// $Id$ #include #include void LightDesc_t::RecalculateDerivedValues(void) { m_Flags=0; if (m_Attenuation0) m_Flags|=LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION0; if (m_Attenuation1) m_Flags|=LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION1; if (m_Attenuation2) m_Flags|=LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION2; if (m_Type==MATERIAL_LIGHT_SPOT) { m_ThetaDot=cos(m_Theta); m_PhiDot=cos(m_Phi); float spread=m_ThetaDot-m_PhiDot; if (spread>1.0e-10) { // note - this quantity is very sensitive to round off error. the sse // reciprocal approximation won't cut it here. OneOver_ThetaDot_Minus_PhiDot=1.0/spread; } else { // hard falloff instead of divide by zero OneOver_ThetaDot_Minus_PhiDot=1.0; } } m_RangeSquared=m_Range*m_Range; } void LightDesc_t::ComputeLightAtPoints( const FourVectors &pos, const FourVectors &normal, FourVectors &color, bool DoHalfLambert ) const { FourVectors delta; Assert((m_Type==MATERIAL_LIGHT_POINT) || (m_Type==MATERIAL_LIGHT_SPOT) || (m_Type==MATERIAL_LIGHT_DIRECTIONAL)); switch (m_Type) { case MATERIAL_LIGHT_POINT: case MATERIAL_LIGHT_SPOT: delta.DuplicateVector(m_Position); delta-=pos; break; case MATERIAL_LIGHT_DIRECTIONAL: delta.DuplicateVector(m_Direction); delta*=-1.0; break; default: delta.x = Four_Zeros; delta.y = Four_Zeros; delta.z = Four_Zeros; break; } __m128 dist2 = delta*delta; __m128 falloff; if( m_Flags & LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION0 ) { falloff = MMReplicate(m_Attenuation0); } else falloff= Four_Epsilons; if( m_Flags & LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION1 ) { falloff=_mm_add_ps(falloff,_mm_mul_ps(MMReplicate(m_Attenuation1),_mm_sqrt_ps(dist2))); } if( m_Flags & LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION2 ) { falloff=_mm_add_ps(falloff,_mm_mul_ps(MMReplicate(m_Attenuation2),dist2)); } falloff=_mm_rcp_ps(falloff); // Cull out light beyond this radius // now, zero out elements for which dist2 was > range^2. !!speed!! lights should store dist^2 in sse format if (m_Range != 0.f) { __m128 RangeSquared=MMReplicate(m_RangeSquared); // !!speed!! falloff=_mm_and_ps(falloff,_mm_cmplt_ps(dist2,RangeSquared)); } delta.VectorNormalizeFast(); __m128 strength=delta*normal; if (DoHalfLambert) { strength=_mm_add_ps(_mm_mul_ps(strength,Four_PointFives),Four_PointFives); } else strength=_mm_max_ps(Four_Zeros,delta*normal); switch(m_Type) { case MATERIAL_LIGHT_POINT: // half-lambert break; case MATERIAL_LIGHT_SPOT: { __m128 dot2=_mm_sub_ps(Four_Zeros,delta*m_Direction); // dot position with spot light dir for cone falloff __m128 cone_falloff_scale=_mm_mul_ps(MMReplicate(OneOver_ThetaDot_Minus_PhiDot), _mm_sub_ps(dot2,MMReplicate(m_PhiDot))); cone_falloff_scale=_mm_min_ps(cone_falloff_scale,Four_Ones); if ((m_Falloff!=0.0) && (m_Falloff!=1.0)) { // !!speed!! could compute integer exponent needed by powsse and store in light cone_falloff_scale=PowSSE(cone_falloff_scale,m_Falloff); } strength=_mm_mul_ps(cone_falloff_scale,strength); // now, zero out lighting where dot2