tipPos, 255, 255, 0, true, dT );
debugoverlay->AddLineOverlay( data->tipPos + Vector( -sz, 0, 0 ),
data->tipPos + Vector( sz, 0, 0 ), 0, 255, 255, true, dT );
debugoverlay->AddLineOverlay( data->tipPos + Vector( 0, -sz, 0 ),
data->tipPos + Vector( 0, sz, 0 ), 0, 255, 255, true, dT );
debugoverlay->AddLineOverlay( data->tipPos + Vector( 0, 0, -sz ),
data->tipPos + Vector( 0, 0, sz ), 0, 255, 255, true, dT );
}
if (jiggleInfo->flags & JIGGLE_HAS_BASE_SPRING)
{
debugoverlay->AddLineOverlay( data->basePos + Vector( -sz, 0, 0 ),
data->basePos + Vector( sz, 0, 0 ), 255, 0, 255, true, dT );
debugoverlay->AddLineOverlay( data->basePos + Vector( 0, -sz, 0 ),
data->basePos + Vector( 0, sz, 0 ), 255, 0, 255, true, dT );
debugoverlay->AddLineOverlay( data->basePos + Vector( 0, 0, -sz ),
data->basePos + Vector( 0, 0, sz ), 255, 0, 255, true, dT );
}
}
}