//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======// // // Purpose: - defines SIMD "structure of arrays" classes and functions. // //===========================================================================// #ifndef SSEQUATMATH_H #define SSEQUATMATH_H #ifdef _WIN32 #pragma once #endif #include "mathlib/ssemath.h" // Use this #define to allow SSE versions of Quaternion math // to exist on PC. // On PC, certain horizontal vector operations are not supported. // This causes the SSE implementation of quaternion math to mix the // vector and scalar floating point units, which is extremely // performance negative if you don't compile to native SSE2 (which // we don't as of Sept 1, 2007). So, it's best not to allow these // functions to exist at all. It's not good enough to simply replace // the contents of the functions with scalar math, because each call // to LoadAligned and StoreAligned will result in an unnecssary copy // of the quaternion, and several moves to and from the XMM registers. // // Basically, the problem you run into is that for efficient SIMD code, // you need to load the quaternions and vectors into SIMD registers and // keep them there as long as possible while doing only SIMD math, // whereas for efficient scalar code, each time you copy onto or ever // use a fltx4, it hoses your pipeline. So the difference has to be // in the management of temporary variables in the calling function, // not inside the math functions. // // If you compile assuming the presence of SSE2, the MSVC will abandon // the traditional x87 FPU operations altogether and make everything use // the SSE2 registers, which lessens this problem a little. // permitted only on 360, as we've done careful tuning on its Altivec math. // FourQuaternions, however, are always allowed, because vertical ops are // fine on SSE. #ifdef _X360 #define ALLOW_SIMD_QUATERNION_MATH 1 // not on PC! #endif //--------------------------------------------------------------------- // Load/store quaternions //--------------------------------------------------------------------- #ifndef _X360 // Using STDC or SSE FORCEINLINE fltx4 LoadAlignedSIMD( const QuaternionAligned & pSIMD ) { fltx4 retval = LoadAlignedSIMD( pSIMD.Base() ); return retval; } FORCEINLINE fltx4 LoadAlignedSIMD( const QuaternionAligned * RESTRICT pSIMD ) { fltx4 retval = LoadAlignedSIMD( pSIMD->Base() ); return retval; } FORCEINLINE void StoreAlignedSIMD( QuaternionAligned * RESTRICT pSIMD, const fltx4 & a ) { StoreAlignedSIMD( pSIMD->Base(), a ); } #else // for the transitional class -- load a QuaternionAligned FORCEINLINE fltx4 LoadAlignedSIMD( const QuaternionAligned & pSIMD ) { fltx4 retval = XMLoadVector4A( pSIMD.Base() ); return retval; } FORCEINLINE fltx4 LoadAlignedSIMD( const QuaternionAligned * RESTRICT pSIMD ) { fltx4 retval = XMLoadVector4A( pSIMD ); return retval; } FORCEINLINE void StoreAlignedSIMD( QuaternionAligned * RESTRICT pSIMD, const fltx4 & a ) { XMStoreVector4A( pSIMD->Base(), a ); } // From a RadianEuler packed onto a fltx4, to a quaternion fltx4 AngleQuaternionSIMD( FLTX4 vAngles ); #endif #if ALLOW_SIMD_QUATERNION_MATH //--------------------------------------------------------------------- // Make sure quaternions are within 180 degrees of one another, if not, reverse q //--------------------------------------------------------------------- FORCEINLINE fltx4 QuaternionAlignSIMD( const fltx4 &p, const fltx4 &q ) { // decide if one of the quaternions is backwards fltx4 a = SubSIMD( p, q ); fltx4 b = AddSIMD( p, q ); a = Dot4SIMD( a, a ); b = Dot4SIMD( b, b ); fltx4 cmp = CmpGtSIMD( a, b ); fltx4 result = MaskedAssign( cmp, NegSIMD(q), q ); return result; } //--------------------------------------------------------------------- // Normalize Quaternion //--------------------------------------------------------------------- #if USE_STDC_FOR_SIMD FORCEINLINE fltx4 QuaternionNormalizeSIMD( const fltx4 &q ) { fltx4 radius, result; radius = Dot4SIMD( q, q ); if ( SubFloat( radius, 0 ) ) // > FLT_EPSILON && ((radius < 1.0f - 4*FLT_EPSILON) || (radius > 1.0f + 4*FLT_EPSILON)) { float iradius = 1.0f / sqrt( SubFloat( radius, 0 ) ); result = ReplicateX4( iradius ); result = MulSIMD( result, q ); return result; } return q; } #else // SSE + X360 implementation FORCEINLINE fltx4 QuaternionNormalizeSIMD( const fltx4 &q ) { fltx4 radius, result, mask; radius = Dot4SIMD( q, q ); mask = CmpEqSIMD( radius, Four_Zeros ); // all ones iff radius = 0 result = ReciprocalSqrtSIMD( radius ); result = MulSIMD( result, q ); return MaskedAssign( mask, q, result ); // if radius was 0, just return q } #endif //--------------------------------------------------------------------- // 0.0 returns p, 1.0 return q. //--------------------------------------------------------------------- FORCEINLINE fltx4 QuaternionBlendNoAlignSIMD( const fltx4 &p, const fltx4 &q, float t ) { fltx4 sclp, sclq, result; sclq = ReplicateX4( t ); sclp = SubSIMD( Four_Ones, sclq ); result = MulSIMD( sclp, p ); result = MaddSIMD( sclq, q, result ); return QuaternionNormalizeSIMD( result ); } //--------------------------------------------------------------------- // Blend Quaternions //--------------------------------------------------------------------- FORCEINLINE fltx4 QuaternionBlendSIMD( const fltx4 &p, const fltx4 &q, float t ) { // decide if one of the quaternions is backwards fltx4 q2, result; q2 = QuaternionAlignSIMD( p, q ); result = QuaternionBlendNoAlignSIMD( p, q2, t ); return result; } //--------------------------------------------------------------------- // Multiply Quaternions //--------------------------------------------------------------------- #ifndef _X360 // SSE and STDC FORCEINLINE fltx4 QuaternionMultSIMD( const fltx4 &p, const fltx4 &q ) { // decide if one of the quaternions is backwards fltx4 q2, result; q2 = QuaternionAlignSIMD( p, q ); SubFloat( result, 0 ) = SubFloat( p, 0 ) * SubFloat( q2, 3 ) + SubFloat( p, 1 ) * SubFloat( q2, 2 ) - SubFloat( p, 2 ) * SubFloat( q2, 1 ) + SubFloat( p, 3 ) * SubFloat( q2, 0 ); SubFloat( result, 1 ) = -SubFloat( p, 0 ) * SubFloat( q2, 2 ) + SubFloat( p, 1 ) * SubFloat( q2, 3 ) + SubFloat( p, 2 ) * SubFloat( q2, 0 ) + SubFloat( p, 3 ) * SubFloat( q2, 1 ); SubFloat( result, 2 ) = SubFloat( p, 0 ) * SubFloat( q2, 1 ) - SubFloat( p, 1 ) * SubFloat( q2, 0 ) + SubFloat( p, 2 ) * SubFloat( q2, 3 ) + SubFloat( p, 3 ) * SubFloat( q2, 2 ); SubFloat( result, 3 ) = -SubFloat( p, 0 ) * SubFloat( q2, 0 ) - SubFloat( p, 1 ) * SubFloat( q2, 1 ) - SubFloat( p, 2 ) * SubFloat( q2, 2 ) + SubFloat( p, 3 ) * SubFloat( q2, 3 ); return result; } #else // X360 extern const fltx4 g_QuatMultRowSign[4]; FORCEINLINE fltx4 QuaternionMultSIMD( const fltx4 &p, const fltx4 &q ) { fltx4 q2, row, result; q2 = QuaternionAlignSIMD( p, q ); row = XMVectorSwizzle( q2, 3, 2, 1, 0 ); row = MulSIMD( row, g_QuatMultRowSign[0] ); result = Dot4SIMD( row, p ); row = XMVectorSwizzle( q2, 2, 3, 0, 1 ); row = MulSIMD( row, g_QuatMultRowSign[1] ); row = Dot4SIMD( row, p ); result = __vrlimi( result, row, 4, 0 ); row = XMVectorSwizzle( q2, 1, 0, 3, 2 ); row = MulSIMD( row, g_QuatMultRowSign[2] ); row = Dot4SIMD( row, p ); result = __vrlimi( result, row, 2, 0 ); row = MulSIMD( q2, g_QuatMultRowSign[3] ); row = Dot4SIMD( row, p ); result = __vrlimi( result, row, 1, 0 ); return result; } #endif //--------------------------------------------------------------------- // Quaternion scale //--------------------------------------------------------------------- #ifndef _X360 // SSE and STDC FORCEINLINE fltx4 QuaternionScaleSIMD( const fltx4 &p, float t ) { float r; fltx4 q; // FIXME: nick, this isn't overly sensitive to accuracy, and it may be faster to // use the cos part (w) of the quaternion (sin(omega)*N,cos(omega)) to figure the new scale. float sinom = sqrt( SubFloat( p, 0 ) * SubFloat( p, 0 ) + SubFloat( p, 1 ) * SubFloat( p, 1 ) + SubFloat( p, 2 ) * SubFloat( p, 2 ) ); sinom = min( sinom, 1.f ); float sinsom = sin( asin( sinom ) * t ); t = sinsom / (sinom + FLT_EPSILON); SubFloat( q, 0 ) = t * SubFloat( p, 0 ); SubFloat( q, 1 ) = t * SubFloat( p, 1 ); SubFloat( q, 2 ) = t * SubFloat( p, 2 ); // rescale rotation r = 1.0f - sinsom * sinsom; // Assert( r >= 0 ); if (r < 0.0f) r = 0.0f; r = sqrt( r ); // keep sign of rotation SubFloat( q, 3 ) = fsel( SubFloat( p, 3 ), r, -r ); return q; } #else // X360 FORCEINLINE fltx4 QuaternionScaleSIMD( const fltx4 &p, float t ) { fltx4 sinom = Dot3SIMD( p, p ); sinom = SqrtSIMD( sinom ); sinom = MinSIMD( sinom, Four_Ones ); fltx4 sinsom = ArcSinSIMD( sinom ); fltx4 t4 = ReplicateX4( t ); sinsom = MulSIMD( sinsom, t4 ); sinsom = SinSIMD( sinsom ); sinom = AddSIMD( sinom, Four_Epsilons ); sinom = ReciprocalSIMD( sinom ); t4 = MulSIMD( sinsom, sinom ); fltx4 result = MulSIMD( p, t4 ); // rescale rotation sinsom = MulSIMD( sinsom, sinsom ); fltx4 r = SubSIMD( Four_Ones, sinsom ); r = MaxSIMD( r, Four_Zeros ); r = SqrtSIMD( r ); // keep sign of rotation fltx4 cmp = CmpGeSIMD( p, Four_Zeros ); r = MaskedAssign( cmp, r, NegSIMD( r ) ); result = __vrlimi(result, r, 1, 0); return result; } // X360 // assumes t4 contains a float replicated to each slot FORCEINLINE fltx4 QuaternionScaleSIMD( const fltx4 &p, const fltx4 &t4 ) { fltx4 sinom = Dot3SIMD( p, p ); sinom = SqrtSIMD( sinom ); sinom = MinSIMD( sinom, Four_Ones ); fltx4 sinsom = ArcSinSIMD( sinom ); sinsom = MulSIMD( sinsom, t4 ); sinsom = SinSIMD( sinsom ); sinom = AddSIMD( sinom, Four_Epsilons ); sinom = ReciprocalSIMD( sinom ); fltx4 result = MulSIMD( p, MulSIMD( sinsom, sinom ) ); // rescale rotation sinsom = MulSIMD( sinsom, sinsom ); fltx4 r = SubSIMD( Four_Ones, sinsom ); r = MaxSIMD( r, Four_Zeros ); r = SqrtSIMD( r ); // keep sign of rotation fltx4 cmp = CmpGeSIMD( p, Four_Zeros ); r = MaskedAssign( cmp, r, NegSIMD( r ) ); result = __vrlimi(result, r, 1, 0); return result; } #endif //----------------------------------------------------------------------------- // Quaternion sphereical linear interpolation //----------------------------------------------------------------------------- #ifndef _X360 // SSE and STDC FORCEINLINE fltx4 QuaternionSlerpNoAlignSIMD( const fltx4 &p, const fltx4 &q, float t ) { float omega, cosom, sinom, sclp, sclq; fltx4 result; // 0.0 returns p, 1.0 return q. cosom = SubFloat( p, 0 ) * SubFloat( q, 0 ) + SubFloat( p, 1 ) * SubFloat( q, 1 ) + SubFloat( p, 2 ) * SubFloat( q, 2 ) + SubFloat( p, 3 ) * SubFloat( q, 3 ); if ( (1.0f + cosom ) > 0.000001f ) { if ( (1.0f - cosom ) > 0.000001f ) { omega = acos( cosom ); sinom = sin( omega ); sclp = sin( (1.0f - t)*omega) / sinom; sclq = sin( t*omega ) / sinom; } else { // TODO: add short circuit for cosom == 1.0f? sclp = 1.0f - t; sclq = t; } SubFloat( result, 0 ) = sclp * SubFloat( p, 0 ) + sclq * SubFloat( q, 0 ); SubFloat( result, 1 ) = sclp * SubFloat( p, 1 ) + sclq * SubFloat( q, 1 ); SubFloat( result, 2 ) = sclp * SubFloat( p, 2 ) + sclq * SubFloat( q, 2 ); SubFloat( result, 3 ) = sclp * SubFloat( p, 3 ) + sclq * SubFloat( q, 3 ); } else { SubFloat( result, 0 ) = -SubFloat( q, 1 ); SubFloat( result, 1 ) = SubFloat( q, 0 ); SubFloat( result, 2 ) = -SubFloat( q, 3 ); SubFloat( result, 3 ) = SubFloat( q, 2 ); sclp = sin( (1.0f - t) * (0.5f * M_PI)); sclq = sin( t * (0.5f * M_PI)); SubFloat( result, 0 ) = sclp * SubFloat( p, 0 ) + sclq * SubFloat( result, 0 ); SubFloat( result, 1 ) = sclp * SubFloat( p, 1 ) + sclq * SubFloat( result, 1 ); SubFloat( result, 2 ) = sclp * SubFloat( p, 2 ) + sclq * SubFloat( result, 2 ); } return result; } #else // X360 FORCEINLINE fltx4 QuaternionSlerpNoAlignSIMD( const fltx4 &p, const fltx4 &q, float t ) { return XMQuaternionSlerp( p, q, t ); } #endif FORCEINLINE fltx4 QuaternionSlerpSIMD( const fltx4 &p, const fltx4 &q, float t ) { fltx4 q2, result; q2 = QuaternionAlignSIMD( p, q ); result = QuaternionSlerpNoAlignSIMD( p, q2, t ); return result; } #endif // ALLOW_SIMD_QUATERNION_MATH /// class FourVectors stores 4 independent vectors for use in SIMD processing. These vectors are /// stored in the format x x x x y y y y z z z z so that they can be efficiently SIMD-accelerated. class ALIGN16 FourQuaternions { public: fltx4 x,y,z,w; FourQuaternions(void) { } FourQuaternions( const fltx4 &_x, const fltx4 &_y, const fltx4 &_z, const fltx4 &_w ) : x(_x), y(_y), z(_z), w(_w) {} FourQuaternions( FourQuaternions const &src ) { x=src.x; y=src.y; z=src.z; w=src.w; } FORCEINLINE void operator=( FourQuaternions const &src ) { x=src.x; y=src.y; z=src.z; w=src.w; } /// this = this * q; FORCEINLINE FourQuaternions Mul( FourQuaternions const &q ) const; /// negate the vector part FORCEINLINE FourQuaternions Conjugate() const; /// for a quaternion representing a rotation of angle theta, return /// one of angle s*theta /// scale is four floats -- one for each quat FORCEINLINE FourQuaternions ScaleAngle( const fltx4 &scale ) const; /// ret = this * ( s * q ) /// In other words, for a quaternion representing a rotation of angle theta, return /// one of angle s*theta /// s is four floats in a fltx4 -- one for each quaternion FORCEINLINE FourQuaternions MulAc( const fltx4 &s, const FourQuaternions &q ) const; /// ret = ( s * this ) * q FORCEINLINE FourQuaternions ScaleMul( const fltx4 &s, const FourQuaternions &q ) const; /// Slerp four quaternions at once, FROM me TO the specified out. FORCEINLINE FourQuaternions Slerp( const FourQuaternions &to, const fltx4 &t ); FORCEINLINE FourQuaternions SlerpNoAlign( const FourQuaternions &originalto, const fltx4 &t ); /// LoadAndSwizzleAligned - load 4 QuaternionAligneds into a FourQuaternions, performing transpose op. /// all 4 vectors must be 128 bit boundary FORCEINLINE void LoadAndSwizzleAligned(const float *RESTRICT a, const float *RESTRICT b, const float *RESTRICT c, const float *RESTRICT d) { #if _X360 fltx4 tx = LoadAlignedSIMD(a); fltx4 ty = LoadAlignedSIMD(b); fltx4 tz = LoadAlignedSIMD(c); fltx4 tw = LoadAlignedSIMD(d); fltx4 r0 = __vmrghw(tx, tz); fltx4 r1 = __vmrghw(ty, tw); fltx4 r2 = __vmrglw(tx, tz); fltx4 r3 = __vmrglw(ty, tw); x = __vmrghw(r0, r1); y = __vmrglw(r0, r1); z = __vmrghw(r2, r3); w = __vmrglw(r2, r3); #else x = LoadAlignedSIMD(a); y = LoadAlignedSIMD(b); z = LoadAlignedSIMD(c); w = LoadAlignedSIMD(d); // now, matrix is: // x y z w // x y z w // x y z w // x y z w TransposeSIMD(x, y, z, w); #endif } FORCEINLINE void LoadAndSwizzleAligned(const QuaternionAligned * RESTRICT a, const QuaternionAligned * RESTRICT b, const QuaternionAligned * RESTRICT c, const QuaternionAligned * RESTRICT d) { LoadAndSwizzleAligned(a->Base(), b->Base(), c->Base(), d->Base() ); } /// LoadAndSwizzleAligned - load 4 consecutive QuaternionAligneds into a FourQuaternions, /// performing transpose op. /// all 4 vectors must be 128 bit boundary FORCEINLINE void LoadAndSwizzleAligned(const QuaternionAligned *qs) { #if _X360 fltx4 tx = LoadAlignedSIMD(qs++); fltx4 ty = LoadAlignedSIMD(qs++); fltx4 tz = LoadAlignedSIMD(qs++); fltx4 tw = LoadAlignedSIMD(qs); fltx4 r0 = __vmrghw(tx, tz); fltx4 r1 = __vmrghw(ty, tw); fltx4 r2 = __vmrglw(tx, tz); fltx4 r3 = __vmrglw(ty, tw); x = __vmrghw(r0, r1); y = __vmrglw(r0, r1); z = __vmrghw(r2, r3); w = __vmrglw(r2, r3); #else x = LoadAlignedSIMD(qs++); y = LoadAlignedSIMD(qs++); z = LoadAlignedSIMD(qs++); w = LoadAlignedSIMD(qs++); // now, matrix is: // x y z w // x y z w // x y z w // x y z w TransposeSIMD(x, y, z, w); #endif } // Store the FourQuaternions out to four nonconsecutive ordinary quaternions in memory. FORCEINLINE void SwizzleAndStoreAligned(QuaternionAligned *a, QuaternionAligned *b, QuaternionAligned *c, QuaternionAligned *d) { #if _X360 fltx4 r0 = __vmrghw(x, z); fltx4 r1 = __vmrghw(y, w); fltx4 r2 = __vmrglw(x, z); fltx4 r3 = __vmrglw(y, w); fltx4 rx = __vmrghw(r0, r1); fltx4 ry = __vmrglw(r0, r1); fltx4 rz = __vmrghw(r2, r3); fltx4 rw = __vmrglw(r2, r3); StoreAlignedSIMD(a, rx); StoreAlignedSIMD(b, ry); StoreAlignedSIMD(c, rz); StoreAlignedSIMD(d, rw); #else fltx4 dupes[4] = { x, y, z, w }; TransposeSIMD(dupes[0], dupes[1], dupes[2], dupes[3]); StoreAlignedSIMD(a, dupes[0]); StoreAlignedSIMD(b, dupes[1]); StoreAlignedSIMD(c, dupes[2]); StoreAlignedSIMD(d, dupes[3]); #endif } // Store the FourQuaternions out to four consecutive ordinary quaternions in memory. FORCEINLINE void SwizzleAndStoreAligned(QuaternionAligned *qs) { #if _X360 fltx4 r0 = __vmrghw(x, z); fltx4 r1 = __vmrghw(y, w); fltx4 r2 = __vmrglw(x, z); fltx4 r3 = __vmrglw(y, w); fltx4 rx = __vmrghw(r0, r1); fltx4 ry = __vmrglw(r0, r1); fltx4 rz = __vmrghw(r2, r3); fltx4 rw = __vmrglw(r2, r3); StoreAlignedSIMD(qs, rx); StoreAlignedSIMD(++qs, ry); StoreAlignedSIMD(++qs, rz); StoreAlignedSIMD(++qs, rw); #else SwizzleAndStoreAligned(qs, qs+1, qs+2, qs+3); #endif } // Store the FourQuaternions out to four consecutive ordinary quaternions in memory. // The mask specifies which of the quaternions are actually written out -- each // word in the fltx4 should be all binary ones or zeros. Ones means the corresponding // quat will be written. FORCEINLINE void SwizzleAndStoreAlignedMasked(QuaternionAligned * RESTRICT qs, const fltx4 &controlMask) { fltx4 originals[4]; originals[0] = LoadAlignedSIMD(qs); originals[1] = LoadAlignedSIMD(qs+1); originals[2] = LoadAlignedSIMD(qs+2); originals[3] = LoadAlignedSIMD(qs+3); fltx4 masks[4] = { SplatXSIMD(controlMask), SplatYSIMD(controlMask), SplatZSIMD(controlMask), SplatWSIMD(controlMask) }; #if _X360 fltx4 r0 = __vmrghw(x, z); fltx4 r1 = __vmrghw(y, w); fltx4 r2 = __vmrglw(x, z); fltx4 r3 = __vmrglw(y, w); fltx4 rx = __vmrghw(r0, r1); fltx4 ry = __vmrglw(r0, r1); fltx4 rz = __vmrghw(r2, r3); fltx4 rw = __vmrglw(r2, r3); #else fltx4 rx = x; fltx4 ry = y; fltx4 rz = z; fltx4 rw = w; TransposeSIMD( rx, ry, rz, rw ); #endif StoreAlignedSIMD( qs+0, MaskedAssign(masks[0], rx, originals[0])); StoreAlignedSIMD( qs+1, MaskedAssign(masks[1], ry, originals[1])); StoreAlignedSIMD( qs+2, MaskedAssign(masks[2], rz, originals[2])); StoreAlignedSIMD( qs+3, MaskedAssign(masks[3], rw, originals[3])); } }; FORCEINLINE FourQuaternions FourQuaternions::Conjugate( ) const { return FourQuaternions( NegSIMD(x), NegSIMD(y), NegSIMD(z), w ); } FORCEINLINE const fltx4 Dot(const FourQuaternions &a, const FourQuaternions &b) { return MaddSIMD(a.x, b.x, MaddSIMD(a.y, b.y, MaddSIMD(a.z,b.z, MulSIMD(a.w,b.w)) ) ); } FORCEINLINE const FourQuaternions Madd(const FourQuaternions &a, const fltx4 &scale, const FourQuaternions &c) { FourQuaternions ret; ret.x = MaddSIMD(a.x,scale,c.x); ret.y = MaddSIMD(a.y,scale,c.y); ret.z = MaddSIMD(a.z,scale,c.z); ret.w = MaddSIMD(a.w,scale,c.w); return ret; } FORCEINLINE const FourQuaternions Mul(const FourQuaternions &a, const fltx4 &scale) { FourQuaternions ret; ret.x = MulSIMD(a.x,scale); ret.y = MulSIMD(a.y,scale); ret.z = MulSIMD(a.z,scale); ret.w = MulSIMD(a.w,scale); return ret; } FORCEINLINE const FourQuaternions Add(const FourQuaternions &a,const FourQuaternions &b) { FourQuaternions ret; ret.x = AddSIMD(a.x,b.x); ret.y = AddSIMD(a.y,b.y); ret.z = AddSIMD(a.z,b.z); ret.w = AddSIMD(a.w,b.w); return ret; } FORCEINLINE const FourQuaternions Sub(const FourQuaternions &a,const FourQuaternions &b) { FourQuaternions ret; ret.x = SubSIMD(a.x,b.x); ret.y = SubSIMD(a.y,b.y); ret.z = SubSIMD(a.z,b.z); ret.w = SubSIMD(a.w,b.w); return ret; } FORCEINLINE const FourQuaternions Neg(const FourQuaternions &q) { FourQuaternions ret; ret.x = NegSIMD(q.x); ret.y = NegSIMD(q.y); ret.z = NegSIMD(q.z); ret.w = NegSIMD(q.w); return ret; } FORCEINLINE const FourQuaternions MaskedAssign(const fltx4 &mask, const FourQuaternions &a, const FourQuaternions &b) { FourQuaternions ret; ret.x = MaskedAssign(mask,a.x,b.x); ret.y = MaskedAssign(mask,a.y,b.y); ret.z = MaskedAssign(mask,a.z,b.z); ret.w = MaskedAssign(mask,a.w,b.w); return ret; } FORCEINLINE FourQuaternions QuaternionAlign( const FourQuaternions &p, const FourQuaternions &q ) { // decide if one of the quaternions is backwards fltx4 cmp = CmpLtSIMD( Dot(p,q), Four_Zeros ); return MaskedAssign( cmp, Neg(q), q ); } FORCEINLINE const FourQuaternions QuaternionNormalize( const FourQuaternions &q ) { fltx4 radius = Dot( q, q ); fltx4 mask = CmpEqSIMD( radius, Four_Zeros ); // all ones iff radius = 0 fltx4 invRadius = ReciprocalSqrtSIMD( radius ); FourQuaternions ret = MaskedAssign(mask, q, Mul(q, invRadius)); return ret; } /// this = this * q; FORCEINLINE FourQuaternions FourQuaternions::Mul( FourQuaternions const &q ) const { // W = w1w2 - x1x2 - y1y2 - z1z2 FourQuaternions ret; fltx4 signMask = LoadAlignedSIMD( (float *) g_SIMD_signmask ); // as we do the multiplication, also do a dot product, so we know whether // one of the quats is backwards and if we therefore have to negate at the end fltx4 dotProduct = MulSIMD( w, q.w ); ret.w = MulSIMD( w, q.w ); // W = w1w2 ret.x = MulSIMD( w, q.x ); // X = w1x2 ret.y = MulSIMD( w, q.y ); // Y = w1y2 ret.z = MulSIMD( w, q.z ); // Z = w1z2 dotProduct = MaddSIMD( x, q.x, dotProduct ); ret.w = MsubSIMD( x, q.x, ret.w ); // W = w1w2 - x1x2 ret.x = MaddSIMD( x, q.w, ret.x ); // X = w1x2 + x1w2 ret.y = MsubSIMD( x, q.z, ret.y ); // Y = w1y2 - x1z2 ret.z = MaddSIMD( x, q.y, ret.z ); // Z = w1z2 + x1y2 dotProduct = MaddSIMD( y, q.y, dotProduct ); ret.w = MsubSIMD( y, q.y, ret.w ); // W = w1w2 - x1x2 - y1y2 ret.x = MaddSIMD( y, q.z, ret.x ); // X = w1x2 + x1w2 + y1z2 ret.y = MaddSIMD( y, q.w, ret.y ); // Y = w1y2 - x1z2 + y1w2 ret.z = MsubSIMD( y, q.x, ret.z ); // Z = w1z2 + x1y2 - y1x2 dotProduct = MaddSIMD( z, q.z, dotProduct ); ret.w = MsubSIMD( z, q.z, ret.w ); // W = w1w2 - x1x2 - y1y2 - z1z2 ret.x = MsubSIMD( z, q.y, ret.x ); // X = w1x2 + x1w2 + y1z2 - z1y2 ret.y = MaddSIMD( z, q.x, ret.y ); // Y = w1y2 - x1z2 + y1w2 + z1x2 ret.z = MaddSIMD( z, q.w, ret.z ); // Z = w1z2 + x1y2 - y1x2 + z1w2 fltx4 Zero = Four_Zeros; fltx4 control = CmpLtSIMD( dotProduct, Four_Zeros ); signMask = MaskedAssign(control, signMask, Zero); // negate quats where q1.q2 < 0 ret.w = XorSIMD( signMask, ret.w ); ret.x = XorSIMD( signMask, ret.x ); ret.y = XorSIMD( signMask, ret.y ); ret.z = XorSIMD( signMask, ret.z ); return ret; } /* void QuaternionScale( const Quaternion &p, float t, Quaternion &q ) { Assert( s_bMathlibInitialized ); float r; // FIXME: nick, this isn't overly sensitive to accuracy, and it may be faster to // use the cos part (w) of the quaternion (sin(omega)*N,cos(omega)) to figure the new scale. float sinom = sqrt( DotProduct( &p.x, &p.x ) ); sinom = min( sinom, 1.f ); float sinsom = sin( asin( sinom ) * t ); t = sinsom / (sinom + FLT_EPSILON); VectorScale( &p.x, t, &q.x ); // rescale rotation r = 1.0f - sinsom * sinsom; // Assert( r >= 0 ); if (r < 0.0f) r = 0.0f; r = sqrt( r ); // keep sign of rotation if (p.w < 0) q.w = -r; else q.w = r; Assert( q.IsValid() ); return; } */ FORCEINLINE FourQuaternions FourQuaternions::ScaleAngle( const fltx4 &scale ) const { FourQuaternions ret; static const fltx4 OneMinusEpsilon = {1.0f - 0.000001f, 1.0f - 0.000001f, 1.0f - 0.000001f, 1.0f - 0.000001f }; //static const fltx4 tiny = { 0.00001f, 0.00001f, 0.00001f, 0.00001f }; const fltx4 Zero = Four_Zeros; fltx4 signMask = LoadAlignedSIMD( (float *) g_SIMD_signmask ); // work out if there are any tiny scales or angles, which are unstable fltx4 tinyAngles = CmpGtSIMD(w,OneMinusEpsilon); fltx4 negativeRotations = CmpLtSIMD(w, Zero); // if any w's are <0, we will need to negate later down // figure out the theta fltx4 angles = ArcCosSIMD(w); // test also if w > -1 fltx4 negativeWs = XorSIMD(signMask, w); tinyAngles = OrSIMD( CmpGtSIMD(negativeWs, OneMinusEpsilon ), tinyAngles ); // meanwhile start working on computing the dot product of the // vector component, and trust in the scheduler to interleave them fltx4 vLenSq = MulSIMD( x, x ); vLenSq = MaddSIMD( y, y, vLenSq ); vLenSq = MaddSIMD( z, z, vLenSq ); // scale the angles angles = MulSIMD( angles, scale ); // clear out the sign mask where w>=0 signMask = MaskedAssign( negativeRotations, signMask, Zero); // work out the new w component and vector length fltx4 vLenRecip = ReciprocalSqrtSIMD(vLenSq); // interleave with Cos to hide latencies fltx4 sine; SinCosSIMD( sine, ret.w, angles ); ret.x = MulSIMD( x, vLenRecip ); // renormalize so the vector length + w = 1 ret.y = MulSIMD( y, vLenRecip ); // renormalize so the vector length + w = 1 ret.z = MulSIMD( z, vLenRecip ); // renormalize so the vector length + w = 1 ret.x = MulSIMD( ret.x, sine ); ret.y = MulSIMD( ret.y, sine ); ret.z = MulSIMD( ret.z, sine ); // negate where necessary ret.x = XorSIMD(ret.x, signMask); ret.y = XorSIMD(ret.y, signMask); ret.z = XorSIMD(ret.z, signMask); ret.w = XorSIMD(ret.w, signMask); // finally, toss results from where cos(theta) is close to 1 -- these are non rotations. ret.x = MaskedAssign(tinyAngles, x, ret.x); ret.y = MaskedAssign(tinyAngles, y, ret.y); ret.z = MaskedAssign(tinyAngles, z, ret.z); ret.w = MaskedAssign(tinyAngles, w, ret.w); return ret; } //----------------------------------------------------------------------------- // Purpose: return = this * ( s * q ) // In other words, for a quaternion representing a rotation of angle theta, return // one of angle s*theta // s is four floats in a fltx4 -- one for each quaternion //----------------------------------------------------------------------------- FORCEINLINE FourQuaternions FourQuaternions::MulAc( const fltx4 &s, const FourQuaternions &q ) const { /* void QuaternionMA( const Quaternion &p, float s, const Quaternion &q, Quaternion &qt ) { Quaternion p1, q1; QuaternionScale( q, s, q1 ); QuaternionMult( p, q1, p1 ); QuaternionNormalize( p1 ); qt[0] = p1[0]; qt[1] = p1[1]; qt[2] = p1[2]; qt[3] = p1[3]; } */ return Mul(q.ScaleAngle(s)); } FORCEINLINE FourQuaternions FourQuaternions::ScaleMul( const fltx4 &s, const FourQuaternions &q ) const { return ScaleAngle(s).Mul(q); } FORCEINLINE FourQuaternions FourQuaternions::Slerp( const FourQuaternions &originalto, const fltx4 &t ) { FourQuaternions ret; static const fltx4 OneMinusEpsilon = {1.0f - 0.000001f, 1.0f - 0.000001f, 1.0f - 0.000001f, 1.0f - 0.000001f }; // align if necessary. // actually, before we even do that, start by computing the dot product of // the quaternions. it has lots of dependent ops and we can sneak it into // the pipeline bubbles as we figure out alignment. Of course we don't know // yet if we need to realign, so compute them both -- there's plenty of // space in the bubbles. They're roomy, those bubbles. fltx4 cosineOmega; #if 0 // Maybe I don't need to do alignment seperately, using the xb360 technique... FourQuaternions to; { fltx4 diffs[4], sums[4], originalToNeg[4]; fltx4 dotIfAligned, dotIfNotAligned; // compute negations of the TO quaternion. originalToNeg[0] = NegSIMD(originalto.x); originalToNeg[1] = NegSIMD(originalto.y); originalToNeg[2] = NegSIMD(originalto.z); originalToNeg[3] = NegSIMD(originalto.w); dotIfAligned = MulSIMD(x, originalto.x); dotIfNotAligned = MulSIMD(x, originalToNeg[0]); diffs[0] = SubSIMD(x, originalto.x); diffs[1] = SubSIMD(y, originalto.y); diffs[2] = SubSIMD(z, originalto.z); diffs[3] = SubSIMD(w, originalto.w); sums[0] = AddSIMD(x, originalto.x); sums[1] = AddSIMD(y, originalto.y); sums[2] = AddSIMD(z, originalto.z); sums[3] = AddSIMD(w, originalto.w); dotIfAligned = MaddSIMD(y, originalto.y, dotIfAligned); dotIfNotAligned = MaddSIMD(y, originalToNeg[1], dotIfNotAligned); fltx4 diffsDot, sumsDot; diffsDot = MulSIMD(diffs[0], diffs[0]); // x^2 sumsDot = MulSIMD(sums[0], sums[0] ); // x^2 // do some work on the dot products while letting the multiplies cook dotIfAligned = MaddSIMD(z, originalto.z, dotIfAligned); dotIfNotAligned = MaddSIMD(z, originalToNeg[2], dotIfNotAligned); diffsDot = MaddSIMD(diffs[1], diffs[1], diffsDot); // x^2 + y^2 sumsDot = MaddSIMD(sums[1], sums[1], sumsDot ); diffsDot = MaddSIMD(diffs[2], diffs[2], diffsDot); // x^2 + y^2 + z^2 sumsDot = MaddSIMD(sums[2], sums[2], sumsDot ); diffsDot = MaddSIMD(diffs[3], diffs[3], diffsDot); // x^2 + y^2 + z^2 + w^2 sumsDot = MaddSIMD(sums[3], sums[3], sumsDot ); // do some work on the dot products while letting the multiplies cook dotIfAligned = MaddSIMD(w, originalto.w, dotIfAligned); dotIfNotAligned = MaddSIMD(w, originalToNeg[3], dotIfNotAligned); // are the differences greater than the sums? // if so, we need to negate that quaternion fltx4 mask = CmpGtSIMD(diffsDot, sumsDot); // 1 for diffs>0 and 0 elsewhere to.x = MaskedAssign(mask, originalToNeg[0], originalto.x); to.y = MaskedAssign(mask, originalToNeg[1], originalto.y); to.z = MaskedAssign(mask, originalToNeg[2], originalto.z); to.w = MaskedAssign(mask, originalToNeg[3], originalto.w); cosineOmega = MaskedAssign(mask, dotIfNotAligned, dotIfAligned); } // right, now to is aligned to be the short way round, and we computed // the dot product while we were figuring all that out. #else const FourQuaternions &to = originalto; cosineOmega = MulSIMD(x, to.x); cosineOmega = MaddSIMD(y, to.y, cosineOmega); cosineOmega = MaddSIMD(z, to.z, cosineOmega); cosineOmega = MaddSIMD(w, to.w, cosineOmega); #endif fltx4 Zero = Four_Zeros; fltx4 cosOmegaLessThanZero = CmpLtSIMD(cosineOmega, Zero); // fltx4 shouldNegate = MaskedAssign(cosOmegaLessThanZero, Four_NegativeOnes , Four_Ones ); fltx4 signMask = LoadAlignedSIMD( (float *) g_SIMD_signmask ); // contains a one in the sign bit -- xor against a number to negate it fltx4 sinOmega = Four_Ones; // negate cosineOmega where necessary cosineOmega = MaskedAssign( cosOmegaLessThanZero, XorSIMD(cosineOmega, signMask), cosineOmega ); fltx4 oneMinusT = SubSIMD(Four_Ones,t); fltx4 bCosOmegaLessThanOne = CmpLtSIMD(cosineOmega, OneMinusEpsilon); // we'll use this to mask out null slerps // figure out the sin component of the diff quaternion. // since sin^2(t) + cos^2(t) = 1... sinOmega = MsubSIMD( cosineOmega, cosineOmega, sinOmega ); // = 1 - cos^2(t) = sin^2(t) fltx4 invSinOmega = ReciprocalSqrtSIMD( sinOmega ); // 1/sin(t) sinOmega = MulSIMD( sinOmega, invSinOmega ); // = sin^2(t) / sin(t) = sin(t) // use the arctangent technique to work out omega from tan^-1(sin/cos) fltx4 omega = ArcTan2SIMD(sinOmega, cosineOmega); // alpha = sin(omega * (1-T))/sin(omega) // beta = sin(omega * T)/sin(omega) fltx4 alpha = MulSIMD(omega, oneMinusT); // w(1-T) fltx4 beta = MulSIMD(omega, t); // w(T) signMask = MaskedAssign(cosOmegaLessThanZero, signMask, Zero); alpha = SinSIMD(alpha); // sin(w(1-T)) beta = SinSIMD(beta); // sin(wT) alpha = MulSIMD(alpha, invSinOmega); beta = MulSIMD(beta, invSinOmega); // depending on whether the dot product was less than zero, negate beta, or not beta = XorSIMD(beta, signMask); // mask out singularities (where omega = 1) alpha = MaskedAssign( bCosOmegaLessThanOne, alpha, oneMinusT ); beta = MaskedAssign( bCosOmegaLessThanOne, beta , t ); ret.x = MulSIMD(x, alpha); ret.y = MulSIMD(y, alpha); ret.z = MulSIMD(z, alpha); ret.w = MulSIMD(w, alpha); ret.x = MaddSIMD(to.x, beta, ret.x); ret.y = MaddSIMD(to.y, beta, ret.y); ret.z = MaddSIMD(to.z, beta, ret.z); ret.w = MaddSIMD(to.w, beta, ret.w); return ret; } FORCEINLINE FourQuaternions FourQuaternions::SlerpNoAlign( const FourQuaternions &originalto, const fltx4 &t ) { FourQuaternions ret; static const fltx4 OneMinusEpsilon = {1.0f - 0.000001f, 1.0f - 0.000001f, 1.0f - 0.000001f, 1.0f - 0.000001f }; // align if necessary. // actually, before we even do that, start by computing the dot product of // the quaternions. it has lots of dependent ops and we can sneak it into // the pipeline bubbles as we figure out alignment. Of course we don't know // yet if we need to realign, so compute them both -- there's plenty of // space in the bubbles. They're roomy, those bubbles. fltx4 cosineOmega; const FourQuaternions &to = originalto; cosineOmega = MulSIMD(x, to.x); cosineOmega = MaddSIMD(y, to.y, cosineOmega); cosineOmega = MaddSIMD(z, to.z, cosineOmega); cosineOmega = MaddSIMD(w, to.w, cosineOmega); fltx4 sinOmega = Four_Ones; fltx4 oneMinusT = SubSIMD(Four_Ones,t); fltx4 bCosOmegaLessThanOne = CmpLtSIMD(cosineOmega, OneMinusEpsilon); // we'll use this to mask out null slerps // figure out the sin component of the diff quaternion. // since sin^2(t) + cos^2(t) = 1... sinOmega = MsubSIMD( cosineOmega, cosineOmega, sinOmega ); // = 1 - cos^2(t) = sin^2(t) fltx4 invSinOmega = ReciprocalSqrtSIMD( sinOmega ); // 1/sin(t) sinOmega = MulSIMD( sinOmega, invSinOmega ); // = sin^2(t) / sin(t) = sin(t) // use the arctangent technique to work out omega from tan^-1(sin/cos) fltx4 omega = ArcTan2SIMD(sinOmega, cosineOmega); // alpha = sin(omega * (1-T))/sin(omega) // beta = sin(omega * T)/sin(omega) fltx4 alpha = MulSIMD(omega, oneMinusT); // w(1-T) fltx4 beta = MulSIMD(omega, t); // w(T) alpha = SinSIMD(alpha); // sin(w(1-T)) beta = SinSIMD(beta); // sin(wT) alpha = MulSIMD(alpha, invSinOmega); beta = MulSIMD(beta, invSinOmega); // mask out singularities (where omega = 1) alpha = MaskedAssign( bCosOmegaLessThanOne, alpha, oneMinusT ); beta = MaskedAssign( bCosOmegaLessThanOne, beta , t ); ret.x = MulSIMD(x, alpha); ret.y = MulSIMD(y, alpha); ret.z = MulSIMD(z, alpha); ret.w = MulSIMD(w, alpha); ret.x = MaddSIMD(to.x, beta, ret.x); ret.y = MaddSIMD(to.y, beta, ret.y); ret.z = MaddSIMD(to.z, beta, ret.z); ret.w = MaddSIMD(to.w, beta, ret.w); return ret; } #endif // SSEQUATMATH_H