//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======// // // Purpose: Public interfaces to vphysics DLL // // $NoKeywords: $ //===========================================================================// #ifndef VPHYSICS_INTERFACE_H #define VPHYSICS_INTERFACE_H #ifdef _WIN32 #pragma once #endif #include "tier0/interface.h" #include "appframework/IAppSystem.h" #include "mathlib/vector.h" #include "mathlib/vector4d.h" #include "vcollide.h" #include "tier3/tier3.h" // ------------------------------------------------------------------------------------ // UNITS: // ------------------------------------------------------------------------------------ // NOTE: Coordinates are in HL units. 1 unit == 1 inch. X is east (forward), Y is north (left), Z is up (up) // QAngle are pitch (around y), Yaw (around Z), Roll (around X) // AngularImpulse are exponetial maps (an axis in HL units scaled by a "twist" angle in degrees) // They can be transformed like normals/covectors and added linearly // mass is kg, volume is in^3, acceleration is in/s^2, velocity is in/s // density is kg/m^3 (water ~= 998 at room temperature) // preferably, these would be in kg/in^3, but the range of those numbers makes them not very human readable // having water be about 1000 is really convenient for data entry. // Since volume is in in^3 and density is in kg/m^3: // density = (mass / volume) * CUBIC_METERS_PER_CUBIC_INCH // Force is applied using impulses (kg*in/s) // Torque is applied using impulses (kg*degrees/s) // ------------------------------------------------------------------------------------ #define METERS_PER_INCH (0.0254f) #define CUBIC_METERS_PER_CUBIC_INCH (METERS_PER_INCH*METERS_PER_INCH*METERS_PER_INCH) // 2.2 lbs / kg #define POUNDS_PER_KG (2.2f) #define KG_PER_POUND (1.0f/POUNDS_PER_KG) // convert from pounds to kg #define lbs2kg(x) ((x)*KG_PER_POUND) #define kg2lbs(x) ((x)*POUNDS_PER_KG) const float VPHYSICS_MIN_MASS = 0.1f; const float VPHYSICS_MAX_MASS = 5e4f; class IPhysicsObject; class IPhysicsEnvironment; class IPhysicsSurfaceProps; class IPhysicsConstraint; class IPhysicsConstraintGroup; class IPhysicsFluidController; class IPhysicsSpring; class IPhysicsVehicleController; class IConvexInfo; class IPhysicsObjectPairHash; class IPhysicsCollisionSet; class IPhysicsPlayerController; class IPhysicsFrictionSnapshot; struct Ray_t; struct constraint_ragdollparams_t; struct constraint_hingeparams_t; struct constraint_fixedparams_t; struct constraint_ballsocketparams_t; struct constraint_slidingparams_t; struct constraint_pulleyparams_t; struct constraint_lengthparams_t; struct constraint_groupparams_t; struct vehicleparams_t; struct matrix3x4_t; struct fluidparams_t; struct springparams_t; struct objectparams_t; struct debugcollide_t; class CGameTrace; typedef CGameTrace trace_t; struct physics_stats_t; struct physics_performanceparams_t; struct virtualmeshparams_t; //enum PhysInterfaceId_t; struct physsaveparams_t; struct physrestoreparams_t; struct physprerestoreparams_t; enum PhysInterfaceId_t { PIID_UNKNOWN, PIID_IPHYSICSOBJECT, PIID_IPHYSICSFLUIDCONTROLLER, PIID_IPHYSICSSPRING, PIID_IPHYSICSCONSTRAINTGROUP, PIID_IPHYSICSCONSTRAINT, PIID_IPHYSICSSHADOWCONTROLLER, PIID_IPHYSICSPLAYERCONTROLLER, PIID_IPHYSICSMOTIONCONTROLLER, PIID_IPHYSICSVEHICLECONTROLLER, PIID_IPHYSICSGAMETRACE, PIID_NUM_TYPES }; class ISave; class IRestore; #define VPHYSICS_DEBUG_OVERLAY_INTERFACE_VERSION "VPhysicsDebugOverlay001" abstract_class IVPhysicsDebugOverlay { public: virtual void AddEntityTextOverlay(int ent_index, int line_offset, float duration, int r, int g, int b, int a, const char *format, ...) = 0; virtual void AddBoxOverlay(const Vector& origin, const Vector& mins, const Vector& max, QAngle const& orientation, int r, int g, int b, int a, float duration) = 0; virtual void AddTriangleOverlay(const Vector& p1, const Vector& p2, const Vector& p3, int r, int g, int b, int a, bool noDepthTest, float duration) = 0; virtual void AddLineOverlay(const Vector& origin, const Vector& dest, int r, int g, int b,bool noDepthTest, float duration) = 0; virtual void AddTextOverlay(const Vector& origin, float duration, const char *format, ...) = 0; virtual void AddTextOverlay(const Vector& origin, int line_offset, float duration, const char *format, ...) = 0; virtual void AddScreenTextOverlay(float flXPos, float flYPos,float flDuration, int r, int g, int b, int a, const char *text) = 0; virtual void AddSweptBoxOverlay(const Vector& start, const Vector& end, const Vector& mins, const Vector& max, const QAngle & angles, int r, int g, int b, int a, float flDuration) = 0; virtual void AddTextOverlayRGB(const Vector& origin, int line_offset, float duration, float r, float g, float b, float alpha, const char *format, ...) = 0; }; #define VPHYSICS_INTERFACE_VERSION "VPhysics031" abstract_class IPhysics : public IAppSystem { public: virtual IPhysicsEnvironment *CreateEnvironment( void ) = 0; virtual void DestroyEnvironment( IPhysicsEnvironment * ) = 0; virtual IPhysicsEnvironment *GetActiveEnvironmentByIndex( int index ) = 0; // Creates a fast hash of pairs of objects // Useful for maintaining a table of object relationships like pairs that do not collide. virtual IPhysicsObjectPairHash *CreateObjectPairHash() = 0; virtual void DestroyObjectPairHash( IPhysicsObjectPairHash *pHash ) = 0; // holds a cache of these by id. So you can get by id to search for the previously created set // UNDONE: Sets are currently limited to 32 elements. More elements will return NULL in create. // NOTE: id is not allowed to be zero. virtual IPhysicsCollisionSet *FindOrCreateCollisionSet( unsigned int id, int maxElementCount ) = 0; virtual IPhysicsCollisionSet *FindCollisionSet( unsigned int id ) = 0; virtual void DestroyAllCollisionSets() = 0; }; // CPhysConvex is a single convex solid class CPhysConvex; // CPhysPolysoup is an abstract triangle soup mesh class CPhysPolysoup; class ICollisionQuery; class IVPhysicsKeyParser; struct convertconvexparams_t; class CPackedPhysicsDescription; class CPolyhedron; // UNDONE: Find a better place for this? Should be in collisionutils, but it's needs VPHYSICS' solver. struct truncatedcone_t { Vector origin; Vector normal; float h; // height of the cone (hl units) float theta; // cone angle (degrees) }; abstract_class IPhysicsCollision { public: virtual ~IPhysicsCollision( void ) {} // produce a convex element from verts (convex hull around verts) virtual CPhysConvex *ConvexFromVerts( Vector **pVerts, int vertCount ) = 0; // produce a convex element from planes (csg of planes) virtual CPhysConvex *ConvexFromPlanes( float *pPlanes, int planeCount, float mergeDistance ) = 0; // calculate volume of a convex element virtual float ConvexVolume( CPhysConvex *pConvex ) = 0; virtual float ConvexSurfaceArea( CPhysConvex *pConvex ) = 0; // store game-specific data in a convex solid virtual void SetConvexGameData( CPhysConvex *pConvex, unsigned int gameData ) = 0; // If not converted, free the convex elements with this call virtual void ConvexFree( CPhysConvex *pConvex ) = 0; virtual CPhysConvex *BBoxToConvex( const Vector &mins, const Vector &maxs ) = 0; // produce a convex element from a convex polyhedron virtual CPhysConvex *ConvexFromConvexPolyhedron( const CPolyhedron &ConvexPolyhedron ) = 0; // produce a set of convex triangles from a convex polygon, normal is assumed to be on the side with forward point ordering, which should be clockwise, output will need to be able to hold exactly (iPointCount-2) convexes virtual void ConvexesFromConvexPolygon( const Vector &vPolyNormal, const Vector *pPoints, int iPointCount, CPhysConvex **pOutput ) = 0; // concave objects // create a triangle soup virtual CPhysPolysoup *PolysoupCreate( void ) = 0; // destroy the container and memory virtual void PolysoupDestroy( CPhysPolysoup *pSoup ) = 0; // add a triangle to the soup virtual void PolysoupAddTriangle( CPhysPolysoup *pSoup, const Vector &a, const Vector &b, const Vector &c, int materialIndex7bits ) = 0; // convert the convex into a compiled collision model virtual CPhysCollide *ConvertPolysoupToCollide( CPhysPolysoup *pSoup, bool useMOPP ) = 0; // Convert an array of convex elements to a compiled collision model (this deletes the convex elements) virtual CPhysCollide *ConvertConvexToCollide( CPhysConvex **pConvex, int convexCount ) = 0; virtual CPhysCollide *ConvertConvexToCollideParams( CPhysConvex **pConvex, int convexCount, const convertconvexparams_t &convertParams ) = 0; // Free a collide that was created with ConvertConvexToCollide() virtual void DestroyCollide( CPhysCollide *pCollide ) = 0; // Get the memory size in bytes of the collision model for serialization virtual int CollideSize( CPhysCollide *pCollide ) = 0; // serialize the collide to a block of memory virtual int CollideWrite( char *pDest, CPhysCollide *pCollide, bool bSwap = false ) = 0; // unserialize the collide from a block of memory virtual CPhysCollide *UnserializeCollide( char *pBuffer, int size, int index ) = 0; // compute the volume of a collide virtual float CollideVolume( CPhysCollide *pCollide ) = 0; // compute surface area for tools virtual float CollideSurfaceArea( CPhysCollide *pCollide ) = 0; // Get the support map for a collide in the given direction virtual Vector CollideGetExtent( const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, const Vector &direction ) = 0; // Get an AABB for an oriented collision model virtual void CollideGetAABB( Vector *pMins, Vector *pMaxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles ) = 0; virtual void CollideGetMassCenter( CPhysCollide *pCollide, Vector *pOutMassCenter ) = 0; virtual void CollideSetMassCenter( CPhysCollide *pCollide, const Vector &massCenter ) = 0; // get the approximate cross-sectional area projected orthographically on the bbox of the collide // NOTE: These are fractional areas - unitless. Basically this is the fraction of the OBB on each axis that // would be visible if the object were rendered orthographically. // NOTE: This has been precomputed when the collide was built or this function will return 1,1,1 virtual Vector CollideGetOrthographicAreas( const CPhysCollide *pCollide ) = 0; virtual void CollideSetOrthographicAreas( CPhysCollide *pCollide, const Vector &areas ) = 0; // query the vcollide index in the physics model for the instance virtual int CollideIndex( const CPhysCollide *pCollide ) = 0; // Convert a bbox to a collide virtual CPhysCollide *BBoxToCollide( const Vector &mins, const Vector &maxs ) = 0; virtual int GetConvexesUsedInCollideable( const CPhysCollide *pCollideable, CPhysConvex **pOutputArray, int iOutputArrayLimit ) = 0; // Trace an AABB against a collide virtual void TraceBox( const Vector &start, const Vector &end, const Vector &mins, const Vector &maxs, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) = 0; virtual void TraceBox( const Ray_t &ray, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) = 0; virtual void TraceBox( const Ray_t &ray, unsigned int contentsMask, IConvexInfo *pConvexInfo, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) = 0; // Trace one collide against another virtual void TraceCollide( const Vector &start, const Vector &end, const CPhysCollide *pSweepCollide, const QAngle &sweepAngles, const CPhysCollide *pCollide, const Vector &collideOrigin, const QAngle &collideAngles, trace_t *ptr ) = 0; // relatively slow test for box vs. truncated cone virtual bool IsBoxIntersectingCone( const Vector &boxAbsMins, const Vector &boxAbsMaxs, const truncatedcone_t &cone ) = 0; // loads a set of solids into a vcollide_t virtual void VCollideLoad( vcollide_t *pOutput, int solidCount, const char *pBuffer, int size, bool swap = false ) = 0; // destroyts the set of solids created by VCollideLoad virtual void VCollideUnload( vcollide_t *pVCollide ) = 0; // begins parsing a vcollide. NOTE: This keeps pointers to the text // If you free the text and call members of IVPhysicsKeyParser, it will crash virtual IVPhysicsKeyParser *VPhysicsKeyParserCreate( const char *pKeyData ) = 0; virtual IVPhysicsKeyParser *VPhysicsKeyParserCreate( vcollide_t *pVCollide ) = 0; // Free the parser created by VPhysicsKeyParserCreate virtual void VPhysicsKeyParserDestroy( IVPhysicsKeyParser *pParser ) = 0; // creates a list of verts from a collision mesh virtual int CreateDebugMesh( CPhysCollide const *pCollisionModel, Vector **outVerts ) = 0; // destroy the list of verts created by CreateDebugMesh virtual void DestroyDebugMesh( int vertCount, Vector *outVerts ) = 0; // create a queryable version of the collision model virtual ICollisionQuery *CreateQueryModel( CPhysCollide *pCollide ) = 0; // destroy the queryable version virtual void DestroyQueryModel( ICollisionQuery *pQuery ) = 0; virtual IPhysicsCollision *ThreadContextCreate( void ) = 0; virtual void ThreadContextDestroy( IPhysicsCollision *pThreadContex ) = 0; virtual CPhysCollide *CreateVirtualMesh( const virtualmeshparams_t ¶ms ) = 0; virtual bool SupportsVirtualMesh() = 0; virtual bool GetBBoxCacheSize( int *pCachedSize, int *pCachedCount ) = 0; // extracts a polyhedron that defines a CPhysConvex's shape virtual CPolyhedron *PolyhedronFromConvex( CPhysConvex * const pConvex, bool bUseTempPolyhedron ) = 0; // dumps info about the collide to Msg() virtual void OutputDebugInfo( const CPhysCollide *pCollide ) = 0; virtual unsigned int ReadStat( int statID ) = 0; // Get an AABB for an oriented collision model virtual float CollideGetRadius( const CPhysCollide *pCollide ) = 0; virtual void *VCollideAllocUserData( vcollide_t *pVCollide, size_t userDataSize ) = 0; virtual void VCollideFreeUserData( vcollide_t *pVCollide ) = 0; virtual void VCollideCheck( vcollide_t *pVCollide, const char *pName ) = 0; }; // this can be used to post-process a collision model abstract_class ICollisionQuery { public: virtual ~ICollisionQuery() {} // number of convex pieces in the whole solid virtual int ConvexCount( void ) = 0; // triangle count for this convex piece virtual int TriangleCount( int convexIndex ) = 0; // get the stored game data virtual unsigned int GetGameData( int convexIndex ) = 0; // Gets the triangle's verts to an array virtual void GetTriangleVerts( int convexIndex, int triangleIndex, Vector *verts ) = 0; // UNDONE: This doesn't work!!! virtual void SetTriangleVerts( int convexIndex, int triangleIndex, const Vector *verts ) = 0; // returns the 7-bit material index virtual int GetTriangleMaterialIndex( int convexIndex, int triangleIndex ) = 0; // sets a 7-bit material index for this triangle virtual void SetTriangleMaterialIndex( int convexIndex, int triangleIndex, int index7bits ) = 0; }; //----------------------------------------------------------------------------- // Purpose: Ray traces from game engine. //----------------------------------------------------------------------------- abstract_class IPhysicsGameTrace { public: virtual void VehicleTraceRay( const Ray_t &ray, void *pVehicle, trace_t *pTrace ) = 0; virtual void VehicleTraceRayWithWater( const Ray_t &ray, void *pVehicle, trace_t *pTrace ) = 0; virtual bool VehiclePointInWater( const Vector &vecPoint ) = 0; }; // The caller should implement this to return contents masks per convex on a collide abstract_class IConvexInfo { public: virtual unsigned int GetContents( int convexGameData ) = 0; }; class CPhysicsEventHandler; abstract_class IPhysicsCollisionData { public: virtual void GetSurfaceNormal( Vector &out ) = 0; // normal points toward second object (object index 1) virtual void GetContactPoint( Vector &out ) = 0; // contact point of collision (in world space) virtual void GetContactSpeed( Vector &out ) = 0; // speed of surface 1 relative to surface 0 (in world space) }; struct vcollisionevent_t { IPhysicsObject *pObjects[2]; int surfaceProps[2]; bool isCollision; bool isShadowCollision; float deltaCollisionTime; float collisionSpeed; // only valid at postCollision IPhysicsCollisionData *pInternalData; // may change pre/post collision }; abstract_class IPhysicsCollisionEvent { public: // returns the two objects that collided, time between last collision of these objects // and an opaque data block of collision information // NOTE: PreCollision/PostCollision ALWAYS come in matched pairs!!! virtual void PreCollision( vcollisionevent_t *pEvent ) = 0; virtual void PostCollision( vcollisionevent_t *pEvent ) = 0; // This is a scrape event. The object has scraped across another object consuming the indicated energy virtual void Friction( IPhysicsObject *pObject, float energy, int surfaceProps, int surfacePropsHit, IPhysicsCollisionData *pData ) = 0; virtual void StartTouch( IPhysicsObject *pObject1, IPhysicsObject *pObject2, IPhysicsCollisionData *pTouchData ) = 0; virtual void EndTouch( IPhysicsObject *pObject1, IPhysicsObject *pObject2, IPhysicsCollisionData *pTouchData ) = 0; virtual void FluidStartTouch( IPhysicsObject *pObject, IPhysicsFluidController *pFluid ) = 0; virtual void FluidEndTouch( IPhysicsObject *pObject, IPhysicsFluidController *pFluid ) = 0; virtual void PostSimulationFrame() = 0; virtual void ObjectEnterTrigger( IPhysicsObject *pTrigger, IPhysicsObject *pObject ) {} virtual void ObjectLeaveTrigger( IPhysicsObject *pTrigger, IPhysicsObject *pObject ) {} }; abstract_class IPhysicsObjectEvent { public: // these can be used to optimize out queries on sleeping objects // Called when an object is woken after sleeping virtual void ObjectWake( IPhysicsObject *pObject ) = 0; // called when an object goes to sleep (no longer simulating) virtual void ObjectSleep( IPhysicsObject *pObject ) = 0; }; abstract_class IPhysicsConstraintEvent { public: // the constraint is now inactive, the game code is required to delete it or re-activate it. virtual void ConstraintBroken( IPhysicsConstraint * ) = 0; }; struct hlshadowcontrol_params_t { Vector targetPosition; QAngle targetRotation; float maxAngular; float maxDampAngular; float maxSpeed; float maxDampSpeed; float dampFactor; float teleportDistance; }; // UNDONE: At some point allow this to be parameterized using hlshadowcontrol_params_t. // All of the infrastructure is in place to do that. abstract_class IPhysicsShadowController { public: virtual ~IPhysicsShadowController( void ) {} virtual void Update( const Vector &position, const QAngle &angles, float timeOffset ) = 0; virtual void MaxSpeed( float maxSpeed, float maxAngularSpeed ) = 0; virtual void StepUp( float height ) = 0; // If the teleport distance is non-zero, the object will be teleported to // the target location when the error exceeds this quantity. virtual void SetTeleportDistance( float teleportDistance ) = 0; virtual bool AllowsTranslation() = 0; virtual bool AllowsRotation() = 0; // There are two classes of shadow objects: // 1) Game physics controlled, shadow follows game physics (this is the default) // 2) Physically controlled - shadow position is a target, but the game hasn't guaranteed that the space can be occupied by this object virtual void SetPhysicallyControlled( bool isPhysicallyControlled ) = 0; virtual bool IsPhysicallyControlled() = 0; virtual void GetLastImpulse( Vector *pOut ) = 0; virtual void UseShadowMaterial( bool bUseShadowMaterial ) = 0; virtual void ObjectMaterialChanged( int materialIndex ) = 0; //Basically get the last inputs to IPhysicsShadowController::Update(), returns last input to timeOffset in Update() virtual float GetTargetPosition( Vector *pPositionOut, QAngle *pAnglesOut ) = 0; virtual float GetTeleportDistance( void ) = 0; virtual void GetMaxSpeed( float *pMaxSpeedOut, float *pMaxAngularSpeedOut ) = 0; }; class CPhysicsSimObject; class IPhysicsMotionController; // Callback for simulation class IMotionEvent { public: // These constants instruct the simulator as to how to apply the values copied to linear & angular // GLOBAL/LOCAL refer to the coordinate system of the values, whereas acceleration/force determine whether or not // mass is divided out (forces must be divided by mass to compute acceleration) enum simresult_e { SIM_NOTHING = 0, SIM_LOCAL_ACCELERATION, SIM_LOCAL_FORCE, SIM_GLOBAL_ACCELERATION, SIM_GLOBAL_FORCE }; virtual simresult_e Simulate( IPhysicsMotionController *pController, IPhysicsObject *pObject, float deltaTime, Vector &linear, AngularImpulse &angular ) = 0; }; abstract_class IPhysicsMotionController { public: virtual ~IPhysicsMotionController( void ) {} virtual void SetEventHandler( IMotionEvent *handler ) = 0; virtual void AttachObject( IPhysicsObject *pObject, bool checkIfAlreadyAttached ) = 0; virtual void DetachObject( IPhysicsObject *pObject ) = 0; // returns the number of objects currently attached to the controller virtual int CountObjects( void ) = 0; // NOTE: pObjectList is an array with at least CountObjects() allocated virtual void GetObjects( IPhysicsObject **pObjectList ) = 0; // detaches all attached objects virtual void ClearObjects( void ) = 0; // wakes up all attached objects virtual void WakeObjects( void ) = 0; enum priority_t { LOW_PRIORITY = 0, MEDIUM_PRIORITY = 1, HIGH_PRIORITY = 2, }; virtual void SetPriority( priority_t priority ) = 0; }; // ------------------- // Collision filter function. Return 0 if objects should not be tested for collisions, nonzero otherwise // Install with IPhysicsEnvironment::SetCollisionFilter() // ------------------- abstract_class IPhysicsCollisionSolver { public: virtual int ShouldCollide( IPhysicsObject *pObj0, IPhysicsObject *pObj1, void *pGameData0, void *pGameData1 ) = 0; virtual int ShouldSolvePenetration( IPhysicsObject *pObj0, IPhysicsObject *pObj1, void *pGameData0, void *pGameData1, float dt ) = 0; // pObject has already done the max number of collisions this tick, should we freeze it to save CPU? virtual bool ShouldFreezeObject( IPhysicsObject *pObject ) = 0; // The system has already done too many collision checks, performance will suffer. // How many more should it do? virtual int AdditionalCollisionChecksThisTick( int currentChecksDone ) = 0; // This list of objects is in a connected contact graph that is too large to solve quickly // return true to freeze the system, false to solve it virtual bool ShouldFreezeContacts( IPhysicsObject **pObjectList, int objectCount ) = 0; }; enum PhysicsTraceType_t { VPHYSICS_TRACE_EVERYTHING = 0, VPHYSICS_TRACE_STATIC_ONLY, VPHYSICS_TRACE_MOVING_ONLY, VPHYSICS_TRACE_TRIGGERS_ONLY, VPHYSICS_TRACE_STATIC_AND_MOVING, }; abstract_class IPhysicsTraceFilter { public: virtual bool ShouldHitObject( IPhysicsObject *pObject, int contentsMask ) = 0; virtual PhysicsTraceType_t GetTraceType() const = 0; }; abstract_class IPhysicsEnvironment { public: virtual ~IPhysicsEnvironment( void ) {} virtual void SetDebugOverlay( CreateInterfaceFn debugOverlayFactory ) = 0; virtual IVPhysicsDebugOverlay *GetDebugOverlay( void ) = 0; // gravity is a 3-vector in in/s^2 virtual void SetGravity( const Vector &gravityVector ) = 0; virtual void GetGravity( Vector *pGravityVector ) const = 0; // air density is in kg / m^3 (water is 1000) // This controls drag, air that is more dense has more drag. virtual void SetAirDensity( float density ) = 0; virtual float GetAirDensity( void ) const = 0; // object creation // create a polygonal object. pCollisionModel was created by the physics builder DLL in a pre-process. virtual IPhysicsObject *CreatePolyObject( const CPhysCollide *pCollisionModel, int materialIndex, const Vector &position, const QAngle &angles, objectparams_t *pParams ) = 0; // same as above, but this one cannot move or rotate (infinite mass/inertia) virtual IPhysicsObject *CreatePolyObjectStatic( const CPhysCollide *pCollisionModel, int materialIndex, const Vector &position, const QAngle &angles, objectparams_t *pParams ) = 0; // Create a perfectly spherical object virtual IPhysicsObject *CreateSphereObject( float radius, int materialIndex, const Vector &position, const QAngle &angles, objectparams_t *pParams, bool isStatic ) = 0; // destroy an object created with CreatePolyObject() or CreatePolyObjectStatic() virtual void DestroyObject( IPhysicsObject * ) = 0; // Create a polygonal fluid body out of the specified collision model // This object will affect any other objects that collide with the collision model virtual IPhysicsFluidController *CreateFluidController( IPhysicsObject *pFluidObject, fluidparams_t *pParams ) = 0; // Destroy an object created with CreateFluidController() virtual void DestroyFluidController( IPhysicsFluidController * ) = 0; // Create a simulated spring that connects 2 objects virtual IPhysicsSpring *CreateSpring( IPhysicsObject *pObjectStart, IPhysicsObject *pObjectEnd, springparams_t *pParams ) = 0; virtual void DestroySpring( IPhysicsSpring * ) = 0; // Create a constraint in the space of pReferenceObject which is attached by the constraint to pAttachedObject virtual IPhysicsConstraint *CreateRagdollConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_ragdollparams_t &ragdoll ) = 0; virtual IPhysicsConstraint *CreateHingeConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_hingeparams_t &hinge ) = 0; virtual IPhysicsConstraint *CreateFixedConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_fixedparams_t &fixed ) = 0; virtual IPhysicsConstraint *CreateSlidingConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_slidingparams_t &sliding ) = 0; virtual IPhysicsConstraint *CreateBallsocketConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_ballsocketparams_t &ballsocket ) = 0; virtual IPhysicsConstraint *CreatePulleyConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_pulleyparams_t &pulley ) = 0; virtual IPhysicsConstraint *CreateLengthConstraint( IPhysicsObject *pReferenceObject, IPhysicsObject *pAttachedObject, IPhysicsConstraintGroup *pGroup, const constraint_lengthparams_t &length ) = 0; virtual void DestroyConstraint( IPhysicsConstraint * ) = 0; virtual IPhysicsConstraintGroup *CreateConstraintGroup( const constraint_groupparams_t &groupParams ) = 0; virtual void DestroyConstraintGroup( IPhysicsConstraintGroup *pGroup ) = 0; virtual IPhysicsShadowController *CreateShadowController( IPhysicsObject *pObject, bool allowTranslation, bool allowRotation ) = 0; virtual void DestroyShadowController( IPhysicsShadowController * ) = 0; virtual IPhysicsPlayerController *CreatePlayerController( IPhysicsObject *pObject ) = 0; virtual void DestroyPlayerController( IPhysicsPlayerController * ) = 0; virtual IPhysicsMotionController *CreateMotionController( IMotionEvent *pHandler ) = 0; virtual void DestroyMotionController( IPhysicsMotionController *pController ) = 0; virtual IPhysicsVehicleController *CreateVehicleController( IPhysicsObject *pVehicleBodyObject, const vehicleparams_t ¶ms, unsigned int nVehicleType, IPhysicsGameTrace *pGameTrace ) = 0; virtual void DestroyVehicleController( IPhysicsVehicleController * ) = 0; // install a function to filter collisions/penentration virtual void SetCollisionSolver( IPhysicsCollisionSolver *pSolver ) = 0; // run the simulator for deltaTime seconds virtual void Simulate( float deltaTime ) = 0; // true if currently running the simulator (i.e. in a callback during physenv->Simulate()) virtual bool IsInSimulation() const = 0; // Manage the timestep (period) of the simulator. The main functions are all integrated with // this period as dt. virtual float GetSimulationTimestep() const = 0; virtual void SetSimulationTimestep( float timestep ) = 0; // returns the current simulation clock's value. This is an absolute time. virtual float GetSimulationTime() const = 0; virtual void ResetSimulationClock() = 0; // returns the current simulation clock's value at the next frame. This is an absolute time. virtual float GetNextFrameTime( void ) const = 0; // Collision callbacks (game code collision response) virtual void SetCollisionEventHandler( IPhysicsCollisionEvent *pCollisionEvents ) = 0; virtual void SetObjectEventHandler( IPhysicsObjectEvent *pObjectEvents ) = 0; virtual void SetConstraintEventHandler( IPhysicsConstraintEvent *pConstraintEvents ) = 0; virtual void SetQuickDelete( bool bQuick ) = 0; virtual int GetActiveObjectCount() const = 0; virtual void GetActiveObjects( IPhysicsObject **pOutputObjectList ) const = 0; virtual const IPhysicsObject **GetObjectList( int *pOutputObjectCount ) const = 0; virtual bool TransferObject( IPhysicsObject *pObject, IPhysicsEnvironment *pDestinationEnvironment ) = 0; virtual void CleanupDeleteList( void ) = 0; virtual void EnableDeleteQueue( bool enable ) = 0; // Save/Restore methods virtual bool Save( const physsaveparams_t ¶ms ) = 0; virtual void PreRestore( const physprerestoreparams_t ¶ms ) = 0; virtual bool Restore( const physrestoreparams_t ¶ms ) = 0; virtual void PostRestore() = 0; // Debugging: virtual bool IsCollisionModelUsed( CPhysCollide *pCollide ) const = 0; // Physics world version of the enginetrace API: virtual void TraceRay( const Ray_t &ray, unsigned int fMask, IPhysicsTraceFilter *pTraceFilter, trace_t *pTrace ) = 0; virtual void SweepCollideable( const CPhysCollide *pCollide, const Vector &vecAbsStart, const Vector &vecAbsEnd, const QAngle &vecAngles, unsigned int fMask, IPhysicsTraceFilter *pTraceFilter, trace_t *pTrace ) = 0; // performance tuning virtual void GetPerformanceSettings( physics_performanceparams_t *pOutput ) const = 0; virtual void SetPerformanceSettings( const physics_performanceparams_t *pSettings ) = 0; // perf/cost statistics virtual void ReadStats( physics_stats_t *pOutput ) = 0; virtual void ClearStats() = 0; virtual unsigned int GetObjectSerializeSize( IPhysicsObject *pObject ) const = 0; virtual void SerializeObjectToBuffer( IPhysicsObject *pObject, unsigned char *pBuffer, unsigned int bufferSize ) = 0; virtual IPhysicsObject *UnserializeObjectFromBuffer( void *pGameData, unsigned char *pBuffer, unsigned int bufferSize, bool enableCollisions ) = 0; virtual void EnableConstraintNotify( bool bEnable ) = 0; virtual void DebugCheckContacts(void) = 0; virtual void SetAlternateGravity( const Vector &gravityVector ) = 0; virtual void GetAlternateGravity( Vector *pGravityVector ) const = 0; virtual float GetDeltaFrameTime( int maxTicks ) const = 0; virtual void ForceObjectsToSleep( IPhysicsObject **pList, int listCount ) = 0; }; enum callbackflags { CALLBACK_GLOBAL_COLLISION = 0x0001, CALLBACK_GLOBAL_FRICTION = 0x0002, CALLBACK_GLOBAL_TOUCH = 0x0004, CALLBACK_GLOBAL_TOUCH_STATIC = 0x0008, CALLBACK_SHADOW_COLLISION = 0x0010, CALLBACK_GLOBAL_COLLIDE_STATIC = 0x0020, CALLBACK_IS_VEHICLE_WHEEL = 0x0040, CALLBACK_FLUID_TOUCH = 0x0100, CALLBACK_NEVER_DELETED = 0x0200, // HACKHACK: This means this object will never be deleted (set on the world) CALLBACK_MARKED_FOR_DELETE = 0x0400, // This allows vphysics to skip some work for this object since it will be // deleted later this frame. (Set automatically by destroy calls) CALLBACK_ENABLING_COLLISION = 0x0800, // This is active during the time an object is enabling collisions // allows us to skip collisions between "new" objects and objects marked for delete CALLBACK_DO_FLUID_SIMULATION = 0x1000, // remove this to opt out of fluid simulations CALLBACK_IS_PLAYER_CONTROLLER= 0x2000, // HACKHACK: Set this on players until player cotrollers are unified with shadow controllers CALLBACK_CHECK_COLLISION_DISABLE = 0x4000, CALLBACK_MARKED_FOR_TEST = 0x8000, // debug -- marked object is being debugged }; enum collisionhints { COLLISION_HINT_DEBRIS = 0x0001, COLLISION_HINT_STATICSOLID = 0x0002, }; abstract_class IPhysicsObject { public: virtual ~IPhysicsObject( void ) {} // returns true if this object is static/unmoveable // NOTE: returns false for objects that are not created static, but set EnableMotion(false); // Call IsMoveable() to find if the object is static OR has motion disabled virtual bool IsStatic() const = 0; virtual bool IsAsleep() const = 0; virtual bool IsTrigger() const = 0; virtual bool IsFluid() const = 0; // fluids are special triggers with fluid controllers attached, they return true to IsTrigger() as well! virtual bool IsHinged() const = 0; virtual bool IsCollisionEnabled() const = 0; virtual bool IsGravityEnabled() const = 0; virtual bool IsDragEnabled() const = 0; virtual bool IsMotionEnabled() const = 0; virtual bool IsMoveable() const = 0; // legacy: IsMotionEnabled() && !IsStatic() virtual bool IsAttachedToConstraint(bool bExternalOnly) const = 0; // Enable / disable collisions for this object virtual void EnableCollisions( bool enable ) = 0; // Enable / disable gravity for this object virtual void EnableGravity( bool enable ) = 0; // Enable / disable air friction / drag for this object virtual void EnableDrag( bool enable ) = 0; // Enable / disable motion (pin / unpin the object) virtual void EnableMotion( bool enable ) = 0; // Game can store data in each object (link back to game object) virtual void SetGameData( void *pGameData ) = 0; virtual void *GetGameData( void ) const = 0; // This flags word can be defined by the game as well virtual void SetGameFlags( unsigned short userFlags ) = 0; virtual unsigned short GetGameFlags( void ) const = 0; virtual void SetGameIndex( unsigned short gameIndex ) = 0; virtual unsigned short GetGameIndex( void ) const = 0; // setup various callbacks for this object virtual void SetCallbackFlags( unsigned short callbackflags ) = 0; // get the current callback state for this object virtual unsigned short GetCallbackFlags( void ) const = 0; // "wakes up" an object // NOTE: ALL OBJECTS ARE "Asleep" WHEN CREATED virtual void Wake( void ) = 0; virtual void Sleep( void ) = 0; // call this when the collision filter conditions change due to this // object's state (e.g. changing solid type or collision group) virtual void RecheckCollisionFilter() = 0; // NOTE: Contact points aren't updated when collision rules change, call this to force an update // UNDONE: Force this in RecheckCollisionFilter() ? virtual void RecheckContactPoints() = 0; // mass accessors virtual void SetMass( float mass ) = 0; virtual float GetMass( void ) const = 0; // get 1/mass (it's cached) virtual float GetInvMass( void ) const = 0; virtual Vector GetInertia( void ) const = 0; virtual Vector GetInvInertia( void ) const = 0; virtual void SetInertia( const Vector &inertia ) = 0; virtual void SetDamping( const float *speed, const float *rot ) = 0; virtual void GetDamping( float *speed, float *rot ) const = 0; // coefficients are optional, pass either virtual void SetDragCoefficient( float *pDrag, float *pAngularDrag ) = 0; virtual void SetBuoyancyRatio( float ratio ) = 0; // Override bouyancy // material index virtual int GetMaterialIndex() const = 0; virtual void SetMaterialIndex( int materialIndex ) = 0; // contents bits virtual unsigned int GetContents() const = 0; virtual void SetContents( unsigned int contents ) = 0; // Get the radius if this is a sphere object (zero if this is a polygonal mesh) virtual float GetSphereRadius() const = 0; // Set the radius on a sphere. May need to force recalculation of contact points virtual void SetSphereRadius(float radius) = 0; virtual float GetEnergy() const = 0; virtual Vector GetMassCenterLocalSpace() const = 0; // NOTE: This will teleport the object virtual void SetPosition( const Vector &worldPosition, const QAngle &angles, bool isTeleport ) = 0; virtual void SetPositionMatrix( const matrix3x4_t&matrix, bool isTeleport ) = 0; virtual void GetPosition( Vector *worldPosition, QAngle *angles ) const = 0; virtual void GetPositionMatrix( matrix3x4_t *positionMatrix ) const = 0; // force the velocity to a new value // NOTE: velocity is in worldspace, angularVelocity is relative to the object's // local axes (just like pev->velocity, pev->avelocity) virtual void SetVelocity( const Vector *velocity, const AngularImpulse *angularVelocity ) = 0; // like the above, but force the change into the simulator immediately virtual void SetVelocityInstantaneous( const Vector *velocity, const AngularImpulse *angularVelocity ) = 0; // NOTE: velocity is in worldspace, angularVelocity is relative to the object's // local axes (just like pev->velocity, pev->avelocity) virtual void GetVelocity( Vector *velocity, AngularImpulse *angularVelocity ) const = 0; // NOTE: These are velocities, not forces. i.e. They will have the same effect regardless of // the object's mass or inertia virtual void AddVelocity( const Vector *velocity, const AngularImpulse *angularVelocity ) = 0; // gets a velocity in the object's local frame of reference at a specific point virtual void GetVelocityAtPoint( const Vector &worldPosition, Vector *pVelocity ) const = 0; // gets the velocity actually moved by the object in the last simulation update virtual void GetImplicitVelocity( Vector *velocity, AngularImpulse *angularVelocity ) const = 0; // NOTE: These are here for convenience, but you can do them yourself by using the matrix // returned from GetPositionMatrix() // convenient coordinate system transformations (params - dest, src) virtual void LocalToWorld( Vector *worldPosition, const Vector &localPosition ) const = 0; virtual void WorldToLocal( Vector *localPosition, const Vector &worldPosition ) const = 0; // transforms a vector (no translation) from object-local to world space virtual void LocalToWorldVector( Vector *worldVector, const Vector &localVector ) const = 0; // transforms a vector (no translation) from world to object-local space virtual void WorldToLocalVector( Vector *localVector, const Vector &worldVector ) const = 0; // push on an object // force vector is direction & magnitude of impulse kg in / s virtual void ApplyForceCenter( const Vector &forceVector ) = 0; virtual void ApplyForceOffset( const Vector &forceVector, const Vector &worldPosition ) = 0; // apply torque impulse. This will change the angular velocity on the object. // HL Axes, kg degrees / s virtual void ApplyTorqueCenter( const AngularImpulse &torque ) = 0; // Calculates the force/torque on the center of mass for an offset force impulse (pass output to ApplyForceCenter / ApplyTorqueCenter) virtual void CalculateForceOffset( const Vector &forceVector, const Vector &worldPosition, Vector *centerForce, AngularImpulse *centerTorque ) const = 0; // Calculates the linear/angular velocities on the center of mass for an offset force impulse (pass output to AddVelocity) virtual void CalculateVelocityOffset( const Vector &forceVector, const Vector &worldPosition, Vector *centerVelocity, AngularImpulse *centerAngularVelocity ) const = 0; // calculate drag scale virtual float CalculateLinearDrag( const Vector &unitDirection ) const = 0; virtual float CalculateAngularDrag( const Vector &objectSpaceRotationAxis ) const = 0; // returns true if the object is in contact with another object // if true, puts a point on the contact surface in contactPoint, and // a pointer to the object in contactObject // NOTE: You can pass NULL for either to avoid computations // BUGBUG: Use CreateFrictionSnapshot instead of this - this is a simple hack virtual bool GetContactPoint( Vector *contactPoint, IPhysicsObject **contactObject ) const = 0; // refactor this a bit - move some of this to IPhysicsShadowController virtual void SetShadow( float maxSpeed, float maxAngularSpeed, bool allowPhysicsMovement, bool allowPhysicsRotation ) = 0; virtual void UpdateShadow( const Vector &targetPosition, const QAngle &targetAngles, bool tempDisableGravity, float timeOffset ) = 0; // returns number of ticks since last Update() call virtual int GetShadowPosition( Vector *position, QAngle *angles ) const = 0; virtual IPhysicsShadowController *GetShadowController( void ) const = 0; virtual void RemoveShadowController() = 0; // applies the math of the shadow controller to this object. // for use in your own controllers // returns the new value of secondsToArrival with dt time elapsed virtual float ComputeShadowControl( const hlshadowcontrol_params_t ¶ms, float secondsToArrival, float dt ) = 0; virtual const CPhysCollide *GetCollide( void ) const = 0; virtual const char *GetName() const = 0; virtual void BecomeTrigger() = 0; virtual void RemoveTrigger() = 0; // sets the object to be hinged. Fixed it place, but able to rotate around one axis. virtual void BecomeHinged( int localAxis ) = 0; // resets the object to original state virtual void RemoveHinged() = 0; // used to iterate the contact points of an object virtual IPhysicsFrictionSnapshot *CreateFrictionSnapshot() = 0; virtual void DestroyFrictionSnapshot( IPhysicsFrictionSnapshot *pSnapshot ) = 0; // dumps info about the object to Msg() virtual void OutputDebugInfo() const = 0; #if OBJECT_WELDING virtual void WeldToObject( IPhysicsObject *pParent ) = 0; virtual void RemoveWeld( IPhysicsObject *pOther ) = 0; virtual void RemoveAllWelds( void ) = 0; #endif // EnableGravity still determines whether to apply gravity // This flag determines which gravity constant to use for an alternate gravity effect virtual void SetUseAlternateGravity( bool bSet ) = 0; virtual void SetCollisionHints( uint32 collisionHints ) = 0; virtual uint32 GetCollisionHints() const = 0; }; abstract_class IPhysicsSpring { public: virtual ~IPhysicsSpring( void ) {} virtual void GetEndpoints( Vector *worldPositionStart, Vector *worldPositionEnd ) = 0; virtual void SetSpringConstant( float flSpringContant) = 0; virtual void SetSpringDamping( float flSpringDamping) = 0; virtual void SetSpringLength( float flSpringLenght) = 0; // Get the starting object virtual IPhysicsObject *GetStartObject( void ) = 0; // Get the end object virtual IPhysicsObject *GetEndObject( void ) = 0; }; //----------------------------------------------------------------------------- // Purpose: These properties are defined per-material. This is accessible at // each triangle in a collision mesh //----------------------------------------------------------------------------- struct surfacephysicsparams_t { // vphysics physical properties float friction; float elasticity; // collision elasticity - used to compute coefficient of restitution float density; // physical density (in kg / m^3) float thickness; // material thickness if not solid (sheet materials) in inches float dampening; }; struct surfaceaudioparams_t { // sounds / audio data float reflectivity; // like elasticity, but how much sound should be reflected by this surface float hardnessFactor; // like elasticity, but only affects impact sound choices float roughnessFactor; // like friction, but only affects scrape sound choices // audio thresholds float roughThreshold; // surface roughness > this causes "rough" scrapes, < this causes "smooth" scrapes float hardThreshold; // surface hardness > this causes "hard" impacts, < this causes "soft" impacts float hardVelocityThreshold; // collision velocity > this causes "hard" impacts, < this causes "soft" impacts // NOTE: Hard impacts must meet both hardnessFactor AND velocity thresholds }; struct surfacesoundnames_t { unsigned short walkStepLeft; unsigned short walkStepRight; unsigned short runStepLeft; unsigned short runStepRight; unsigned short impactSoft; unsigned short impactHard; unsigned short scrapeSmooth; unsigned short scrapeRough; unsigned short bulletImpact; unsigned short rolling; unsigned short breakSound; unsigned short strainSound; }; struct surfacesoundhandles_t { short walkStepLeft; short walkStepRight; short runStepLeft; short runStepRight; short impactSoft; short impactHard; short scrapeSmooth; short scrapeRough; short bulletImpact; short rolling; short breakSound; short strainSound; }; struct surfacegameprops_t { // game movement data float maxSpeedFactor; // Modulates player max speed when walking on this surface float jumpFactor; // Indicates how much higher the player should jump when on the surface // Game-specific data unsigned short material; // Indicates whether or not the player is on a ladder. unsigned char climbable; unsigned char pad; }; //----------------------------------------------------------------------------- // Purpose: Each different material has an entry like this //----------------------------------------------------------------------------- struct surfacedata_t { surfacephysicsparams_t physics; // physics parameters surfaceaudioparams_t audio; // audio parameters surfacesoundnames_t sounds; // names of linked sounds surfacegameprops_t game; // Game data / properties surfacesoundhandles_t soundhandles; }; #define VPHYSICS_SURFACEPROPS_INTERFACE_VERSION "VPhysicsSurfaceProps001" abstract_class IPhysicsSurfaceProps { public: virtual ~IPhysicsSurfaceProps( void ) {} // parses a text file containing surface prop keys virtual int ParseSurfaceData( const char *pFilename, const char *pTextfile ) = 0; // current number of entries in the database virtual int SurfacePropCount( void ) const = 0; virtual int GetSurfaceIndex( const char *pSurfacePropName ) const = 0; virtual void GetPhysicsProperties( int surfaceDataIndex, float *density, float *thickness, float *friction, float *elasticity ) const = 0; virtual surfacedata_t *GetSurfaceData( int surfaceDataIndex ) = 0; virtual const char *GetString( unsigned short stringTableIndex ) const = 0; virtual const char *GetPropName( int surfaceDataIndex ) const = 0; // sets the global index table for world materials // UNDONE: Make this per-CPhysCollide virtual void SetWorldMaterialIndexTable( int *pMapArray, int mapSize ) = 0; // NOTE: Same as GetPhysicsProperties, but maybe more convenient virtual void GetPhysicsParameters( int surfaceDataIndex, surfacephysicsparams_t *pParamsOut ) const = 0; }; abstract_class IPhysicsFluidController { public: virtual ~IPhysicsFluidController( void ) {} virtual void SetGameData( void *pGameData ) = 0; virtual void *GetGameData( void ) const = 0; virtual void GetSurfacePlane( Vector *pNormal, float *pDist ) const = 0; virtual float GetDensity() const = 0; virtual void WakeAllSleepingObjects() = 0; virtual int GetContents() const = 0; }; //----------------------------------------------------------------------------- // Purpose: parameter block for creating fluid dynamic motion // UNDONE: Expose additional fluid model paramters? //----------------------------------------------------------------------------- struct fluidparams_t { Vector4D surfacePlane; // x,y,z normal, dist (plane constant) fluid surface Vector currentVelocity; // velocity of the current in inches/second float damping; // damping factor for buoyancy (tweak) float torqueFactor; float viscosityFactor; void *pGameData; bool useAerodynamics;// true if this controller should calculate surface pressure int contents; fluidparams_t() {} fluidparams_t( fluidparams_t const& src ) { Vector4DCopy( src.surfacePlane, surfacePlane ); VectorCopy( src.currentVelocity, currentVelocity ); damping = src.damping; torqueFactor = src.torqueFactor; viscosityFactor = src.viscosityFactor; contents = src.contents; } }; //----------------------------------------------------------------------------- // Purpose: parameter block for creating linear springs // UNDONE: Expose additional spring model paramters? //----------------------------------------------------------------------------- struct springparams_t { springparams_t() { memset( this, 0, sizeof(*this) ); } float constant; // spring constant float naturalLength;// relaxed length float damping; // damping factor float relativeDamping; // relative damping (damping proportional to the change in the relative position of the objects) Vector startPosition; Vector endPosition; bool useLocalPositions; // start & end Position are in local space to start and end objects if this is true bool onlyStretch; // only apply forces when the length is greater than the natural length }; //----------------------------------------------------------------------------- // Purpose: parameter block for creating polygonal objects //----------------------------------------------------------------------------- struct objectparams_t { Vector *massCenterOverride; float mass; float inertia; float damping; float rotdamping; float rotInertiaLimit; const char *pName; // used only for debugging void *pGameData; float volume; float dragCoefficient; bool enableCollisions; }; struct convertconvexparams_t { bool buildOuterConvexHull; bool buildDragAxisAreas; bool buildOptimizedTraceTables; bool checkOptimalTracing; float dragAreaEpsilon; CPhysConvex *pForcedOuterHull; void Defaults() { dragAreaEpsilon = 0.25f; // 0.5in x 0.5in square buildOuterConvexHull = false; buildDragAxisAreas = false; buildOptimizedTraceTables = false; checkOptimalTracing = false; pForcedOuterHull = NULL; } }; //----------------------------------------------------------------------------- // Physics interface IDs // // Note that right now the order of the enum also defines the order of save/load //----------------------------------------------------------------------------- // Purpose: parameter blocks for save and load operations //----------------------------------------------------------------------------- struct physsaveparams_t { ISave *pSave; void *pObject; PhysInterfaceId_t type; }; struct physrestoreparams_t { IRestore *pRestore; void **ppObject; PhysInterfaceId_t type; void *pGameData; const char *pName; // used only for debugging const CPhysCollide *pCollisionModel; IPhysicsEnvironment *pEnvironment; IPhysicsGameTrace *pGameTrace; }; struct physrecreateparams_t { void *pOldObject; void *pNewObject; }; struct physprerestoreparams_t { int recreatedObjectCount; physrecreateparams_t recreatedObjectList[1]; }; //------------------------------------- #define DEFINE_PIID( type, enumval ) \ template <> inline PhysInterfaceId_t GetPhysIID( type ** ) { return enumval; } template inline PhysInterfaceId_t GetPhysIID(PHYSPTR **); // will get link error if no match DEFINE_PIID( IPhysicsObject, PIID_IPHYSICSOBJECT ); DEFINE_PIID( IPhysicsFluidController, PIID_IPHYSICSFLUIDCONTROLLER ); DEFINE_PIID( IPhysicsSpring, PIID_IPHYSICSSPRING ); DEFINE_PIID( IPhysicsConstraintGroup, PIID_IPHYSICSCONSTRAINTGROUP ); DEFINE_PIID( IPhysicsConstraint, PIID_IPHYSICSCONSTRAINT ); DEFINE_PIID( IPhysicsShadowController, PIID_IPHYSICSSHADOWCONTROLLER ); DEFINE_PIID( IPhysicsPlayerController, PIID_IPHYSICSPLAYERCONTROLLER ); DEFINE_PIID( IPhysicsMotionController, PIID_IPHYSICSMOTIONCONTROLLER ); DEFINE_PIID( IPhysicsVehicleController, PIID_IPHYSICSVEHICLECONTROLLER ); DEFINE_PIID( IPhysicsGameTrace, PIID_IPHYSICSGAMETRACE ); //----------------------------------------------------------------------------- #endif // VPHYSICS_INTERFACE_H