//========== Copyright © 2005, Valve Corporation, All rights reserved. ======== // // Purpose: // // LIFO from disassembly of Windows API and http://perso.wanadoo.fr/gmem/evenements/jim2002/articles/L17_Fober.pdf // FIFO from http://perso.wanadoo.fr/gmem/evenements/jim2002/articles/L17_Fober.pdf // //============================================================================= #ifndef TSLIST_H #define TSLIST_H #if defined( _WIN32 ) #pragma once #endif #if ( defined(_WIN64) || defined(_X360) ) #define USE_NATIVE_SLIST #endif #if defined( USE_NATIVE_SLIST ) && !defined( _X360 ) #define WIN32_LEAN_AND_MEAN #include #endif #include "tier0/dbg.h" #include "tier0/threadtools.h" #include "tier0/memdbgon.h" //----------------------------------------------------------------------------- #if defined(_WIN64) #define TSLIST_HEAD_ALIGNMENT MEMORY_ALLOCATION_ALIGNMENT #define TSLIST_NODE_ALIGNMENT MEMORY_ALLOCATION_ALIGNMENT #else #define TSLIST_HEAD_ALIGNMENT 8 #define TSLIST_NODE_ALIGNMENT 8 #endif #define TSLIST_HEAD_ALIGN DECL_ALIGN(TSLIST_HEAD_ALIGNMENT) #define TSLIST_NODE_ALIGN DECL_ALIGN(TSLIST_NODE_ALIGNMENT) //----------------------------------------------------------------------------- PLATFORM_INTERFACE bool RunTSQueueTests( int nListSize = 10000, int nTests = 1 ); PLATFORM_INTERFACE bool RunTSListTests( int nListSize = 10000, int nTests = 1 ); //----------------------------------------------------------------------------- // Lock free list. //----------------------------------------------------------------------------- //#define USE_NATIVE_SLIST #ifdef USE_NATIVE_SLIST typedef SLIST_ENTRY TSLNodeBase_t; typedef SLIST_HEADER TSLHead_t; #else struct TSLIST_NODE_ALIGN TSLNodeBase_t { TSLNodeBase_t *Next; // name to match Windows }; union TSLHead_t { struct Value_t { TSLNodeBase_t *Next; int16 Depth; int16 Sequence; } value; int64 value64; }; #endif //------------------------------------- class TSLIST_HEAD_ALIGN CTSListBase { public: CTSListBase() { if ( ((size_t)&m_Head) % TSLIST_HEAD_ALIGNMENT != 0 ) { Error( "CTSListBase: Misaligned list\n" ); DebuggerBreak(); } #ifdef USE_NATIVE_SLIST InitializeSListHead( &m_Head ); #else m_Head.value64 = (int64)0; #endif } ~CTSListBase() { Detach(); } TSLNodeBase_t *Push( TSLNodeBase_t *pNode ) { if ( (size_t)pNode % TSLIST_NODE_ALIGNMENT != 0 ) { Error( "CTSListBase: Misaligned node\n" ); DebuggerBreak(); } #ifdef USE_NATIVE_SLIST #ifdef _X360 // integrated write-release barrier return (TSLNodeBase_t *)InterlockedPushEntrySListRelease( &m_Head, pNode ); #else return (TSLNodeBase_t *)InterlockedPushEntrySList( &m_Head, pNode ); #endif #else TSLHead_t oldHead; TSLHead_t newHead; for (;;) { oldHead.value64 = m_Head.value64; pNode->Next = oldHead.value.Next; newHead.value.Next = pNode; *((uint32 *)&newHead.value.Depth) = *((uint32 *)&oldHead.value.Depth) + 0x10001; if ( ThreadInterlockedAssignIf64( &m_Head.value64, newHead.value64, oldHead.value64 ) ) { break; } ThreadPause(); }; return (TSLNodeBase_t *)oldHead.value.Next; #endif } TSLNodeBase_t *Pop() { #ifdef USE_NATIVE_SLIST #ifdef _X360 // integrated read-acquire barrier TSLNodeBase_t *pNode = (TSLNodeBase_t *)InterlockedPopEntrySListAcquire( &m_Head ); #else TSLNodeBase_t *pNode = (TSLNodeBase_t *)InterlockedPopEntrySList( &m_Head ); #endif return pNode; #else TSLHead_t oldHead; TSLHead_t newHead; for (;;) { oldHead.value64 = m_Head.value64; if ( !oldHead.value.Next ) return NULL; newHead.value.Next = oldHead.value.Next->Next; *((uint32 *)&newHead.value.Depth) = *((uint32 *)&oldHead.value.Depth) - 1; if ( ThreadInterlockedAssignIf64( &m_Head.value64, newHead.value64, oldHead.value64 ) ) { break; } ThreadPause(); }; return (TSLNodeBase_t *)oldHead.value.Next; #endif } TSLNodeBase_t *Detach() { #ifdef USE_NATIVE_SLIST TSLNodeBase_t *pBase = (TSLNodeBase_t *)InterlockedFlushSList( &m_Head ); #ifdef _X360 __lwsync(); // read-acquire barrier #endif return pBase; #else TSLHead_t oldHead; TSLHead_t newHead; do { ThreadPause(); oldHead.value64 = m_Head.value64; if ( !oldHead.value.Next ) return NULL; newHead.value.Next = NULL; *((uint32 *)&newHead.value.Depth) = *((uint32 *)&oldHead.value.Depth) & 0xffff0000; } while( !ThreadInterlockedAssignIf64( &m_Head.value64, newHead.value64, oldHead.value64 ) ); return (TSLNodeBase_t *)oldHead.value.Next; #endif } int Count() const { #ifdef USE_NATIVE_SLIST return QueryDepthSList( &m_Head ); #else return m_Head.value.Depth; #endif } private: TSLHead_t m_Head; }; //------------------------------------- template class TSLIST_HEAD_ALIGN CTSSimpleList : public CTSListBase { public: void Push( T *pNode ) { Assert( sizeof(T) >= sizeof(TSLNodeBase_t) ); CTSListBase::Push( (TSLNodeBase_t *)pNode ); } T *Pop() { return (T *)CTSListBase::Pop(); } }; //------------------------------------- template class TSLIST_HEAD_ALIGN CTSList : public CTSListBase { public: struct TSLIST_NODE_ALIGN Node_t : public TSLNodeBase_t { Node_t() {} Node_t( const T &init ) : elem( init ) {} T elem; }; ~CTSList() { Purge(); } void Purge() { Node_t *pCurrent = Detach(); Node_t *pNext; while ( pCurrent ) { pNext = (Node_t *)pCurrent->Next; delete pCurrent; pCurrent = pNext; } } void RemoveAll() { Purge(); } Node_t *Push( Node_t *pNode ) { return (Node_t *)CTSListBase::Push( pNode ); } Node_t *Pop() { return (Node_t *)CTSListBase::Pop(); } void PushItem( const T &init ) { Push( new Node_t( init ) ); } bool PopItem( T *pResult) { Node_t *pNode = Pop(); if ( !pNode ) return false; *pResult = pNode->elem; delete pNode; return true; } Node_t *Detach() { return (Node_t *)CTSListBase::Detach(); } }; // this is a replacement for CTSList<> and CObjectPool<> that does not // have a per-item, per-alloc new/delete overhead // similar to CTSSimpleList except that it allocates it's own pool objects // and frees them on destruct. Also it does not overlay the TSNodeBase_t memory // on T's memory template< class T > class TSLIST_HEAD_ALIGN CTSPool : public CTSListBase { // packs the node and the item (T) into a single struct and pools those struct TSLIST_NODE_ALIGN simpleTSPoolStruct_t : public TSLNodeBase_t { T elem; }; public: ~CTSPool() { simpleTSPoolStruct_t *pNode = NULL; while ( 1 ) { pNode = (simpleTSPoolStruct_t *)CTSListBase::Pop(); if ( !pNode ) break; delete pNode; } } void PutObject( T *pInfo ) { char *pElem = (char *)pInfo; pElem -= offsetof(simpleTSPoolStruct_t,elem); simpleTSPoolStruct_t *pNode = (simpleTSPoolStruct_t *)pElem; CTSListBase::Push( pNode ); } T *GetObject() { simpleTSPoolStruct_t *pNode = (simpleTSPoolStruct_t *)CTSListBase::Pop(); if ( !pNode ) { pNode = new simpleTSPoolStruct_t; } return &pNode->elem; } }; //------------------------------------- template class TSLIST_HEAD_ALIGN CTSListWithFreeList : public CTSListBase { public: struct TSLIST_NODE_ALIGN Node_t : public TSLNodeBase_t { Node_t() {} Node_t( const T &init ) : elem( init ) {} T elem; }; ~CTSListWithFreeList() { Purge(); } void Purge() { Node_t *pCurrent = Detach(); Node_t *pNext; while ( pCurrent ) { pNext = (Node_t *)pCurrent->Next; delete pCurrent; pCurrent = pNext; } pCurrent = (Node_t *)m_FreeList.Detach(); while ( pCurrent ) { pNext = (Node_t *)pCurrent->Next; delete pCurrent; pCurrent = pNext; } } void RemoveAll() { Node_t *pCurrent = Detach(); Node_t *pNext; while ( pCurrent ) { pNext = (Node_t *)pCurrent->Next; m_FreeList.Push( pCurrent ); pCurrent = pNext; } } Node_t *Push( Node_t *pNode ) { return (Node_t *)CTSListBase::Push( pNode ); } Node_t *Pop() { return (Node_t *)CTSListBase::Pop(); } void PushItem( const T &init ) { Node_t *pNode = (Node_t *)m_FreeList.Pop(); if ( !pNode ) { pNode = new Node_t; } pNode->elem = init; Push( pNode ); } bool PopItem( T *pResult) { Node_t *pNode = Pop(); if ( !pNode ) return false; *pResult = pNode->elem; m_FreeList.Push( pNode ); return true; } Node_t *Detach() { return (Node_t *)CTSListBase::Detach(); } void FreeNode( Node_t *pNode ) { m_FreeList.Push( pNode ); } private: CTSListBase m_FreeList; }; //----------------------------------------------------------------------------- // Lock free queue // // A special consideration: the element type should be simple. This code // actually dereferences freed nodes as part of pop, but later detects // that. If the item in the queue is a complex type, only bad things can // come of that. Also, therefore, if you're using Push/Pop instead of // push item, be aware that the node memory cannot be freed until // all threads that might have been popping have completed the pop. // The PushItem()/PopItem() for handles this by keeping a persistent // free list. Dont mix Push/PushItem. Note also nodes will be freed at the end, // and are expected to have been allocated with operator new. //----------------------------------------------------------------------------- template class TSLIST_HEAD_ALIGN CTSQueue { public: struct TSLIST_NODE_ALIGN Node_t { Node_t() {} Node_t( const T &init ) : elem( init ) {} Node_t *pNext; T elem; }; union TSLIST_HEAD_ALIGN NodeLink_t { struct Value_t { Node_t *pNode; int32 sequence; } value; int64 value64; }; CTSQueue() { COMPILE_TIME_ASSERT( sizeof(Node_t) >= sizeof(TSLNodeBase_t) ); if ( ((size_t)&m_Head) % TSLIST_HEAD_ALIGNMENT != 0 ) { Error( "CTSQueue: Misaligned queue\n" ); DebuggerBreak(); } if ( ((size_t)&m_Tail) % TSLIST_HEAD_ALIGNMENT != 0 ) { Error( "CTSQueue: Misaligned queue\n" ); DebuggerBreak(); } m_Count = 0; m_Head.value.sequence = m_Tail.value.sequence = 0; m_Head.value.pNode = m_Tail.value.pNode = new Node_t; // list always contains a dummy node m_Head.value.pNode->pNext = End(); } ~CTSQueue() { Purge(); Assert( m_Count == 0 ); Assert( m_Head.value.pNode == m_Tail.value.pNode ); Assert( m_Head.value.pNode->pNext == End() ); delete m_Head.value.pNode; } // Note: Purge, RemoveAll, and Validate are *not* threadsafe void Purge() { if ( IsDebug() ) { Validate(); } Node_t *pNode; while ( ( pNode = Pop() ) != NULL ) { delete pNode; } while ( ( pNode = (Node_t *)m_FreeNodes.Pop() ) != NULL ) { delete pNode; } Assert( m_Count == 0 ); Assert( m_Head.value.pNode == m_Tail.value.pNode ); Assert( m_Head.value.pNode->pNext == End() ); m_Head.value.sequence = m_Tail.value.sequence = 0; } void RemoveAll() { if ( IsDebug() ) { Validate(); } Node_t *pNode; while ( ( pNode = Pop() ) != NULL ) { m_FreeNodes.Push( (TSLNodeBase_t *)pNode ); } } bool Validate() { bool bResult = true; int nNodes = 0; if ( m_Tail.value.pNode->pNext != End() ) { DebuggerBreakIfDebugging(); bResult = false; } if ( m_Count == 0 ) { if ( m_Head.value.pNode != m_Tail.value.pNode ) { DebuggerBreakIfDebugging(); bResult = false; } } Node_t *pNode = m_Head.value.pNode; while ( pNode != End() ) { nNodes++; pNode = pNode->pNext; } nNodes--;// skip dummy node if ( nNodes != m_Count ) { DebuggerBreakIfDebugging(); bResult = false; } if ( !bResult ) { Msg( "Corrupt CTSQueueDetected" ); } return bResult; } void FinishPush( Node_t *pNode, const NodeLink_t &oldTail ) { NodeLink_t newTail; newTail.value.pNode = pNode; newTail.value.sequence = oldTail.value.sequence + 1; #ifdef _X360 __lwsync(); // write-release barrier #endif InterlockedCompareExchangeNodeLink( &m_Tail, newTail, oldTail ); } Node_t *Push( Node_t *pNode ) { #ifdef _DEBUG if ( (size_t)pNode % TSLIST_NODE_ALIGNMENT != 0 ) { Error( "CTSListBase: Misaligned node\n" ); DebuggerBreak(); } #endif NodeLink_t oldTail; pNode->pNext = End(); for (;;) { oldTail = m_Tail; if ( InterlockedCompareExchangeNode( &(oldTail.value.pNode->pNext), pNode, End() ) == End() ) { break; } else { // Another thread is trying to push, help it along FinishPush( oldTail.value.pNode->pNext, oldTail ); } } FinishPush( pNode, oldTail ); m_Count++; return oldTail.value.pNode; } Node_t *Pop() { #define TSQUEUE_BAD_NODE_LINK ((Node_t *)0xdeadbeef) NodeLink_t * volatile pHead = &m_Head; NodeLink_t * volatile pTail = &m_Tail; Node_t * volatile * pHeadNode = &m_Head.value.pNode; volatile int * volatile pHeadSequence = &m_Head.value.sequence; Node_t * volatile * pTailNode = &pTail->value.pNode; NodeLink_t head; NodeLink_t newHead; Node_t *pNext; int tailSequence; T elem; for (;;) { head.value.sequence = *pHeadSequence; // must grab sequence first, which allows condition below to ensure pNext is valid #ifdef _X360 __lwsync(); // 360 needs a barrier to prevent reordering of these assignments #endif head.value.pNode = *pHeadNode; tailSequence = pTail->value.sequence; pNext = head.value.pNode->pNext; if ( pNext && head.value.sequence == *pHeadSequence ) // Checking pNext only to force optimizer to not reorder the assignment to pNext and the compare of the sequence { if ( bTestOptimizer ) { if ( pNext == TSQUEUE_BAD_NODE_LINK ) { Msg( "Bad node link detected\n" ); continue; } } if ( head.value.pNode == *pTailNode ) { if ( pNext == End() ) { return NULL; } // Another thread is trying to push, help it along NodeLink_t &oldTail = head; // just reuse local memory for head to build old tail oldTail.value.sequence = tailSequence; // reuse head pNode FinishPush( pNext, oldTail ); } else if ( pNext != End() ) { elem = pNext->elem; // NOTE: next could be a freed node here, by design newHead.value.pNode = pNext; newHead.value.sequence = head.value.sequence + 1; if ( InterlockedCompareExchangeNodeLink( pHead, newHead, head ) ) { #ifdef _X360 __lwsync(); // read-acquire barrier #endif if ( bTestOptimizer ) { head.value.pNode->pNext = TSQUEUE_BAD_NODE_LINK; } break; } } } } m_Count--; head.value.pNode->elem = elem; return head.value.pNode; } void FreeNode( Node_t *pNode ) { m_FreeNodes.Push( (TSLNodeBase_t *)pNode ); } void PushItem( const T &init ) { Node_t *pNode = (Node_t *)m_FreeNodes.Pop(); if ( pNode ) { pNode->elem = init; } else { pNode = new Node_t( init ); } Push( pNode ); } bool PopItem( T *pResult) { Node_t *pNode = Pop(); if ( !pNode ) return false; *pResult = pNode->elem; m_FreeNodes.Push( (TSLNodeBase_t *)pNode ); return true; } int Count() { return m_Count; } private: Node_t *End() { return (Node_t *)this; } // just need a unique signifier #ifndef _WIN64 Node_t *InterlockedCompareExchangeNode( Node_t * volatile *ppNode, Node_t *value, Node_t *comperand ) { return (Node_t *)::ThreadInterlockedCompareExchangePointer( (void **)ppNode, value, comperand ); } bool InterlockedCompareExchangeNodeLink( NodeLink_t volatile *pLink, const NodeLink_t &value, const NodeLink_t &comperand ) { return ThreadInterlockedAssignIf64( (int64 *)pLink, value.value64, comperand.value64 ); } #else Node_t *InterlockedCompareExchangeNode( Node_t * volatile *ppNode, Node_t *value, Node_t *comperand ) { AUTO_LOCK( m_ExchangeMutex ); Node_t *retVal = *ppNode; if ( *ppNode == comperand ) *ppNode = value; return retVal; } bool InterlockedCompareExchangeNodeLink( NodeLink_t volatile *pLink, const NodeLink_t &value, const NodeLink_t &comperand ) { AUTO_LOCK( m_ExchangeMutex ); if ( pLink->value64 == comperand.value64 ) { pLink->value64 = value.value64; return true; } return false; } CThreadFastMutex m_ExchangeMutex; #endif NodeLink_t m_Head; NodeLink_t m_Tail; CInterlockedInt m_Count; CTSListBase m_FreeNodes; }; #include "tier0/memdbgoff.h" #endif // TSLIST_H