//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// #ifndef K8PERFORMANCECOUNTERS_H #define K8PERFORMANCECOUNTERS_H /* * AMD K8 events. * */ typedef union EVENT_MASK(NULL_MASK) { // no tests defined uint16 flat; } EVENT_MASK(NULL_MASK); #define MSR_K8_EVNTSEL0 0xC0010000 /* .. 0xC0010003 */ #define MSR_K8_PERFCTR0 0xC0010004 /* .. 0xC0010007 */ # pragma pack(push, 1) // access to these bits is through the methods typedef union PerfEvtSel { struct { uint64 EventMask : 8; uint64 UnitMask : 8; uint64 USR : 1; uint64 OS : 1; uint64 Edge : 1; uint64 PC : 1; uint64 INTAPIC : 1; uint64 Reserved21 : 1; uint64 Enable : 1; uint64 Complement : 1; // aka INV uint64 Threshold : 8; // aka CounterMask uint64 Reserver32 : 32; }; uint64 flat; } PerfEvtSel; enum UnitEncode { FP, LS, DC, BU, IC, UE_Unknown, FR, NB }; # pragma pack(pop) // Turn off the no return value warning in ReadCounter. #pragma warning( disable : 4035 ) #define k8NUM_COUNTERS 4 class k8BaseEvent { public: PME * pme; PerfEvtSel eventSelect[k8NUM_COUNTERS]; unsigned short m_eventMask; int event_id; tchar * name; tchar revRequired; int eventSelectNum; UnitEncode unitEncode; void SetCounter(int n) { if (n < 0) n = 0; else if (n > 3) n = 3; eventSelectNum = n; } k8BaseEvent() { pme = PME::Instance(); for(int i = 0; i< k8NUM_COUNTERS; i++) { eventSelect[i].flat = 0; } eventSelectNum = 0; m_eventMask = 0; event_id = 0; name = 0; revRequired = 'A'; } void SetCaptureMode(PrivilegeCapture priv) { PerfEvtSel & select = eventSelect[eventSelectNum]; StopCounter(); switch (priv) { case OS_Only: select.USR = 0; select.OS = 1; break; case USR_Only: select.USR = 1; select.OS = 0; break; case OS_and_USR: select.USR = 1; select.OS = 1; break; } select.UnitMask = m_eventMask; select.EventMask = event_id; int selectPort = MSR_K8_EVNTSEL0 + eventSelectNum; pme->WriteMSR(selectPort, select.flat); } void SetFiltering(CompareState compareEnable, CompareMethod compareMethod, uint8 threshold, EdgeState edgeEnable) { PerfEvtSel & select = eventSelect[eventSelectNum]; StopCounter(); if (compareEnable == CompareDisable) select.Threshold = 0; else select.Threshold = threshold; select.Complement = compareMethod; select.Edge = edgeEnable; int selectPort = MSR_K8_EVNTSEL0 + eventSelectNum; pme->WriteMSR(selectPort, select.flat); } void StartCounter() { PerfEvtSel & select = eventSelect[eventSelectNum]; select.Enable = 1; int selectPort = MSR_K8_EVNTSEL0 + eventSelectNum; pme->WriteMSR(selectPort, select.flat); } void StopCounter() { PerfEvtSel & select = eventSelect[eventSelectNum]; select.Enable = 0; int selectPort = MSR_K8_EVNTSEL0 + eventSelectNum; pme->WriteMSR(selectPort, select.flat); } void ClearCounter() { PerfEvtSel & select = eventSelect[eventSelectNum]; int counterPort = MSR_K8_PERFCTR0 + eventSelectNum; pme->WriteMSR(counterPort, 0ui64 ); // clear } void WriteCounter(int64 value) { PerfEvtSel & select = eventSelect[eventSelectNum]; int counterPort = MSR_K8_PERFCTR0 + eventSelectNum; pme->WriteMSR(counterPort, value); // clear } int64 ReadCounter() { #if PME_DEBUG PerfEvtSel & select = eventSelect[eventSelectNum]; if (select.USR == 0 && select.OS == 0) return -1; // no area to collect, use SetCaptureMode if (select.EventMask == 0) return -2; // no event mask set if (eventSelectNum < 0 || eventSelectNum > 3) return -3; // counter not legal // check revision #endif // ReadMSR should work here too, but RDPMC should be faster //ReadMSR(counterPort, int64); // we need to copy this into a temp for some reason int temp = eventSelectNum; _asm { mov ecx, temp RDPMC } } }; #pragma warning( default : 4035 ) typedef union EVENT_MASK(k8_dispatched_fpu_ops) { // event 0 struct { uint16 AddPipeOps:1; // Add pipe ops excluding junk ops" }, uint16 MulPipeOps:1; // Multiply pipe ops excluding junk ops" },, uint16 StoreOps:1; // Store pipe ops excluding junk ops" }, uint16 AndPipeOpsJunk:1; // Add pipe junk ops" },, uint16 MulPipeOpsJunk:1; // Multiply pipe junk ops" }, uint16 StoreOpsJunk:1; // Store pipe junk ops" } } }; uint16 flat; } EVENT_MASK(k8_dispatched_fpu_ops); class k8Event_DISPATCHED_FPU_OPS : public k8BaseEvent { public: k8Event_DISPATCHED_FPU_OPS() { eventMask = (EVENT_MASK(k8_dispatched_fpu_ops) *)&m_eventMask; event_id = 0x00; unitEncode = FP; name = _T("Dispatched FPU ops"); revRequired = 'B'; } EVENT_MASK(k8_dispatched_fpu_ops) * eventMask; }; ////////////////////////////////////////////////////////// class k8Event_NO_FPU_OPS : public k8BaseEvent { public: k8Event_NO_FPU_OPS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; event_id = 0x01; unitEncode = FP; name = _T("Cycles with no FPU ops retired"); revRequired = 'B'; } EVENT_MASK(NULL_MASK) * eventMask; }; ////////////////////////////////////////////////////////// class k8Event_FAST_FPU_OPS : public k8BaseEvent { public: k8Event_FAST_FPU_OPS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; event_id = 0x02; unitEncode = FP; name = _T("Dispatched FPU ops that use the fast flag interface"); revRequired = 'B'; } EVENT_MASK(NULL_MASK) * eventMask; }; ////////////////////////////////////////////////////////// typedef union EVENT_MASK(k8_segment_register_load) { struct { uint16 ES:1; uint16 CS:1; uint16 SS:1; uint16 DS:1; uint16 FS:1; uint16 GS:1; uint16 HS:1; }; uint16 flat; } EVENT_MASK(k8_segment_register_load); class k8Event_SEG_REG_LOAD : public k8BaseEvent { public: k8Event_SEG_REG_LOAD() { eventMask = (EVENT_MASK(k8_segment_register_load) *)&m_eventMask; name = _T("Segment register load"); event_id = 0x20; unitEncode = LS; } EVENT_MASK(k8_segment_register_load) * eventMask; }; class k8Event_SELF_MODIFY_RESYNC : public k8BaseEvent { public: k8Event_SELF_MODIFY_RESYNC() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Microarchitectural resync caused by self modifying code"); event_id = 0x21; unitEncode = LS; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_LS_RESYNC_BY_SNOOP : public k8BaseEvent { public: k8Event_LS_RESYNC_BY_SNOOP() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; event_id = 0x22; unitEncode = LS; name = _T("Microarchitectural resync caused by snoop"); } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_LS_BUFFER_FULL : public k8BaseEvent { public: k8Event_LS_BUFFER_FULL() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("LS Buffer 2 Full"); event_id = 0x23; unitEncode = LS; } EVENT_MASK(NULL_MASK) * eventMask; }; typedef union EVENT_MASK(k8_locked_op) { struct { uint16 NumLockInstr : 1; //Number of lock instructions executed uint16 NumCyclesInRequestGrant : 1; //Number of cycles spent in the lock request/grant stage uint16 NumCyclesForLock:1; /*Number of cycles a lock takes to complete once it is non-speculative and is the oldest load/store operation (non-speculative cycles in Ls2 entry 0)*/ }; uint16 flat; } EVENT_MASK(k8_locked_op); class k8Event_LOCKED_OP : public k8BaseEvent { public: EVENT_MASK(k8_locked_op) * eventMask; k8Event_LOCKED_OP() { eventMask = (EVENT_MASK(k8_locked_op) *)&m_eventMask; name = _T("Locked operation"); event_id = 0x24; unitEncode = LS; revRequired = 'C'; } }; class k8Event_OP_LATE_CANCEL : public k8BaseEvent { public: k8Event_OP_LATE_CANCEL() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Microarchitectural late cancel of an operation"); event_id = 0x25; unitEncode = LS; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("OP_LATE_CANCEL"); }; class k8Event_CFLUSH_RETIRED : public k8BaseEvent { public: k8Event_CFLUSH_RETIRED() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Retired CFLUSH instructions"); event_id = 0x26; unitEncode = LS; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("CFLUSH_RETIRED"); }; class k8Event_CPUID_RETIRED : public k8BaseEvent { public: k8Event_CPUID_RETIRED() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Retired CPUID instructions"); event_id = 0x27; unitEncode = LS; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("CPUID_RETIRED"); }; typedef union EVENT_MASK( k8_cache) { struct { uint16 Invalid:1; uint16 Exclusive:1; uint16 Shared:1; uint16 Owner:1; uint16 Modified:1; }; uint16 flat; }EVENT_MASK( k8_cache); /* 0x40-0x47: from K7 official event set */ class k8Event_DATA_CACHE_ACCESSES : public k8BaseEvent { k8Event_DATA_CACHE_ACCESSES() { event_id = 0x40; unitEncode = DC; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //_T("DATA_CACHE_ACCESSES"), name = _T("Data cache accesses"); } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_DATA_CACHE_MISSES : public k8BaseEvent { k8Event_DATA_CACHE_MISSES() { event_id = 0x41; unitEncode = DC; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //_T("DATA_CACHE_MISSES"), name = _T("Data cache misses"); } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_DATA_CACHE_REFILLS_FROM_L2 : public k8BaseEvent { k8Event_DATA_CACHE_REFILLS_FROM_L2() { event_id = 0x42; unitEncode = DC; eventMask = (EVENT_MASK(k8_cache) *)&m_eventMask; name = _T("Data cache refills from L2"); } EVENT_MASK(k8_cache) * eventMask; }; class k8Event_DATA_CACHE_REFILLS_FROM_SYSTEM : public k8BaseEvent { k8Event_DATA_CACHE_REFILLS_FROM_SYSTEM() { event_id = 0x43; unitEncode = DC; eventMask = (EVENT_MASK(k8_cache) *)&m_eventMask; //UM(k7_um_moesi), //_T("DATA_CACHE_REFILLS_FROM_SYSTEM"), name = _T("Data cache refills from system"); } EVENT_MASK(k8_cache) * eventMask; }; class k8Event_DATA_CACHE_WRITEBACKS : public k8BaseEvent { k8Event_DATA_CACHE_WRITEBACKS() { event_id = 0x44; unitEncode = DC; eventMask = (EVENT_MASK(k8_cache) *)&m_eventMask; //UM(k7_um_moesi), //_T("DATA_CACHE_WRITEBACKS"), name = _T("Data cache writebacks"); } EVENT_MASK(k8_cache) * eventMask; }; class k8Event_L1_DTLB_MISSES_AND_L2_DTLB_HITS : public k8BaseEvent { k8Event_L1_DTLB_MISSES_AND_L2_DTLB_HITS() { event_id = 0x45; unitEncode = DC; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("L1 DTLB misses and L2 DTLB hits"); } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_L1_AND_L2_DTLB_MISSES : public k8BaseEvent { k8Event_L1_AND_L2_DTLB_MISSES() { event_id = 0x46; unitEncode = DC; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("L1 and L2 DTLB misses") ; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_MISALIGNED_DATA_REFERENCES : public k8BaseEvent { k8Event_MISALIGNED_DATA_REFERENCES() { event_id = 0x47; unitEncode = DC; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //NULL, _T("MISALIGNED_DATA_REFERENCES"), name = _T("Misaligned data references"); } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_ACCESS_CANCEL_LATE : public k8BaseEvent { public: k8Event_ACCESS_CANCEL_LATE() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Microarchitectural late cancel of an access"); event_id = 0x48; unitEncode = DC; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("ACCESS_CANCEL_LATE"); }; class k8Event_ACCESS_CANCEL_EARLY : public k8BaseEvent { public: k8Event_ACCESS_CANCEL_EARLY() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Microarchitectural early cancel of an access"); event_id = 0x49; unitEncode = DC; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("ACCESS_CANCEL_EARLY"); }; typedef union EVENT_MASK( k8_ecc) { struct { uint16 ScrubberError : 1; // Scrubber error" }, uint16 PiggybackScrubberErrors : 1; // Piggyback scrubber errors" } } }; uint16 flat; }EVENT_MASK( k8_ecc); class k8Event_ECC_BIT_ERR : public k8BaseEvent { public: k8Event_ECC_BIT_ERR() { eventMask = (EVENT_MASK(k8_ecc) *)&m_eventMask; name = _T("One bit ECC error recorded found by scrubber"); event_id = 0x4A; unitEncode = DC; } EVENT_MASK(k8_ecc) * eventMask; // name = _T("ECC_BIT_ERR"); }; // 4B typedef union EVENT_MASK( k8_distpatch_prefetch_instructions) { struct { uint16 Load : 1; uint16 Store : 1; uint16 NTA : 1; }; uint16 flat; }EVENT_MASK( k8_distpatch_prefetch_instructions); class k8Event_DISPATCHED_PRE_INSTRS : public k8BaseEvent { public: k8Event_DISPATCHED_PRE_INSTRS() { eventMask = (EVENT_MASK(k8_distpatch_prefetch_instructions) *)&m_eventMask; name = _T("Dispatched prefetch instructions"); event_id = 0x4B; unitEncode = DC; } EVENT_MASK(k8_distpatch_prefetch_instructions) * eventMask; // name = _T("DISPATCHED_PRE_INSTRS"); /* 0x4C: added in Revision C */ }; typedef union EVENT_MASK( k8_lock_accesses) { struct { uint16 DcacheAccesses:1; // Number of dcache accesses by lock instructions" }, uint16 DcacheMisses:1; // Number of dcache misses by lock instructions" } } }; uint16 flat; }EVENT_MASK( k8_lock_accesses); class k8Event_LOCK_ACCESSES : public k8BaseEvent { public: k8Event_LOCK_ACCESSES() { eventMask = (EVENT_MASK(k8_lock_accesses) *)&m_eventMask; name = _T("DCACHE accesses by locks") ; event_id = 0x4C; unitEncode = DC; revRequired = 'C'; } EVENT_MASK(k8_lock_accesses) * eventMask; }; class k8Event_CYCLES_PROCESSOR_IS_RUNNING : public k8BaseEvent { public: k8Event_CYCLES_PROCESSOR_IS_RUNNING() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Cycles processor is running (not in HLT or STPCLK)"); event_id = 0x76; unitEncode = BU; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("CYCLES_PROCESSOR_IS_RUNNING"); /* undocumented *; }; typedef union EVENT_MASK( k8_internal_L2_request) { struct { uint16 ICFill:1; // IC fill" }, uint16 DCFill:1; // DC fill" }, uint16 TLBReload:1; // TLB reload" }, uint16 TagSnoopRequest:1; // Tag snoop request" }, uint16 CancelledRequest:1; // Cancelled request" } } }; uint16 flat; }EVENT_MASK( k8_internal_L2_request); class k8Event_BU_INT_L2_REQ : public k8BaseEvent { public: k8Event_BU_INT_L2_REQ() { eventMask = (EVENT_MASK(k8_internal_L2_request) *)&m_eventMask; name = _T("Internal L2 request"); unitEncode = BU; event_id = 0x7D; } EVENT_MASK(k8_internal_L2_request) * eventMask; } ; // name = _T("BU_INT_L2_REQ"); // 7E typedef union EVENT_MASK( k8_fill_request_missed_L2) { struct { uint16 ICFill:1; // IC fill" }, uint16 DCFill:1; // DC fill" }, uint16 TLBReload:1; // TLB reload" }, }; uint16 flat; } EVENT_MASK( k8_fill_request_missed_L2); class k8Event_BU_FILL_REQ : public k8BaseEvent { public: k8Event_BU_FILL_REQ() { eventMask = (EVENT_MASK(k8_fill_request_missed_L2) *)&m_eventMask; name = _T("Fill request that missed in L2"); event_id = 0x7E; unitEncode = BU; } EVENT_MASK(k8_fill_request_missed_L2) * eventMask; // name = _T("BU_FILL_REQ"); }; // 7F typedef union EVENT_MASK( k8_fill_into_L2) { struct { uint16 DirtyL2Victim:1; // Dirty L2 victim uint16 VictimFromL2:1; // Victim from L2 }; uint16 flat; }EVENT_MASK( k8_fill_into_L2); class k8Event_BU_FILL_L2 : public k8BaseEvent { public: k8Event_BU_FILL_L2() { eventMask = (EVENT_MASK(k8_fill_into_L2) *)&m_eventMask; name = _T("Fill into L2"); event_id = 0x7F; unitEncode = BU; } EVENT_MASK(k8_fill_into_L2) * eventMask; // name = _T("BU_FILL_L2"); }; class k8Event_INSTRUCTION_CACHE_FETCHES : public k8BaseEvent { public: k8Event_INSTRUCTION_CACHE_FETCHES() { event_id = 0x80; unitEncode = IC; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Instruction cache fetches"); } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_INSTRUCTION_CACHE_MISSES : public k8BaseEvent { public: k8Event_INSTRUCTION_CACHE_MISSES() { event_id = 0x81; unitEncode = IC; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("INSTRUCTION_CACHE_MISSES"), name = _T("Instruction cache misses"); } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_IC_REFILL_FROM_L2 : public k8BaseEvent { public: k8Event_IC_REFILL_FROM_L2() { eventMask = (EVENT_MASK(k8_cache) *)&m_eventMask; name = _T("Refill from L2"); event_id = 0x82; unitEncode = IC; } EVENT_MASK(k8_cache) * eventMask; // name = _T("IC_REFILL_FROM_L2"); }; class k8Event_IC_REFILL_FROM_SYS : public k8BaseEvent { public: k8Event_IC_REFILL_FROM_SYS() { eventMask = (EVENT_MASK(k8_cache) *)&m_eventMask; name = _T("Refill from system"); event_id = 0x83; unitEncode = IC; } EVENT_MASK(k8_cache) * eventMask; // name = _T("IC_REFILL_FROM_SYS"); }; class k8Event_L1_ITLB_MISSES_AND_L2_ITLB_HITS : public k8BaseEvent { public: k8Event_L1_ITLB_MISSES_AND_L2_ITLB_HITS() { event_id = 0x84; unitEncode = IC; name = _T("L1 ITLB misses (and L2 ITLB hits)"); eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_L1_AND_L2_ITLB_MISSES : public k8BaseEvent { public: k8Event_L1_AND_L2_ITLB_MISSES() { event_id = 0x85; unitEncode = IC; name = _T("(L1 and) L2 ITLB misses"); eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_IC_RESYNC_BY_SNOOP : public k8BaseEvent { public: k8Event_IC_RESYNC_BY_SNOOP() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; event_id = 0x86; unitEncode = IC; name = _T("Microarchitectural resync caused by snoop"); } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("IC_RESYNC_BY_SNOOP"); /* similar to 0x22; but IC unit instead of LS unit */ }; class k8Event_IC_FETCH_STALL : public k8BaseEvent { public: k8Event_IC_FETCH_STALL() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Instruction fetch stall"); event_id = 0x87; unitEncode = IC; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("IC_FETCH_STALL"); }; class k8Event_IC_STACK_HIT : public k8BaseEvent { public: k8Event_IC_STACK_HIT() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Return stack hit"); event_id = 0x88; unitEncode = IC; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("IC_STACK_HIT"); }; class k8Event_IC_STACK_OVERFLOW : public k8BaseEvent { public: k8Event_IC_STACK_OVERFLOW() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Return stack overflow"); event_id = 0x89; unitEncode = IC; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("IC_STACK_OVERFLOW"); }; /* 0xC0-0xC7: from K7 official event set */ class k8Event_RETIRED_INSTRUCTIONS : public k8BaseEvent { public: k8Event_RETIRED_INSTRUCTIONS() { event_id = 0xC0; unitEncode = FR; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("RETIRED_INSTRUCTIONS"), name = _T("Retired instructions (includes exceptions, interrupts, resyncs)"); } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_OPS : public k8BaseEvent { public: k8Event_RETIRED_OPS() { event_id = 0xC1; unitEncode = FR; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("RETIRED_OPS"), name = _T("Retired Ops") ; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_BRANCHES : public k8BaseEvent { public: k8Event_RETIRED_BRANCHES() { event_id = 0xC2; unitEncode = FR; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("RETIRED_BRANCHES"), name = _T("Retired branches (conditional, unconditional, exceptions, interrupts)") ; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_BRANCHES_MISPREDICTED : public k8BaseEvent { public: k8Event_RETIRED_BRANCHES_MISPREDICTED() { event_id = 0xC3; unitEncode = FR; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("RETIRED_BRANCHES_MISPREDICTED"), name = _T("Retired branches mispredicted") ; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_TAKEN_BRANCHES : public k8BaseEvent { public: k8Event_RETIRED_TAKEN_BRANCHES() { event_id = 0xC4; unitEncode = FR; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("RETIRED_TAKEN_BRANCHES"), name = _T("Retired taken branches") ; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_TAKEN_BRANCHES_MISPREDICTED : public k8BaseEvent { public: k8Event_RETIRED_TAKEN_BRANCHES_MISPREDICTED() { event_id = 0xC5; unitEncode = FR; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("RETIRED_TAKEN_BRANCHES_MISPREDICTED"), name = _T("Retired taken branches mispredicted") ; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_FAR_CONTROL_TRANSFERS : public k8BaseEvent { public: k8Event_RETIRED_FAR_CONTROL_TRANSFERS() { event_id = 0xC6; unitEncode = FR; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("RETIRED_FAR_CONTROL_TRANSFERS"), name = _T("Retired far control transfers") ; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_RESYNC_BRANCHES : public k8BaseEvent { public: k8Event_RETIRED_RESYNC_BRANCHES() { event_id = 0xC7; unitEncode = FR; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; //0xF, NULL, _T("RETIRED_RESYNC_BRANCHES"), name = _T("Retired resync branches (only non-control transfer branches counted)") ; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_NEAR_RETURNS : public k8BaseEvent { public: k8Event_RETIRED_NEAR_RETURNS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Retired near returns"); event_id = 0xC8; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_RETIRED_RETURNS_MISPREDICT : public k8BaseEvent { public: k8Event_RETIRED_RETURNS_MISPREDICT() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Retired near returns mispredicted"); event_id = 0xC9; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("RETIRED_RETURNS_MISPREDICT"); }; class k8Event_RETIRED_BRANCH_MISCOMPARE : public k8BaseEvent { public: k8Event_RETIRED_BRANCH_MISCOMPARE() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Retired taken branches mispredicted due to address miscompare"); event_id = 0xCA; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("RETIRED_BRANCH_MISCOMPARE"); }; /* Revision B and later */ typedef union EVENT_MASK( k8_retired_fpu_instr) { struct { uint16 DirtyL2Victim:1; // x87 instructions uint16 CombinedMMX_3DNow:1; // Combined MMX & 3DNow! instructions" }, uint16 CombinedPackedSSE_SSE2:1; // Combined packed SSE and SSE2 instructions" }, uint16 CombinedScalarSSE_SSE2:1; // Combined scalar SSE and SSE2 instructions" } } }; uint16 flat; }EVENT_MASK( k8_retired_fpu_instr); class k8Event_RETIRED_FPU_INSTRS : public k8BaseEvent { public: k8Event_RETIRED_FPU_INSTRS() { eventMask = (EVENT_MASK(k8_retired_fpu_instr) *)&m_eventMask; event_id = 0xCB; unitEncode = FR; name = _T("Retired FPU instructions"); revRequired = 'B'; } EVENT_MASK(k8_retired_fpu_instr) * eventMask; /* Revision B and later */ }; // CC typedef union EVENT_MASK( k8_retired_fastpath_double_op_instr ) { struct { uint16 LowOpPosition0:1; // With low op in position 0" }, uint16 LowOpPosition1:1; // With low op in position 1" }, uint16 LowOpPosition2:1; // With low op in position 2" } } }; uint16 flat; }EVENT_MASK( k8_retired_fastpath_double_op_instr); class k8Event_RETIRED_FASTPATH_INSTRS : public k8BaseEvent { public: k8Event_RETIRED_FASTPATH_INSTRS() { eventMask = (EVENT_MASK(k8_retired_fastpath_double_op_instr) *)&m_eventMask; event_id = 0xCC; unitEncode = FR; name = _T("Retired fastpath double op instructions"); revRequired = 'B'; } EVENT_MASK(k8_retired_fastpath_double_op_instr) * eventMask; }; class k8Event_INTERRUPTS_MASKED_CYCLES : public k8BaseEvent { public: k8Event_INTERRUPTS_MASKED_CYCLES() { event_id = 0xCD; unitEncode = FR; //0xF, NULL, _T("INTERRUPTS_MASKED_CYCLES"), name = _T("Interrupts masked cycles (IF=0)") ; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES : public k8BaseEvent { public: k8Event_INTERRUPTS_MASKED_WHILE_PENDING_CYCLES() { event_id = 0xCE; unitEncode = FR; //0xF, NULL, _T("INTERRUPTS_MASKED_WHILE_PENDING_CYCLES"), name = _T("Interrupts masked while pending cycles (INTR while IF=0)") ; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_NUMBER_OF_TAKEN_HARDWARE_INTERRUPTS : public k8BaseEvent { public: k8Event_NUMBER_OF_TAKEN_HARDWARE_INTERRUPTS() { event_id = 0xCF; unitEncode = FR; //0xF, NULL, _T("NUMBER_OF_TAKEN_HARDWARE_INTERRUPTS"), name = _T("Number of taken hardware interrupts") ; eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; } EVENT_MASK(NULL_MASK) * eventMask; }; class k8Event_DECODER_EMPTY : public k8BaseEvent { public: k8Event_DECODER_EMPTY() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Nothing to dispatch (decoder empty)"); event_id = 0xD0; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DECODER_EMPTY"); }; class k8Event_DISPATCH_STALLS : public k8BaseEvent { public: k8Event_DISPATCH_STALLS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stalls (events 0xD2-0xDA combined)"); event_id = 0xD1; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALLS"); }; class k8Event_DISPATCH_STALL_FROM_BRANCH_ABORT : public k8BaseEvent { public: k8Event_DISPATCH_STALL_FROM_BRANCH_ABORT() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall from branch abort to retire"); event_id = 0xD2; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_FROM_BRANCH_ABORT"); }; class k8Event_DISPATCH_STALL_SERIALIZATION : public k8BaseEvent { public: k8Event_DISPATCH_STALL_SERIALIZATION() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall for serialization"); event_id = 0xD3; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_SERIALIZATION"); }; class k8Event_DISPATCH_STALL_SEG_LOAD : public k8BaseEvent { public: k8Event_DISPATCH_STALL_SEG_LOAD() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall for segment load"); event_id = 0xD4; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_SEG_LOAD"); }; class k8Event_DISPATCH_STALL_REORDER_BUFFER : public k8BaseEvent { public: k8Event_DISPATCH_STALL_REORDER_BUFFER() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall when reorder buffer is full"); event_id = 0xD5; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_REORDER_BUFFER"); }; class k8Event_DISPATCH_STALL_RESERVE_STATIONS : public k8BaseEvent { public: k8Event_DISPATCH_STALL_RESERVE_STATIONS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall when reservation stations are full"); event_id = 0xD6; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_RESERVE_STATIONS"); }; class k8Event_DISPATCH_STALL_FPU : public k8BaseEvent { public: k8Event_DISPATCH_STALL_FPU() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall when FPU is full"); event_id = 0xD7; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_FPU"); }; class k8Event_DISPATCH_STALL_LS : public k8BaseEvent { public: k8Event_DISPATCH_STALL_LS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall when LS is full"); event_id = 0xD8; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_LS"); }; class k8Event_DISPATCH_STALL_QUIET_WAIT : public k8BaseEvent { public: k8Event_DISPATCH_STALL_QUIET_WAIT() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall when waiting for all to be quiet"); event_id = 0xD9; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_QUIET_WAIT"); }; class k8Event_DISPATCH_STALL_PENDING : public k8BaseEvent { public: k8Event_DISPATCH_STALL_PENDING() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Dispatch stall when far control transfer or resync branch is pending"); event_id = 0xDA; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DISPATCH_STALL_PENDING"); }; typedef union EVENT_MASK( k8_fpu_exceptions) { struct { uint16 x87ReclassMicrofaults:1; // x87 reclass microfaults" }, uint16 SSERetypeMicrofaults:1; // SSE retype microfaults" }, uint16 SSEReclassMicrofaults:1; // SSE reclass microfaults" }, uint16 SSE_x87Microtraps:1; // SSE and x87 microtraps" } } }; uint16 flat; }EVENT_MASK( k8_fpu_exceptions); class k8Event_FPU_EXCEPTIONS : public k8BaseEvent { public: k8Event_FPU_EXCEPTIONS() { eventMask = (EVENT_MASK(k8_fpu_exceptions) *)&m_eventMask; event_id = 0xDB; unitEncode = FR; name = _T("FPU exceptions"); revRequired = 'B'; } EVENT_MASK(k8_fpu_exceptions) * eventMask; // name = _T("FPU_EXCEPTIONS"); /* Revision B and later */ }; class k8Event_DR0_BREAKPOINTS : public k8BaseEvent { public: k8Event_DR0_BREAKPOINTS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Number of breakpoints for DR0"); event_id = 0xDC; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DR0_BREAKPOINTS"); }; class k8Event_DR1_BREAKPOINTS : public k8BaseEvent { public: k8Event_DR1_BREAKPOINTS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Number of breakpoints for DR1"); event_id = 0xDD; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DR1_BREAKPOINTS"); }; class k8Event_DR2_BREAKPOINTS : public k8BaseEvent { public: k8Event_DR2_BREAKPOINTS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Number of breakpoints for DR2"); event_id = 0xDE; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DR2_BREAKPOINTS"); }; class k8Event_DR3_BREAKPOINTS : public k8BaseEvent { public: k8Event_DR3_BREAKPOINTS() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Number of breakpoints for DR3"); event_id = 0xDF; unitEncode = FR; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DR3_BREAKPOINTS"); }; // E0 typedef union EVENT_MASK( k8_page_access_event) { struct { uint16 PageHit:1; // Page hit" }, uint16 PageMiss:1; // Page miss" }, uint16 PageConflict:1; // Page conflict" } } }; uint16 flat; }EVENT_MASK( k8_page_access_event); class k8Event_MEM_PAGE_ACCESS : public k8BaseEvent { public: k8Event_MEM_PAGE_ACCESS() { eventMask = (EVENT_MASK(k8_page_access_event) *)&m_eventMask; name = _T("Memory controller page access"); event_id = 0xE0; unitEncode = NB; } EVENT_MASK(k8_page_access_event) * eventMask; // name = _T("MEM_PAGE_ACCESS"); }; class k8Event_MEM_PAGE_TBL_OVERFLOW : public k8BaseEvent { public: k8Event_MEM_PAGE_TBL_OVERFLOW() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Memory controller page table overflow"); event_id = 0xE1; unitEncode = NB; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("MEM_PAGE_TBL_OVERFLOW"); }; class k8Event_DRAM_SLOTS_MISSED : public k8BaseEvent { public: k8Event_DRAM_SLOTS_MISSED() { eventMask = (EVENT_MASK(NULL_MASK) *)&m_eventMask; name = _T("Memory controller DRAM command slots missed (in MemClks)"); event_id = 0xE2; unitEncode = NB; } EVENT_MASK(NULL_MASK) * eventMask; // name = _T("DRAM_SLOTS_MISSED"); }; // e3 typedef union EVENT_MASK( k8_turnaround) { struct { uint16 DIMMTurnaround:1; //DIMM turnaround" }, uint16 ReadToWriteTurnaround:1; //Read to write turnaround" }, uint16 WriteToReadTurnaround:1; //Write to read turnaround" } } }; uint16 flat; }EVENT_MASK( k8_turnaround); class k8Event_MEM_TURNAROUND : public k8BaseEvent { public: k8Event_MEM_TURNAROUND() { eventMask = (EVENT_MASK(k8_turnaround) *)&m_eventMask; name = _T("Memory controller turnaround"); event_id = 0xE3; unitEncode = NB; } EVENT_MASK(k8_turnaround) * eventMask; // name = _T("MEM_TURNAROUND"); }; // E4 typedef union EVENT_MASK( k8_bypass_counter_saturation) { struct { uint16 MEM_HighPriorityBypass:1; // Memory controller high priority bypass" }, uint16 MEM_LowPriorityBypass:1; // Memory controller low priority bypass" }, uint16 DRAM_InterfaceBypass:1; // DRAM controller interface bypass" }, uint16 DRAM_QueueBypass:1; // DRAM controller queue bypass" } } }; uint16 flat; }EVENT_MASK( k8_bypass_counter_saturation); class k8Event_MEM_BYPASS_SAT : public k8BaseEvent { public: k8Event_MEM_BYPASS_SAT() { eventMask = (EVENT_MASK(k8_bypass_counter_saturation) *)&m_eventMask; name = _T("Memory controller bypass counter saturation"); event_id = 0xE4; unitEncode = NB; } EVENT_MASK(k8_bypass_counter_saturation) * eventMask; // name = _T("MEM_BYPASS_SAT"); }; //EB typedef union EVENT_MASK( k8_sized_commands) { struct { uint16 NonPostWrSzByte:1; // NonPostWrSzByte" }, uint16 NonPostWrSzDword:1; // NonPostWrSzDword" }, uint16 PostWrSzByte:1; // PostWrSzByte" }, uint16 PostWrSzDword:1; // PostWrSzDword" }, uint16 RdSzByte:1; // RdSzByte" }, uint16 RdSzDword:1; // RdSzDword" }, uint16 RdModWr:1; // RdModWr" } } }; uint16 flat; }EVENT_MASK( k8_sized_commands); class k8Event_SIZED_COMMANDS : public k8BaseEvent { public: k8Event_SIZED_COMMANDS() { eventMask = (EVENT_MASK(k8_sized_commands) *)&m_eventMask; name = _T("Sized commands"); event_id = 0xEB; unitEncode = NB; } EVENT_MASK(k8_sized_commands) * eventMask; // name = _T("SIZED_COMMANDS"); }; typedef union EVENT_MASK( k8_probe_result) { struct { uint16 ProbeMiss:1; // Probe miss" }, uint16 ProbeHit:1; // Probe hit" }, uint16 ProbeHitDirtyWithoutMemoryCancel:1; // Probe hit dirty without memory cancel" }, uint16 ProbeHitDirtyWithMemoryCancel:1; // Probe hit dirty with memory cancel" } } uint16 UpstreamDisplayRefreshReads:1; // Rev D and later uint16 UpstreamNonDisplayRefreshReads:1; // Rev D and later uint16 UpstreamWrites:1; // Rev D and later }; uint16 flat; }EVENT_MASK( k8_probe_result); class k8Event_PROBE_RESULT : public k8BaseEvent { public: k8Event_PROBE_RESULT() { eventMask = (EVENT_MASK(k8_probe_result) *)&m_eventMask; name = _T("Probe result"); event_id = 0xEC; unitEncode = NB; } EVENT_MASK(k8_probe_result) * eventMask; // name = _T("PROBE_RESULT"); }; typedef union EVENT_MASK( k8_ht) { struct { uint16 CommandSent:1; //Command sent" }, uint16 DataSent:1; //Data sent" }, uint16 BufferReleaseSent:1; //Buffer release sent" uint16 NopSent:1; //Nop sent" } } }; uint16 flat; }EVENT_MASK( k8_ht); class k8Event_HYPERTRANSPORT_BUS0_WIDTH : public k8BaseEvent { public: k8Event_HYPERTRANSPORT_BUS0_WIDTH() { eventMask = (EVENT_MASK(k8_ht) *)&m_eventMask; name = _T("Hypertransport (tm) bus 0 bandwidth"); event_id = 0xF6; unitEncode = NB; } EVENT_MASK(k8_ht) * eventMask; // name = _T("HYPERTRANSPORT_BUS0_WIDTH"); }; class k8Event_HYPERTRANSPORT_BUS1_WIDTH : public k8BaseEvent { public: k8Event_HYPERTRANSPORT_BUS1_WIDTH() { eventMask = (EVENT_MASK(k8_ht) *)&m_eventMask; name = _T("Hypertransport (tm) bus 1 bandwidth"); event_id = 0xF7; unitEncode = NB; } EVENT_MASK(k8_ht) * eventMask; // name = _T("HYPERTRANSPORT_BUS1_WIDTH"); }; class k8Event_HYPERTRANSPORT_BUS2_WIDTH : public k8BaseEvent { public: k8Event_HYPERTRANSPORT_BUS2_WIDTH() { eventMask = (EVENT_MASK(k8_ht) *)&m_eventMask; name = _T("Hypertransport (tm) bus 2 bandwidth"); event_id = 0xF8; unitEncode = NB; } EVENT_MASK(k8_ht) * eventMask; // name = _T("HYPERTRANSPORT_BUS2_WIDTH"); }; // //typedef union EVENT_MASK( perfctr_event_set k8_common_event_set) //{ // // .cpu_type = PERFCTR_X86_AMD_K8, // .event_prefix = _T("K8_"), // .include = &k7_official_event_set, // .nevents = ARRAY_SIZE(k8_common_events), // .events = k8_common_events, //}EVENT_MASK( perfctr_event_set k8_common_event_set); // //typedef union EVENT_MASK( perfctr_event k8_events[]) //{ // // { 0x24, 0xF, UM(NULL), _T("LOCKED_OP"), /* unit mask changed in Rev. C */ // _T("Locked operation") }, //}EVENT_MASK( perfctr_event k8_events[]); //const struct perfctr_event_set perfctr_k8_event_set) //{ // // .cpu_type = PERFCTR_X86_AMD_K8, // .event_prefix = _T("K8_"), // .include = &k8_common_event_set, // .nevents = ARRAY_SIZE(k8_events), // .events = k8_events, //}; // /* * K8 Revision C. Starts at CPUID 0xF58 for Opteron/Athlon64FX and * CPUID 0xF48 for Athlon64. (CPUID 0xF51 is Opteron Revision B3.) */ // //typedef union EVENT_MASK( k8_lock_accesses) //{ // struct // { // uint16 DcacheAccesses:1; // Number of dcache accesses by lock instructions" }, // uint16 DcacheMisses:1; // Number of dcache misses by lock instructions" } } // }; // uint16 flat; // //}EVENT_MASK( k8_lock_accesses); // #endif // K8PERFORMANCECOUNTERS_H