//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======// // // Purpose: // // $NoKeywords: $ //===========================================================================// #include "cbase.h" #include "c_baseentity.h" #include "prediction.h" #include "model_types.h" #include "iviewrender_beams.h" #include "dlight.h" #include "iviewrender.h" #include "view.h" #include "iefx.h" #include "c_team.h" #include "clientmode.h" #include "usercmd.h" #include "engine/IEngineSound.h" #include "crtdbg.h" #include "engine/IEngineTrace.h" #include "engine/ivmodelinfo.h" #include "tier0/vprof.h" #include "fx_line.h" #include "interface.h" #include "materialsystem/IMaterialSystem.h" #include "soundinfo.h" #include "vmatrix.h" #include "isaverestore.h" #include "interval.h" #include "engine/ivdebugoverlay.h" #include "c_ai_basenpc.h" #include "apparent_velocity_helper.h" #include "c_baseanimatingoverlay.h" #include "tier1/KeyValues.h" #include "hltvcamera.h" #include "datacache/imdlcache.h" #include "toolframework/itoolframework.h" #include "toolframework_client.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" #ifdef INTERPOLATEDVAR_PARANOID_MEASUREMENT int g_nInterpolatedVarsChanged = 0; bool g_bRestoreInterpolatedVarValues = false; #endif static bool g_bWasSkipping = (bool)-1; void cc_cl_interp_changed( ConVar *var, const char *pOldString ) { C_BaseEntityIterator iterator; C_BaseEntity *pEnt; while ( (pEnt = iterator.Next()) != NULL ) { pEnt->Interp_UpdateInterpolationAmounts( pEnt->GetVarMapping() ); } } void cc_cl_interp_all_changed( ConVar *var, const char *pOldString ) { if ( var->GetInt() ) { C_BaseEntityIterator iterator; C_BaseEntity *pEnt; while ( (pEnt = iterator.Next()) != NULL ) { if ( pEnt->ShouldInterpolate() ) pEnt->AddToInterpolationList(); } } } static ConVar cl_extrapolate( "cl_extrapolate", "1", FCVAR_CHEAT, "Enable/disable extrapolation if interpolation history runs out." ); static ConVar cl_interpolate( "cl_interpolate", "1.0", FCVAR_USERINFO, "Interpolate entities on the client." ); static ConVar cl_interp ( "cl_interp", "0.1", FCVAR_USERINFO | FCVAR_DEMO, "Interpolate object positions starting this many seconds in past", true, 0.01, true, 1.0, cc_cl_interp_changed ); static ConVar cl_interp_npcs( "cl_interp_npcs", "0.0", FCVAR_USERINFO, "Interpolate NPC positions starting this many seconds in past (or cl_interp, if greater)", 0, 0, 0, 0, cc_cl_interp_changed ); static ConVar cl_interp_all( "cl_interp_all", "0", 0, "Disable interpolation list optimizations.", 0, 0, 0, 0, cc_cl_interp_all_changed ); //APSFIXME - Temp until I fix ConVar r_drawmodeldecals( "r_drawmodeldecals", IsXbox() ? "0" : "1" ); extern ConVar cl_showerror; int C_BaseEntity::m_nPredictionRandomSeed = -1; C_BasePlayer *C_BaseEntity::m_pPredictionPlayer = NULL; bool C_BaseEntity::s_bAbsQueriesValid = true; bool C_BaseEntity::s_bAbsRecomputationEnabled = true; bool C_BaseEntity::s_bInterpolate = true; bool C_BaseEntity::sm_bDisableTouchFuncs = false; // Disables PhysicsTouch and PhysicsStartTouch function calls static ConVar r_drawrenderboxes( "r_drawrenderboxes", "0", FCVAR_CHEAT ); static bool g_bAbsRecomputationStack[8]; static unsigned short g_iAbsRecomputationStackPos = 0; // All the entities that want Interpolate() called on them. static CUtlLinkedList g_InterpolationList; static CUtlLinkedList g_TeleportList; #if !defined( NO_ENTITY_PREDICTION ) //----------------------------------------------------------------------------- // Purpose: Maintains a list of predicted or client created entities //----------------------------------------------------------------------------- class CPredictableList : public IPredictableList { public: virtual C_BaseEntity *GetPredictable( int slot ); virtual int GetPredictableCount( void ); protected: void AddToPredictableList( ClientEntityHandle_t add ); void RemoveFromPredictablesList( ClientEntityHandle_t remove ); private: CUtlVector< ClientEntityHandle_t > m_Predictables; friend class C_BaseEntity; }; // Create singleton static CPredictableList g_Predictables; IPredictableList *predictables = &g_Predictables; //----------------------------------------------------------------------------- // Purpose: Add entity to list // Input : add - // Output : int //----------------------------------------------------------------------------- void CPredictableList::AddToPredictableList( ClientEntityHandle_t add ) { // This is a hack to remap slot to index if ( m_Predictables.Find( add ) != m_Predictables.InvalidIndex() ) { return; } // Add to general list m_Predictables.AddToTail( add ); // Maintain sort order by entindex int count = m_Predictables.Size(); if ( count < 2 ) return; int i, j; for ( i = 0; i < count; i++ ) { for ( j = i + 1; j < count; j++ ) { ClientEntityHandle_t h1 = m_Predictables[ i ]; ClientEntityHandle_t h2 = m_Predictables[ j ]; C_BaseEntity *p1 = cl_entitylist->GetBaseEntityFromHandle( h1 ); C_BaseEntity *p2 = cl_entitylist->GetBaseEntityFromHandle( h2 ); if ( !p1 || !p2 ) { Assert( 0 ); continue; } if ( p1->entindex() != -1 && p2->entindex() != -1 ) { if ( p1->entindex() < p2->entindex() ) continue; } if ( p2->entindex() == -1 ) continue; m_Predictables[ i ] = h2; m_Predictables[ j ] = h1; } } } //----------------------------------------------------------------------------- // Purpose: // Input : remove - //----------------------------------------------------------------------------- void CPredictableList::RemoveFromPredictablesList( ClientEntityHandle_t remove ) { m_Predictables.FindAndRemove( remove ); } //----------------------------------------------------------------------------- // Purpose: // Input : slot - // Output : C_BaseEntity //----------------------------------------------------------------------------- C_BaseEntity *CPredictableList::GetPredictable( int slot ) { return cl_entitylist->GetBaseEntityFromHandle( m_Predictables[ slot ] ); } //----------------------------------------------------------------------------- // Purpose: // Output : int //----------------------------------------------------------------------------- int CPredictableList::GetPredictableCount( void ) { return m_Predictables.Count(); } //----------------------------------------------------------------------------- // Purpose: Searc predictables for previously created entity (by testId) // Input : testId - // Output : static C_BaseEntity //----------------------------------------------------------------------------- static C_BaseEntity *FindPreviouslyCreatedEntity( CPredictableId& testId ) { int c = predictables->GetPredictableCount(); int i; for ( i = 0; i < c; i++ ) { C_BaseEntity *e = predictables->GetPredictable( i ); if ( !e || !e->IsClientCreated() ) continue; // Found it, note use of operator == if ( testId == e->m_PredictableID ) { return e; } } return NULL; } #endif abstract_class IRecordingList { public: virtual ~IRecordingList() {}; virtual void AddToList( ClientEntityHandle_t add ) = 0; virtual void RemoveFromList( ClientEntityHandle_t remove ) = 0; virtual int Count() = 0; virtual C_BaseEntity *Get( int index ) = 0; }; class CRecordingList : public IRecordingList { public: virtual void AddToList( ClientEntityHandle_t add ); virtual void RemoveFromList( ClientEntityHandle_t remove ); virtual int Count(); virtual C_BaseEntity *Get( int index ); private: CUtlVector< ClientEntityHandle_t > m_Recording; }; static CRecordingList g_RecordingList; IRecordingList *recordinglist = &g_RecordingList; //----------------------------------------------------------------------------- // Purpose: Add entity to list // Input : add - // Output : int //----------------------------------------------------------------------------- void CRecordingList::AddToList( ClientEntityHandle_t add ) { // This is a hack to remap slot to index if ( m_Recording.Find( add ) != m_Recording.InvalidIndex() ) { return; } // Add to general list m_Recording.AddToTail( add ); } //----------------------------------------------------------------------------- // Purpose: // Input : remove - //----------------------------------------------------------------------------- void CRecordingList::RemoveFromList( ClientEntityHandle_t remove ) { m_Recording.FindAndRemove( remove ); } //----------------------------------------------------------------------------- // Purpose: // Input : slot - // Output : C_BaseEntity //----------------------------------------------------------------------------- C_BaseEntity *CRecordingList::Get( int index ) { return cl_entitylist->GetBaseEntityFromHandle( m_Recording[ index ] ); } //----------------------------------------------------------------------------- // Purpose: // Output : int //----------------------------------------------------------------------------- int CRecordingList::Count( void ) { return m_Recording.Count(); } // Should these be somewhere else? #define PITCH 0 // HACK HACK: 3/28/02 ywb Had to proxy around this or interpolation is borked in multiplayer, not sure what // the issue is, just a global optimizer bug I presume #pragma optimize( "g", off ) //----------------------------------------------------------------------------- // Purpose: Decodes animtime and notes when it changes // Input : *pStruct - ( C_BaseEntity * ) used to flag animtime is changine // *pVarData - // *pIn - // objectID - //----------------------------------------------------------------------------- void RecvProxy_AnimTime( const CRecvProxyData *pData, void *pStruct, void *pOut ) { int t; int tickbase; int addt; C_BaseEntity *pEntity = ( C_BaseEntity * )pStruct; Assert( pOut == &pEntity->m_flAnimTime ); // Unpack the data. addt = pData->m_Value.m_Int; // Note, this needs to be encoded relative to packet timestamp, not raw client clock tickbase = 100 * (int)( gpGlobals->tickcount / 100 ); t = tickbase; // and then go back to floating point time. t += addt; // Add in an additional up to 256 100ths from the server // center animtime around current time. while (t < gpGlobals->tickcount - 127) t += 256; while (t > gpGlobals->tickcount + 127) t -= 256; pEntity->m_flAnimTime = ( t * TICK_INTERVAL ); } void RecvProxy_SimulationTime( const CRecvProxyData *pData, void *pStruct, void *pOut ) { int t; int tickbase; int addt; // Unpack the data. addt = pData->m_Value.m_Int; // Note, this needs to be encoded relative to packet timestamp, not raw client clock tickbase = 100 * (int)( gpGlobals->tickcount / 100 ); t = tickbase; // and then go back to floating point time. t += addt; // Add in an additional up to 256 100ths from the server // center animtime around current time. while (t < gpGlobals->tickcount - 127) t += 256; while (t > gpGlobals->tickcount + 127) t -= 256; C_BaseEntity *pEntity = ( C_BaseEntity * )pStruct; Assert( pOut == &pEntity->m_flSimulationTime ); pEntity->m_flSimulationTime = ( t * TICK_INTERVAL ); } void RecvProxy_LocalVelocity( const CRecvProxyData *pData, void *pStruct, void *pOut ) { CBaseEntity *pEnt = (CBaseEntity *)pStruct; Vector vecVelocity; vecVelocity.x = pData->m_Value.m_Vector[0]; vecVelocity.y = pData->m_Value.m_Vector[1]; vecVelocity.z = pData->m_Value.m_Vector[2]; // SetLocalVelocity checks to see if the value has changed pEnt->SetLocalVelocity( vecVelocity ); } void RecvProxy_ToolRecording( const CRecvProxyData *pData, void *pStruct, void *pOut ) { if ( !ToolsEnabled() ) return; CBaseEntity *pEnt = (CBaseEntity *)pStruct; pEnt->SetToolRecording( pData->m_Value.m_Int == 0 ? false : true ); if ( pEnt->IsToolRecording() ) { recordinglist->AddToList( pEnt->GetClientHandle() ); } else { recordinglist->RemoveFromList( pEnt->GetClientHandle() ); } } #pragma optimize( "g", on ) // Expose it to the engine. IMPLEMENT_CLIENTCLASS(C_BaseEntity, DT_BaseEntity, CBaseEntity); static void RecvProxy_MoveType( const CRecvProxyData *pData, void *pStruct, void *pOut ) { ((C_BaseEntity*)pStruct)->SetMoveType( (MoveType_t)(pData->m_Value.m_Int) ); } static void RecvProxy_MoveCollide( const CRecvProxyData *pData, void *pStruct, void *pOut ) { ((C_BaseEntity*)pStruct)->SetMoveCollide( (MoveCollide_t)(pData->m_Value.m_Int) ); } static void RecvProxy_Solid( const CRecvProxyData *pData, void *pStruct, void *pOut ) { ((C_BaseEntity*)pStruct)->SetSolid( (SolidType_t)pData->m_Value.m_Int ); } static void RecvProxy_SolidFlags( const CRecvProxyData *pData, void *pStruct, void *pOut ) { ((C_BaseEntity*)pStruct)->SetSolidFlags( pData->m_Value.m_Int ); } void RecvProxy_EffectFlags( const CRecvProxyData *pData, void *pStruct, void *pOut ) { ((C_BaseEntity*)pStruct)->SetEffects( pData->m_Value.m_Int ); } BEGIN_RECV_TABLE_NOBASE( C_BaseEntity, DT_AnimTimeMustBeFirst ) RecvPropInt( RECVINFO(m_flAnimTime), 0, RecvProxy_AnimTime ), END_RECV_TABLE() #ifndef NO_ENTITY_PREDICTION BEGIN_RECV_TABLE_NOBASE( C_BaseEntity, DT_PredictableId ) RecvPropPredictableId( RECVINFO( m_PredictableID ) ), RecvPropInt( RECVINFO( m_bIsPlayerSimulated ) ), END_RECV_TABLE() #endif BEGIN_RECV_TABLE_NOBASE(C_BaseEntity, DT_BaseEntity) RecvPropDataTable( "AnimTimeMustBeFirst", 0, 0, &REFERENCE_RECV_TABLE(DT_AnimTimeMustBeFirst) ), RecvPropInt( RECVINFO(m_flSimulationTime), 0, RecvProxy_SimulationTime ), RecvPropVector( RECVINFO_NAME( m_vecNetworkOrigin, m_vecOrigin ) ), RecvPropQAngles( RECVINFO_NAME( m_angNetworkAngles, m_angRotation ) ), RecvPropInt(RECVINFO(m_nModelIndex) ), RecvPropInt(RECVINFO(m_fEffects), 0, RecvProxy_EffectFlags ), RecvPropInt(RECVINFO(m_nRenderMode)), RecvPropInt(RECVINFO(m_nRenderFX)), RecvPropInt(RECVINFO(m_clrRender)), RecvPropInt(RECVINFO(m_iTeamNum)), RecvPropInt(RECVINFO(m_CollisionGroup)), RecvPropFloat(RECVINFO(m_flElasticity)), RecvPropFloat(RECVINFO(m_flShadowCastDistance)), RecvPropEHandle( RECVINFO(m_hOwnerEntity) ), RecvPropEHandle( RECVINFO(m_hEffectEntity) ), RecvPropInt( RECVINFO_NAME(m_hNetworkMoveParent, moveparent), 0, RecvProxy_IntToMoveParent ), RecvPropInt( RECVINFO( m_iParentAttachment ) ), RecvPropInt( "movetype", 0, SIZEOF_IGNORE, 0, RecvProxy_MoveType ), RecvPropInt( "movecollide", 0, SIZEOF_IGNORE, 0, RecvProxy_MoveCollide ), RecvPropDataTable( RECVINFO_DT( m_Collision ), 0, &REFERENCE_RECV_TABLE(DT_CollisionProperty) ), RecvPropInt( RECVINFO ( m_iTextureFrameIndex ) ), #if !defined( NO_ENTITY_PREDICTION ) RecvPropDataTable( "predictable_id", 0, 0, &REFERENCE_RECV_TABLE( DT_PredictableId ) ), #endif RecvPropInt ( RECVINFO( m_bSimulatedEveryTick ), 0, RecvProxy_InterpolationAmountChanged ), RecvPropInt ( RECVINFO( m_bAnimatedEveryTick ), 0, RecvProxy_InterpolationAmountChanged ), RecvPropBool ( RECVINFO( m_bAlternateSorting ) ), END_RECV_TABLE() BEGIN_PREDICTION_DATA_NO_BASE( C_BaseEntity ) // These have a special proxy to handle send/receive DEFINE_PRED_TYPEDESCRIPTION( m_Collision, CCollisionProperty ), DEFINE_PRED_FIELD( m_MoveType, FIELD_CHARACTER, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_MoveCollide, FIELD_CHARACTER, FTYPEDESC_INSENDTABLE ), DEFINE_FIELD( m_vecAbsVelocity, FIELD_VECTOR ), DEFINE_PRED_FIELD_TOL( m_vecVelocity, FIELD_VECTOR, FTYPEDESC_INSENDTABLE, 0.5f ), // DEFINE_PRED_FIELD( m_fEffects, FIELD_INTEGER, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_nRenderMode, FIELD_CHARACTER, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_nRenderFX, FIELD_CHARACTER, FTYPEDESC_INSENDTABLE ), // DEFINE_PRED_FIELD( m_flAnimTime, FIELD_FLOAT, FTYPEDESC_INSENDTABLE ), // DEFINE_PRED_FIELD( m_flSimulationTime, FIELD_FLOAT, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_fFlags, FIELD_INTEGER, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD_TOL( m_vecViewOffset, FIELD_VECTOR, FTYPEDESC_INSENDTABLE, 0.25f ), DEFINE_PRED_FIELD( m_nModelIndex, FIELD_SHORT, FTYPEDESC_INSENDTABLE | FTYPEDESC_MODELINDEX ), DEFINE_PRED_FIELD( m_flFriction, FIELD_FLOAT, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_iTeamNum, FIELD_INTEGER, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_hOwnerEntity, FIELD_EHANDLE, FTYPEDESC_INSENDTABLE ), // DEFINE_FIELD( m_nSimulationTick, FIELD_INTEGER ), DEFINE_PRED_FIELD( m_hNetworkMoveParent, FIELD_EHANDLE, FTYPEDESC_INSENDTABLE ), // DEFINE_PRED_FIELD( m_pMoveParent, FIELD_EHANDLE ), // DEFINE_PRED_FIELD( m_pMoveChild, FIELD_EHANDLE ), // DEFINE_PRED_FIELD( m_pMovePeer, FIELD_EHANDLE ), // DEFINE_PRED_FIELD( m_pMovePrevPeer, FIELD_EHANDLE ), DEFINE_PRED_FIELD_TOL( m_vecNetworkOrigin, FIELD_VECTOR, FTYPEDESC_INSENDTABLE, 0.125f ), DEFINE_PRED_FIELD( m_angNetworkAngles, FIELD_VECTOR, FTYPEDESC_INSENDTABLE | FTYPEDESC_NOERRORCHECK ), DEFINE_FIELD( m_vecAbsOrigin, FIELD_VECTOR ), DEFINE_FIELD( m_angAbsRotation, FIELD_VECTOR ), DEFINE_FIELD( m_vecOrigin, FIELD_VECTOR ), DEFINE_FIELD( m_angRotation, FIELD_VECTOR ), // DEFINE_FIELD( m_hGroundEntity, FIELD_EHANDLE ), DEFINE_FIELD( m_nWaterLevel, FIELD_CHARACTER ), DEFINE_FIELD( m_nWaterType, FIELD_CHARACTER ), DEFINE_FIELD( m_vecAngVelocity, FIELD_VECTOR ), // DEFINE_FIELD( m_vecAbsAngVelocity, FIELD_VECTOR ), // DEFINE_FIELD( model, FIELD_INTEGER ), // writing pointer literally // DEFINE_FIELD( index, FIELD_INTEGER ), // DEFINE_FIELD( m_ClientHandle, FIELD_SHORT ), // DEFINE_FIELD( m_Partition, FIELD_SHORT ), // DEFINE_FIELD( m_hRender, FIELD_SHORT ), DEFINE_FIELD( m_bDormant, FIELD_BOOLEAN ), // DEFINE_FIELD( current_position, FIELD_INTEGER ), // DEFINE_FIELD( m_flLastMessageTime, FIELD_FLOAT ), DEFINE_FIELD( m_vecBaseVelocity, FIELD_VECTOR ), DEFINE_FIELD( m_iEFlags, FIELD_INTEGER ), DEFINE_FIELD( m_flGravity, FIELD_FLOAT ), // DEFINE_FIELD( m_ModelInstance, FIELD_SHORT ), DEFINE_FIELD( m_flProxyRandomValue, FIELD_FLOAT ), // DEFINE_FIELD( m_PredictableID, FIELD_INTEGER ), // DEFINE_FIELD( m_pPredictionContext, FIELD_POINTER ), // Stuff specific to rendering and therefore not to be copied back and forth // DEFINE_PRED_FIELD( m_clrRender, color32, FTYPEDESC_INSENDTABLE ), // DEFINE_FIELD( m_bReadyToDraw, FIELD_BOOLEAN ), // DEFINE_FIELD( anim, CLatchedAnim ), // DEFINE_FIELD( mouth, CMouthInfo ), // DEFINE_FIELD( GetAbsOrigin(), FIELD_VECTOR ), // DEFINE_FIELD( GetAbsAngles(), FIELD_VECTOR ), // DEFINE_FIELD( m_nNumAttachments, FIELD_SHORT ), // DEFINE_FIELD( m_pAttachmentAngles, FIELD_VECTOR ), // DEFINE_FIELD( m_pAttachmentOrigin, FIELD_VECTOR ), // DEFINE_FIELD( m_listentry, CSerialEntity ), // DEFINE_FIELD( m_ShadowHandle, ClientShadowHandle_t ), // DEFINE_FIELD( m_hThink, ClientThinkHandle_t ), // Definitely private and not copied around // DEFINE_FIELD( m_bPredictable, FIELD_BOOLEAN ), // DEFINE_FIELD( m_CollisionGroup, FIELD_INTEGER ), // DEFINE_FIELD( m_DataChangeEventRef, FIELD_INTEGER ), #if !defined( CLIENT_DLL ) // DEFINE_FIELD( m_bPredictionEligible, FIELD_BOOLEAN ), #endif END_PREDICTION_DATA() //----------------------------------------------------------------------------- // Helper functions. //----------------------------------------------------------------------------- void SpewInterpolatedVar( CInterpolatedVar< Vector > *pVar ) { Msg( "--------------------------------------------------\n" ); int i = pVar->GetHead(); CApparentVelocity apparent; while ( 1 ) { float changetime; Vector *pVal = pVar->GetHistoryValue( i, changetime ); if ( !pVal ) break; float vel = apparent.AddSample( changetime, *pVal ); Msg( "%6.6f: (%.2f %.2f %.2f), vel: %.2f\n", changetime, VectorExpand( *pVal ), vel ); i = pVar->GetNext( i ); } Msg( "--------------------------------------------------\n" ); } template void GetInterpolatedVarTimeRange( CInterpolatedVar *pVar, float &flMin, float &flMax ) { flMin = 1e23; flMax = -1e23; int i = pVar->GetHead(); CApparentVelocity apparent; while ( 1 ) { float changetime; if ( !pVar->GetHistoryValue( i, changetime ) ) return; flMin = min( flMin, changetime ); flMax = max( flMax, changetime ); i = pVar->GetNext( i ); } } //----------------------------------------------------------------------------- // Global methods related to when abs data is correct //----------------------------------------------------------------------------- void C_BaseEntity::SetAbsQueriesValid( bool bValid ) { s_bAbsQueriesValid = bValid; } bool C_BaseEntity::IsAbsQueriesValid( void ) { return s_bAbsQueriesValid; } void C_BaseEntity::PushEnableAbsRecomputations( bool bEnable ) { if ( g_iAbsRecomputationStackPos < ARRAYSIZE( g_bAbsRecomputationStack ) ) { g_bAbsRecomputationStack[g_iAbsRecomputationStackPos] = s_bAbsRecomputationEnabled; ++g_iAbsRecomputationStackPos; s_bAbsRecomputationEnabled = bEnable; } else { Assert( false ); } } void C_BaseEntity::PopEnableAbsRecomputations() { if ( g_iAbsRecomputationStackPos > 0 ) { --g_iAbsRecomputationStackPos; s_bAbsRecomputationEnabled = g_bAbsRecomputationStack[g_iAbsRecomputationStackPos]; } else { Assert( false ); } } void C_BaseEntity::EnableAbsRecomputations( bool bEnable ) { // This should only be called at the frame level. Use PushEnableAbsRecomputations // if you're blocking out a section of code. Assert( g_iAbsRecomputationStackPos == 0 ); s_bAbsRecomputationEnabled = bEnable; } bool C_BaseEntity::IsAbsRecomputationsEnabled() { return s_bAbsRecomputationEnabled; } int C_BaseEntity::GetTextureFrameIndex( void ) { return m_iTextureFrameIndex; } void C_BaseEntity::SetTextureFrameIndex( int iIndex ) { m_iTextureFrameIndex = iIndex; } //----------------------------------------------------------------------------- // Purpose: // Input : *map - //----------------------------------------------------------------------------- void C_BaseEntity::Interp_SetupMappings( VarMapping_t *map ) { if( !map ) return; int c = map->m_Entries.Count(); for ( int i = 0; i < c; i++ ) { VarMapEntry_t *e = &map->m_Entries[ i ]; IInterpolatedVar *watcher = e->watcher; void *data = e->data; int type = e->type; watcher->Setup( data, type ); watcher->SetInterpolationAmount( GetInterpolationAmount( watcher->GetType() ) ); } } void C_BaseEntity::Interp_RestoreToLastNetworked( VarMapping_t *map ) { Vector oldOrigin = GetLocalOrigin(); QAngle oldAngles = GetLocalAngles(); int c = map->m_Entries.Count(); for ( int i = 0; i < c; i++ ) { VarMapEntry_t *e = &map->m_Entries[ i ]; IInterpolatedVar *watcher = e->watcher; watcher->RestoreToLastNetworked(); } BaseInterpolatePart2( oldOrigin, oldAngles, 0 ); } void C_BaseEntity::Interp_UpdateInterpolationAmounts( VarMapping_t *map ) { if( !map ) return; int c = map->m_Entries.Count(); for ( int i = 0; i < c; i++ ) { VarMapEntry_t *e = &map->m_Entries[ i ]; IInterpolatedVar *watcher = e->watcher; watcher->SetInterpolationAmount( GetInterpolationAmount( watcher->GetType() ) ); } } void C_BaseEntity::Interp_HierarchyUpdateInterpolationAmounts() { Interp_UpdateInterpolationAmounts( GetVarMapping() ); for ( C_BaseEntity *pChild = FirstMoveChild(); pChild; pChild = pChild->NextMovePeer() ) { pChild->Interp_HierarchyUpdateInterpolationAmounts(); } } inline int C_BaseEntity::Interp_Interpolate( VarMapping_t *map, float currentTime ) { int bNoMoreChanges = 1; for ( int i = 0; i < map->m_nInterpolatedEntries; i++ ) { VarMapEntry_t *e = &map->m_Entries[ i ]; if ( !e->m_bNeedsToInterpolate ) continue; IInterpolatedVar *watcher = e->watcher; Assert( !( watcher->GetType() & EXCLUDE_AUTO_INTERPOLATE ) ); if ( watcher->Interpolate( currentTime ) ) e->m_bNeedsToInterpolate = false; else bNoMoreChanges = 0; } return bNoMoreChanges; } //----------------------------------------------------------------------------- // Functions. //----------------------------------------------------------------------------- C_BaseEntity::C_BaseEntity() : m_iv_vecOrigin( "C_BaseEntity::m_iv_vecOrigin" ), m_iv_angRotation( "C_BaseEntity::m_iv_angRotation" ) { AddVar( &m_vecOrigin, &m_iv_vecOrigin, LATCH_SIMULATION_VAR ); AddVar( &m_angRotation, &m_iv_angRotation, LATCH_SIMULATION_VAR ); m_DataChangeEventRef = -1; m_EntClientFlags = 0; m_iParentAttachment = 0; m_nRenderFXBlend = 255; SetPredictionEligible( false ); m_bPredictable = false; m_bSimulatedEveryTick = false; m_bAnimatedEveryTick = false; m_pPhysicsObject = NULL; #ifdef _DEBUG m_vecAbsOrigin = vec3_origin; m_angAbsRotation = vec3_angle; m_vecNetworkOrigin.Init(); m_angNetworkAngles.Init(); m_vecAbsOrigin.Init(); // m_vecAbsAngVelocity.Init(); m_vecVelocity.Init(); m_vecAbsVelocity.Init(); m_vecViewOffset.Init(); m_vecBaseVelocity.Init(); m_iCurrentThinkContext = NO_THINK_CONTEXT; #endif m_nSimulationTick = -1; // Assume drawing everything m_bReadyToDraw = true; m_flProxyRandomValue = 0.0f; m_fBBoxVisFlags = 0; #if !defined( NO_ENTITY_PREDICTION ) m_pPredictionContext = NULL; #endif Clear(); m_InterpolationListEntry = 0xFFFF; m_TeleportListEntry = 0xFFFF; #ifndef NO_TOOLFRAMEWORK m_bEnabledInToolView = true; m_bToolRecording = false; m_ToolHandle = 0; m_nLastRecordedFrame = -1; #endif } //----------------------------------------------------------------------------- // Purpose: // Input : // Output : //----------------------------------------------------------------------------- C_BaseEntity::~C_BaseEntity() { Term(); ClearDataChangedEvent( m_DataChangeEventRef ); #if !defined( NO_ENTITY_PREDICTION ) delete m_pPredictionContext; #endif RemoveFromInterpolationList(); RemoveFromTeleportList(); } void C_BaseEntity::Clear( void ) { m_bDormant = true; m_RefEHandle.Term(); m_ModelInstance = MODEL_INSTANCE_INVALID; m_ShadowHandle = CLIENTSHADOW_INVALID_HANDLE; m_hRender = INVALID_CLIENT_RENDER_HANDLE; m_hThink = INVALID_THINK_HANDLE; m_AimEntsListHandle = INVALID_AIMENTS_LIST_HANDLE; index = -1; m_Collision.Init( this ); SetLocalOrigin( vec3_origin ); SetLocalAngles( vec3_angle ); model = NULL; m_vecAbsOrigin.Init(); m_angAbsRotation.Init(); m_vecVelocity.Init(); ClearFlags(); m_vecViewOffset.Init(); m_vecBaseVelocity.Init(); m_nModelIndex = 0; m_flAnimTime = 0; m_flSimulationTime = 0; SetSolid( SOLID_NONE ); SetSolidFlags( 0 ); SetMoveCollide( MOVECOLLIDE_DEFAULT ); SetMoveType( MOVETYPE_NONE ); ClearEffects(); m_iEFlags = 0; m_nRenderMode = 0; m_nOldRenderMode = 0; SetRenderColor( 255, 255, 255, 255 ); m_nRenderFX = 0; m_flFriction = 0.0f; m_flGravity = 0.0f; SetCheckUntouch( false ); m_ShadowDirUseOtherEntity = NULL; m_nLastThinkTick = gpGlobals->tickcount; // Remove prediction context if it exists #if !defined( NO_ENTITY_PREDICTION ) delete m_pPredictionContext; m_pPredictionContext = NULL; #endif // Do not enable this on all entities. It forces bone setup for entities that // don't need it. //AddEFlags( EFL_USE_PARTITION_WHEN_NOT_SOLID ); UpdateVisibility(); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::Spawn( void ) { } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::Activate() { } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::SpawnClientEntity( void ) { } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::Precache( void ) { } //----------------------------------------------------------------------------- // Purpose: Attach to entity // Input : *pEnt - // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::Init( int entnum, int iSerialNum ) { Assert( entnum >= 0 && entnum < NUM_ENT_ENTRIES ); index = entnum; cl_entitylist->AddNetworkableEntity( GetIClientUnknown(), entnum, iSerialNum ); CollisionProp()->CreatePartitionHandle(); Interp_SetupMappings( GetVarMapping() ); return true; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool C_BaseEntity::InitializeAsClientEntity( const char *pszModelName, RenderGroup_t renderGroup ) { int nModelIndex; if ( pszModelName != NULL ) { nModelIndex = modelinfo->GetModelIndex( pszModelName ); if ( nModelIndex == -1 ) { // Model could not be found Assert( !"Model could not be found, index is -1" ); return false; } } else { nModelIndex = -1; } Interp_SetupMappings( GetVarMapping() ); return InitializeAsClientEntityByIndex( nModelIndex, renderGroup ); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool C_BaseEntity::InitializeAsClientEntityByIndex( int iIndex, RenderGroup_t renderGroup ) { // Setup model data. SetModelByIndex( iIndex ); // Add the client entity to the master entity list. cl_entitylist->AddNonNetworkableEntity( GetIClientUnknown() ); Assert( GetClientHandle() != ClientEntityList().InvalidHandle() ); // Add the client entity to the renderable "leaf system." (Renderable) AddToLeafSystem( renderGroup ); // Add the client entity to the spatial partition. (Collidable) CollisionProp()->CreatePartitionHandle(); index = -1; SpawnClientEntity(); return true; } void C_BaseEntity::Term() { C_BaseEntity::PhysicsRemoveTouchedList( this ); C_BaseEntity::PhysicsRemoveGroundList( this ); DestroyAllDataObjects(); #if !defined( NO_ENTITY_PREDICTION ) // Remove from the predictables list if ( GetPredictable() || IsClientCreated() ) { g_Predictables.RemoveFromPredictablesList( GetClientHandle() ); } // If it's play simulated, remove from simulation list if the player still exists... if ( IsPlayerSimulated() && C_BasePlayer::GetLocalPlayer() ) { C_BasePlayer::GetLocalPlayer()->RemoveFromPlayerSimulationList( this ); } #endif if ( GetClientHandle() != INVALID_CLIENTENTITY_HANDLE ) { if ( GetThinkHandle() != INVALID_THINK_HANDLE ) { ClientThinkList()->RemoveThinkable( GetClientHandle() ); } // Remove from the client entity list. ClientEntityList().RemoveEntity( GetClientHandle() ); m_RefEHandle = INVALID_CLIENTENTITY_HANDLE; } // Are we in the partition? CollisionProp()->DestroyPartitionHandle(); // If Client side only entity index will be -1 if ( index != -1 ) { beams->KillDeadBeams( this ); } // Clean up the model instance DestroyModelInstance(); // Clean up drawing RemoveFromLeafSystem(); RemoveFromAimEntsList(); } void C_BaseEntity::SetRefEHandle( const CBaseHandle &handle ) { m_RefEHandle = handle; } const CBaseHandle& C_BaseEntity::GetRefEHandle() const { return m_RefEHandle; } //----------------------------------------------------------------------------- // Purpose: Free beams and destroy object //----------------------------------------------------------------------------- void C_BaseEntity::Release() { C_BaseAnimating::PushAllowBoneAccess( true, true ); UnlinkFromHierarchy(); C_BaseAnimating::PopBoneAccess(); // Note that this must be called from here, not the destructor, because otherwise the // vtable is hosed and the derived classes function is not going to get called!!! if ( IsIntermediateDataAllocated() ) { DestroyIntermediateData(); } UpdateOnRemove(); delete this; } //----------------------------------------------------------------------------- // Only meant to be called from subclasses. // Returns true if instance valid, false otherwise //----------------------------------------------------------------------------- void C_BaseEntity::CreateModelInstance() { if ( m_ModelInstance == MODEL_INSTANCE_INVALID ) { m_ModelInstance = modelrender->CreateInstance( this ); } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::DestroyModelInstance() { if (m_ModelInstance != MODEL_INSTANCE_INVALID) { modelrender->DestroyInstance( m_ModelInstance ); m_ModelInstance = MODEL_INSTANCE_INVALID; } } void C_BaseEntity::SetRemovalFlag( bool bRemove ) { if (bRemove) m_iEFlags |= EFL_KILLME; else m_iEFlags &= ~EFL_KILLME; } //----------------------------------------------------------------------------- // VPhysics objects.. //----------------------------------------------------------------------------- int C_BaseEntity::VPhysicsGetObjectList( IPhysicsObject **pList, int listMax ) { IPhysicsObject *pPhys = VPhysicsGetObject(); if ( pPhys ) { // multi-object entities must implement this function Assert( !(pPhys->GetGameFlags() & FVPHYSICS_MULTIOBJECT_ENTITY) ); if ( listMax > 0 ) { pList[0] = pPhys; return 1; } } return 0; } //----------------------------------------------------------------------------- // Returns the health fraction //----------------------------------------------------------------------------- float C_BaseEntity::HealthFraction() const { if (GetMaxHealth() == 0) return 1.0f; float flFraction = (float)GetHealth() / (float)GetMaxHealth(); flFraction = clamp( flFraction, 0.0f, 1.0f ); return flFraction; } //----------------------------------------------------------------------------- // Purpose: Retrieves the coordinate frame for this entity. // Input : forward - Receives the entity's forward vector. // right - Receives the entity's right vector. // up - Receives the entity's up vector. //----------------------------------------------------------------------------- void C_BaseEntity::GetVectors(Vector* pForward, Vector* pRight, Vector* pUp) const { // This call is necessary to cause m_rgflCoordinateFrame to be recomputed const matrix3x4_t &entityToWorld = EntityToWorldTransform(); if (pForward != NULL) { MatrixGetColumn( entityToWorld, 0, *pForward ); } if (pRight != NULL) { MatrixGetColumn( entityToWorld, 1, *pRight ); *pRight *= -1.0f; } if (pUp != NULL) { MatrixGetColumn( entityToWorld, 2, *pUp ); } } void C_BaseEntity::UpdateVisibility() { if ( ShouldDraw() && !IsDormant() && ( !ToolsEnabled() || IsEnabledInToolView() ) ) { // add/update leafsystem AddToLeafSystem(); } else { // remove from leaf system RemoveFromLeafSystem(); } } //----------------------------------------------------------------------------- // Purpose: Returns whether object should render. //----------------------------------------------------------------------------- bool C_BaseEntity::ShouldDraw() { // Some rendermodes prevent rendering if ( m_nRenderMode == kRenderNone ) return false; return (model != 0) && !IsEffectActive(EF_NODRAW) && (index != 0); } bool C_BaseEntity::TestCollision( const Ray_t& ray, unsigned int mask, trace_t& trace ) { return false; } bool C_BaseEntity::TestHitboxes( const Ray_t &ray, unsigned int fContentsMask, trace_t& tr ) { return false; } //----------------------------------------------------------------------------- // Used when the collision prop is told to ask game code for the world-space surrounding box //----------------------------------------------------------------------------- void C_BaseEntity::ComputeWorldSpaceSurroundingBox( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { // This should only be called if you're using USE_GAME_CODE on the server // and you forgot to implement the client-side version of this method. Assert(0); } //----------------------------------------------------------------------------- // Purpose: Derived classes will have to write their own message cracking routines!!! // Input : length - // *data - //----------------------------------------------------------------------------- void C_BaseEntity::ReceiveMessage( int classID, bf_read &msg ) { // BaseEntity doesn't have a base class we could relay this message to Assert( classID == GetClientClass()->m_ClassID ); int messageType = msg.ReadByte(); switch( messageType ) { case BASEENTITY_MSG_REMOVE_DECALS: RemoveAllDecals(); break; } } void* C_BaseEntity::GetDataTableBasePtr() { return this; } //----------------------------------------------------------------------------- // Should this object cast shadows? //----------------------------------------------------------------------------- ShadowType_t C_BaseEntity::ShadowCastType() { if (IsEffectActive(EF_NODRAW | EF_NOSHADOW)) return SHADOWS_NONE; int modelType = modelinfo->GetModelType( model ); return (modelType == mod_studio) ? SHADOWS_RENDER_TO_TEXTURE : SHADOWS_NONE; } //----------------------------------------------------------------------------- // Per-entity shadow cast distance + direction //----------------------------------------------------------------------------- bool C_BaseEntity::GetShadowCastDistance( float *pDistance, ShadowType_t shadowType ) const { if ( m_flShadowCastDistance != 0.0f ) { *pDistance = m_flShadowCastDistance; return true; } return false; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- C_BaseEntity *C_BaseEntity::GetShadowUseOtherEntity( void ) const { return m_ShadowDirUseOtherEntity; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::SetShadowUseOtherEntity( C_BaseEntity *pEntity ) { m_ShadowDirUseOtherEntity = pEntity; } CInterpolatedVar< QAngle >& C_BaseEntity::GetRotationInterpolator() { return m_iv_angRotation; } CInterpolatedVar< Vector >& C_BaseEntity::GetOriginInterpolator() { return m_iv_vecOrigin; } //----------------------------------------------------------------------------- // Purpose: Return a per-entity shadow cast direction //----------------------------------------------------------------------------- bool C_BaseEntity::GetShadowCastDirection( Vector *pDirection, ShadowType_t shadowType ) const { if ( m_ShadowDirUseOtherEntity ) return m_ShadowDirUseOtherEntity->GetShadowCastDirection( pDirection, shadowType ); return false; } //----------------------------------------------------------------------------- // Should this object receive shadows? //----------------------------------------------------------------------------- bool C_BaseEntity::ShouldReceiveProjectedTextures( int flags ) { Assert( flags & SHADOW_FLAGS_PROJECTED_TEXTURE_TYPE_MASK ); if ( IsEffectActive( EF_NODRAW ) ) return false; if( flags & SHADOW_FLAGS_FLASHLIGHT ) { if ( GetRenderMode() > kRenderNormal && GetRenderColor().a == 0 ) return false; return true; } Assert( flags & SHADOW_FLAGS_SHADOW ); if ( IsEffectActive( EF_NORECEIVESHADOW ) ) return false; if (modelinfo->GetModelType( model ) == mod_studio) return false; return true; } //----------------------------------------------------------------------------- // Shadow-related methods //----------------------------------------------------------------------------- bool C_BaseEntity::IsShadowDirty( ) { return IsEFlagSet( EFL_DIRTY_SHADOWUPDATE ); } void C_BaseEntity::MarkShadowDirty( bool bDirty ) { if ( bDirty ) { AddEFlags( EFL_DIRTY_SHADOWUPDATE ); } else { RemoveEFlags( EFL_DIRTY_SHADOWUPDATE ); } } IClientRenderable *C_BaseEntity::GetShadowParent() { C_BaseEntity *pParent = GetMoveParent(); return pParent ? pParent->GetClientRenderable() : NULL; } IClientRenderable *C_BaseEntity::FirstShadowChild() { C_BaseEntity *pChild = FirstMoveChild(); return pChild ? pChild->GetClientRenderable() : NULL; } IClientRenderable *C_BaseEntity::NextShadowPeer() { C_BaseEntity *pPeer = NextMovePeer(); return pPeer ? pPeer->GetClientRenderable() : NULL; } //----------------------------------------------------------------------------- // Purpose: Returns index into entities list for this entity // Output : Index //----------------------------------------------------------------------------- int C_BaseEntity::entindex( void ) const { return index; } int C_BaseEntity::GetSoundSourceIndex() const { #ifdef _DEBUG if ( index != -1 ) { Assert( index == GetRefEHandle().GetEntryIndex() ); } #endif return GetRefEHandle().GetEntryIndex(); } //----------------------------------------------------------------------------- // Get render origin and angles //----------------------------------------------------------------------------- const Vector& C_BaseEntity::GetRenderOrigin( void ) { return GetAbsOrigin(); } const QAngle& C_BaseEntity::GetRenderAngles( void ) { return GetAbsAngles(); } const matrix3x4_t &C_BaseEntity::RenderableToWorldTransform() { return EntityToWorldTransform(); } IPVSNotify* C_BaseEntity::GetPVSNotifyInterface() { return NULL; } //----------------------------------------------------------------------------- // Purpose: // Input : theMins - // theMaxs - //----------------------------------------------------------------------------- void C_BaseEntity::GetRenderBounds( Vector& theMins, Vector& theMaxs ) { int nModelType = modelinfo->GetModelType( model ); if (nModelType == mod_studio || nModelType == mod_brush) { modelinfo->GetModelRenderBounds( GetModel(), theMins, theMaxs ); } else { // By default, we'll just snack on the collision bounds, transform // them into entity-space, and call it a day. if ( GetRenderAngles() == CollisionProp()->GetCollisionAngles() ) { theMins = CollisionProp()->OBBMins(); theMaxs = CollisionProp()->OBBMaxs(); } else { Assert( CollisionProp()->GetCollisionAngles() == vec3_angle ); if ( IsPointSized() ) { //theMins = CollisionProp()->GetCollisionOrigin(); //theMaxs = theMins; theMins = theMaxs = vec3_origin; } else { // NOTE: This shouldn't happen! Or at least, I haven't run // into a valid case where it should yet. // Assert(0); IRotateAABB( EntityToWorldTransform(), CollisionProp()->OBBMins(), CollisionProp()->OBBMaxs(), theMins, theMaxs ); } } } } void C_BaseEntity::GetRenderBoundsWorldspace( Vector& mins, Vector& maxs ) { DefaultRenderBoundsWorldspace( this, mins, maxs ); } void C_BaseEntity::GetShadowRenderBounds( Vector &mins, Vector &maxs, ShadowType_t shadowType ) { m_EntClientFlags |= ENTCLIENTFLAG_GETTINGSHADOWRENDERBOUNDS; GetRenderBounds( mins, maxs ); m_EntClientFlags &= ~ENTCLIENTFLAG_GETTINGSHADOWRENDERBOUNDS; } //----------------------------------------------------------------------------- // Purpose: Last received origin // Output : const float //----------------------------------------------------------------------------- const Vector& C_BaseEntity::GetAbsOrigin( void ) const { Assert( s_bAbsQueriesValid ); const_cast(this)->CalcAbsolutePosition(); return m_vecAbsOrigin; } //----------------------------------------------------------------------------- // Purpose: Last received angles // Output : const //----------------------------------------------------------------------------- const QAngle& C_BaseEntity::GetAbsAngles( void ) const { Assert( s_bAbsQueriesValid ); const_cast(this)->CalcAbsolutePosition(); return m_angAbsRotation; } //----------------------------------------------------------------------------- // Purpose: // Input : org - //----------------------------------------------------------------------------- void C_BaseEntity::SetNetworkOrigin( const Vector& org ) { m_vecNetworkOrigin = org; } //----------------------------------------------------------------------------- // Purpose: // Input : ang - //----------------------------------------------------------------------------- void C_BaseEntity::SetNetworkAngles( const QAngle& ang ) { m_angNetworkAngles = ang; } //----------------------------------------------------------------------------- // Purpose: // Output : const Vector& //----------------------------------------------------------------------------- const Vector& C_BaseEntity::GetNetworkOrigin() const { return m_vecNetworkOrigin; } //----------------------------------------------------------------------------- // Purpose: // Output : const QAngle& //----------------------------------------------------------------------------- const QAngle& C_BaseEntity::GetNetworkAngles() const { return m_angNetworkAngles; } //----------------------------------------------------------------------------- // Purpose: Get current model pointer for this entity // Output : const struct model_s //----------------------------------------------------------------------------- const model_t *C_BaseEntity::GetModel( void ) const { return model; } //----------------------------------------------------------------------------- // Purpose: Get model index for this entity // Output : int - model index //----------------------------------------------------------------------------- int C_BaseEntity::GetModelIndex( void ) const { return m_nModelIndex; } //----------------------------------------------------------------------------- // Purpose: // Input : index - //----------------------------------------------------------------------------- void C_BaseEntity::SetModelIndex( int index ) { m_nModelIndex = index; const model_t *pModel = modelinfo->GetModel( m_nModelIndex ); SetModelPointer( pModel ); } void C_BaseEntity::SetModelPointer( const model_t *pModel ) { if ( pModel != model ) { DestroyModelInstance(); model = pModel; OnNewModel(); UpdateVisibility(); } } //----------------------------------------------------------------------------- // Purpose: // Input : val - // moveCollide - //----------------------------------------------------------------------------- void C_BaseEntity::SetMoveType( MoveType_t val, MoveCollide_t moveCollide /*= MOVECOLLIDE_DEFAULT*/ ) { // Make sure the move type + move collide are compatible... #ifdef _DEBUG if ((val != MOVETYPE_FLY) && (val != MOVETYPE_FLYGRAVITY)) { Assert( moveCollide == MOVECOLLIDE_DEFAULT ); } #endif m_MoveType = val; SetMoveCollide( moveCollide ); } void C_BaseEntity::SetMoveCollide( MoveCollide_t val ) { m_MoveCollide = val; } //----------------------------------------------------------------------------- // Purpose: Get rendermode // Output : int - the render mode //----------------------------------------------------------------------------- bool C_BaseEntity::IsTransparent( void ) { bool modelIsTransparent = modelinfo->IsTranslucent(model); return modelIsTransparent || (m_nRenderMode != kRenderNormal); } bool C_BaseEntity::UsesFrameBufferTexture() { return false; } //----------------------------------------------------------------------------- // Purpose: Get pointer to CMouthInfo data // Output : CMouthInfo //----------------------------------------------------------------------------- CMouthInfo *C_BaseEntity::GetMouth( void ) { return NULL; } //----------------------------------------------------------------------------- // Purpose: Retrieve sound spatialization info for the specified sound on this entity // Input : info - // Output : Return false to indicate sound is not audible //----------------------------------------------------------------------------- bool C_BaseEntity::GetSoundSpatialization( SpatializationInfo_t& info ) { // World is always audible if ( entindex() == 0 ) { return true; } // Out of PVS if ( IsDormant() ) { return false; } // pModel might be NULL, but modelinfo can handle that const model_t *pModel = GetModel(); if ( info.pflRadius ) { *info.pflRadius = modelinfo->GetModelRadius( pModel ); } if ( info.pOrigin ) { *info.pOrigin = GetAbsOrigin(); // move origin to middle of brush if ( modelinfo->GetModelType( pModel ) == mod_brush ) { Vector mins, maxs, center; modelinfo->GetModelBounds( pModel, mins, maxs ); VectorAdd( mins, maxs, center ); VectorScale( center, 0.5f, center ); (*info.pOrigin) += center; } } if ( info.pAngles ) { VectorCopy( GetAbsAngles(), *info.pAngles ); } return true; } //----------------------------------------------------------------------------- // Purpose: Get attachment point by index // Input : number - which point // Output : float * - the attachment point //----------------------------------------------------------------------------- bool C_BaseEntity::GetAttachment( int number, Vector &origin, QAngle &angles ) { origin = GetAbsOrigin(); angles = GetAbsAngles(); return true; } bool C_BaseEntity::GetAttachment( int number, matrix3x4_t &matrix ) { MatrixCopy( EntityToWorldTransform(), matrix ); return true; } //----------------------------------------------------------------------------- // Purpose: Get this entity's rendering clip plane if one is defined // Output : float * - The clip plane to use, or NULL if no clip plane is defined //----------------------------------------------------------------------------- float *C_BaseEntity::GetRenderClipPlane( void ) { if( m_bEnableRenderingClipPlane ) return m_fRenderingClipPlane; else return NULL; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- int C_BaseEntity::DrawBrushModel( bool sort ) { VPROF_BUDGET( "C_BaseEntity::DrawBrushModel", VPROF_BUDGETGROUP_BRUSHMODEL_RENDERING ); // Identity brushes are drawn in view->DrawWorld as an optimization Assert ( modelinfo->GetModelType( model ) == mod_brush ); render->DrawBrushModel( this, (model_t *)model, GetAbsOrigin(), GetAbsAngles(), sort ); return 1; } //----------------------------------------------------------------------------- // Purpose: Draws the object // Input : flags - //----------------------------------------------------------------------------- int C_BaseEntity::DrawModel( int flags ) { if ( !m_bReadyToDraw ) return 0; int drawn = 0; if ( !model ) { return drawn; } int modelType = modelinfo->GetModelType( model ); switch ( modelType ) { case mod_brush: drawn = DrawBrushModel( flags & STUDIO_TRANSPARENCY ? true : false ); break; case mod_studio: // All studio models must be derived from C_BaseAnimating. Issue warning. Warning( "ERROR: Can't draw studio model %s because %s is not derived from C_BaseAnimating\n", modelinfo->GetModelName( model ), GetClientClass()->m_pNetworkName ? GetClientClass()->m_pNetworkName : "unknown" ); break; case mod_sprite: //drawn = DrawSprite(); Warning( "ERROR: Sprite model's not supported any more except in legacy temp ents\n" ); break; default: break; } // If we're visualizing our bboxes, draw them DrawBBoxVisualizations(); return drawn; } //----------------------------------------------------------------------------- // Purpose: Setup the bones for drawing //----------------------------------------------------------------------------- bool C_BaseEntity::SetupBones( matrix3x4_t *pBoneToWorldOut, int nMaxBones, int boneMask, float currentTime ) { return true; } //----------------------------------------------------------------------------- // Purpose: Setup vertex weights for drawing //----------------------------------------------------------------------------- void C_BaseEntity::SetupWeights( ) { } //----------------------------------------------------------------------------- // Purpose: Process any local client-side animation events //----------------------------------------------------------------------------- void C_BaseEntity::DoAnimationEvents( ) { } void C_BaseEntity::UpdatePartitionListEntry() { // Don't add the world entity CollideType_t shouldCollide = ShouldCollide(); // Choose the list based on what kind of collisions we want int list = PARTITION_CLIENT_NON_STATIC_EDICTS; if (shouldCollide == ENTITY_SHOULD_COLLIDE) list |= PARTITION_CLIENT_SOLID_EDICTS; else if (shouldCollide == ENTITY_SHOULD_RESPOND) list |= PARTITION_CLIENT_RESPONSIVE_EDICTS; // add the entity to the KD tree so we will collide against it partition->RemoveAndInsert( PARTITION_CLIENT_SOLID_EDICTS | PARTITION_CLIENT_RESPONSIVE_EDICTS | PARTITION_CLIENT_NON_STATIC_EDICTS, list, CollisionProp()->GetPartitionHandle() ); } void C_BaseEntity::NotifyShouldTransmit( ShouldTransmitState_t state ) { // Init should have been called before we get in here. Assert( CollisionProp()->GetPartitionHandle() != PARTITION_INVALID_HANDLE ); if ( entindex() < 0 ) return; switch( state ) { case SHOULDTRANSMIT_START: { // We've just been sent by the server. Become active. SetDormant( false ); UpdatePartitionListEntry(); #if !defined( NO_ENTITY_PREDICTION ) // Note that predictables get a chance to hook up to their server counterparts here if ( m_PredictableID.IsActive() ) { // Find corresponding client side predicted entity and remove it from predictables m_PredictableID.SetAcknowledged( true ); C_BaseEntity *otherEntity = FindPreviouslyCreatedEntity( m_PredictableID ); if ( otherEntity ) { Assert( otherEntity->IsClientCreated() ); Assert( otherEntity->m_PredictableID.IsActive() ); Assert( ClientEntityList().IsHandleValid( otherEntity->GetClientHandle() ) ); otherEntity->m_PredictableID.SetAcknowledged( true ); if ( OnPredictedEntityRemove( false, otherEntity ) ) { // Mark it for delete after receive all network data otherEntity->Release(); } } } #endif } break; case SHOULDTRANSMIT_END: { // Clear out links if we're out of the picture... UnlinkFromHierarchy(); // We're no longer being sent by the server. Become dormant. SetDormant( true ); // remove the entity from the KD tree so we won't collide against it partition->Remove( PARTITION_CLIENT_SOLID_EDICTS | PARTITION_CLIENT_RESPONSIVE_EDICTS | PARTITION_CLIENT_NON_STATIC_EDICTS, CollisionProp()->GetPartitionHandle() ); } break; default: Assert( 0 ); break; } } //----------------------------------------------------------------------------- // Call this in PostDataUpdate if you don't chain it down! //----------------------------------------------------------------------------- void C_BaseEntity::MarkMessageReceived() { m_flLastMessageTime = engine->GetLastTimeStamp(); } //----------------------------------------------------------------------------- // Purpose: Entity is about to be decoded from the network stream // Input : bnewentity - is this a new entity this update? //----------------------------------------------------------------------------- void C_BaseEntity::PreDataUpdate( DataUpdateType_t updateType ) { // Register for an OnDataChanged call and call OnPreDataChanged(). if ( AddDataChangeEvent( this, updateType, &m_DataChangeEventRef ) ) { OnPreDataChanged( updateType ); } // Need to spawn on client before receiving original network data // in case it overrides any values set up in spawn ( e.g., m_iState ) bool bnewentity = (updateType == DATA_UPDATE_CREATED); if ( !bnewentity ) { Interp_RestoreToLastNetworked( GetVarMapping() ); } if ( bnewentity && !IsClientCreated() ) { m_flSpawnTime = engine->GetLastTimeStamp(); MDLCACHE_CRITICAL_SECTION(); Spawn(); } // If the entity moves itself every FRAME on the server but doesn't update animtime, // then use the current server time as the time for interpolation. if ( !IsSelfAnimating() ) { m_flAnimTime = engine->GetLastTimeStamp(); } m_vecOldOrigin = GetNetworkOrigin(); m_vecOldAngRotation = GetNetworkAngles(); m_flOldAnimTime = m_flAnimTime; m_flOldSimulationTime = m_flSimulationTime; m_nOldRenderMode = m_nRenderMode; if ( m_hRender != INVALID_CLIENT_RENDER_HANDLE ) { ClientLeafSystem()->EnableAlternateSorting( m_hRender, m_bAlternateSorting ); } } const Vector& C_BaseEntity::GetOldOrigin() { return m_vecOldOrigin; } void C_BaseEntity::UnlinkChild( C_BaseEntity *pParent, C_BaseEntity *pChild ) { Assert( pChild ); Assert( pParent != pChild ); Assert( pChild->GetMoveParent() == pParent ); // Unlink from parent // NOTE: pParent *may well be NULL*! This occurs // when a child has unlinked from a parent, and the child // remains in the PVS but the parent has not if (pParent && (pParent->m_pMoveChild == pChild)) { Assert( !(pChild->m_pMovePrevPeer.IsValid()) ); pParent->m_pMoveChild = pChild->m_pMovePeer; } // Unlink from siblings... if (pChild->m_pMovePrevPeer) { pChild->m_pMovePrevPeer->m_pMovePeer = pChild->m_pMovePeer; } if (pChild->m_pMovePeer) { pChild->m_pMovePeer->m_pMovePrevPeer = pChild->m_pMovePrevPeer; } pChild->m_pMovePeer = NULL; pChild->m_pMovePrevPeer = NULL; pChild->m_pMoveParent = NULL; pChild->RemoveFromAimEntsList(); Interp_HierarchyUpdateInterpolationAmounts(); } void C_BaseEntity::LinkChild( C_BaseEntity *pParent, C_BaseEntity *pChild ) { Assert( !pChild->m_pMovePeer.IsValid() ); Assert( !pChild->m_pMovePrevPeer.IsValid() ); Assert( !pChild->m_pMoveParent.IsValid() ); Assert( pParent != pChild ); #ifdef _DEBUG // Make sure the child isn't already in this list C_BaseEntity *pExistingChild; for ( pExistingChild = pParent->FirstMoveChild(); pExistingChild; pExistingChild = pExistingChild->NextMovePeer() ) { Assert( pChild != pExistingChild ); } #endif pChild->m_pMovePrevPeer = NULL; pChild->m_pMovePeer = pParent->m_pMoveChild; if (pChild->m_pMovePeer) { pChild->m_pMovePeer->m_pMovePrevPeer = pChild; } pParent->m_pMoveChild = pChild; pChild->m_pMoveParent = pParent; pChild->AddToAimEntsList(); Interp_HierarchyUpdateInterpolationAmounts(); } CUtlVector< C_BaseEntity * > g_AimEntsList; //----------------------------------------------------------------------------- // Moves all aiments //----------------------------------------------------------------------------- void C_BaseEntity::MarkAimEntsDirty() { // FIXME: With the dirty bits hooked into cycle + sequence, it's unclear // that this is even necessary any more (provided aiments are always accessing // joints or attachments of the move parent). // // NOTE: This is a tricky algorithm. This list does not actually contain // all aim-ents in its list. It actually contains all hierarchical children, // of which aim-ents are a part. We can tell if something is an aiment if it has // the EF_BONEMERGE effect flag set. // // We will first iterate over all aiments and clear their DIRTY_ABSTRANSFORM flag, // which is necessary to cause them to recompute their aim-ent origin // the next time CalcAbsPosition is called. Because CalcAbsPosition calls MoveToAimEnt // and MoveToAimEnt calls SetAbsOrigin/SetAbsAngles, that is how CalcAbsPosition // will cause the aim-ent's (and all its children's) dirty state to be correctly updated. // // Then we will iterate over the loop a second time and call CalcAbsPosition on them, int i; int c = g_AimEntsList.Count(); for ( i = 0; i < c; ++i ) { C_BaseEntity *pEnt = g_AimEntsList[ i ]; Assert( pEnt && pEnt->GetMoveParent() ); if ( pEnt->IsEffectActive(EF_BONEMERGE | EF_PARENT_ANIMATES) ) { pEnt->AddEFlags( EFL_DIRTY_ABSTRANSFORM ); } } } void C_BaseEntity::CalcAimEntPositions() { int i; int c = g_AimEntsList.Count(); for ( i = 0; i < c; ++i ) { C_BaseEntity *pEnt = g_AimEntsList[ i ]; Assert( pEnt ); Assert( pEnt->GetMoveParent() ); if ( pEnt->IsEffectActive(EF_BONEMERGE) ) { pEnt->CalcAbsolutePosition( ); } } } void C_BaseEntity::AddToAimEntsList() { // Already in list if ( m_AimEntsListHandle != INVALID_AIMENTS_LIST_HANDLE ) return; m_AimEntsListHandle = g_AimEntsList.AddToTail( this ); } void C_BaseEntity::RemoveFromAimEntsList() { // Not in list yet if ( INVALID_AIMENTS_LIST_HANDLE == m_AimEntsListHandle ) { return; } unsigned int c = g_AimEntsList.Count(); Assert( m_AimEntsListHandle < c ); unsigned int last = c - 1; if ( last == m_AimEntsListHandle ) { // Just wipe the final entry g_AimEntsList.FastRemove( last ); } else { C_BaseEntity *lastEntity = g_AimEntsList[ last ]; // Remove the last entry g_AimEntsList.FastRemove( last ); // And update it's handle to point to this slot. lastEntity->m_AimEntsListHandle = m_AimEntsListHandle; g_AimEntsList[ m_AimEntsListHandle ] = lastEntity; } // Invalidate our handle no matter what. m_AimEntsListHandle = INVALID_AIMENTS_LIST_HANDLE; } //----------------------------------------------------------------------------- // Update move-parent if needed. For SourceTV. //----------------------------------------------------------------------------- void C_BaseEntity::HierarchyUpdateMoveParent() { if ( m_hNetworkMoveParent.ToInt() == m_pMoveParent.ToInt() ) return; HierarchySetParent( m_hNetworkMoveParent ); } //----------------------------------------------------------------------------- // Connects us up to hierarchy //----------------------------------------------------------------------------- void C_BaseEntity::HierarchySetParent( C_BaseEntity *pNewParent ) { // NOTE: When this is called, we expect to have a valid // local origin, etc. that we received from network daa EHANDLE newParentHandle; newParentHandle.Set( pNewParent ); if (newParentHandle.ToInt() == m_pMoveParent.ToInt()) return; if (m_pMoveParent.IsValid()) { UnlinkChild( m_pMoveParent, this ); } if (pNewParent) { LinkChild( pNewParent, this ); } InvalidatePhysicsRecursive( POSITION_CHANGED | ANGLES_CHANGED | VELOCITY_CHANGED ); } //----------------------------------------------------------------------------- // Unlinks from hierarchy //----------------------------------------------------------------------------- void C_BaseEntity::SetParent( C_BaseEntity *pParentEntity, int iParentAttachment ) { // NOTE: This version is meant to be called *outside* of PostDataUpdate // as it assumes the moveparent has a valid handle EHANDLE newParentHandle; newParentHandle.Set( pParentEntity ); if (newParentHandle.ToInt() == m_pMoveParent.ToInt()) return; // NOTE: Have to do this before the unlink to ensure local coords are valid Vector vecAbsOrigin = GetAbsOrigin(); QAngle angAbsRotation = GetAbsAngles(); Vector vecAbsVelocity = GetAbsVelocity(); // First deal with unlinking if (m_pMoveParent.IsValid()) { UnlinkChild( m_pMoveParent, this ); } if (pParentEntity) { LinkChild( pParentEntity, this ); } m_iParentAttachment = iParentAttachment; m_vecAbsOrigin.Init( FLT_MAX, FLT_MAX, FLT_MAX ); m_angAbsRotation.Init( FLT_MAX, FLT_MAX, FLT_MAX ); m_vecAbsVelocity.Init( FLT_MAX, FLT_MAX, FLT_MAX ); SetAbsOrigin(vecAbsOrigin); SetAbsAngles(angAbsRotation); SetAbsVelocity(vecAbsVelocity); } //----------------------------------------------------------------------------- // Unlinks from hierarchy //----------------------------------------------------------------------------- void C_BaseEntity::UnlinkFromHierarchy() { // Clear out links if we're out of the picture... if ( m_pMoveParent.IsValid() ) { UnlinkChild( m_pMoveParent, this ); } //Adrian: This was causing problems with the local network backdoor with entities coming in and out of the PVS at certain times. //This would work fine if a full entity update was coming (caused by certain factors like too many entities entering the pvs at once). //but otherwise it would not detect the change on the client (since the server and client shouldn't be out of sync) and the var would not be updated like it should. //m_iParentAttachment = 0; // unlink also all move children C_BaseEntity *pChild = FirstMoveChild(); while( pChild ) { if ( pChild->m_pMoveParent != this ) { Warning( "C_BaseEntity::UnlinkFromHierarchy(): Entity has a child with the wrong parent!\n" ); Assert( 0 ); UnlinkChild( this, pChild ); pChild->UnlinkFromHierarchy(); } else pChild->UnlinkFromHierarchy(); pChild = FirstMoveChild(); } } //----------------------------------------------------------------------------- // Purpose: Make sure that the correct model is referenced for this entity //----------------------------------------------------------------------------- void C_BaseEntity::ValidateModelIndex( void ) { SetModelByIndex( m_nModelIndex ); } //----------------------------------------------------------------------------- // Purpose: Entity data has been parsed and unpacked. Now do any necessary decoding, munging // Input : bnewentity - was this entity new in this update packet? //----------------------------------------------------------------------------- void C_BaseEntity::PostDataUpdate( DataUpdateType_t updateType ) { MDLCACHE_CRITICAL_SECTION(); // NOTE: This *has* to happen first. Otherwise, Origin + angles may be wrong if ( m_nRenderFX == kRenderFxRagdoll && updateType == DATA_UPDATE_CREATED ) { MoveToLastReceivedPosition( true ); } else { MoveToLastReceivedPosition( false ); } // If it's the world, force solid flags if ( index == 0 ) { m_nModelIndex = 1; SetSolid( SOLID_BSP ); // FIXME: Should these be assertions? SetAbsOrigin( vec3_origin ); SetAbsAngles( vec3_angle ); } if ( m_nOldRenderMode != m_nRenderMode ) { SetRenderMode( (RenderMode_t)m_nRenderMode, true ); } bool animTimeChanged = ( m_flAnimTime != m_flOldAnimTime ) ? true : false; bool originChanged = ( m_vecOldOrigin != GetLocalOrigin() ) ? true : false; bool anglesChanged = ( m_vecOldAngRotation != GetLocalAngles() ) ? true : false; bool simTimeChanged = ( m_flSimulationTime != m_flOldSimulationTime ) ? true : false; // Detect simulation changes bool simulationChanged = originChanged || anglesChanged || simTimeChanged; if ( !GetPredictable() && !IsClientCreated() ) { if ( animTimeChanged ) { OnLatchInterpolatedVariables( LATCH_ANIMATION_VAR ); } if ( simulationChanged ) { OnLatchInterpolatedVariables( LATCH_SIMULATION_VAR ); } } // Deal with hierarchy. Have to do it here (instead of in a proxy) // because this is the only point at which all entities are loaded // If this condition isn't met, then a child was sent without its parent Assert( m_hNetworkMoveParent.Get() || !m_hNetworkMoveParent.IsValid() ); HierarchySetParent(m_hNetworkMoveParent); MarkMessageReceived(); // Make sure that the correct model is referenced for this entity ValidateModelIndex(); // If this entity was new, then latch in various values no matter what. if ( updateType == DATA_UPDATE_CREATED ) { // Construct a random value for this instance m_flProxyRandomValue = random->RandomFloat( 0, 1 ); ResetLatched(); } CheckInitPredictable( "PostDataUpdate" ); // It's possible that a new entity will need to be forceably added to the // player simulation list. If so, do this here #if !defined( NO_ENTITY_PREDICTION ) C_BasePlayer *local = C_BasePlayer::GetLocalPlayer(); if ( IsPlayerSimulated() && ( NULL != local ) && ( local == m_hOwnerEntity ) ) { // Make sure player is driving simulation (field is only ever sent to local player) SetPlayerSimulated( local ); } #endif UpdatePartitionListEntry(); // Add the entity to the nointerp list. if ( !IsClientCreated() ) { if ( Teleported() || IsEffectActive(EF_NOINTERP) ) AddToTeleportList(); } } //----------------------------------------------------------------------------- // Purpose: // Input : *context - //----------------------------------------------------------------------------- void C_BaseEntity::CheckInitPredictable( const char *context ) { #if !defined( NO_ENTITY_PREDICTION ) // Prediction is disabled if ( !cl_predict.GetBool() ) return; C_BasePlayer *player = C_BasePlayer::GetLocalPlayer(); if ( !player ) return; if ( !GetPredictionEligible() ) { if ( m_PredictableID.IsActive() && ( player->index - 1 ) == m_PredictableID.GetPlayer() ) { // If it comes through with an ID, it should be eligible SetPredictionEligible( true ); } else { return; } } if ( IsClientCreated() ) return; if ( !ShouldPredict() ) return; if ( IsIntermediateDataAllocated() ) return; // Msg( "Predicting init %s at %s\n", GetClassname(), context ); InitPredictable(); #endif } bool C_BaseEntity::IsSelfAnimating() { return true; } //----------------------------------------------------------------------------- // EFlags.. //----------------------------------------------------------------------------- int C_BaseEntity::GetEFlags() const { return m_iEFlags; } void C_BaseEntity::SetEFlags( int iEFlags ) { m_iEFlags = iEFlags; } //----------------------------------------------------------------------------- // Sets the model... //----------------------------------------------------------------------------- void C_BaseEntity::SetModelByIndex( int nModelIndex ) { SetModelIndex( nModelIndex ); } //----------------------------------------------------------------------------- // Set model... (NOTE: Should only be used by client-only entities //----------------------------------------------------------------------------- bool C_BaseEntity::SetModel( const char *pModelName ) { if ( pModelName ) { int nModelIndex = modelinfo->GetModelIndex( pModelName ); SetModelByIndex( nModelIndex ); return ( nModelIndex != -1 ); } else { SetModelByIndex( -1 ); return false; } } //----------------------------------------------------------------------------- // Purpose: The animtime is about to be changed in a network update, store off various fields so that // we can use them to do blended sequence transitions, etc. // Input : *pState - the (mostly) previous state data //----------------------------------------------------------------------------- void C_BaseEntity::OnLatchInterpolatedVariables( int flags ) { float changetime = GetLastChangeTime( flags ); int c = m_VarMap.m_Entries.Count(); for ( int i = 0; i < c; i++ ) { VarMapEntry_t *e = &m_VarMap.m_Entries[ i ]; IInterpolatedVar *watcher = e->watcher; int type = watcher->GetType(); if ( !(type & flags) ) continue; if ( type & EXCLUDE_AUTO_LATCH ) continue; if ( watcher->NoteChanged( changetime ) ) e->m_bNeedsToInterpolate = true; } if ( ShouldInterpolate() ) { AddToInterpolationList(); } } int CBaseEntity::BaseInterpolatePart1( float ¤tTime, Vector &oldOrigin, QAngle &oldAngles, int &bNoMoreChanges ) { // Don't mess with the world!!! bNoMoreChanges = 1; // These get moved to the parent position automatically if ( IsFollowingEntity() || !IsInterpolationEnabled() ) { // Assume current origin ( no interpolation ) MoveToLastReceivedPosition(); return INTERPOLATE_STOP; } if ( GetPredictable() || IsClientCreated() ) { C_BasePlayer *localplayer = C_BasePlayer::GetLocalPlayer(); if ( localplayer ) { currentTime = localplayer->GetFinalPredictedTime(); currentTime -= TICK_INTERVAL; currentTime += ( gpGlobals->interpolation_amount * TICK_INTERVAL ); } } oldOrigin = m_vecOrigin; oldAngles = m_angRotation; bNoMoreChanges = Interp_Interpolate( GetVarMapping(), currentTime ); if ( cl_interp_all.GetInt() || (m_EntClientFlags & ENTCLIENTFLAG_ALWAYS_INTERPOLATE) ) bNoMoreChanges = 0; return INTERPOLATE_CONTINUE; } void C_BaseEntity::BaseInterpolatePart2( Vector &oldOrigin, QAngle &oldAngles, int nChangeFlags ) { if ( m_vecOrigin != oldOrigin ) { nChangeFlags |= POSITION_CHANGED; } if( m_angRotation != oldAngles ) { nChangeFlags |= ANGLES_CHANGED; } if ( nChangeFlags != 0 ) { InvalidatePhysicsRecursive( nChangeFlags ); } } //----------------------------------------------------------------------------- // Purpose: Default interpolation for entities // Output : true means entity should be drawn, false means probably not //----------------------------------------------------------------------------- bool C_BaseEntity::Interpolate( float currentTime ) { VPROF( "C_BaseEntity::Interpolate" ); Vector oldOrigin; QAngle oldAngles; int bNoMoreChanges; int retVal = BaseInterpolatePart1( currentTime, oldOrigin, oldAngles, bNoMoreChanges ); // If all the Interpolate() calls returned that their values aren't going to // change anymore, then get us out of the interpolation list. if ( bNoMoreChanges ) RemoveFromInterpolationList(); if ( retVal == INTERPOLATE_STOP ) return true; int nChangeFlags = 0; BaseInterpolatePart2( oldOrigin, oldAngles, nChangeFlags ); return true; } // force all entries to interpolate (optimization may skip some that are necessary for special effects like ragdolls) void C_BaseEntity::ForceAllInterpolate() { VarMapping_t *map = GetVarMapping(); for ( int i = 0; i < map->m_nInterpolatedEntries; i++ ) { VarMapEntry_t *e = &map->m_Entries[ i ]; e->m_bNeedsToInterpolate = true; } } CStudioHdr *C_BaseEntity::OnNewModel() { return NULL; } // Above this velocity and we'll assume a warp/teleport #define MAX_INTERPOLATE_VELOCITY 4000.0f #define MAX_INTERPOLATE_VELOCITY_PLAYER 1250.0f //----------------------------------------------------------------------------- // Purpose: Determine whether entity was teleported ( so we can disable interpolation ) // Input : *ent - // Output : bool //----------------------------------------------------------------------------- bool C_BaseEntity::Teleported( void ) { // Disable interpolation when hierarchy changes if (m_hOldMoveParent != m_hNetworkMoveParent || m_iOldParentAttachment != m_iParentAttachment) { return true; } return false; } //----------------------------------------------------------------------------- // Purpose: Is this a submodel of the world ( model name starts with * )? // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::IsSubModel( void ) { if ( model && modelinfo->GetModelType( model ) == mod_brush && modelinfo->GetModelName( model )[0] == '*' ) { return true; } return false; } //----------------------------------------------------------------------------- // Purpose: Create entity lighting effects //----------------------------------------------------------------------------- void C_BaseEntity::CreateLightEffects( void ) { dlight_t *dl; // Is this for player flashlights only, if so move to linkplayers? if ( index == render->GetViewEntity() ) return; if (IsEffectActive(EF_BRIGHTLIGHT)) { dl = effects->CL_AllocDlight ( index ); dl->origin = GetAbsOrigin(); dl->origin[2] += 16; dl->color.r = dl->color.g = dl->color.b = 250; dl->radius = random->RandomFloat(400,431); dl->die = gpGlobals->curtime + 0.001; } if (IsEffectActive(EF_DIMLIGHT)) { dl = effects->CL_AllocDlight ( index ); dl->origin = GetAbsOrigin(); dl->color.r = dl->color.g = dl->color.b = 100; dl->radius = random->RandomFloat(200,231); dl->die = gpGlobals->curtime + 0.001; } } void C_BaseEntity::MoveToLastReceivedPosition( bool force ) { if ( force || ( m_nRenderFX != kRenderFxRagdoll ) ) { SetLocalOrigin( GetNetworkOrigin() ); SetLocalAngles( GetNetworkAngles() ); } } bool C_BaseEntity::ShouldInterpolate() { if ( render->GetViewEntity() == index ) return true; if ( index == 0 || !GetModel() ) return false; // always interpolate if visible if ( IsVisible() ) return true; // if any movement child needs interpolation, we have to interpolate too C_BaseEntity *pChild = FirstMoveChild(); while( pChild ) { if ( pChild->ShouldInterpolate() ) return true; pChild = pChild->NextMovePeer(); } // don't interpolate return false; } void C_BaseEntity::ProcessTeleportList() { int iNext; for ( int iCur=g_TeleportList.Head(); iCur != g_TeleportList.InvalidIndex(); iCur=iNext ) { iNext = g_TeleportList.Next( iCur ); C_BaseEntity *pCur = g_TeleportList[iCur]; bool teleport = pCur->Teleported(); bool ef_nointerp = pCur->IsEffectActive(EF_NOINTERP); if ( teleport || ef_nointerp ) { // Undo the teleport flag.. pCur->m_hOldMoveParent = pCur->m_hNetworkMoveParent; pCur->m_iOldParentAttachment = pCur->m_iParentAttachment; // Zero out all but last update. pCur->MoveToLastReceivedPosition( true ); pCur->ResetLatched(); } else { // Get it out of the list as soon as we can. pCur->RemoveFromTeleportList(); } } } void C_BaseEntity::CheckInterpolatedVarParanoidMeasurement() { // What we're doing here is to check all the entities that were not in the interpolation // list and make sure that there's no entity that should be in the list that isn't. #ifdef INTERPOLATEDVAR_PARANOID_MEASUREMENT int iHighest = ClientEntityList().GetHighestEntityIndex(); for ( int i=0; i <= iHighest; i++ ) { C_BaseEntity *pEnt = ClientEntityList().GetBaseEntity( i ); if ( !pEnt || pEnt->m_InterpolationListEntry != 0xFFFF || !pEnt->ShouldInterpolate() ) continue; // Player angles always generates this error when the console is up. if ( pEnt->entindex() == 1 && engine->Con_IsVisible() ) continue; // View models tend to screw up this test unnecesarily because they modify origin, // angles, and if ( dynamic_cast( pEnt ) ) continue; g_bRestoreInterpolatedVarValues = true; g_nInterpolatedVarsChanged = 0; pEnt->Interpolate( gpGlobals->curtime ); g_bRestoreInterpolatedVarValues = false; if ( g_nInterpolatedVarsChanged > 0 ) { static int iWarningCount = 0; Warning( "(%d): An entity (%d) should have been in g_InterpolationList.\n", iWarningCount++, pEnt->entindex() ); break; } } #endif } void C_BaseEntity::ProcessInterpolatedList() { CheckInterpolatedVarParanoidMeasurement(); // Interpolate the minimal set of entities that need it. int iNext; for ( int iCur=g_InterpolationList.Head(); iCur != g_InterpolationList.InvalidIndex(); iCur=iNext ) { iNext = g_InterpolationList.Next( iCur ); C_BaseEntity *pCur = g_InterpolationList[iCur]; pCur->m_bReadyToDraw = pCur->Interpolate( gpGlobals->curtime ); } } //----------------------------------------------------------------------------- // Purpose: Add entity to visibile entities list //----------------------------------------------------------------------------- void C_BaseEntity::AddEntity( void ) { // Don't ever add the world, it's drawn separately if ( index == 0 ) return; // Create flashlight effects, etc. CreateLightEffects(); } //----------------------------------------------------------------------------- // Returns the aiment render origin + angles //----------------------------------------------------------------------------- void C_BaseEntity::GetAimEntOrigin( IClientEntity *pAttachedTo, Vector *pOrigin, QAngle *pAngles ) { // Should be overridden for things that attach to attchment points // Slam origin to the origin of the entity we are attached to... *pOrigin = pAttachedTo->GetAbsOrigin(); *pAngles = pAttachedTo->GetAbsAngles(); } void C_BaseEntity::StopFollowingEntity( ) { Assert( IsFollowingEntity() ); SetParent( NULL ); RemoveEffects( EF_BONEMERGE ); RemoveSolidFlags( FSOLID_NOT_SOLID ); SetMoveType( MOVETYPE_NONE ); } bool C_BaseEntity::IsFollowingEntity() { return IsEffectActive(EF_BONEMERGE) && (GetMoveType() == MOVETYPE_NONE) && GetMoveParent(); } C_BaseEntity *CBaseEntity::GetFollowedEntity() { if (!IsFollowingEntity()) return NULL; return GetMoveParent(); } //----------------------------------------------------------------------------- // Default implementation for GetTextureAnimationStartTime //----------------------------------------------------------------------------- float C_BaseEntity::GetTextureAnimationStartTime() { return m_flSpawnTime; } //----------------------------------------------------------------------------- // Default implementation, indicates that a texture animation has wrapped //----------------------------------------------------------------------------- void C_BaseEntity::TextureAnimationWrapped() { } void C_BaseEntity::ClientThink() { } void C_BaseEntity::Simulate() { AddEntity(); // Legacy support. Once-per-frame stuff should go in Simulate(). } // (static function) void C_BaseEntity::InterpolateServerEntities() { VPROF_BUDGET( "C_BaseEntity::InterpolateServerEntities", VPROF_BUDGETGROUP_INTERPOLATION ); s_bInterpolate = cl_interpolate.GetBool(); // Don't interpolate during timedemo playback if ( engine->IsPlayingTimeDemo() ) { s_bInterpolate = false; } if ( IsSimulatingOnAlternateTicks() != g_bWasSkipping ) { g_bWasSkipping = IsSimulatingOnAlternateTicks(); C_BaseEntityIterator iterator; C_BaseEntity *pEnt; while ( (pEnt = iterator.Next()) != NULL ) { pEnt->Interp_UpdateInterpolationAmounts( pEnt->GetVarMapping() ); } } // Enable extrapolation? CInterpolationContext context; context.SetLastTimeStamp( engine->GetLastTimeStamp() ); if ( cl_extrapolate.GetBool() && !engine->IsPaused() ) { context.EnableExtrapolation( true ); } // Smoothly interplate position for server entities. ProcessTeleportList(); ProcessInterpolatedList(); } // (static function) void C_BaseEntity::AddVisibleEntities() { #if !defined( NO_ENTITY_PREDICTION ) VPROF_BUDGET( "C_BaseEntity::AddVisibleEntities", VPROF_BUDGETGROUP_WORLD_RENDERING ); // Let non-dormant client created predictables get added, too int c = predictables->GetPredictableCount(); for ( int i = 0 ; i < c ; i++ ) { C_BaseEntity *pEnt = predictables->GetPredictable( i ); if ( !pEnt ) continue; if ( !pEnt->IsClientCreated() ) continue; // Only draw until it's ack'd since that means a real entity has arrived if ( pEnt->m_PredictableID.GetAcknowledged() ) continue; // Don't draw if dormant if ( pEnt->IsDormantPredictable() ) continue; pEnt->UpdateVisibility(); } #endif } //----------------------------------------------------------------------------- // Purpose: // Input : type - //----------------------------------------------------------------------------- void C_BaseEntity::OnPreDataChanged( DataUpdateType_t type ) { m_hOldMoveParent = m_hNetworkMoveParent; m_iOldParentAttachment = m_iParentAttachment; } void C_BaseEntity::OnDataChanged( DataUpdateType_t type ) { // See if it needs to allocate prediction stuff CheckInitPredictable( "OnDataChanged" ); // Set up shadows; do it here so that objects can change shadowcasting state CreateShadow(); if ( type == DATA_UPDATE_CREATED ) { UpdateVisibility(); } } ClientThinkHandle_t C_BaseEntity::GetThinkHandle() { return m_hThink; } void C_BaseEntity::SetThinkHandle( ClientThinkHandle_t hThink ) { m_hThink = hThink; } //----------------------------------------------------------------------------- // Purpose: This routine modulates renderamt according to m_nRenderFX's value // This is a client side effect and will not be in-sync on machines across a // network game. // Input : origin - // alpha - // Output : int //----------------------------------------------------------------------------- void C_BaseEntity::ComputeFxBlend( void ) { MDLCACHE_CRITICAL_SECTION(); int blend=0; float offset; offset = ((int)index) * 363.0;// Use ent index to de-sync these fx switch( m_nRenderFX ) { case kRenderFxPulseSlowWide: blend = m_clrRender->a + 0x40 * sin( gpGlobals->curtime * 2 + offset ); break; case kRenderFxPulseFastWide: blend = m_clrRender->a + 0x40 * sin( gpGlobals->curtime * 8 + offset ); break; case kRenderFxPulseFastWider: blend = ( 0xff * fabs(sin( gpGlobals->curtime * 12 + offset ) ) ); break; case kRenderFxPulseSlow: blend = m_clrRender->a + 0x10 * sin( gpGlobals->curtime * 2 + offset ); break; case kRenderFxPulseFast: blend = m_clrRender->a + 0x10 * sin( gpGlobals->curtime * 8 + offset ); break; // JAY: HACK for now -- not time based case kRenderFxFadeSlow: if ( m_clrRender->a > 0 ) { SetRenderColorA( m_clrRender->a - 1 ); } else { SetRenderColorA( 0 ); } blend = m_clrRender->a; break; case kRenderFxFadeFast: if ( m_clrRender->a > 3 ) { SetRenderColorA( m_clrRender->a - 4 ); } else { SetRenderColorA( 0 ); } blend = m_clrRender->a; break; case kRenderFxSolidSlow: if ( m_clrRender->a < 255 ) { SetRenderColorA( m_clrRender->a + 1 ); } else { SetRenderColorA( 255 ); } blend = m_clrRender->a; break; case kRenderFxSolidFast: if ( m_clrRender->a < 252 ) { SetRenderColorA( m_clrRender->a + 4 ); } else { SetRenderColorA( 255 ); } blend = m_clrRender->a; break; case kRenderFxStrobeSlow: blend = 20 * sin( gpGlobals->curtime * 4 + offset ); if ( blend < 0 ) { blend = 0; } else { blend = m_clrRender->a; } break; case kRenderFxStrobeFast: blend = 20 * sin( gpGlobals->curtime * 16 + offset ); if ( blend < 0 ) { blend = 0; } else { blend = m_clrRender->a; } break; case kRenderFxStrobeFaster: blend = 20 * sin( gpGlobals->curtime * 36 + offset ); if ( blend < 0 ) { blend = 0; } else { blend = m_clrRender->a; } break; case kRenderFxFlickerSlow: blend = 20 * (sin( gpGlobals->curtime * 2 ) + sin( gpGlobals->curtime * 17 + offset )); if ( blend < 0 ) { blend = 0; } else { blend = m_clrRender->a; } break; case kRenderFxFlickerFast: blend = 20 * (sin( gpGlobals->curtime * 16 ) + sin( gpGlobals->curtime * 23 + offset )); if ( blend < 0 ) { blend = 0; } else { blend = m_clrRender->a; } break; case kRenderFxHologram: case kRenderFxDistort: { Vector tmp; float dist; VectorCopy( GetAbsOrigin(), tmp ); VectorSubtract( tmp, CurrentViewOrigin(), tmp ); dist = DotProduct( tmp, CurrentViewForward() ); // Turn off distance fade if ( m_nRenderFX == kRenderFxDistort ) { dist = 1; } if ( dist <= 0 ) { blend = 0; } else { SetRenderColorA( 180 ); if ( dist <= 100 ) blend = m_clrRender->a; else blend = (int) ((1.0 - (dist - 100) * (1.0 / 400.0)) * m_clrRender->a); blend += random->RandomInt(-32,31); } } break; case kRenderFxNone: case kRenderFxClampMinScale: default: if (m_nRenderMode == kRenderNormal) blend = 255; else blend = m_clrRender->a; break; } blend = clamp( blend, 0, 255 ); // Look for client-side fades unsigned char nFadeAlpha = GetClientSideFade(); if ( nFadeAlpha != 255 ) { float flBlend = blend / 255.0f; float flFade = nFadeAlpha / 255.0f; blend = (int)( flBlend * flFade * 255.0f + 0.5f ); blend = clamp( blend, 0, 255 ); } m_nRenderFXBlend = blend; #ifdef _DEBUG m_nFXComputeFrame = gpGlobals->framecount; #endif // Update the render group if ( GetRenderHandle() != INVALID_CLIENT_RENDER_HANDLE ) { ClientLeafSystem()->SetRenderGroup( GetRenderHandle(), GetRenderGroup() ); } // Tell our shadow if ( m_ShadowHandle != CLIENTSHADOW_INVALID_HANDLE ) { g_pClientShadowMgr->SetFalloffBias( m_ShadowHandle, (255 - m_nRenderFXBlend) ); } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- int C_BaseEntity::GetFxBlend( void ) { Assert( m_nFXComputeFrame == gpGlobals->framecount ); return m_nRenderFXBlend; } //----------------------------------------------------------------------------- // Determine the color modulation amount //----------------------------------------------------------------------------- void C_BaseEntity::GetColorModulation( float* color ) { color[0] = m_clrRender->r / 255.0f; color[1] = m_clrRender->g / 255.0f; color[2] = m_clrRender->b / 255.0f; } //----------------------------------------------------------------------------- // Returns true if we should add this to the collision list //----------------------------------------------------------------------------- CollideType_t C_BaseEntity::ShouldCollide( ) { if ( !m_nModelIndex || !model ) return ENTITY_SHOULD_NOT_COLLIDE; if ( !IsSolid( ) ) return ENTITY_SHOULD_NOT_COLLIDE; // If the model is a bsp or studio (i.e. it can collide with the player if ( ( modelinfo->GetModelType( model ) != mod_brush ) && ( modelinfo->GetModelType( model ) != mod_studio ) ) return ENTITY_SHOULD_NOT_COLLIDE; // Don't get stuck on point sized entities ( world doesn't count ) if ( m_nModelIndex != 1 ) { if ( IsPointSized() ) return ENTITY_SHOULD_NOT_COLLIDE; } return ENTITY_SHOULD_COLLIDE; } //----------------------------------------------------------------------------- // Is this a brush model? //----------------------------------------------------------------------------- bool C_BaseEntity::IsBrushModel() const { int modelType = modelinfo->GetModelType( model ); return (modelType == mod_brush); } //----------------------------------------------------------------------------- // This method works when we've got a studio model //----------------------------------------------------------------------------- void C_BaseEntity::AddStudioDecal( const Ray_t& ray, int hitbox, int decalIndex, bool doTrace, trace_t& tr, int maxLODToDecal ) { if (doTrace) { enginetrace->ClipRayToEntity( ray, MASK_SHOT, this, &tr ); // Trace the ray against the entity if (tr.fraction == 1.0f) return; // Set the trace index appropriately... tr.m_pEnt = this; } // Exit out after doing the trace so any other effects that want to happen can happen. if ( !r_drawmodeldecals.GetBool() ) return; // Found the point, now lets apply the decals CreateModelInstance(); // FIXME: Pass in decal up? Vector up(0, 0, 1); if (doTrace && (GetSolid() == SOLID_VPHYSICS) && !tr.startsolid && !tr.allsolid) { // Choose a more accurate normal direction // Also, since we have more accurate info, we can avoid pokethru Vector temp; VectorSubtract( tr.endpos, tr.plane.normal, temp ); Ray_t betterRay; betterRay.Init( tr.endpos, temp ); modelrender->AddDecal( m_ModelInstance, betterRay, up, decalIndex, GetStudioBody(), true, maxLODToDecal ); } else { modelrender->AddDecal( m_ModelInstance, ray, up, decalIndex, GetStudioBody(), false, maxLODToDecal ); } } //----------------------------------------------------------------------------- // This method works when we've got a brush model //----------------------------------------------------------------------------- void C_BaseEntity::AddBrushModelDecal( const Ray_t& ray, const Vector& decalCenter, int decalIndex, bool doTrace, trace_t& tr ) { if ( doTrace ) { enginetrace->ClipRayToEntity( ray, MASK_SHOT, this, &tr ); if ( tr.fraction == 1.0f ) return; } effects->DecalShoot( decalIndex, index, model, GetAbsOrigin(), GetAbsAngles(), decalCenter, 0, 0 ); } //----------------------------------------------------------------------------- // A method to apply a decal to an entity //----------------------------------------------------------------------------- void C_BaseEntity::AddDecal( const Vector& rayStart, const Vector& rayEnd, const Vector& decalCenter, int hitbox, int decalIndex, bool doTrace, trace_t& tr, int maxLODToDecal ) { Ray_t ray; ray.Init( rayStart, rayEnd ); // FIXME: Better bloat? // Bloat a little bit so we get the intersection ray.m_Delta *= 1.1f; int modelType = modelinfo->GetModelType( model ); switch ( modelType ) { case mod_studio: AddStudioDecal( ray, hitbox, decalIndex, doTrace, tr, maxLODToDecal ); break; case mod_brush: AddBrushModelDecal( ray, decalCenter, decalIndex, doTrace, tr ); break; default: // By default, no collision tr.fraction = 1.0f; break; } } //----------------------------------------------------------------------------- // A method to remove all decals from an entity //----------------------------------------------------------------------------- void C_BaseEntity::RemoveAllDecals( void ) { // For now, we only handle removing decals from studiomodels if ( modelinfo->GetModelType( model ) == mod_studio ) { CreateModelInstance(); modelrender->RemoveAllDecals( m_ModelInstance ); } } bool C_BaseEntity::SnatchModelInstance( C_BaseEntity *pToEntity ) { if ( !modelrender->ChangeInstance( GetModelInstance(), pToEntity ) ) return false; // engine could move modle handle // remove old handle from toentity if any if ( pToEntity->GetModelInstance() != MODEL_INSTANCE_INVALID ) pToEntity->DestroyModelInstance(); // move the handle to other entity pToEntity->SetModelInstance( GetModelInstance() ); // delete own reference SetModelInstance( MODEL_INSTANCE_INVALID ); return true; } #include "tier0/memdbgoff.h" //----------------------------------------------------------------------------- // C_BaseEntity new/delete // All fields in the object are all initialized to 0. //----------------------------------------------------------------------------- void *C_BaseEntity::operator new( size_t stAllocateBlock ) { Assert( stAllocateBlock != 0 ); MEM_ALLOC_CREDIT(); void *pMem = g_pMemAlloc->Alloc( stAllocateBlock ); memset( pMem, 0, stAllocateBlock ); return pMem; } void *C_BaseEntity::operator new[]( size_t stAllocateBlock ) { Assert( stAllocateBlock != 0 ); MEM_ALLOC_CREDIT(); void *pMem = g_pMemAlloc->Alloc( stAllocateBlock ); memset( pMem, 0, stAllocateBlock ); return pMem; } void *C_BaseEntity::operator new( size_t stAllocateBlock, int nBlockUse, const char *pFileName, int nLine ) { Assert( stAllocateBlock != 0 ); void *pMem = g_pMemAlloc->Alloc( stAllocateBlock, pFileName, nLine ); memset( pMem, 0, stAllocateBlock ); return pMem; } void *C_BaseEntity::operator new[]( size_t stAllocateBlock, int nBlockUse, const char *pFileName, int nLine ) { Assert( stAllocateBlock != 0 ); void *pMem = g_pMemAlloc->Alloc( stAllocateBlock, pFileName, nLine ); memset( pMem, 0, stAllocateBlock ); return pMem; } //----------------------------------------------------------------------------- // Purpose: // Input : *pMem - //----------------------------------------------------------------------------- void C_BaseEntity::operator delete( void *pMem ) { #ifdef _DEBUG // set the memory to a known value int size = g_pMemAlloc->GetSize( pMem ); Q_memset( pMem, 0xdd, size ); #endif // get the engine to free the memory g_pMemAlloc->Free( pMem ); } #include "tier0/memdbgon.h" //======================================================================================== // TEAM HANDLING //======================================================================================== C_Team *C_BaseEntity::GetTeam( void ) { return GetGlobalTeam( m_iTeamNum ); } //----------------------------------------------------------------------------- // Purpose: // Output : int //----------------------------------------------------------------------------- int C_BaseEntity::GetTeamNumber( void ) { return m_iTeamNum; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- int C_BaseEntity::GetRenderTeamNumber( void ) { return GetTeamNumber(); } //----------------------------------------------------------------------------- // Purpose: Returns true if these entities are both in at least one team together //----------------------------------------------------------------------------- bool C_BaseEntity::InSameTeam( C_BaseEntity *pEntity ) { if ( !pEntity ) return false; return ( pEntity->GetTeam() == GetTeam() ); } //----------------------------------------------------------------------------- // Purpose: Returns true if the entity's on the same team as the local player //----------------------------------------------------------------------------- bool C_BaseEntity::InLocalTeam( void ) { return ( GetTeam() == GetLocalTeam() ); } void C_BaseEntity::SetNextClientThink( float nextThinkTime ) { Assert( GetClientHandle() != INVALID_CLIENTENTITY_HANDLE ); ClientThinkList()->SetNextClientThink( GetClientHandle(), nextThinkTime ); } void C_BaseEntity::AddToLeafSystem() { AddToLeafSystem( GetRenderGroup() ); } void C_BaseEntity::AddToLeafSystem( RenderGroup_t group ) { if( m_hRender == INVALID_CLIENT_RENDER_HANDLE ) { // create new renderer handle ClientLeafSystem()->AddRenderable( this, group ); ClientLeafSystem()->EnableAlternateSorting( m_hRender, m_bAlternateSorting ); } else { // handle already exists, just update group & origin ClientLeafSystem()->SetRenderGroup( m_hRender, group ); ClientLeafSystem()->RenderableChanged( m_hRender ); } } //----------------------------------------------------------------------------- // Creates the shadow (if it doesn't already exist) based on shadow cast type //----------------------------------------------------------------------------- void C_BaseEntity::CreateShadow() { ShadowType_t shadowType = ShadowCastType(); if (shadowType == SHADOWS_NONE) { DestroyShadow(); } else { if (m_ShadowHandle == CLIENTSHADOW_INVALID_HANDLE) { int flags = SHADOW_FLAGS_SHADOW; if (shadowType != SHADOWS_SIMPLE) flags |= SHADOW_FLAGS_USE_RENDER_TO_TEXTURE; if (shadowType == SHADOWS_RENDER_TO_TEXTURE_DYNAMIC) flags |= SHADOW_FLAGS_ANIMATING_SOURCE; m_ShadowHandle = g_pClientShadowMgr->CreateShadow(GetClientHandle(), flags); } } } //----------------------------------------------------------------------------- // Removes the shadow //----------------------------------------------------------------------------- void C_BaseEntity::DestroyShadow() { // NOTE: This will actually cause the shadow type to be recomputed // if the entity doesn't immediately go away if (m_ShadowHandle != CLIENTSHADOW_INVALID_HANDLE) { g_pClientShadowMgr->DestroyShadow(m_ShadowHandle); m_ShadowHandle = CLIENTSHADOW_INVALID_HANDLE; } } //----------------------------------------------------------------------------- // Removes the entity from the leaf system //----------------------------------------------------------------------------- void C_BaseEntity::RemoveFromLeafSystem() { // Detach from the leaf lists. if( m_hRender != INVALID_CLIENT_RENDER_HANDLE ) { ClientLeafSystem()->RemoveRenderable( m_hRender ); m_hRender = INVALID_CLIENT_RENDER_HANDLE; } DestroyShadow(); } //----------------------------------------------------------------------------- // Purpose: Flags this entity as being inside or outside of this client's PVS // on the server. // NOTE: this is meaningless for client-side only entities. // Input : inside_pvs - //----------------------------------------------------------------------------- void C_BaseEntity::SetDormant( bool bDormant ) { Assert( IsServerEntity() ); m_bDormant = bDormant; // Kill drawing if we became dormant. UpdateVisibility(); } //----------------------------------------------------------------------------- // Purpose: Returns whether this entity is dormant. Client/server entities become // dormant when they leave the PVS on the server. Client side entities // can decide for themselves whether to become dormant. //----------------------------------------------------------------------------- bool C_BaseEntity::IsDormant( void ) { if ( IsServerEntity() ) { return m_bDormant; } return false; } //----------------------------------------------------------------------------- // These methods recompute local versions as well as set abs versions //----------------------------------------------------------------------------- void C_BaseEntity::SetAbsOrigin( const Vector& absOrigin ) { // This is necessary to get the other fields of m_rgflCoordinateFrame ok CalcAbsolutePosition(); if ( m_vecAbsOrigin == absOrigin ) return; // All children are invalid, but we are not InvalidatePhysicsRecursive( POSITION_CHANGED ); RemoveEFlags( EFL_DIRTY_ABSTRANSFORM ); m_vecAbsOrigin = absOrigin; MatrixSetColumn( absOrigin, 3, m_rgflCoordinateFrame ); C_BaseEntity *pMoveParent = GetMoveParent(); if (!pMoveParent) { m_vecOrigin = absOrigin; return; } // Moveparent case: transform the abs position into local space VectorITransform( absOrigin, pMoveParent->EntityToWorldTransform(), (Vector&)m_vecOrigin ); } void C_BaseEntity::SetAbsAngles( const QAngle& absAngles ) { // This is necessary to get the other fields of m_rgflCoordinateFrame ok CalcAbsolutePosition(); // FIXME: The normalize caused problems in server code like momentary_rot_button that isn't // handling things like +/-180 degrees properly. This should be revisited. //QAngle angleNormalize( AngleNormalize( absAngles.x ), AngleNormalize( absAngles.y ), AngleNormalize( absAngles.z ) ); if ( m_angAbsRotation == absAngles ) return; InvalidatePhysicsRecursive( ANGLES_CHANGED ); RemoveEFlags( EFL_DIRTY_ABSTRANSFORM ); m_angAbsRotation = absAngles; AngleMatrix( absAngles, m_rgflCoordinateFrame ); MatrixSetColumn( m_vecAbsOrigin, 3, m_rgflCoordinateFrame ); C_BaseEntity *pMoveParent = GetMoveParent(); if (!pMoveParent) { m_angRotation = absAngles; return; } // Moveparent case: we're aligned with the move parent if ( m_angAbsRotation == pMoveParent->GetAbsAngles() ) { m_angRotation.Init( ); } else { // Moveparent case: transform the abs transform into local space matrix3x4_t worldToParent, localMatrix; MatrixInvert( pMoveParent->EntityToWorldTransform(), worldToParent ); ConcatTransforms( worldToParent, m_rgflCoordinateFrame, localMatrix ); MatrixAngles( localMatrix, (QAngle &)m_angRotation ); } } void C_BaseEntity::SetAbsVelocity( const Vector &vecAbsVelocity ) { if ( m_vecAbsVelocity == vecAbsVelocity ) return; // The abs velocity won't be dirty since we're setting it here InvalidatePhysicsRecursive( VELOCITY_CHANGED ); m_iEFlags &= ~EFL_DIRTY_ABSVELOCITY; m_vecAbsVelocity = vecAbsVelocity; C_BaseEntity *pMoveParent = GetMoveParent(); if (!pMoveParent) { m_vecVelocity = vecAbsVelocity; return; } // First subtract out the parent's abs velocity to get a relative // velocity measured in world space Vector relVelocity; VectorSubtract( vecAbsVelocity, pMoveParent->GetAbsVelocity(), relVelocity ); // Transform velocity into parent space VectorIRotate( relVelocity, pMoveParent->EntityToWorldTransform(), m_vecVelocity ); } /* void C_BaseEntity::SetAbsAngularVelocity( const QAngle &vecAbsAngVelocity ) { // The abs velocity won't be dirty since we're setting it here InvalidatePhysicsRecursive( EFL_DIRTY_ABSANGVELOCITY ); m_iEFlags &= ~EFL_DIRTY_ABSANGVELOCITY; m_vecAbsAngVelocity = vecAbsAngVelocity; C_BaseEntity *pMoveParent = GetMoveParent(); if (!pMoveParent) { m_vecAngVelocity = vecAbsAngVelocity; return; } // First subtract out the parent's abs velocity to get a relative // angular velocity measured in world space QAngle relAngVelocity; relAngVelocity = vecAbsAngVelocity - pMoveParent->GetAbsAngularVelocity(); matrix3x4_t entityToWorld; AngleMatrix( relAngVelocity, entityToWorld ); // Moveparent case: transform the abs angular vel into local space matrix3x4_t worldToParent, localMatrix; MatrixInvert( pMoveParent->EntityToWorldTransform(), worldToParent ); ConcatTransforms( worldToParent, entityToWorld, localMatrix ); MatrixAngles( localMatrix, m_vecAngVelocity ); } */ // Prevent these for now until hierarchy is properly networked const Vector& C_BaseEntity::GetLocalOrigin( void ) const { return m_vecOrigin; } vec_t C_BaseEntity::GetLocalOriginDim( int iDim ) const { return m_vecOrigin[iDim]; } // Prevent these for now until hierarchy is properly networked void C_BaseEntity::SetLocalOrigin( const Vector& origin ) { if (m_vecOrigin != origin) { InvalidatePhysicsRecursive( POSITION_CHANGED ); m_vecOrigin = origin; } } void C_BaseEntity::SetLocalOriginDim( int iDim, vec_t flValue ) { if (m_vecOrigin[iDim] != flValue) { InvalidatePhysicsRecursive( POSITION_CHANGED ); m_vecOrigin[iDim] = flValue; } } // Prevent these for now until hierarchy is properly networked const QAngle& C_BaseEntity::GetLocalAngles( void ) const { return m_angRotation; } vec_t C_BaseEntity::GetLocalAnglesDim( int iDim ) const { return m_angRotation[iDim]; } // Prevent these for now until hierarchy is properly networked void C_BaseEntity::SetLocalAngles( const QAngle& angles ) { // NOTE: The angle normalize is a little expensive, but we can save // a bunch of time in interpolation if we don't have to invalidate everything // and sometimes it's off by a normalization amount // FIXME: The normalize caused problems in server code like momentary_rot_button that isn't // handling things like +/-180 degrees properly. This should be revisited. //QAngle angleNormalize( AngleNormalize( angles.x ), AngleNormalize( angles.y ), AngleNormalize( angles.z ) ); if (m_angRotation != angles) { // This will cause the velocities of all children to need recomputation InvalidatePhysicsRecursive( ANGLES_CHANGED ); m_angRotation = angles; } } void C_BaseEntity::SetLocalAnglesDim( int iDim, vec_t flValue ) { flValue = AngleNormalize( flValue ); if (m_angRotation[iDim] != flValue) { // This will cause the velocities of all children to need recomputation InvalidatePhysicsRecursive( ANGLES_CHANGED ); m_angRotation[iDim] = flValue; } } void C_BaseEntity::SetLocalVelocity( const Vector &vecVelocity ) { if (m_vecVelocity != vecVelocity) { InvalidatePhysicsRecursive( VELOCITY_CHANGED ); m_vecVelocity = vecVelocity; } } void C_BaseEntity::SetLocalAngularVelocity( const QAngle &vecAngVelocity ) { if (m_vecAngVelocity != vecAngVelocity) { // InvalidatePhysicsRecursive( ANG_VELOCITY_CHANGED ); m_vecAngVelocity = vecAngVelocity; } } //----------------------------------------------------------------------------- // Sets the local position from a transform //----------------------------------------------------------------------------- void C_BaseEntity::SetLocalTransform( const matrix3x4_t &localTransform ) { Vector vecLocalOrigin; QAngle vecLocalAngles; MatrixGetColumn( localTransform, 3, vecLocalOrigin ); MatrixAngles( localTransform, vecLocalAngles ); SetLocalOrigin( vecLocalOrigin ); SetLocalAngles( vecLocalAngles ); } //----------------------------------------------------------------------------- // FIXME: REMOVE!!! //----------------------------------------------------------------------------- void C_BaseEntity::MoveToAimEnt( ) { Vector vecAimEntOrigin; QAngle vecAimEntAngles; GetAimEntOrigin( GetMoveParent(), &vecAimEntOrigin, &vecAimEntAngles ); SetAbsOrigin( vecAimEntOrigin ); SetAbsAngles( vecAimEntAngles ); } void C_BaseEntity::BoneMergeFastCullBloat( Vector &localMins, Vector &localMaxs, const Vector &thisEntityMins, const Vector &thisEntityMaxs ) const { // By default, we bloat the bbox for fastcull ents by the maximum length it could hang out of the parent bbox, // it one corner were touching the edge of the parent's box, and the whole diagonal stretched out. float flExpand = (thisEntityMaxs - thisEntityMins).Length(); localMins.x -= flExpand; localMins.y -= flExpand; localMins.z -= flExpand; localMaxs.x += flExpand; localMaxs.y += flExpand; localMaxs.z += flExpand; } matrix3x4_t& C_BaseEntity::GetParentToWorldTransform( matrix3x4_t &tempMatrix ) { CBaseEntity *pMoveParent = GetMoveParent(); if ( !pMoveParent ) { Assert( false ); SetIdentityMatrix( tempMatrix ); return tempMatrix; } if ( m_iParentAttachment != 0 ) { Vector vOrigin; QAngle vAngles; if ( pMoveParent->GetAttachment( m_iParentAttachment, vOrigin, vAngles ) ) { AngleMatrix( vAngles, vOrigin, tempMatrix ); return tempMatrix; } } // If we fall through to here, then just use the move parent's abs origin and angles. return pMoveParent->EntityToWorldTransform(); } //----------------------------------------------------------------------------- // Purpose: Calculates the absolute position of an edict in the world // assumes the parent's absolute origin has already been calculated //----------------------------------------------------------------------------- void C_BaseEntity::CalcAbsolutePosition( ) { // There are periods of time where we're gonna have to live with the // fact that we're in an indeterminant state and abs queries (which // shouldn't be happening at all; I have assertions for those), will // just have to accept stale data. if (!s_bAbsRecomputationEnabled) return; // FIXME: Recompute absbox!!! if ((m_iEFlags & EFL_DIRTY_ABSTRANSFORM) == 0) { // quick check to make sure we really don't need an update // Assert( m_pMoveParent || m_vecAbsOrigin == GetLocalOrigin() ); return; } RemoveEFlags( EFL_DIRTY_ABSTRANSFORM ); if (!m_pMoveParent) { // Construct the entity-to-world matrix // Start with making an entity-to-parent matrix AngleMatrix( GetLocalAngles(), GetLocalOrigin(), m_rgflCoordinateFrame ); m_vecAbsOrigin = GetLocalOrigin(); m_angAbsRotation = GetLocalAngles(); NormalizeAngles( m_angAbsRotation ); return; } if ( IsEffectActive(EF_BONEMERGE) ) { MoveToAimEnt(); return; } // Construct the entity-to-world matrix // Start with making an entity-to-parent matrix matrix3x4_t matEntityToParent; AngleMatrix( GetLocalAngles(), matEntityToParent ); MatrixSetColumn( GetLocalOrigin(), 3, matEntityToParent ); // concatenate with our parent's transform matrix3x4_t scratchMatrix; ConcatTransforms( GetParentToWorldTransform( scratchMatrix ), matEntityToParent, m_rgflCoordinateFrame ); // pull our absolute position out of the matrix MatrixGetColumn( m_rgflCoordinateFrame, 3, m_vecAbsOrigin ); // if we have any angles, we have to extract our absolute angles from our matrix if ( m_angRotation == vec3_angle && m_iParentAttachment == 0 ) { // just copy our parent's absolute angles VectorCopy( m_pMoveParent->GetAbsAngles(), m_angAbsRotation ); } else { MatrixAngles( m_rgflCoordinateFrame, m_angAbsRotation ); } // This is necessary because it's possible that our moveparent's CalculateIKLocks will trigger its move children // (ie: this entity) to call GetAbsOrigin(), and they'll use the moveparent's OLD bone transforms to get their attachments // since the moveparent is right in the middle of setting up new transforms. // // So here, we keep our absorigin invalidated. It means we're returning an origin that is a frame old to CalculateIKLocks, // but we'll still render with the right origin. if ( m_iParentAttachment != 0 && (m_pMoveParent->GetFlags() & EFL_SETTING_UP_BONES) ) { m_iEFlags |= EFL_DIRTY_ABSTRANSFORM; } } void C_BaseEntity::CalcAbsoluteVelocity() { if ((m_iEFlags & EFL_DIRTY_ABSVELOCITY ) == 0) return; m_iEFlags &= ~EFL_DIRTY_ABSVELOCITY; CBaseEntity *pMoveParent = GetMoveParent(); if ( !pMoveParent ) { m_vecAbsVelocity = m_vecVelocity; return; } VectorRotate( m_vecVelocity, pMoveParent->EntityToWorldTransform(), m_vecAbsVelocity ); // Now add in the parent abs velocity m_vecAbsVelocity += pMoveParent->GetAbsVelocity(); } /* void C_BaseEntity::CalcAbsoluteAngularVelocity() { if ((m_iEFlags & EFL_DIRTY_ABSANGVELOCITY ) == 0) return; m_iEFlags &= ~EFL_DIRTY_ABSANGVELOCITY; CBaseEntity *pMoveParent = GetMoveParent(); if ( !pMoveParent ) { m_vecAbsAngVelocity = m_vecAngVelocity; return; } matrix3x4_t angVelToParent, angVelToWorld; AngleMatrix( m_vecAngVelocity, angVelToParent ); ConcatTransforms( pMoveParent->EntityToWorldTransform(), angVelToParent, angVelToWorld ); MatrixAngles( angVelToWorld, m_vecAbsAngVelocity ); // Now add in the parent abs angular velocity m_vecAbsAngVelocity += pMoveParent->GetAbsAngularVelocity(); } */ //----------------------------------------------------------------------------- // Computes the abs position of a point specified in local space //----------------------------------------------------------------------------- void C_BaseEntity::ComputeAbsPosition( const Vector &vecLocalPosition, Vector *pAbsPosition ) { C_BaseEntity *pMoveParent = GetMoveParent(); if ( !pMoveParent ) { *pAbsPosition = vecLocalPosition; } else { VectorTransform( vecLocalPosition, pMoveParent->EntityToWorldTransform(), *pAbsPosition ); } } //----------------------------------------------------------------------------- // Computes the abs position of a point specified in local space //----------------------------------------------------------------------------- void C_BaseEntity::ComputeAbsDirection( const Vector &vecLocalDirection, Vector *pAbsDirection ) { C_BaseEntity *pMoveParent = GetMoveParent(); if ( !pMoveParent ) { *pAbsDirection = vecLocalDirection; } else { VectorRotate( vecLocalDirection, pMoveParent->EntityToWorldTransform(), *pAbsDirection ); } } //----------------------------------------------------------------------------- // Mark shadow as dirty //----------------------------------------------------------------------------- void C_BaseEntity::MarkRenderHandleDirty( ) { // Invalidate render leaf too ClientRenderHandle_t handle = GetRenderHandle(); if ( handle != INVALID_CLIENT_RENDER_HANDLE ) { ClientLeafSystem()->RenderableChanged( handle ); } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::ShutdownPredictable( void ) { #if !defined( NO_ENTITY_PREDICTION ) Assert( GetPredictable() ); g_Predictables.RemoveFromPredictablesList( GetClientHandle() ); DestroyIntermediateData(); SetPredictable( false ); #endif } //----------------------------------------------------------------------------- // Purpose: Turn entity into something the predicts locally //----------------------------------------------------------------------------- void C_BaseEntity::InitPredictable( void ) { #if !defined( NO_ENTITY_PREDICTION ) Assert( !GetPredictable() ); // Mark as predictable SetPredictable( true ); // Allocate buffers into which we copy data AllocateIntermediateData(); // Add to list of predictables g_Predictables.AddToPredictableList( GetClientHandle() ); // Copy everything from "this" into the original_state_data // object. Don't care about client local stuff, so pull from slot 0 which // should be empty anyway... PostNetworkDataReceived( 0 ); // Copy original data into all prediction slots, so we don't get an error saying we "mispredicted" any // values which are still at their initial values for ( int i = 0; i < MULTIPLAYER_BACKUP; i++ ) { SaveData( "InitPredictable", i, PC_EVERYTHING ); } #endif } //----------------------------------------------------------------------------- // Purpose: // Input : state - //----------------------------------------------------------------------------- void C_BaseEntity::SetPredictable( bool state ) { m_bPredictable = state; // update interpolation times Interp_UpdateInterpolationAmounts( GetVarMapping() ); } //----------------------------------------------------------------------------- // Purpose: // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::GetPredictable( void ) const { return m_bPredictable; } //----------------------------------------------------------------------------- // Purpose: Transfer data for intermediate frame to current entity // Input : copyintermediate - // last_predicted - //----------------------------------------------------------------------------- void C_BaseEntity::PreEntityPacketReceived( int commands_acknowledged ) { #if !defined( NO_ENTITY_PREDICTION ) // Don't need to copy intermediate data if server did ack any new commands bool copyintermediate = ( commands_acknowledged > 0 ) ? true : false; Assert( GetPredictable() ); Assert( cl_predict.GetBool() ); // First copy in any intermediate predicted data for non-networked fields if ( copyintermediate ) { RestoreData( "PreEntityPacketReceived", commands_acknowledged - 1, PC_NON_NETWORKED_ONLY ); RestoreData( "PreEntityPacketReceived", SLOT_ORIGINALDATA, PC_NETWORKED_ONLY ); } else { RestoreData( "PreEntityPacketReceived(no commands ack)", SLOT_ORIGINALDATA, PC_EVERYTHING ); } // At this point the entity has original network data restored as of the last time the // networking was updated, and it has any intermediate predicted values properly copied over // Unpacked and OnDataChanged will fill in any changed, networked fields. // That networked data will be copied forward into the starting slot for the next prediction round #endif } //----------------------------------------------------------------------------- // Purpose: Called every time PreEntityPacket received is called // copy any networked data into original_state // Input : errorcheck - // last_predicted - //----------------------------------------------------------------------------- void C_BaseEntity::PostEntityPacketReceived( void ) { #if !defined( NO_ENTITY_PREDICTION ) Assert( GetPredictable() ); Assert( cl_predict.GetBool() ); // Always mark as changed AddDataChangeEvent( this, DATA_UPDATE_DATATABLE_CHANGED, &m_DataChangeEventRef ); // Save networked fields into "original data" store SaveData( "PostEntityPacketReceived", SLOT_ORIGINALDATA, PC_NETWORKED_ONLY ); #endif } //----------------------------------------------------------------------------- // Purpose: Called once per frame after all updating is done // Input : errorcheck - // last_predicted - //----------------------------------------------------------------------------- bool C_BaseEntity::PostNetworkDataReceived( int commands_acknowledged ) { bool haderrors = false; #if !defined( NO_ENTITY_PREDICTION ) Assert( GetPredictable() ); bool errorcheck = ( commands_acknowledged > 0 ) ? true : false; // Store network data into post networking pristine state slot (slot 64) SaveData( "PostNetworkDataReceived", SLOT_ORIGINALDATA, PC_EVERYTHING ); // Show any networked fields that are different bool showthis = cl_showerror.GetInt() >= 2; if ( cl_showerror.GetInt() < 0 ) { if ( entindex() == -cl_showerror.GetInt() ) { showthis = true; } else { showthis = false; } } if ( errorcheck ) { void *predicted_state_data = GetPredictedFrame( commands_acknowledged - 1 ); Assert( predicted_state_data ); const void *original_state_data = GetOriginalNetworkDataObject(); Assert( original_state_data ); bool counterrors = true; bool reporterrors = showthis; bool copydata = false; CPredictionCopy errorCheckHelper( PC_NETWORKED_ONLY, predicted_state_data, PC_DATA_PACKED, original_state_data, PC_DATA_PACKED, counterrors, reporterrors, copydata ); // Suppress debugging output int ecount = errorCheckHelper.TransferData( "", -1, GetPredDescMap() ); if ( ecount > 0 ) { haderrors = true; // Msg( "%i errors %i on entity %i %s\n", gpGlobals->tickcount, ecount, index, IsClientCreated() ? "true" : "false" ); } } #endif return haderrors; } // Stuff implemented for weapon prediction code void C_BaseEntity::SetSize( const Vector &vecMin, const Vector &vecMax ) { SetCollisionBounds( vecMin, vecMax ); } //----------------------------------------------------------------------------- // Purpose: Just look up index // Input : *name - // Output : int //----------------------------------------------------------------------------- int C_BaseEntity::PrecacheModel( const char *name ) { return modelinfo->GetModelIndex( name ); } //----------------------------------------------------------------------------- // Purpose: // Input : *obj - //----------------------------------------------------------------------------- void C_BaseEntity::Remove( ) { // Nothing for now, if it's a predicted entity, could flag as "delete" or dormant if ( GetPredictable() || IsClientCreated() ) { // Make it solid AddSolidFlags( FSOLID_NOT_SOLID ); SetMoveType( MOVETYPE_NONE ); AddEFlags( EFL_KILLME ); // Make sure to ignore further calls into here or UTIL_Remove. } Release(); } //----------------------------------------------------------------------------- // Purpose: // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::GetPredictionEligible( void ) const { #if !defined( NO_ENTITY_PREDICTION ) return m_bPredictionEligible; #else return false; #endif } C_BaseEntity* C_BaseEntity::Instance( CBaseHandle hEnt ) { return ClientEntityList().GetBaseEntityFromHandle( hEnt ); } //----------------------------------------------------------------------------- // Purpose: // Input : iEnt - // Output : C_BaseEntity //----------------------------------------------------------------------------- C_BaseEntity *C_BaseEntity::Instance( int iEnt ) { return ClientEntityList().GetBaseEntity( iEnt ); } #pragma warning( push ) #include #pragma warning( pop ) //----------------------------------------------------------------------------- // Purpose: // Output : char const //----------------------------------------------------------------------------- const char *C_BaseEntity::GetClassname( void ) { static char outstr[ 256 ]; outstr[ 0 ] = 0; bool gotname = false; #ifndef NO_ENTITY_PREDICTION const char *mapname = GetClassMap().Lookup( GetPredDescMap() ? GetPredDescMap()->dataClassName : _GetClassName() ); #else const char *mapname = GetClassMap().Lookup( _GetClassName() ); #endif if ( mapname && mapname[ 0 ] ) { Q_snprintf( outstr, sizeof( outstr ), "%s", mapname ); gotname = true; } if ( !gotname ) { Q_strncpy( outstr, typeid( *this ).name(), sizeof( outstr ) ); } return outstr; } const char *C_BaseEntity::GetDebugName( void ) { return GetClassname(); } //----------------------------------------------------------------------------- // Purpose: Creates an entity by string name, but does not spawn it // Input : *className - // Output : C_BaseEntity //----------------------------------------------------------------------------- C_BaseEntity *CreateEntityByName( const char *className ) { C_BaseEntity *ent = GetClassMap().CreateEntity( className ); if ( ent ) { return ent; } Warning( "Can't find factory for entity: %s\n", className ); return NULL; } #ifdef _DEBUG CON_COMMAND( cl_sizeof, "Determines the size of the specified client class." ) { if ( engine->Cmd_Argc() != 2 ) { Msg( "cl_sizeof \n" ); return; } int size = GetClassMap().GetClassSize( engine->Cmd_Argv(1 ) ); Msg( "%s is %i bytes\n", engine->Cmd_Argv(1), size ); } #endif //----------------------------------------------------------------------------- // Purpose: // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::IsClientCreated( void ) const { #ifndef NO_ENTITY_PREDICTION if ( m_pPredictionContext != NULL ) { // For now can't be both Assert( !GetPredictable() ); return true; } #endif return false; } //----------------------------------------------------------------------------- // Purpose: // Input : *classname - // *module - // line - // Output : C_BaseEntity //----------------------------------------------------------------------------- C_BaseEntity *C_BaseEntity::CreatePredictedEntityByName( const char *classname, const char *module, int line, bool persist /*= false */ ) { #if !defined( NO_ENTITY_PREDICTION ) C_BasePlayer *player = C_BaseEntity::GetPredictionPlayer(); Assert( player ); Assert( player->m_pCurrentCommand ); Assert( prediction->InPrediction() ); C_BaseEntity *ent = NULL; // What's my birthday (should match server) int command_number = player->m_pCurrentCommand->command_number; // Who's my daddy? int player_index = player->entindex() - 1; // Create id/context CPredictableId testId; testId.Init( player_index, command_number, classname, module, line ); // If repredicting, should be able to find the entity in the previously created list if ( !prediction->IsFirstTimePredicted() ) { // Only find previous instance if entity was created with persist set if ( persist ) { ent = FindPreviouslyCreatedEntity( testId ); if ( ent ) { return ent; } } return NULL; } // Try to create it ent = CreateEntityByName( classname ); if ( !ent ) { return NULL; } // It's predictable ent->SetPredictionEligible( true ); // Set up "shared" id number ent->m_PredictableID.SetRaw( testId.GetRaw() ); // Get a context (mostly for debugging purposes) PredictionContext *context = new PredictionContext; context->m_bActive = true; context->m_nCreationCommandNumber = command_number; context->m_nCreationLineNumber = line; context->m_pszCreationModule = module; // Attach to entity ent->m_pPredictionContext = context; // Add to client entity list ClientEntityList().AddNonNetworkableEntity( ent ); // and predictables g_Predictables.AddToPredictableList( ent->GetClientHandle() ); // Duhhhh..., but might as well be safe Assert( !ent->GetPredictable() ); Assert( ent->IsClientCreated() ); // Add the client entity to the spatial partition. (Collidable) ent->CollisionProp()->CreatePartitionHandle(); // CLIENT ONLY FOR NOW!!! ent->index = -1; if ( AddDataChangeEvent( ent, DATA_UPDATE_CREATED, &ent->m_DataChangeEventRef ) ) { ent->OnPreDataChanged( DATA_UPDATE_CREATED ); } ent->Interp_UpdateInterpolationAmounts( ent->GetVarMapping() ); return ent; #else return NULL; #endif } //----------------------------------------------------------------------------- // Purpose: Called each packet that the entity is created on and finally gets called after the next packet // that doesn't have a create message for the "parent" entity so that the predicted version // can be removed. Return true to delete entity right away. //----------------------------------------------------------------------------- bool C_BaseEntity::OnPredictedEntityRemove( bool isbeingremoved, C_BaseEntity *predicted ) { #if !defined( NO_ENTITY_PREDICTION ) // Nothing right now, but in theory you could look at the error in origins and set // up something to smooth out the error PredictionContext *ctx = predicted->m_pPredictionContext; Assert( ctx ); if ( ctx ) { // Create backlink to actual entity ctx->m_hServerEntity = this; /* Msg( "OnPredictedEntity%s: %s created %s(%i) instance(%i)\n", isbeingremoved ? "Remove" : "Acknowledge", predicted->GetClassname(), ctx->m_pszCreationModule, ctx->m_nCreationLineNumber, predicted->m_PredictableID.GetInstanceNumber() ); */ } // If it comes through with an ID, it should be eligible SetPredictionEligible( true ); // Start predicting simulation forward from here CheckInitPredictable( "OnPredictedEntityRemove" ); // Always mark it dormant since we are the "real" entity now predicted->SetDormantPredictable( true ); InvalidatePhysicsRecursive( POSITION_CHANGED | ANGLES_CHANGED | VELOCITY_CHANGED ); // By default, signal that it should be deleted right away // If a derived class implements this method, it might chain to here but return // false if it wants to keep the dormant predictable around until the chain of // DATA_UPDATE_CREATED messages passes #endif return true; } //----------------------------------------------------------------------------- // Purpose: // Input : *pOwner - //----------------------------------------------------------------------------- void C_BaseEntity::SetOwnerEntity( C_BaseEntity *pOwner ) { m_hOwnerEntity = pOwner; } //----------------------------------------------------------------------------- // Purpose: Put the entity in the specified team //----------------------------------------------------------------------------- void C_BaseEntity::ChangeTeam( int iTeamNum ) { m_iTeamNum = iTeamNum; } //----------------------------------------------------------------------------- // Purpose: // Input : name - //----------------------------------------------------------------------------- void C_BaseEntity::SetModelName( string_t name ) { m_ModelName = name; } //----------------------------------------------------------------------------- // Purpose: // Output : string_t //----------------------------------------------------------------------------- string_t C_BaseEntity::GetModelName( void ) const { return m_ModelName; } //----------------------------------------------------------------------------- // Purpose: Nothing yet, could eventually supercede Term() //----------------------------------------------------------------------------- void C_BaseEntity::UpdateOnRemove( void ) { VPhysicsDestroyObject(); Assert( !GetMoveParent() ); UnlinkFromHierarchy(); SetGroundEntity( NULL ); } //----------------------------------------------------------------------------- // Purpose: // Input : canpredict - //----------------------------------------------------------------------------- void C_BaseEntity::SetPredictionEligible( bool canpredict ) { #if !defined( NO_ENTITY_PREDICTION ) m_bPredictionEligible = canpredict; #endif } //----------------------------------------------------------------------------- // Purpose: Returns a value that scales all damage done by this entity. //----------------------------------------------------------------------------- float C_BaseEntity::GetAttackDamageScale( void ) { float flScale = 1; // Not hooked up to prediction yet #if 0 FOR_EACH_LL( m_DamageModifiers, i ) { if ( !m_DamageModifiers[i]->IsDamageDoneToMe() ) { flScale *= m_DamageModifiers[i]->GetModifier(); } } #endif return flScale; } #if !defined( NO_ENTITY_PREDICTION ) //----------------------------------------------------------------------------- // Purpose: // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::IsDormantPredictable( void ) const { return m_bDormantPredictable; } #endif //----------------------------------------------------------------------------- // Purpose: // Input : dormant - //----------------------------------------------------------------------------- void C_BaseEntity::SetDormantPredictable( bool dormant ) { #if !defined( NO_ENTITY_PREDICTION ) Assert( IsClientCreated() ); m_bDormantPredictable = true; m_nIncomingPacketEntityBecameDormant = prediction->GetIncomingPacketNumber(); // Do we need to do the following kinds of things? #if 0 // Remove from collisions SetSolid( SOLID_NOT ); // Don't render AddEffects( EF_NODRAW ); #endif #endif } //----------------------------------------------------------------------------- // Purpose: Used to determine when a dorman client predictable can be safely deleted // Note that it can be deleted earlier than this by OnPredictedEntityRemove returning true // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::BecameDormantThisPacket( void ) const { #if !defined( NO_ENTITY_PREDICTION ) Assert( IsDormantPredictable() ); if ( m_nIncomingPacketEntityBecameDormant != prediction->GetIncomingPacketNumber() ) return false; return true; #else return false; #endif } //----------------------------------------------------------------------------- // Purpose: // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::IsIntermediateDataAllocated( void ) const { #if !defined( NO_ENTITY_PREDICTION ) return m_pOriginalData != NULL ? true : false; #else return false; #endif } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::AllocateIntermediateData( void ) { #if !defined( NO_ENTITY_PREDICTION ) if ( m_pOriginalData ) return; size_t allocsize = GetIntermediateDataSize(); Assert( allocsize > 0 ); m_pOriginalData = new unsigned char[ allocsize ]; Q_memset( m_pOriginalData, 0, allocsize ); for ( int i = 0; i < MULTIPLAYER_BACKUP; i++ ) { m_pIntermediateData[ i ] = new unsigned char[ allocsize ]; Q_memset( m_pIntermediateData[ i ], 0, allocsize ); } #endif } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::DestroyIntermediateData( void ) { #if !defined( NO_ENTITY_PREDICTION ) if ( !m_pOriginalData ) return; for ( int i = 0; i < MULTIPLAYER_BACKUP; i++ ) { delete[] m_pIntermediateData[ i ]; m_pIntermediateData[ i ] = NULL; } delete[] m_pOriginalData; m_pOriginalData = NULL; #endif } //----------------------------------------------------------------------------- // Purpose: // Input : slots_to_remove - // number_of_commands_run - //----------------------------------------------------------------------------- void C_BaseEntity::ShiftIntermediateDataForward( int slots_to_remove, int number_of_commands_run ) { #if !defined( NO_ENTITY_PREDICTION ) Assert( m_pIntermediateData ); if ( !m_pIntermediateData ) return; Assert( number_of_commands_run >= slots_to_remove ); // Just moving pointers, yeah CUtlVector< unsigned char * > saved; // Remember first slots int i = 0; for ( ; i < slots_to_remove; i++ ) { saved.AddToTail( m_pIntermediateData[ i ] ); } // Move rest of slots forward up to last slot for ( ; i < number_of_commands_run; i++ ) { m_pIntermediateData[ i - slots_to_remove ] = m_pIntermediateData[ i ]; } // Put remembered slots onto end for ( i = 0; i < slots_to_remove; i++ ) { int slot = number_of_commands_run - slots_to_remove + i; m_pIntermediateData[ slot ] = saved[ i ]; } #endif } //----------------------------------------------------------------------------- // Purpose: // Input : framenumber - //----------------------------------------------------------------------------- void *C_BaseEntity::GetPredictedFrame( int framenumber ) { #if !defined( NO_ENTITY_PREDICTION ) Assert( framenumber >= 0 ); if ( !m_pOriginalData ) { Assert( 0 ); return NULL; } return (void *)m_pIntermediateData[ framenumber % MULTIPLAYER_BACKUP ]; #else return NULL; #endif } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void *C_BaseEntity::GetOriginalNetworkDataObject( void ) { #if !defined( NO_ENTITY_PREDICTION ) if ( !m_pOriginalData ) { Assert( 0 ); return NULL; } return (void *)m_pOriginalData; #else return NULL; #endif } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::ComputePackedOffsets( void ) { #if !defined( NO_ENTITY_PREDICTION ) datamap_t *map = GetPredDescMap(); if ( !map ) return; if ( map->packed_offsets_computed ) return; ComputePackedSize_R( map ); Assert( map->packed_offsets_computed ); #endif } //----------------------------------------------------------------------------- // Purpose: // Output : int //----------------------------------------------------------------------------- int C_BaseEntity::GetIntermediateDataSize( void ) { #if !defined( NO_ENTITY_PREDICTION ) ComputePackedOffsets(); const datamap_t *map = GetPredDescMap(); Assert( map->packed_offsets_computed ); int size = map->packed_size; Assert( size > 0 ); // At least 4 bytes to avoid some really bad stuff return max( size, 4 ); #else return 0; #endif } static int g_FieldSizes[FIELD_TYPECOUNT] = { 0, // FIELD_VOID sizeof(float), // FIELD_FLOAT sizeof(int), // FIELD_STRING sizeof(Vector), // FIELD_VECTOR sizeof(Quaternion), // FIELD_QUATERNION sizeof(int), // FIELD_INTEGER sizeof(char), // FIELD_BOOLEAN sizeof(short), // FIELD_SHORT sizeof(char), // FIELD_CHARACTER sizeof(color32), // FIELD_COLOR32 sizeof(int), // FIELD_EMBEDDED (handled specially) sizeof(int), // FIELD_CUSTOM (handled specially) //--------------------------------- sizeof(int), // FIELD_CLASSPTR sizeof(EHANDLE), // FIELD_EHANDLE sizeof(int), // FIELD_EDICT sizeof(Vector), // FIELD_POSITION_VECTOR sizeof(float), // FIELD_TIME sizeof(int), // FIELD_TICK sizeof(int), // FIELD_MODELNAME sizeof(int), // FIELD_SOUNDNAME sizeof(int), // FIELD_INPUT (uses custom type) sizeof(int *), // FIELD_FUNCTION sizeof(VMatrix), // FIELD_VMATRIX sizeof(VMatrix), // FIELD_VMATRIX_WORLDSPACE sizeof(matrix3x4_t),// FIELD_MATRIX3X4_WORLDSPACE // NOTE: Use array(FIELD_FLOAT, 12) for matrix3x4_t NOT in worldspace sizeof(interval_t), // FIELD_INTERVAL sizeof(int), // FIELD_MODELINDEX }; //----------------------------------------------------------------------------- // Purpose: // Input : *map - // Output : int //----------------------------------------------------------------------------- int C_BaseEntity::ComputePackedSize_R( datamap_t *map ) { if ( !map ) { Assert( 0 ); return 0; } // Already computed if ( map->packed_offsets_computed ) { return map->packed_size; } int current_position = 0; // Recurse to base classes first... if ( map->baseMap ) { current_position += ComputePackedSize_R( map->baseMap ); } int c = map->dataNumFields; int i; typedescription_t *field; for ( i = 0; i < c; i++ ) { field = &map->dataDesc[ i ]; // Always descend into embedded types... if ( field->fieldType != FIELD_EMBEDDED ) { // Skip all private fields if ( field->flags & FTYPEDESC_PRIVATE ) continue; } switch ( field->fieldType ) { default: case FIELD_MODELINDEX: case FIELD_MODELNAME: case FIELD_SOUNDNAME: case FIELD_TIME: case FIELD_TICK: case FIELD_CUSTOM: case FIELD_CLASSPTR: case FIELD_EDICT: case FIELD_POSITION_VECTOR: case FIELD_FUNCTION: Assert( 0 ); break; case FIELD_EMBEDDED: { Assert( field->td != NULL ); int embeddedsize = ComputePackedSize_R( field->td ); field->fieldOffset[ TD_OFFSET_PACKED ] = current_position; current_position += embeddedsize; } break; case FIELD_FLOAT: case FIELD_STRING: case FIELD_VECTOR: case FIELD_QUATERNION: case FIELD_COLOR32: case FIELD_BOOLEAN: case FIELD_INTEGER: case FIELD_SHORT: case FIELD_CHARACTER: case FIELD_EHANDLE: { field->fieldOffset[ TD_OFFSET_PACKED ] = current_position; Assert( field->fieldSize >= 1 ); current_position += g_FieldSizes[ field->fieldType ] * field->fieldSize; } break; case FIELD_VOID: { // Special case, just skip it } break; } } map->packed_size = current_position; map->packed_offsets_computed = true; return current_position; } // Convenient way to delay removing oneself void C_BaseEntity::SUB_Remove( void ) { if (m_iHealth > 0) { // this situation can screw up NPCs who can't tell their entity pointers are invalid. m_iHealth = 0; DevWarning( 2, "SUB_Remove called on entity with health > 0\n"); } Remove( ); } CBaseEntity *FindEntityInFrontOfLocalPlayer() { C_BasePlayer *pPlayer = C_BasePlayer::GetLocalPlayer(); if ( pPlayer ) { // Get the entity under my crosshair trace_t tr; Vector forward; pPlayer->EyeVectors( &forward ); UTIL_TraceLine( pPlayer->EyePosition(), pPlayer->EyePosition() + forward * MAX_COORD_RANGE, MASK_SOLID, pPlayer, COLLISION_GROUP_NONE, &tr ); if ( tr.fraction != 1.0 && tr.DidHitNonWorldEntity() ) { return tr.m_pEnt; } } return NULL; } //----------------------------------------------------------------------------- // Purpose: Debug command to wipe the decals off an entity //----------------------------------------------------------------------------- static void RemoveDecals_f( void ) { CBaseEntity *pHit = FindEntityInFrontOfLocalPlayer(); if ( pHit ) { pHit->RemoveAllDecals(); } } static ConCommand cl_removedecals( "cl_removedecals", RemoveDecals_f, "Remove the decals from the entity under the crosshair.", FCVAR_CHEAT ); //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::ToggleBBoxVisualization( int fVisFlags ) { if ( m_fBBoxVisFlags & fVisFlags ) { m_fBBoxVisFlags &= ~fVisFlags; } else { m_fBBoxVisFlags |= fVisFlags; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- static void ToggleBBoxVisualization( int fVisFlags ) { CBaseEntity *pHit; int iEntity = -1; if ( engine->Cmd_Argc() >= 2 ) iEntity = atoi( engine->Cmd_Argv( 1 ) ); if ( iEntity == -1 ) pHit = FindEntityInFrontOfLocalPlayer(); else pHit = cl_entitylist->GetBaseEntity( iEntity ); if ( pHit ) { pHit->ToggleBBoxVisualization( fVisFlags ); } } //----------------------------------------------------------------------------- // Purpose: Command to toggle visualizations of bboxes on the client //----------------------------------------------------------------------------- static void ToggleBBoxVisualization_f( void ) { ToggleBBoxVisualization( CBaseEntity::VISUALIZE_COLLISION_BOUNDS ); } static ConCommand cl_ent_bbox( "cl_ent_bbox", ToggleBBoxVisualization_f, "Displays the client's bounding box for the entity under the crosshair.", FCVAR_CHEAT ); //----------------------------------------------------------------------------- // Purpose: Command to toggle visualizations of bboxes on the client //----------------------------------------------------------------------------- static void ToggleAbsBoxVisualization_f( void ) { ToggleBBoxVisualization( CBaseEntity::VISUALIZE_SURROUNDING_BOUNDS ); } static ConCommand cl_ent_absbox( "cl_ent_absbox", ToggleAbsBoxVisualization_f, "Displays the client's absbox for the entity under the crosshair.", FCVAR_CHEAT ); //----------------------------------------------------------------------------- // Purpose: Command to toggle visualizations of bboxes on the client //----------------------------------------------------------------------------- static void ToggleRBoxVisualization_f( void ) { ToggleBBoxVisualization( CBaseEntity::VISUALIZE_RENDER_BOUNDS ); } static ConCommand cl_ent_rbox( "cl_ent_rbox", ToggleRBoxVisualization_f, "Displays the client's render box for the entity under the crosshair.", FCVAR_CHEAT ); //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void C_BaseEntity::DrawBBoxVisualizations( void ) { if ( m_fBBoxVisFlags & VISUALIZE_COLLISION_BOUNDS ) { debugoverlay->AddBoxOverlay( CollisionProp()->GetCollisionOrigin(), CollisionProp()->OBBMins(), CollisionProp()->OBBMaxs(), CollisionProp()->GetCollisionAngles(), 190, 190, 0, 0, 0.01 ); } if ( m_fBBoxVisFlags & VISUALIZE_SURROUNDING_BOUNDS ) { Vector vecSurroundMins, vecSurroundMaxs; CollisionProp()->WorldSpaceSurroundingBounds( &vecSurroundMins, &vecSurroundMaxs ); debugoverlay->AddBoxOverlay( vec3_origin, vecSurroundMins, vecSurroundMaxs, vec3_angle, 0, 255, 255, 0, 0.01 ); } if ( m_fBBoxVisFlags & VISUALIZE_RENDER_BOUNDS || r_drawrenderboxes.GetInt() ) { Vector vecRenderMins, vecRenderMaxs; GetRenderBounds( vecRenderMins, vecRenderMaxs ); debugoverlay->AddBoxOverlay( GetRenderOrigin(), vecRenderMins, vecRenderMaxs, GetRenderAngles(), 255, 0, 255, 0, 0.01 ); } } //----------------------------------------------------------------------------- // Sets the render mode //----------------------------------------------------------------------------- void C_BaseEntity::SetRenderMode( RenderMode_t nRenderMode, bool bForceUpdate ) { m_nRenderMode = nRenderMode; } //----------------------------------------------------------------------------- // Purpose: // Output : RenderGroup_t //----------------------------------------------------------------------------- RenderGroup_t C_BaseEntity::GetRenderGroup() { // Don't sort things that don't need rendering if ( m_nRenderMode == kRenderNone ) return RENDER_GROUP_OPAQUE_ENTITY; // When an entity has a material proxy, we have to recompute // translucency here because the proxy may have changed it. if (modelinfo->ModelHasMaterialProxy( GetModel() )) { modelinfo->RecomputeTranslucency( const_cast(GetModel()) ); } // NOTE: Bypassing the GetFXBlend protection logic because we want this to // be able to be called from AddToLeafSystem. #ifdef _DEBUG int nTempComputeFrame = m_nFXComputeFrame; m_nFXComputeFrame = gpGlobals->framecount; #endif int nFXBlend = GetFxBlend(); #ifdef _DEBUG m_nFXComputeFrame = nTempComputeFrame; #endif // Don't need to sort invisible stuff if ( nFXBlend == 0 ) return RENDER_GROUP_OPAQUE_ENTITY; // Figure out its RenderGroup. int modelType = modelinfo->GetModelType( model ); RenderGroup_t renderGroup = (modelType == mod_brush) ? RENDER_GROUP_OPAQUE_BRUSH : RENDER_GROUP_OPAQUE_ENTITY; if ( ( nFXBlend != 255 ) || IsTransparent() ) { if ( m_nRenderMode != kRenderEnvironmental ) { renderGroup = RENDER_GROUP_TRANSLUCENT_ENTITY; } else { renderGroup = RENDER_GROUP_OTHER; } } if ( ( renderGroup == RENDER_GROUP_TRANSLUCENT_ENTITY ) && ( modelinfo->IsTranslucentTwoPass( model ) ) ) { renderGroup = RENDER_GROUP_TWOPASS; } return renderGroup; } //----------------------------------------------------------------------------- // Purpose: Copy from this entity into one of the save slots (original or intermediate) // Input : slot - // type - // false - // false - // true - // false - // NULL - // Output : int //----------------------------------------------------------------------------- int C_BaseEntity::SaveData( const char *context, int slot, int type ) { #if !defined( NO_ENTITY_PREDICTION ) VPROF( "C_BaseEntity::SaveData" ); void *dest = ( slot == SLOT_ORIGINALDATA ) ? GetOriginalNetworkDataObject() : GetPredictedFrame( slot ); Assert( dest ); char sz[ 64 ]; if ( slot == SLOT_ORIGINALDATA ) { Q_snprintf( sz, sizeof( sz ), "%s SaveData(original)", context ); } else { Q_snprintf( sz, sizeof( sz ), "%s SaveData(slot %02i)", context, slot ); } CPredictionCopy copyHelper( type, dest, PC_DATA_PACKED, this, PC_DATA_NORMAL ); int error_count = copyHelper.TransferData( sz, entindex(), GetPredDescMap() ); return error_count; #else return 0; #endif } //----------------------------------------------------------------------------- // Purpose: Restore data from specified slot into current entity // Input : slot - // type - // false - // false - // true - // false - // NULL - // Output : int //----------------------------------------------------------------------------- int C_BaseEntity::RestoreData( const char *context, int slot, int type ) { #if !defined( NO_ENTITY_PREDICTION ) VPROF( "C_BaseEntity::RestoreData" ); const void *src = ( slot == SLOT_ORIGINALDATA ) ? GetOriginalNetworkDataObject() : GetPredictedFrame( slot ); Assert( src ); char sz[ 64 ]; if ( slot == SLOT_ORIGINALDATA ) { Q_snprintf( sz, sizeof( sz ), "%s RestoreData(original)", context ); } else { Q_snprintf( sz, sizeof( sz ), "%s RestoreData(slot %02i)", context, slot ); } // some flags shouldn't be predicted - as we find them, add them to the savedEFlagsMask const int savedEFlagsMask = EFL_DIRTY_SHADOWUPDATE; int savedEFlags = GetEFlags() & savedEFlagsMask; CPredictionCopy copyHelper( type, this, PC_DATA_NORMAL, src, PC_DATA_PACKED ); int error_count = copyHelper.TransferData( sz, entindex(), GetPredDescMap() ); // set non-predicting flags back to their prior state RemoveEFlags( savedEFlagsMask ); AddEFlags( savedEFlags ); OnPostRestoreData(); return error_count; #else return 0; #endif } void C_BaseEntity::OnPostRestoreData() { // HACK Force recomputation of origin InvalidatePhysicsRecursive( POSITION_CHANGED | ANGLES_CHANGED | VELOCITY_CHANGED ); if ( GetMoveParent() ) { AddToAimEntsList(); } // If our model index has changed, then make sure it's reflected in our model pointer. if ( GetModel() != modelinfo->GetModel( GetModelIndex() ) ) { MDLCACHE_CRITICAL_SECTION(); SetModelByIndex( GetModelIndex() ); } } //----------------------------------------------------------------------------- // Purpose: Determine approximate velocity based on updates from server // Input : vel - //----------------------------------------------------------------------------- void C_BaseEntity::EstimateAbsVelocity( Vector& vel ) { if ( this == C_BasePlayer::GetLocalPlayer() ) { vel = GetAbsVelocity(); return; } CInterpolationContext context; context.EnableExtrapolation( true ); m_iv_vecOrigin.GetDerivative_SmoothVelocity( &vel, gpGlobals->curtime ); } void C_BaseEntity::Interp_Reset( VarMapping_t *map ) { int c = map->m_Entries.Count(); for ( int i = 0; i < c; i++ ) { VarMapEntry_t *e = &map->m_Entries[ i ]; IInterpolatedVar *watcher = e->watcher; watcher->Reset(); } } void C_BaseEntity::ResetLatched() { if ( IsClientCreated() ) return; Interp_Reset( GetVarMapping() ); } //----------------------------------------------------------------------------- // Purpose: Fixme, this needs a better solution // Input : flags - // Output : float //----------------------------------------------------------------------------- static float AdjustInterpolationAmount( C_BaseEntity *pEntity, float baseInterpolation ) { if ( cl_interp_npcs.GetFloat() > 0 ) { const float minNPCInterpolationTime = cl_interp_npcs.GetFloat(); const float minNPCInterpolation = TICK_INTERVAL * ( TIME_TO_TICKS( minNPCInterpolationTime ) + 1 ); if ( minNPCInterpolation > baseInterpolation ) { while ( pEntity ) { if ( pEntity->IsNPC() ) return minNPCInterpolation; pEntity = pEntity->GetMoveParent(); } } } return baseInterpolation; } //------------------------------------- float C_BaseEntity::GetInterpolationAmount( int flags ) { // If single player server is "skipping ticks" everything needs to interpolate for a bit longer int serverTickMultiple = 1; if ( IsSimulatingOnAlternateTicks() ) { serverTickMultiple = 2; } if ( GetPredictable() || IsClientCreated() ) { return TICK_INTERVAL * serverTickMultiple; } // Always fully interpolation in multiplayer or during demo playback... if ( gpGlobals->maxClients > 1 || engine->IsPlayingDemo() ) { return AdjustInterpolationAmount( this, TICKS_TO_TIME ( TIME_TO_TICKS( cl_interp.GetFloat() ) + serverTickMultiple ) ); } if ( IsAnimatedEveryTick() && IsSimulatedEveryTick() ) { return TICK_INTERVAL * serverTickMultiple; } if ( ( flags & LATCH_ANIMATION_VAR ) && IsAnimatedEveryTick() ) { return TICK_INTERVAL * serverTickMultiple; } if ( ( flags & LATCH_SIMULATION_VAR ) && IsSimulatedEveryTick() ) { return TICK_INTERVAL * serverTickMultiple; } return AdjustInterpolationAmount( this, TICK_INTERVAL * ( TIME_TO_TICKS( cl_interp.GetFloat() ) + serverTickMultiple ) ); } float C_BaseEntity::GetLastChangeTime( int flags ) { if ( GetPredictable() || IsClientCreated() ) { return gpGlobals->curtime; } // make sure not both flags are set, we can't resolve that Assert( !( (flags & LATCH_ANIMATION_VAR) && (flags & LATCH_SIMULATION_VAR) ) ); if ( flags & LATCH_ANIMATION_VAR ) { return GetAnimTime(); } if ( flags & LATCH_SIMULATION_VAR ) { float st = GetSimulationTime(); if ( st == 0.0f ) { return gpGlobals->curtime; } return st; } Assert( 0 ); return gpGlobals->curtime; } const Vector& C_BaseEntity::GetPrevLocalOrigin() const { return m_iv_vecOrigin.GetPrev(); } const QAngle& C_BaseEntity::GetPrevLocalAngles() const { return m_iv_angRotation.GetPrev(); } //----------------------------------------------------------------------------- // Simply here for game shared //----------------------------------------------------------------------------- bool C_BaseEntity::IsFloating() { // NOTE: This is only here because it's called by game shared. // The server uses it to lower falling impact damage return false; } BEGIN_DATADESC_NO_BASE( C_BaseEntity ) DEFINE_FIELD( m_ModelName, FIELD_STRING ), DEFINE_FIELD( m_vecAbsOrigin, FIELD_POSITION_VECTOR ), DEFINE_FIELD( m_angAbsRotation, FIELD_VECTOR ), DEFINE_ARRAY( m_rgflCoordinateFrame, FIELD_FLOAT, 12 ), // NOTE: MUST BE IN LOCAL SPACE, NOT POSITION_VECTOR!!! (see CBaseEntity::Restore) DEFINE_FIELD( m_fFlags, FIELD_INTEGER ), END_DATADESC() //----------------------------------------------------------------------------- // Purpose: // Output : Returns true on success, false on failure. //----------------------------------------------------------------------------- bool C_BaseEntity::ShouldSavePhysics() { return false; } //----------------------------------------------------------------------------- // handler to do stuff before you are saved //----------------------------------------------------------------------------- void C_BaseEntity::OnSave() { // Here, we must force recomputation of all abs data so it gets saved correctly // We can't leave the dirty bits set because the loader can't cope with it. CalcAbsolutePosition(); CalcAbsoluteVelocity(); } //----------------------------------------------------------------------------- // handler to do stuff after you are restored //----------------------------------------------------------------------------- void C_BaseEntity::OnRestore() { InvalidatePhysicsRecursive( POSITION_CHANGED | ANGLES_CHANGED | VELOCITY_CHANGED ); UpdatePartitionListEntry(); CollisionProp()->UpdatePartition(); UpdateVisibility(); } //----------------------------------------------------------------------------- // Purpose: Saves the current object out to disk, by iterating through the objects // data description hierarchy // Input : &save - save buffer which the class data is written to // Output : int - 0 if the save failed, 1 on success //----------------------------------------------------------------------------- int C_BaseEntity::Save( ISave &save ) { // loop through the data description list, saving each data desc block int status = SaveDataDescBlock( save, GetDataDescMap() ); return status; } //----------------------------------------------------------------------------- // Purpose: Recursively saves all the classes in an object, in reverse order (top down) // Output : int 0 on failure, 1 on success //----------------------------------------------------------------------------- int C_BaseEntity::SaveDataDescBlock( ISave &save, datamap_t *dmap ) { int nResult = save.WriteAll( this, dmap ); return nResult; } void C_BaseEntity::SetClassname( const char *className ) { m_iClassname = MAKE_STRING( className ); } //----------------------------------------------------------------------------- // Purpose: Restores the current object from disk, by iterating through the objects // data description hierarchy // Input : &restore - restore buffer which the class data is read from // Output : int - 0 if the restore failed, 1 on success //----------------------------------------------------------------------------- int C_BaseEntity::Restore( IRestore &restore ) { // loops through the data description list, restoring each data desc block in order int status = RestoreDataDescBlock( restore, GetDataDescMap() ); // NOTE: Do *not* use GetAbsOrigin() here because it will // try to recompute m_rgflCoordinateFrame! MatrixSetColumn( m_vecAbsOrigin, 3, m_rgflCoordinateFrame ); // Restablish ground entity if ( m_hGroundEntity != NULL ) { m_hGroundEntity->AddEntityToGroundList( this ); } return status; } //----------------------------------------------------------------------------- // Purpose: Recursively restores all the classes in an object, in reverse order (top down) // Output : int 0 on failure, 1 on success //----------------------------------------------------------------------------- int C_BaseEntity::RestoreDataDescBlock( IRestore &restore, datamap_t *dmap ) { return restore.ReadAll( this, dmap ); } //----------------------------------------------------------------------------- // capabilities //----------------------------------------------------------------------------- int C_BaseEntity::ObjectCaps( void ) { return 0; } //----------------------------------------------------------------------------- // Purpose: // Output : C_AI_BaseNPC //----------------------------------------------------------------------------- C_AI_BaseNPC *C_BaseEntity::MyNPCPointer( void ) { if ( IsNPC() ) { return assert_cast(this); } return NULL; } //----------------------------------------------------------------------------- // Purpose: For each client (only can be local client in client .dll ) checks the client has disabled CC and if so, removes them from // the recipient list. // Input : filter - //----------------------------------------------------------------------------- void C_BaseEntity::RemoveRecipientsIfNotCloseCaptioning( C_RecipientFilter& filter ) { extern ConVar closecaption; if ( !closecaption.GetBool() ) { filter.Reset(); } } //----------------------------------------------------------------------------- // Purpose: // Input : recording - // Output : inline void //----------------------------------------------------------------------------- void C_BaseEntity::EnableInToolView( bool bEnable ) { #ifndef NO_TOOLFRAMEWORK m_bEnabledInToolView = bEnable; UpdateVisibility(); #endif } void C_BaseEntity::SetToolRecording( bool recording ) { #ifndef NO_TOOLFRAMEWORK m_bToolRecording = recording; if ( m_bToolRecording ) { recordinglist->AddToList( GetClientHandle() ); } else { recordinglist->RemoveFromList( GetClientHandle() ); } #endif } bool C_BaseEntity::HasRecordedThisFrame() const { #ifndef NO_TOOLFRAMEWORK Assert( m_nLastRecordedFrame <= gpGlobals->framecount ); return m_nLastRecordedFrame == gpGlobals->framecount; #else return false; #endif } void C_BaseEntity::GetToolRecordingState( KeyValues *msg ) { Assert( ToolsEnabled() ); if ( !ToolsEnabled() ) return; VPROF_BUDGET( "C_BaseEntity::GetToolRecordingState", VPROF_BUDGETGROUP_TOOLS ); C_BaseEntity *pOwner = m_hOwnerEntity; static BaseEntityRecordingState_t state; state.m_flTime = gpGlobals->curtime; state.m_pModelName = modelinfo->GetModelName( GetModel() ); state.m_nOwner = pOwner ? pOwner->entindex() : 0; state.m_nEffects = m_fEffects; state.m_bVisible = ShouldDraw(); state.m_vecRenderOrigin = GetRenderOrigin(); state.m_vecRenderAngles = GetRenderAngles(); msg->SetPtr( "baseentity", &state ); } void C_BaseEntity::CleanupToolRecordingState( KeyValues *msg ) { } void C_BaseEntity::RecordToolMessage() { Assert( IsToolRecording() ); if ( !IsToolRecording() ) return; if ( HasRecordedThisFrame() ) return; KeyValues *msg = new KeyValues( "entity_state" ); // Post a message back to all IToolSystems GetToolRecordingState( msg ); Assert( (int)GetToolHandle() != 0 ); ToolFramework_PostToolMessage( GetToolHandle(), msg ); CleanupToolRecordingState( msg ); msg->deleteThis(); m_nLastRecordedFrame = gpGlobals->framecount; } void PostToolMessage( HTOOLHANDLE hEntity, KeyValues *msg ); // (static function) void C_BaseEntity::ToolRecordEntities() { VPROF_BUDGET( "C_BaseEntity::ToolRecordEnties", VPROF_BUDGETGROUP_TOOLS ); if ( !ToolsEnabled() || !clienttools->IsInRecordingMode() ) return; // Let non-dormant client created predictables get added, too int c = recordinglist->Count(); for ( int i = 0 ; i < c ; i++ ) { C_BaseEntity *pEnt = recordinglist->Get( i ); if ( !pEnt ) continue; pEnt->RecordToolMessage(); } } void C_BaseEntity::AddToInterpolationList() { if ( m_InterpolationListEntry == 0xFFFF ) m_InterpolationListEntry = g_InterpolationList.AddToTail( this ); } void C_BaseEntity::RemoveFromInterpolationList() { if ( m_InterpolationListEntry != 0xFFFF ) { g_InterpolationList.Remove( m_InterpolationListEntry ); m_InterpolationListEntry = 0xFFFF; } } void C_BaseEntity::AddToTeleportList() { if ( m_TeleportListEntry == 0xFFFF ) m_TeleportListEntry = g_TeleportList.AddToTail( this ); } void C_BaseEntity::RemoveFromTeleportList() { if ( m_TeleportListEntry != 0xFFFF ) { g_TeleportList.Remove( m_TeleportListEntry ); m_TeleportListEntry = 0xFFFF; } } void C_BaseEntity::AddVar( void *data, IInterpolatedVar *watcher, int type, bool bSetup ) { // Only add it if it hasn't been added yet. bool bAddIt = true; for ( int i=0; i < m_VarMap.m_Entries.Count(); i++ ) { if ( m_VarMap.m_Entries[i].watcher == watcher ) { if ( (type & EXCLUDE_AUTO_INTERPOLATE) != (watcher->GetType() & EXCLUDE_AUTO_INTERPOLATE) ) { // Its interpolation mode changed, so get rid of it and re-add it. RemoveVar( m_VarMap.m_Entries[i].data, true ); } else { // They're adding something that's already there. No need to re-add it. bAddIt = false; } break; } } if ( bAddIt ) { // watchers must have a debug name set Assert( watcher->GetDebugName() != NULL ); VarMapEntry_t map; map.data = data; map.watcher = watcher; map.type = type; map.m_bNeedsToInterpolate = true; if ( type & EXCLUDE_AUTO_INTERPOLATE ) { m_VarMap.m_Entries.AddToTail( map ); } else { m_VarMap.m_Entries.AddToHead( map ); ++m_VarMap.m_nInterpolatedEntries; } } if ( bSetup ) { watcher->Setup( data, type ); watcher->SetInterpolationAmount( GetInterpolationAmount( watcher->GetType() ) ); } } void C_BaseEntity::RemoveVar( void *data, bool bAssert ) { for ( int i=0; i < m_VarMap.m_Entries.Count(); i++ ) { if ( m_VarMap.m_Entries[i].data == data ) { if ( !( m_VarMap.m_Entries[i].type & EXCLUDE_AUTO_INTERPOLATE ) ) --m_VarMap.m_nInterpolatedEntries; m_VarMap.m_Entries.Remove( i ); return; } } if ( bAssert ) { Assert( !"RemoveVar" ); } }