//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: common helpers for reuse among various Utl containers // // $NoKeywords: $ // //=============================================================================// #ifndef UTLCOMMON_H #define UTLCOMMON_H #pragma once //----------------------------------------------------------------------------- // Henry Goffin (henryg) was here. Questions? Bugs? Go slap him around a bit. //----------------------------------------------------------------------------- // empty_t is the canonical "no-value" type which is fully defined but empty. struct empty_t {}; // undefined_t is the canonical "undefined" type, used mostly for typedefs; // parameters of type undefined_t will not compile, which is actually useful // behavior when it comes to template programming. Google "SFINAE" for info. struct undefined_t; // CTypeSelect::type is a typedef of A if sel is nonzero, else B template struct CTypeSelect { typedef A type; }; template struct CTypeSelect<0, A, B> { typedef B type; }; // CTypeEquals::value is nonzero if A and B are the same type template struct CTypeEquals { enum { value = 0 }; }; template struct CTypeEquals { enum { value = 1 }; }; template struct CTypeEquals : CTypeEquals< const volatile A&, const volatile B& > {}; template struct CTypeEquals : CTypeEquals< const volatile A, const volatile B > {}; template struct CTypeEquals : CTypeEquals< A&, B& > {}; // CUtlKeyValuePair is intended for use with key-lookup containers. // Because it is specialized for "empty_t" values, one container can // function as either a set of keys OR a key-value dictionary while // avoiding storage waste or padding for the empty_t value objects. template class CUtlKeyValuePair { public: typedef V ValueReturn_t; K m_key; V m_value; CUtlKeyValuePair() {} template < typename KInit > explicit CUtlKeyValuePair( const KInit &k ) : m_key( k ) {} template < typename KInit, typename VInit > CUtlKeyValuePair( const KInit &k, const VInit &v ) : m_key( k ), m_value( v ) {} V &GetValue() { return m_value; } const V &GetValue() const { return m_value; } }; template class CUtlKeyValuePair { public: typedef const K ValueReturn_t; K m_key; CUtlKeyValuePair() {} template < typename KInit > explicit CUtlKeyValuePair( const KInit &k ) : m_key( k ) {} template < typename KInit > CUtlKeyValuePair( const KInit &k, empty_t ) : m_key( k ) {} CUtlKeyValuePair( const K &k, const empty_t& ) : m_key( k ) {} const K &GetValue() const { return m_key; } }; // Default functors. You can specialize these if your type does // not implement operator== or operator< in an efficient way for // some odd reason. template struct DefaultLessFunctor; template struct DefaultEqualFunctor; // Hashing functor used by hash tables. You can either specialize // for types which are widely used, or plug a custom functor directly // into the hash table. If you do roll your own, please read up on // bit-mixing and the avalanche property; be sure that your values // are reasonably well-distributed across the entire 32-bit range. // http://en.wikipedia.org/wiki/Avalanche_effect // http://home.comcast.net/~bretm/hash/5.html // template struct DefaultHashFunctor; // Argument type information. Struct currently contains one or two typedefs: // typename Arg_t = primary argument type. Usually const T&, sometimes T. // typename Alt_t = optional alternate type. Usually *undefined*. // // Any specializations should be implemented via simple inheritance // from ArgumentTypeInfoImpl< BestArgType, [optional] AlternateArgType > // template struct ArgumentTypeInfo; // Some fundamental building-block functors... struct StringLessFunctor { bool operator()( const char *a, const char *b ) const { return Q_strcmp( a, b ) < 0; } }; struct StringEqualFunctor { bool operator()( const char *a, const char *b ) const { return Q_strcmp( a, b ) == 0; } }; struct CaselessStringLessFunctor { bool operator()( const char *a, const char *b ) const { return Q_strcasecmp( a, b ) < 0; } }; struct CaselessStringEqualFunctor { bool operator()( const char *a, const char *b ) const { return Q_strcasecmp( a, b ) == 0; } }; struct Mix32HashFunctor { unsigned int operator()( uint32 s ) const; }; struct StringHashFunctor { unsigned int operator()( const char* s ) const; }; struct CaselessStringHashFunctor { unsigned int operator()( const char* s ) const; }; struct PointerLessFunctor { bool operator()( const void *a, const void *b ) const { return a < b; } }; struct PointerEqualFunctor { bool operator()( const void *a, const void *b ) const { return a == b; } }; struct PointerHashFunctor { unsigned int operator()( const void* s ) const { return Mix32HashFunctor()((uint32)POINTER_TO_INT(s)); } }; // Generic implementation of Less and Equal functors template < typename T > struct DefaultLessFunctor { bool operator()( typename ArgumentTypeInfo< T >::Arg_t a, typename ArgumentTypeInfo< T >::Arg_t b ) const { return a < b; } bool operator()( typename ArgumentTypeInfo< T >::Alt_t a, typename ArgumentTypeInfo< T >::Arg_t b ) const { return a < b; } bool operator()( typename ArgumentTypeInfo< T >::Arg_t a, typename ArgumentTypeInfo< T >::Alt_t b ) const { return a < b; } }; template < typename T > struct DefaultEqualFunctor { bool operator()( typename ArgumentTypeInfo< T >::Arg_t a, typename ArgumentTypeInfo< T >::Arg_t b ) const { return a == b; } bool operator()( typename ArgumentTypeInfo< T >::Alt_t a, typename ArgumentTypeInfo< T >::Arg_t b ) const { return a == b; } bool operator()( typename ArgumentTypeInfo< T >::Arg_t a, typename ArgumentTypeInfo< T >::Alt_t b ) const { return a == b; } }; // Hashes for basic types template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : Mix32HashFunctor { }; template <> struct DefaultHashFunctor : PointerHashFunctor { }; template <> struct DefaultHashFunctor : PointerHashFunctor { }; #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) template <> struct DefaultHashFunctor : Mix32HashFunctor { }; #endif // String specializations. If you want to operate on raw values, use // PointerLessFunctor and friends from the "building-block" section above template <> struct DefaultLessFunctor : StringLessFunctor { }; template <> struct DefaultLessFunctor : StringLessFunctor { }; template <> struct DefaultEqualFunctor : StringEqualFunctor { }; template <> struct DefaultEqualFunctor : StringEqualFunctor { }; template <> struct DefaultHashFunctor : StringHashFunctor { }; template <> struct DefaultHashFunctor : StringHashFunctor { }; // CUtlString/CUtlConstString are specialized here and not in utlstring.h // because I consider string datatypes to be fundamental, and don't feel // comfortable making that header file dependent on this one. (henryg) class CUtlString; template < typename T > class CUtlConstStringBase; template <> struct DefaultLessFunctor : StringLessFunctor { }; template <> struct DefaultHashFunctor : StringHashFunctor { }; template < typename T > struct DefaultLessFunctor< CUtlConstStringBase > : StringLessFunctor { }; template < typename T > struct DefaultHashFunctor< CUtlConstStringBase > : StringHashFunctor { }; // Helpers to deduce if a type defines a public AltArgumentType_t typedef: template < typename T > struct HasClassAltArgumentType { template < typename X > static long Test( typename X::AltArgumentType_t* ); template < typename X > static char Test( ... ); enum { value = ( sizeof( Test< T >( NULL ) ) != sizeof( char ) ) }; }; template < typename T, bool = HasClassAltArgumentType< T >::value > struct GetClassAltArgumentType { typedef typename T::AltArgumentType_t Result_t; }; template < typename T > struct GetClassAltArgumentType< T, false > { typedef undefined_t Result_t; }; // Unwrap references; reference types don't have member typedefs. template < typename T > struct GetClassAltArgumentType< T&, false > : GetClassAltArgumentType< T > { }; // ArgumentTypeInfoImpl is the base for all ArgumentTypeInfo specializations. template < typename ArgT, typename AltT = typename GetClassAltArgumentType::Result_t > struct ArgumentTypeInfoImpl { enum { has_alt = 1 }; typedef ArgT Arg_t; typedef AltT Alt_t; }; // Handle cases where AltArgumentType_t is typedef'd to undefined_t template < typename ArgT > struct ArgumentTypeInfoImpl< ArgT, undefined_t > { enum { has_alt = 0 }; typedef ArgT Arg_t; typedef undefined_t Alt_t; }; // Handle cases where AltArgumentType_t is typedef'd to the primary type template < typename ArgT > struct ArgumentTypeInfoImpl< ArgT, ArgT > { enum { has_alt = 0 }; typedef ArgT Arg_t; typedef undefined_t Alt_t; }; // By default, everything is passed via const ref and doesn't define an alternate type. template struct ArgumentTypeInfo : ArgumentTypeInfoImpl< const T& > { }; // Small native types are most efficiently passed by value. template <> struct ArgumentTypeInfo< bool > : ArgumentTypeInfoImpl< bool > { }; template <> struct ArgumentTypeInfo< char > : ArgumentTypeInfoImpl< char > { }; template <> struct ArgumentTypeInfo< signed char > : ArgumentTypeInfoImpl< signed char > { }; template <> struct ArgumentTypeInfo< unsigned char > : ArgumentTypeInfoImpl< unsigned char > { }; template <> struct ArgumentTypeInfo< signed short > : ArgumentTypeInfoImpl< signed short > { }; template <> struct ArgumentTypeInfo< unsigned short > : ArgumentTypeInfoImpl< unsigned short > { }; template <> struct ArgumentTypeInfo< signed int > : ArgumentTypeInfoImpl< signed int > { }; template <> struct ArgumentTypeInfo< unsigned int > : ArgumentTypeInfoImpl< unsigned int > { }; template <> struct ArgumentTypeInfo< signed long > : ArgumentTypeInfoImpl< signed long > { }; template <> struct ArgumentTypeInfo< unsigned long > : ArgumentTypeInfoImpl< unsigned long > { }; template <> struct ArgumentTypeInfo< signed long long > : ArgumentTypeInfoImpl< signed long long > { }; template <> struct ArgumentTypeInfo< unsigned long long > : ArgumentTypeInfoImpl< unsigned long long > { }; template <> struct ArgumentTypeInfo< float > : ArgumentTypeInfoImpl< float > { }; template <> struct ArgumentTypeInfo< double > : ArgumentTypeInfoImpl< double > { }; template <> struct ArgumentTypeInfo< long double > : ArgumentTypeInfoImpl< long double > { }; #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) template <> struct ArgumentTypeInfo< wchar_t > : ArgumentTypeInfoImpl< wchar_t > { }; #endif // Pointers are also most efficiently passed by value. template < typename T > struct ArgumentTypeInfo< T* > : ArgumentTypeInfoImpl< T* > { }; // Specializations to unwrap const-decorated types and references template struct ArgumentTypeInfo : ArgumentTypeInfo { }; template struct ArgumentTypeInfo : ArgumentTypeInfo { }; template struct ArgumentTypeInfo : ArgumentTypeInfo { }; template struct ArgumentTypeInfo : ArgumentTypeInfo { }; template struct DefaultLessFunctor : DefaultLessFunctor { }; template struct DefaultLessFunctor : DefaultLessFunctor { }; template struct DefaultLessFunctor : DefaultLessFunctor { }; template struct DefaultLessFunctor : DefaultLessFunctor { }; template struct DefaultEqualFunctor : DefaultEqualFunctor { }; template struct DefaultEqualFunctor : DefaultEqualFunctor { }; template struct DefaultEqualFunctor : DefaultEqualFunctor { }; template struct DefaultEqualFunctor : DefaultEqualFunctor { }; template struct DefaultHashFunctor : DefaultHashFunctor { }; template struct DefaultHashFunctor : DefaultHashFunctor { }; template struct DefaultHashFunctor : DefaultHashFunctor { }; template struct DefaultHashFunctor : DefaultHashFunctor { }; // Hash all pointer types as raw pointers by default template struct DefaultHashFunctor< T * > : PointerHashFunctor { }; // Here follow the useful implementations. // Bob Jenkins's 32-bit mix function. inline unsigned int Mix32HashFunctor::operator()( uint32 n ) const { // Perform a mixture of the bits in n, where each bit // of the input value has an equal chance to affect each // bit of the output. This turns tightly clustered input // values into a smooth distribution. // // This takes 16-20 cycles on modern x86 architectures; // that's roughly the same cost as a mispredicted branch. // It's also reasonably efficient on PPC-based consoles. // // If you're still thinking, "too many instructions!", // do keep in mind that reading one byte of uncached RAM // is about 30x slower than executing this code. It pays // to have a good hash function which minimizes collisions // (and therefore long lookup chains). n = ( n + 0x7ed55d16 ) + ( n << 12 ); n = ( n ^ 0xc761c23c ) ^ ( n >> 19 ); n = ( n + 0x165667b1 ) + ( n << 5 ); n = ( n + 0xd3a2646c ) ^ ( n << 9 ); n = ( n + 0xfd7046c5 ) + ( n << 3 ); n = ( n ^ 0xb55a4f09 ) ^ ( n >> 16 ); return n; } // Based on the widely-used FNV-1A string hash with a final // mixing step to improve dispersion for very small and very // large hash table sizes. inline unsigned int StringHashFunctor::operator()( const char* s ) const { uint32 h = 2166136261u; for ( ; *s; ++s ) { uint32 c = (unsigned char) *s; h = (h ^ c) * 16777619; } return (h ^ (h << 17)) + (h >> 21); } // Equivalent to StringHashFunctor on lower-case strings. inline unsigned int CaselessStringHashFunctor::operator()( const char* s ) const { uint32 h = 2166136261u; for ( ; *s; ++s ) { uint32 c = (unsigned char) *s; // Brutally fast branchless ASCII tolower(): // if ((c >= 'A') && (c <= 'Z')) c += ('a' - 'A'); c += (((('A'-1) - c) & (c - ('Z'+1))) >> 26) & 32; h = (h ^ c) * 16777619; } return (h ^ (h << 17)) + (h >> 21); } #endif // UTLCOMMON_H