//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //===========================================================================// #ifndef BITVEC_H #define BITVEC_H #ifdef _WIN32 #pragma once #endif #include #include "tier0/dbg.h" #include "tier0/basetypes.h" class CBitVecAccessor { public: CBitVecAccessor(uint32 *pDWords, int iBit); void operator=(int val); operator uint32(); private: uint32 *m_pDWords; int m_iBit; }; //----------------------------------------------------------------------------- // Support functions //----------------------------------------------------------------------------- #define LOG2_BITS_PER_INT 5 #define BITS_PER_INT 32 #if _WIN32 && !defined(_X360) #include #pragma intrinsic(_BitScanForward) #endif inline int FirstBitInWord( unsigned int elem, int offset ) { #if _WIN32 if ( !elem ) return -1; #if defined( _X360 ) // this implements CountTrailingZeros() / BitScanForward() unsigned int mask = elem-1; unsigned int comp = ~elem; elem = mask & comp; return (32 - _CountLeadingZeros(elem)) + offset; #else unsigned long out; _BitScanForward(&out, elem); return out + offset; #endif #else static unsigned firstBitLUT[256] = { 0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0,7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0, 3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, 4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0 }; unsigned elemByte; elemByte = (elem & 0xFF); if ( elemByte ) return offset + firstBitLUT[elemByte]; elem >>= 8; offset += 8; elemByte = (elem & 0xFF); if ( elemByte ) return offset + firstBitLUT[elemByte]; elem >>= 8; offset += 8; elemByte = (elem & 0xFF); if ( elemByte ) return offset + firstBitLUT[elemByte]; elem >>= 8; offset += 8; elemByte = (elem & 0xFF); if ( elemByte ) return offset + firstBitLUT[elemByte]; return -1; #endif } //------------------------------------- inline unsigned GetEndMask( int numBits ) { static unsigned bitStringEndMasks[] = { 0xffffffff, 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff, 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff, 0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff, 0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff, }; return bitStringEndMasks[numBits % BITS_PER_INT]; } inline int GetBitForBitnum( int bitNum ) { static int bitsForBitnum[] = { ( 1 << 0 ), ( 1 << 1 ), ( 1 << 2 ), ( 1 << 3 ), ( 1 << 4 ), ( 1 << 5 ), ( 1 << 6 ), ( 1 << 7 ), ( 1 << 8 ), ( 1 << 9 ), ( 1 << 10 ), ( 1 << 11 ), ( 1 << 12 ), ( 1 << 13 ), ( 1 << 14 ), ( 1 << 15 ), ( 1 << 16 ), ( 1 << 17 ), ( 1 << 18 ), ( 1 << 19 ), ( 1 << 20 ), ( 1 << 21 ), ( 1 << 22 ), ( 1 << 23 ), ( 1 << 24 ), ( 1 << 25 ), ( 1 << 26 ), ( 1 << 27 ), ( 1 << 28 ), ( 1 << 29 ), ( 1 << 30 ), ( 1 << 31 ), }; return bitsForBitnum[ (bitNum) & (BITS_PER_INT-1) ]; } inline int GetBitForBitnumByte( int bitNum ) { static int bitsForBitnum[] = { ( 1 << 0 ), ( 1 << 1 ), ( 1 << 2 ), ( 1 << 3 ), ( 1 << 4 ), ( 1 << 5 ), ( 1 << 6 ), ( 1 << 7 ), }; return bitsForBitnum[ bitNum & 7 ]; } inline int CalcNumIntsForBits( int numBits ) { return (numBits + (BITS_PER_INT-1)) / BITS_PER_INT; } #ifdef _X360 #define BitVec_Bit( bitNum ) GetBitForBitnum( bitNum ) #define BitVec_BitInByte( bitNum ) GetBitForBitnumByte( bitNum ) #else #define BitVec_Bit( bitNum ) ( 1 << ( (bitNum) & (BITS_PER_INT-1) ) ) #define BitVec_BitInByte( bitNum ) ( 1 << ( (bitNum) & 7 ) ) #endif #define BitVec_Int( bitNum ) ( (bitNum) >> LOG2_BITS_PER_INT ) //----------------------------------------------------------------------------- // template CBitVecT // // Defines the operations relevant to any bit array. Simply requires a base // class that implements GetNumBits(), Base(), GetNumDWords() & ValidateOperand() // // CVarBitVec and CBitVec are the actual classes generally used // by clients // template class CBitVecT : public BASE_OPS { public: CBitVecT(); CBitVecT(int numBits); // Must be initialized with the number of bits void Init(int val = 0); // Access the bits like an array. CBitVecAccessor operator[](int i); // Do NOT override bitwise operators (see note in header) void And(const CBitVecT &andStr, CBitVecT *out) const; void Or(const CBitVecT &orStr, CBitVecT *out) const; void Xor(const CBitVecT &orStr, CBitVecT *out) const; void Not(CBitVecT *out) const; void CopyTo(CBitVecT *out) const; void Copy( const CBitVecT &other, int nBits=-1 ); bool Compare( const CBitVecT &other, int nBits=-1 ) const; bool IsAllClear(void) const; // Are all bits zero? bool IsAllSet(void) const; // Are all bits one? uint32 Get( uint32 bitNum ) const; bool IsBitSet( int bitNum ) const; void Set( int bitNum ); void Set( int bitNum, bool bNewVal ); void Clear(int bitNum); bool TestAndSet(int bitNum); void Set( uint32 offset, uint32 mask ); void Clear( uint32 offset, uint32 mask ); uint32 Get( uint32 offset, uint32 mask ); void SetAll(void); // Sets all bits void ClearAll(void); // Clears all bits uint32 GetDWord(int i) const; void SetDWord(int i, uint32 val); CBitVecT& operator=(const CBitVecT &other) { other.CopyTo( this ); return *this; } bool operator==(const CBitVecT &other) { return Compare( other ); } bool operator!=(const CBitVecT &other) { return !operator==( other ); } static void GetOffsetMaskForBit( uint32 bitNum, uint32 *pOffset, uint32 *pMask ) { *pOffset = BitVec_Int( bitNum ); *pMask = BitVec_Bit( bitNum ); } }; //----------------------------------------------------------------------------- // class CVarBitVecBase // // Defines the operations necessary for a variable sized bit array template class CVarBitVecBase { public: bool IsFixedSize() const { return false; } int GetNumBits(void) const { return m_numBits; } void Resize( int numBits, bool bClearAll = false ); // resizes bit array int GetNumDWords() const { return m_numInts; } uint32 *Base() { return m_pInt; } const uint32 *Base() const { return m_pInt; } void Attach( uint32 *pBits, int numBits ); bool Detach( uint32 **ppBits, int *pNumBits ); int FindNextSetBit(int iStartBit) const; // returns -1 if no set bit was found protected: CVarBitVecBase(); CVarBitVecBase(int numBits); CVarBitVecBase( const CVarBitVecBase &from ); CVarBitVecBase &operator=( const CVarBitVecBase &from ); ~CVarBitVecBase(void); void ValidateOperand( const CVarBitVecBase &operand ) const { Assert(GetNumBits() == operand.GetNumBits()); } unsigned GetEndMask() const { return ::GetEndMask( GetNumBits() ); } private: BITCOUNTTYPE m_numBits; // Number of bits in the bitstring BITCOUNTTYPE m_numInts; // Number of ints to needed to store bitstring uint32 m_iBitStringStorage; // If the bit string fits in one int, it goes here uint32 * m_pInt; // Array of ints containing the bitstring void AllocInts( int numInts ); // Free the allocated bits void ReallocInts( int numInts ); void FreeInts( void ); // Free the allocated bits }; //----------------------------------------------------------------------------- // class CFixedBitVecBase // // Defines the operations necessary for a fixed sized bit array. // template struct BitCountToEndMask_t { }; template <> struct BitCountToEndMask_t< 0> { enum { MASK = 0xffffffff }; }; template <> struct BitCountToEndMask_t< 1> { enum { MASK = 0x00000001 }; }; template <> struct BitCountToEndMask_t< 2> { enum { MASK = 0x00000003 }; }; template <> struct BitCountToEndMask_t< 3> { enum { MASK = 0x00000007 }; }; template <> struct BitCountToEndMask_t< 4> { enum { MASK = 0x0000000f }; }; template <> struct BitCountToEndMask_t< 5> { enum { MASK = 0x0000001f }; }; template <> struct BitCountToEndMask_t< 6> { enum { MASK = 0x0000003f }; }; template <> struct BitCountToEndMask_t< 7> { enum { MASK = 0x0000007f }; }; template <> struct BitCountToEndMask_t< 8> { enum { MASK = 0x000000ff }; }; template <> struct BitCountToEndMask_t< 9> { enum { MASK = 0x000001ff }; }; template <> struct BitCountToEndMask_t<10> { enum { MASK = 0x000003ff }; }; template <> struct BitCountToEndMask_t<11> { enum { MASK = 0x000007ff }; }; template <> struct BitCountToEndMask_t<12> { enum { MASK = 0x00000fff }; }; template <> struct BitCountToEndMask_t<13> { enum { MASK = 0x00001fff }; }; template <> struct BitCountToEndMask_t<14> { enum { MASK = 0x00003fff }; }; template <> struct BitCountToEndMask_t<15> { enum { MASK = 0x00007fff }; }; template <> struct BitCountToEndMask_t<16> { enum { MASK = 0x0000ffff }; }; template <> struct BitCountToEndMask_t<17> { enum { MASK = 0x0001ffff }; }; template <> struct BitCountToEndMask_t<18> { enum { MASK = 0x0003ffff }; }; template <> struct BitCountToEndMask_t<19> { enum { MASK = 0x0007ffff }; }; template <> struct BitCountToEndMask_t<20> { enum { MASK = 0x000fffff }; }; template <> struct BitCountToEndMask_t<21> { enum { MASK = 0x001fffff }; }; template <> struct BitCountToEndMask_t<22> { enum { MASK = 0x003fffff }; }; template <> struct BitCountToEndMask_t<23> { enum { MASK = 0x007fffff }; }; template <> struct BitCountToEndMask_t<24> { enum { MASK = 0x00ffffff }; }; template <> struct BitCountToEndMask_t<25> { enum { MASK = 0x01ffffff }; }; template <> struct BitCountToEndMask_t<26> { enum { MASK = 0x03ffffff }; }; template <> struct BitCountToEndMask_t<27> { enum { MASK = 0x07ffffff }; }; template <> struct BitCountToEndMask_t<28> { enum { MASK = 0x0fffffff }; }; template <> struct BitCountToEndMask_t<29> { enum { MASK = 0x1fffffff }; }; template <> struct BitCountToEndMask_t<30> { enum { MASK = 0x3fffffff }; }; template <> struct BitCountToEndMask_t<31> { enum { MASK = 0x7fffffff }; }; //------------------------------------- template class CFixedBitVecBase { public: bool IsFixedSize() const { return true; } int GetNumBits(void) const { return NUM_BITS; } void Resize( int numBits, bool bClearAll = false ) { Assert(numBits == NUM_BITS); if ( bClearAll ) Plat_FastMemset( m_Ints, 0, NUM_INTS * sizeof(uint32) ); }// for syntatic consistency (for when using templates) int GetNumDWords() const { return NUM_INTS; } uint32 * Base() { return m_Ints; } const uint32 * Base() const { return m_Ints; } int FindNextSetBit(int iStartBit) const; // returns -1 if no set bit was found protected: CFixedBitVecBase() {} CFixedBitVecBase(int numBits) { Assert( numBits == NUM_BITS ); } // doesn't make sense, really. Supported to simplify templates & allow easy replacement of variable void ValidateOperand( const CFixedBitVecBase &operand ) const { } // no need, compiler does so statically public: // for test code unsigned GetEndMask() const { return static_cast( BitCountToEndMask_t::MASK ); } private: enum { NUM_INTS = (NUM_BITS + (BITS_PER_INT-1)) / BITS_PER_INT }; uint32 m_Ints[(NUM_BITS + (BITS_PER_INT-1)) / BITS_PER_INT]; }; //----------------------------------------------------------------------------- // // The actual classes used // // inheritance instead of typedef to allow forward declarations class CVarBitVec : public CBitVecT< CVarBitVecBase > { public: CVarBitVec() { } CVarBitVec(int numBits) : CBitVecT< CVarBitVecBase >(numBits) { } }; class CLargeVarBitVec : public CBitVecT< CVarBitVecBase > { public: CLargeVarBitVec() { } CLargeVarBitVec(int numBits) : CBitVecT< CVarBitVecBase >(numBits) { } }; //----------------------------------------------------------------------------- template < int NUM_BITS > class CBitVec : public CBitVecT< CFixedBitVecBase > { public: CBitVec() { } CBitVec(int numBits) : CBitVecT< CFixedBitVecBase >(numBits) { } }; //----------------------------------------------------------------------------- typedef CBitVec<32> CDWordBitVec; //----------------------------------------------------------------------------- template inline CVarBitVecBase::CVarBitVecBase() { Plat_FastMemset( this, 0, sizeof( *this ) ); } //----------------------------------------------------------------------------- template inline CVarBitVecBase::CVarBitVecBase(int numBits) { Assert( numBits ); m_numBits = numBits; // Figure out how many ints are needed m_numInts = CalcNumIntsForBits( numBits ); m_pInt = NULL; AllocInts( m_numInts ); } //----------------------------------------------------------------------------- template inline CVarBitVecBase::CVarBitVecBase( const CVarBitVecBase &from ) { if ( from.m_numInts ) { m_numBits = from.m_numBits; m_numInts = from.m_numInts; m_pInt = NULL; AllocInts( m_numInts ); memcpy( m_pInt, from.m_pInt, m_numInts * sizeof(int) ); } else memset( this, 0, sizeof( *this ) ); } //----------------------------------------------------------------------------- template inline CVarBitVecBase &CVarBitVecBase::operator=( const CVarBitVecBase &from ) { Resize( from.GetNumBits() ); if ( m_pInt ) memcpy( m_pInt, from.m_pInt, m_numInts * sizeof(int) ); return (*this); } //----------------------------------------------------------------------------- // Purpose: Destructor // Input : // Output : //----------------------------------------------------------------------------- template inline CVarBitVecBase::~CVarBitVecBase(void) { FreeInts(); } //----------------------------------------------------------------------------- template inline void CVarBitVecBase::Attach( uint32 *pBits, int numBits ) { FreeInts(); m_numBits = numBits; m_numInts = CalcNumIntsForBits( numBits ); if ( m_numInts > 1 ) { m_pInt = pBits; } else { m_iBitStringStorage = *pBits; m_pInt = &m_iBitStringStorage; free( pBits ); } } //----------------------------------------------------------------------------- template inline bool CVarBitVecBase::Detach( uint32 **ppBits, int *pNumBits ) { if ( !m_numBits ) { return false; } *pNumBits = m_numBits; if ( m_numInts > 1 ) { *ppBits = m_pInt; } else { *ppBits = (uint32 *)malloc( sizeof(uint32) ); **ppBits = m_iBitStringStorage; free( m_pInt ); } memset( this, 0, sizeof( *this ) ); return true; } //----------------------------------------------------------------------------- template inline CBitVecT::CBitVecT() { // undef this is ints are not 4 bytes // generate a compile error if sizeof(int) is not 4 (HACK: can't use the preprocessor so use the compiler) COMPILE_TIME_ASSERT( sizeof(int)==4 ); // Initialize bitstring by clearing all bits ClearAll(); } //----------------------------------------------------------------------------- template inline CBitVecT::CBitVecT(int numBits) : BASE_OPS( numBits ) { // undef this is ints are not 4 bytes // generate a compile error if sizeof(int) is not 4 (HACK: can't use the preprocessor so use the compiler) COMPILE_TIME_ASSERT( sizeof(int)==4 ); // Initialize bitstring by clearing all bits ClearAll(); } //----------------------------------------------------------------------------- template inline CBitVecAccessor CBitVecT::operator[](int i) { Assert(i >= 0 && i < this->GetNumBits()); return CBitVecAccessor(this->Base(), i); } //----------------------------------------------------------------------------- template inline void CBitVecT::Init( int val ) { if ( this->Base() ) Plat_FastMemset( this->Base(), ( val ) ? 0xff : 0, this->GetNumDWords() * sizeof(int) ); } //----------------------------------------------------------------------------- template inline uint32 CBitVecT::Get( uint32 bitNum ) const { Assert( bitNum < (uint32)this->GetNumBits() ); const uint32 *pInt = this->Base() + BitVec_Int( bitNum ); return ( *pInt & BitVec_Bit( bitNum ) ); } //----------------------------------------------------------------------------- template inline bool CBitVecT::IsBitSet( int bitNum ) const { Assert( bitNum >= 0 && bitNum < this->GetNumBits() ); const uint32 *pInt = this->Base() + BitVec_Int( bitNum ); return ( ( *pInt & BitVec_Bit( bitNum ) ) != 0 ); } //----------------------------------------------------------------------------- template inline void CBitVecT::Set( int bitNum ) { Assert( bitNum >= 0 && bitNum < this->GetNumBits() ); uint32 *pInt = this->Base() + BitVec_Int( bitNum ); *pInt |= BitVec_Bit( bitNum ); } //----------------------------------------------------------------------------- template inline bool CBitVecT::TestAndSet(int bitNum) { Assert( bitNum >= 0 && bitNum < this->GetNumBits() ); uint32 bitVecBit = BitVec_Bit( bitNum ); uint32 *pInt = this->Base() + BitVec_Int( bitNum ); bool bResult = ( ( *pInt & bitVecBit) != 0 ); *pInt |= bitVecBit; return bResult; } //----------------------------------------------------------------------------- template inline void CBitVecT::Clear(int bitNum) { Assert( bitNum >= 0 && bitNum < this->GetNumBits() ); uint32 *pInt = this->Base() + BitVec_Int( bitNum ); *pInt &= ~BitVec_Bit( bitNum ); } //----------------------------------------------------------------------------- template inline void CBitVecT::Set( int bitNum, bool bNewVal ) { uint32 *pInt = this->Base() + BitVec_Int( bitNum ); uint32 bitMask = BitVec_Bit( bitNum ); if ( bNewVal ) { *pInt |= bitMask; } else { *pInt &= ~bitMask; } } //----------------------------------------------------------------------------- template inline void CBitVecT::Set( uint32 offset, uint32 mask ) { uint32 *pInt = this->Base() + offset; *pInt |= mask; } //----------------------------------------------------------------------------- template inline void CBitVecT::Clear( uint32 offset, uint32 mask ) { uint32 *pInt = this->Base() + offset; *pInt &= ~mask; } //----------------------------------------------------------------------------- template inline uint32 CBitVecT::Get( uint32 offset, uint32 mask ) { uint32 *pInt = this->Base() + offset; return ( *pInt & mask ); } //----------------------------------------------------------------------------- // Purpose: // Input : // Output : //----------------------------------------------------------------------------- template inline void CBitVecT::And(const CBitVecT &addStr, CBitVecT *out) const { this->ValidateOperand( addStr ); this->ValidateOperand( *out ); uint32 * pDest = out->Base(); const uint32 *pOperand1 = this->Base(); const uint32 *pOperand2 = addStr.Base(); for (int i = this->GetNumDWords() - 1; i >= 0 ; --i) { pDest[i] = pOperand1[i] & pOperand2[i]; } } //----------------------------------------------------------------------------- // Purpose: // Input : // Output : //----------------------------------------------------------------------------- template inline void CBitVecT::Or(const CBitVecT &orStr, CBitVecT *out) const { this->ValidateOperand( orStr ); this->ValidateOperand( *out ); uint32 * pDest = out->Base(); const uint32 *pOperand1 = this->Base(); const uint32 *pOperand2 = orStr.Base(); for (int i = this->GetNumDWords() - 1; i >= 0; --i) { pDest[i] = pOperand1[i] | pOperand2[i]; } } //----------------------------------------------------------------------------- // Purpose: // Input : // Output : //----------------------------------------------------------------------------- template inline void CBitVecT::Xor(const CBitVecT &xorStr, CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pOperand1 = this->Base(); const uint32 *pOperand2 = xorStr.Base(); for (int i = this->GetNumDWords() - 1; i >= 0; --i) { pDest[i] = pOperand1[i] ^ pOperand2[i]; } } //----------------------------------------------------------------------------- // Purpose: // Input : // Output : //----------------------------------------------------------------------------- template inline void CBitVecT::Not(CBitVecT *out) const { this->ValidateOperand( *out ); uint32 * pDest = out->Base(); const uint32 *pOperand = this->Base(); for (int i = this->GetNumDWords() - 1; i >= 0; --i) { pDest[i] = ~(pOperand[i]); } } //----------------------------------------------------------------------------- // Purpose: Copy a bit string // Input : // Output : //----------------------------------------------------------------------------- template inline void CBitVecT::CopyTo(CBitVecT *out) const { out->Resize( this->GetNumBits() ); this->ValidateOperand( *out ); Assert( out != this ); memcpy( out->Base(), this->Base(), this->GetNumDWords() * sizeof( int ) ); } //----------------------------------------------------------------------------- // Purpose: Are all bits zero? // Input : // Output : //----------------------------------------------------------------------------- template inline bool CBitVecT::IsAllClear(void) const { // Number of available bits may be more than the number // actually used, so make sure to mask out unused bits // before testing for zero (const_cast(this))->Base()[this->GetNumDWords()-1] &= CBitVecT::GetEndMask(); // external semantics of const retained for (int i = this->GetNumDWords() - 1; i >= 0; --i) { if ( this->Base()[i] !=0 ) { return false; } } return true; } //----------------------------------------------------------------------------- // Purpose: Are all bits set? // Input : // Output : //----------------------------------------------------------------------------- template inline bool CBitVecT::IsAllSet(void) const { // Number of available bits may be more than the number // actually used, so make sure to mask out unused bits // before testing for set bits (const_cast(this))->Base()[this->GetNumDWords()-1] |= ~CBitVecT::GetEndMask(); // external semantics of const retained for (int i = this->GetNumDWords() - 1; i >= 0; --i) { if ( this->Base()[i] != ~0 ) { return false; } } return true; } //----------------------------------------------------------------------------- // Purpose: Sets all bits // Input : // Output : //----------------------------------------------------------------------------- template inline void CBitVecT::SetAll(void) { if ( this->Base() ) Plat_FastMemset( this->Base(), 0xff, this->GetNumDWords() * sizeof(int) ); } //----------------------------------------------------------------------------- // Purpose: Clears all bits // Input : // Output : //----------------------------------------------------------------------------- template inline void CBitVecT::ClearAll(void) { if ( this->Base() ) Plat_FastMemset( this->Base(), 0, this->GetNumDWords() * sizeof(int) ); } //----------------------------------------------------------------------------- template inline void CBitVecT::Copy( const CBitVecT &other, int nBits ) { if ( nBits == - 1 ) { nBits = other.GetNumBits(); } this->Resize( nBits ); this->ValidateOperand( other ); Assert( &other != this ); memcpy( this->Base(), other.Base(), this->GetNumDWords() * sizeof( uint32 ) ); } //----------------------------------------------------------------------------- template inline bool CBitVecT::Compare( const CBitVecT &other, int nBits ) const { if ( nBits == - 1 ) { if ( other.GetNumBits() != this->GetNumBits() ) { return false; } nBits = other.GetNumBits(); } if ( nBits > other.GetNumBits() || nBits > this->GetNumBits() ) { return false; } (const_cast(this))->Base()[this->GetNumDWords()-1] &= CBitVecT::GetEndMask(); // external semantics of const retained (const_cast(&other))->Base()[this->GetNumDWords()-1] &= other.CBitVecT::GetEndMask(); // external semantics of const retained int nBytes = PAD_NUMBER( nBits, 8 ) >> 3; return ( memcmp( this->Base(), other.Base(), nBytes ) == 0 ); } //----------------------------------------------------------------------------- template inline uint32 CBitVecT::GetDWord(int i) const { Assert(i >= 0 && i < this->GetNumDWords()); return this->Base()[i]; } //----------------------------------------------------------------------------- template inline void CBitVecT::SetDWord(int i, uint32 val) { Assert(i >= 0 && i < this->GetNumDWords()); this->Base()[i] = val; } //----------------------------------------------------------------------------- inline unsigned GetStartBitMask( int startBit ) { static unsigned int g_StartMask[32] = { 0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8, 0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80, 0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800, 0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000, 0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000, 0xfff00000, 0xffe00000, 0xffc00000, 0xff800000, 0xff000000, 0xfe000000, 0xfc000000, 0xf8000000, 0xf0000000, 0xe0000000, 0xc0000000, 0x80000000, }; return g_StartMask[ startBit & 31 ]; } template inline int CVarBitVecBase::FindNextSetBit( int startBit ) const { if ( startBit < GetNumBits() ) { int wordIndex = BitVec_Int(startBit); unsigned int startMask = GetStartBitMask( startBit ); int lastWord = GetNumDWords()-1; // handle non dword lengths if ( (GetNumBits() % BITS_PER_INT) != 0 ) { unsigned int elem = Base()[wordIndex]; elem &= startMask; if ( wordIndex == lastWord) { elem &= (GetEndMask()); // there's a bit remaining in this word if ( elem ) return FirstBitInWord(elem, wordIndex << 5); } else { // there's a bit remaining in this word if ( elem ) return FirstBitInWord(elem, wordIndex << 5); // iterate the words for ( int i = wordIndex+1; i < lastWord; i++ ) { elem = Base()[i]; if ( elem ) return FirstBitInWord(elem, i << 5); } elem = Base()[lastWord] & GetEndMask(); if ( elem ) return FirstBitInWord(elem, lastWord << 5); } } else { const uint32 * RESTRICT pCurElem = Base() + wordIndex; unsigned int elem = *pCurElem; elem &= startMask; do { if ( elem ) return FirstBitInWord(elem, wordIndex << 5); ++pCurElem; elem = *pCurElem; ++wordIndex; } while( wordIndex <= lastWord ); } } return -1; } template inline int CFixedBitVecBase::FindNextSetBit( int startBit ) const { if ( startBit < NUM_BITS ) { int wordIndex = BitVec_Int(startBit); unsigned int startMask = GetStartBitMask( startBit ); // handle non dword lengths if ( (NUM_BITS % BITS_PER_INT) != 0 ) { unsigned int elem = Base()[wordIndex]; elem &= startMask; if ( wordIndex == NUM_INTS-1) { elem &= (GetEndMask()); // there's a bit remaining in this word if ( elem ) return FirstBitInWord(elem, wordIndex << 5); } else { // there's a bit remaining in this word if ( elem ) return FirstBitInWord(elem, wordIndex << 5); // iterate the words for ( int i = wordIndex+1; i < NUM_INTS-1; i++ ) { elem = Base()[i]; if ( elem ) return FirstBitInWord(elem, i << 5); } elem = Base()[NUM_INTS-1] & GetEndMask(); if ( elem ) return FirstBitInWord(elem, (NUM_INTS-1) << 5); } } else { const uint32 * RESTRICT pCurElem = Base() + wordIndex; unsigned int elem = *pCurElem; elem &= startMask; do { if ( elem ) return FirstBitInWord(elem, wordIndex << 5); ++pCurElem; elem = *pCurElem; ++wordIndex; } while( wordIndex <= NUM_INTS-1); } } return -1; } //----------------------------------------------------------------------------- // Unrolled loops for some common sizes template<> FORCEINLINE_TEMPLATE void CBitVecT< CFixedBitVecBase<256> >::And(const CBitVecT &addStr, CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pOperand1 = Base(); const uint32 *pOperand2 = addStr.Base(); pDest[0] = pOperand1[0] & pOperand2[0]; pDest[1] = pOperand1[1] & pOperand2[1]; pDest[2] = pOperand1[2] & pOperand2[2]; pDest[3] = pOperand1[3] & pOperand2[3]; pDest[4] = pOperand1[4] & pOperand2[4]; pDest[5] = pOperand1[5] & pOperand2[5]; pDest[6] = pOperand1[6] & pOperand2[6]; pDest[7] = pOperand1[7] & pOperand2[7]; } template<> FORCEINLINE_TEMPLATE bool CBitVecT< CFixedBitVecBase<256> >::IsAllClear(void) const { const uint32 *pInts = Base(); return ( pInts[0] == 0 && pInts[1] == 0 && pInts[2] == 0 && pInts[3] == 0 && pInts[4] == 0 && pInts[5] == 0 && pInts[6] == 0 && pInts[7] == 0 ); } template<> FORCEINLINE_TEMPLATE void CBitVecT< CFixedBitVecBase<256> >::CopyTo(CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pInts = Base(); pDest[0] = pInts[0]; pDest[1] = pInts[1]; pDest[2] = pInts[2]; pDest[3] = pInts[3]; pDest[4] = pInts[4]; pDest[5] = pInts[5]; pDest[6] = pInts[6]; pDest[7] = pInts[7]; } template<> FORCEINLINE_TEMPLATE void CBitVecT< CFixedBitVecBase<128> >::And(const CBitVecT &addStr, CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pOperand1 = Base(); const uint32 *pOperand2 = addStr.Base(); pDest[0] = pOperand1[0] & pOperand2[0]; pDest[1] = pOperand1[1] & pOperand2[1]; pDest[2] = pOperand1[2] & pOperand2[2]; pDest[3] = pOperand1[3] & pOperand2[3]; } template<> FORCEINLINE_TEMPLATE bool CBitVecT< CFixedBitVecBase<128> >::IsAllClear(void) const { const uint32 *pInts = Base(); return ( pInts[0] == 0 && pInts[1] == 0 && pInts[2] == 0 && pInts[3] == 0 ); } template<> FORCEINLINE_TEMPLATE void CBitVecT< CFixedBitVecBase<128> >::CopyTo(CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pInts = Base(); pDest[0] = pInts[0]; pDest[1] = pInts[1]; pDest[2] = pInts[2]; pDest[3] = pInts[3]; } template<> inline void CBitVecT< CFixedBitVecBase<96> >::And(const CBitVecT &addStr, CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pOperand1 = Base(); const uint32 *pOperand2 = addStr.Base(); pDest[0] = pOperand1[0] & pOperand2[0]; pDest[1] = pOperand1[1] & pOperand2[1]; pDest[2] = pOperand1[2] & pOperand2[2]; } template<> inline bool CBitVecT< CFixedBitVecBase<96> >::IsAllClear(void) const { const uint32 *pInts = Base(); return ( pInts[0] == 0 && pInts[1] == 0 && pInts[2] == 0 ); } template<> inline void CBitVecT< CFixedBitVecBase<96> >::CopyTo(CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pInts = Base(); pDest[0] = pInts[0]; pDest[1] = pInts[1]; pDest[2] = pInts[2]; } template<> inline void CBitVecT< CFixedBitVecBase<64> >::And(const CBitVecT &addStr, CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pOperand1 = Base(); const uint32 *pOperand2 = addStr.Base(); pDest[0] = pOperand1[0] & pOperand2[0]; pDest[1] = pOperand1[1] & pOperand2[1]; } template<> inline bool CBitVecT< CFixedBitVecBase<64> >::IsAllClear(void) const { const uint32 *pInts = Base(); return ( pInts[0] == 0 && pInts[1] == 0 ); } template<> inline void CBitVecT< CFixedBitVecBase<64> >::CopyTo(CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pInts = Base(); pDest[0] = pInts[0]; pDest[1] = pInts[1]; } template<> inline void CBitVecT< CFixedBitVecBase<32> >::And(const CBitVecT &addStr, CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pOperand1 = Base(); const uint32 *pOperand2 = addStr.Base(); pDest[0] = pOperand1[0] & pOperand2[0]; } template<> inline bool CBitVecT< CFixedBitVecBase<32> >::IsAllClear(void) const { const uint32 *pInts = Base(); return ( pInts[0] == 0 ); } template<> inline void CBitVecT< CFixedBitVecBase<32> >::CopyTo(CBitVecT *out) const { uint32 * pDest = out->Base(); const uint32 *pInts = Base(); pDest[0] = pInts[0]; } //----------------------------------------------------------------------------- template <> inline uint32 CBitVecT< CFixedBitVecBase<32> >::Get( uint32 bitNum ) const { return ( *Base() & BitVec_Bit( bitNum ) ); } //----------------------------------------------------------------------------- template <> inline bool CBitVecT< CFixedBitVecBase<32> >::IsBitSet( int bitNum ) const { return ( ( *Base() & BitVec_Bit( bitNum ) ) != 0 ); } //----------------------------------------------------------------------------- template <> inline void CBitVecT< CFixedBitVecBase<32> >::Set( int bitNum ) { *Base() |= BitVec_Bit( bitNum ); } //----------------------------------------------------------------------------- template <> inline void CBitVecT< CFixedBitVecBase<32> >::Clear(int bitNum) { *Base() &= ~BitVec_Bit( bitNum ); } //----------------------------------------------------------------------------- template <> inline void CBitVecT< CFixedBitVecBase<32> >::Set( int bitNum, bool bNewVal ) { uint32 bitMask = BitVec_Bit( bitNum ); if ( bNewVal ) { *Base() |= bitMask; } else { *Base() &= ~bitMask; } } //----------------------------------------------------------------------------- #include "tier0/memdbgon.h" //----------------------------------------------------------------------------- // Purpose: Resizes the bit string to a new number of bits // Input : resizeNumBits - //----------------------------------------------------------------------------- template inline void CVarBitVecBase::Resize( int resizeNumBits, bool bClearAll ) { Assert( resizeNumBits >= 0 && ((BITCOUNTTYPE)resizeNumBits == resizeNumBits) ); int newIntCount = CalcNumIntsForBits( resizeNumBits ); if ( newIntCount != GetNumDWords() ) { if ( Base() ) { ReallocInts( newIntCount ); if ( !bClearAll && resizeNumBits >= GetNumBits() ) { Base()[GetNumDWords() - 1] &= GetEndMask(); Plat_FastMemset( Base() + GetNumDWords(), 0, (newIntCount - GetNumDWords()) * sizeof(int) ); } } else { // Figure out how many ints are needed AllocInts( newIntCount ); // Initialize bitstring by clearing all bits bClearAll = true; } m_numInts = newIntCount; } else if ( !bClearAll && resizeNumBits >= GetNumBits() && Base() ) { Base()[GetNumDWords() - 1] &= GetEndMask(); } if ( bClearAll && Base() ) { Plat_FastMemset( Base(), 0, newIntCount * sizeof(int) ); } // store the new size and end mask m_numBits = resizeNumBits; } //----------------------------------------------------------------------------- // Purpose: Allocate the storage for the ints // Input : numInts - //----------------------------------------------------------------------------- template inline void CVarBitVecBase::AllocInts( int numInts ) { Assert( !m_pInt ); if ( numInts == 0 ) return; if ( numInts == 1 ) { m_pInt = &m_iBitStringStorage; return; } m_pInt = (uint32 *)malloc( numInts * sizeof(int) ); } //----------------------------------------------------------------------------- // Purpose: Reallocate the storage for the ints // Input : numInts - //----------------------------------------------------------------------------- template inline void CVarBitVecBase::ReallocInts( int numInts ) { Assert( Base() ); if ( numInts == 0) { FreeInts(); return; } if ( m_pInt == &m_iBitStringStorage ) { if ( numInts != 1 ) { m_pInt = ((uint32 *)malloc( numInts * sizeof(int) )); *m_pInt = m_iBitStringStorage; } return; } if ( numInts == 1 ) { m_iBitStringStorage = *m_pInt; free( m_pInt ); m_pInt = &m_iBitStringStorage; return; } m_pInt = (uint32 *)realloc( m_pInt, numInts * sizeof(int) ); } //----------------------------------------------------------------------------- // Purpose: Free storage allocated with AllocInts //----------------------------------------------------------------------------- template inline void CVarBitVecBase::FreeInts( void ) { if ( m_numInts > 1 ) { free( m_pInt ); } m_pInt = NULL; } #include "tier0/memdbgoff.h" // ------------------------------------------------------------------------ // // CBitVecAccessor inlines. // ------------------------------------------------------------------------ // inline CBitVecAccessor::CBitVecAccessor(uint32 *pDWords, int iBit) { m_pDWords = pDWords; m_iBit = iBit; } inline void CBitVecAccessor::operator=(int val) { if(val) m_pDWords[m_iBit >> 5] |= (1 << (m_iBit & 31)); else m_pDWords[m_iBit >> 5] &= ~(unsigned long)(1 << (m_iBit & 31)); } inline CBitVecAccessor::operator uint32() { return m_pDWords[m_iBit >> 5] & (1 << (m_iBit & 31)); } //============================================================================= #endif // BITVEC_H