//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======// // // Purpose: A fast stack memory allocator that uses virtual memory if available // //===========================================================================// #ifndef MEMSTACK_H #define MEMSTACK_H #if defined( _WIN32 ) #pragma once #endif #include "tier1/utlvector.h" //----------------------------------------------------------------------------- typedef unsigned MemoryStackMark_t; class CMemoryStack { public: CMemoryStack(); ~CMemoryStack(); bool Init( unsigned maxSize = 0, unsigned commitSize = 0, unsigned initialCommit = 0, unsigned alignment = 16 ); #ifdef _X360 bool InitPhysical( uint size, uint nBaseAddrAlignment, uint alignment = 16, uint32 nAdditionalFlags = 0 ); #endif void Term(); int GetSize(); int GetMaxSize(); int GetUsed(); void *Alloc( unsigned bytes, bool bClear = false ) RESTRICT; MemoryStackMark_t GetCurrentAllocPoint(); void FreeToAllocPoint( MemoryStackMark_t mark, bool bDecommit = true ); void FreeAll( bool bDecommit = true ); void Access( void **ppRegion, unsigned *pBytes ); void PrintContents(); void *GetBase(); const void *GetBase() const { return const_cast(this)->GetBase(); } bool CommitSize( int ); private: bool CommitTo( byte * ) RESTRICT; void RegisterAllocation(); void RegisterDeallocation(); byte *m_pNextAlloc; byte *m_pCommitLimit; byte *m_pAllocLimit; byte *m_pBase; bool m_bRegisteredAllocation; unsigned m_maxSize; unsigned m_alignment; #ifdef _WIN32 unsigned m_commitSize; unsigned m_minCommit; #endif #ifdef _X360 bool m_bPhysical; #endif }; //------------------------------------- FORCEINLINE void *CMemoryStack::Alloc( unsigned bytes, bool bClear ) RESTRICT { Assert( m_pBase ); int alignment = m_alignment; if ( bytes ) { bytes = AlignValue( bytes, alignment ); } else { bytes = alignment; } void *pResult = m_pNextAlloc; byte *pNextAlloc = m_pNextAlloc + bytes; if ( pNextAlloc > m_pCommitLimit ) { if ( !CommitTo( pNextAlloc ) ) { return NULL; } } if ( bClear ) { memset( pResult, 0, bytes ); } m_pNextAlloc = pNextAlloc; return pResult; } //------------------------------------- inline bool CMemoryStack::CommitSize( int nBytes ) { if ( GetSize() != nBytes ) { return CommitTo( m_pBase + nBytes ); } return true; } //------------------------------------- inline int CMemoryStack::GetMaxSize() { return m_maxSize; } //------------------------------------- inline int CMemoryStack::GetUsed() { return ( m_pNextAlloc - m_pBase ); } //------------------------------------- inline void *CMemoryStack::GetBase() { return m_pBase; } //------------------------------------- inline MemoryStackMark_t CMemoryStack::GetCurrentAllocPoint() { return ( m_pNextAlloc - m_pBase ); } //----------------------------------------------------------------------------- // The CUtlMemoryStack class: // A fixed memory class //----------------------------------------------------------------------------- template< typename T, typename I, size_t MAX_SIZE, size_t COMMIT_SIZE = 0, size_t INITIAL_COMMIT = 0 > class CUtlMemoryStack { public: // constructor, destructor CUtlMemoryStack( int nGrowSize = 0, int nInitSize = 0 ) { m_MemoryStack.Init( MAX_SIZE * sizeof(T), COMMIT_SIZE * sizeof(T), INITIAL_COMMIT * sizeof(T), 4 ); COMPILE_TIME_ASSERT( sizeof(T) % 4 == 0 ); } CUtlMemoryStack( T* pMemory, int numElements ) { Assert( 0 ); } // Can we use this index? bool IsIdxValid( I i ) const { long x=i; return (x >= 0) && (x < m_nAllocated); } // Specify the invalid ('null') index that we'll only return on failure static const I INVALID_INDEX = ( I )-1; // For use with COMPILE_TIME_ASSERT static I InvalidIndex() { return INVALID_INDEX; } class Iterator_t { Iterator_t( I i ) : index( i ) {} I index; friend class CUtlMemoryStack; public: bool operator==( const Iterator_t it ) const { return index == it.index; } bool operator!=( const Iterator_t it ) const { return index != it.index; } }; Iterator_t First() const { return Iterator_t( m_nAllocated ? 0 : InvalidIndex() ); } Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( it.index < m_nAllocated ? it.index + 1 : InvalidIndex() ); } I GetIndex( const Iterator_t &it ) const { return it.index; } bool IsIdxAfter( I i, const Iterator_t &it ) const { return i > it.index; } bool IsValidIterator( const Iterator_t &it ) const { long x=it.index; return x >= 0 && x < m_nAllocated; } Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex() ); } // Gets the base address T* Base() { return (T*)m_MemoryStack.GetBase(); } const T* Base() const { return (const T*)m_MemoryStack.GetBase(); } // element access T& operator[]( I i ) { Assert( IsIdxValid(i) ); return Base()[i]; } const T& operator[]( I i ) const { Assert( IsIdxValid(i) ); return Base()[i]; } T& Element( I i ) { Assert( IsIdxValid(i) ); return Base()[i]; } const T& Element( I i ) const { Assert( IsIdxValid(i) ); return Base()[i]; } // Attaches the buffer to external memory.... void SetExternalBuffer( T* pMemory, int numElements ) { Assert( 0 ); } // Size int NumAllocated() const { return m_nAllocated; } int Count() const { return m_nAllocated; } // Grows the memory, so that at least allocated + num elements are allocated void Grow( int num = 1 ) { Assert( num > 0 ); m_nAllocated += num; m_MemoryStack.Alloc( num * sizeof(T) ); } // Makes sure we've got at least this much memory void EnsureCapacity( int num ) { Assert( num <= MAX_SIZE ); if ( m_nAllocated < num ) Grow( num - m_nAllocated ); } // Memory deallocation void Purge() { m_MemoryStack.FreeAll(); m_nAllocated = 0; } // is the memory externally allocated? bool IsExternallyAllocated() const { return false; } // Set the size by which the memory grows void SetGrowSize( int size ) {} private: CMemoryStack m_MemoryStack; int m_nAllocated; }; #ifdef _X360 //----------------------------------------------------------------------------- // A memory stack used for allocating physical memory on the 360 // Usage pattern anticipates we usually never go over the initial allocation // When we do so, we're ok with slightly slower allocation //----------------------------------------------------------------------------- class CPhysicalMemoryStack { public: CPhysicalMemoryStack(); ~CPhysicalMemoryStack(); // The physical memory stack is allocated in chunks. We will initially // allocate nInitChunkCount chunks, which will always be in memory. // When FreeAll() is called, it will free down to the initial chunk count // but not below it. bool Init( size_t nChunkSizeInBytes, size_t nAlignment, int nInitialChunkCount, uint32 nAdditionalFlags ); void Term(); size_t GetSize() const; size_t GetPeakUsed() const; size_t GetUsed() const; size_t GetFramePeakUsed() const; MemoryStackMark_t GetCurrentAllocPoint() const; void FreeToAllocPoint( MemoryStackMark_t mark, bool bUnused = true ); // bUnused is for interface compat with CMemoryStack void *Alloc( size_t nSizeInBytes, bool bClear = false ) RESTRICT; void FreeAll( bool bUnused = true ); // bUnused is for interface compat with CMemoryStack void PrintContents(); private: void *AllocFromOverflow( size_t nSizeInBytes ); struct PhysicalChunk_t { uint8 *m_pBase; uint8 *m_pNextAlloc; uint8 *m_pAllocLimit; }; PhysicalChunk_t m_InitialChunk; CUtlVector< PhysicalChunk_t > m_ExtraChunks; size_t m_nUsage; size_t m_nFramePeakUsage; size_t m_nPeakUsage; size_t m_nAlignment; size_t m_nChunkSizeInBytes; int m_nFirstAvailableChunk; int m_nAdditionalFlags; PhysicalChunk_t *m_pLastAllocedChunk; }; //------------------------------------- FORCEINLINE void *CPhysicalMemoryStack::Alloc( size_t nSizeInBytes, bool bClear ) RESTRICT { if ( nSizeInBytes ) { nSizeInBytes = AlignValue( nSizeInBytes, m_nAlignment ); } else { nSizeInBytes = m_nAlignment; } // Can't do an allocation bigger than the chunk size Assert( nSizeInBytes <= m_nChunkSizeInBytes ); void *pResult = m_InitialChunk.m_pNextAlloc; uint8 *pNextAlloc = m_InitialChunk.m_pNextAlloc + nSizeInBytes; if ( pNextAlloc <= m_InitialChunk.m_pAllocLimit ) { m_InitialChunk.m_pNextAlloc = pNextAlloc; m_pLastAllocedChunk = &m_InitialChunk; } else { pResult = AllocFromOverflow( nSizeInBytes ); } m_nUsage += nSizeInBytes; m_nFramePeakUsage = MAX( m_nUsage, m_nFramePeakUsage ); m_nPeakUsage = MAX( m_nUsage, m_nPeakUsage ); if ( bClear ) { memset( pResult, 0, nSizeInBytes ); } return pResult; } //------------------------------------- inline size_t CPhysicalMemoryStack::GetPeakUsed() const { return m_nPeakUsage; } //------------------------------------- inline size_t CPhysicalMemoryStack::GetUsed() const { return m_nUsage; } inline size_t CPhysicalMemoryStack::GetFramePeakUsed() const { return m_nFramePeakUsage; } inline MemoryStackMark_t CPhysicalMemoryStack::GetCurrentAllocPoint() const { Assert( m_pLastAllocedChunk ); return ( m_pLastAllocedChunk->m_pNextAlloc - m_pLastAllocedChunk->m_pBase ); } #endif // _X360 #endif // MEMSTACK_H