//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// #include "mathlib/polyhedron.h" #include "mathlib/vmatrix.h" #include #include #include "tier1/utlvector.h" struct GeneratePolyhedronFromPlanes_Point; struct GeneratePolyhedronFromPlanes_PointLL; struct GeneratePolyhedronFromPlanes_Line; struct GeneratePolyhedronFromPlanes_LineLL; struct GeneratePolyhedronFromPlanes_Polygon; struct GeneratePolyhedronFromPlanes_PolygonLL; struct GeneratePolyhedronFromPlanes_UnorderedPointLL; struct GeneratePolyhedronFromPlanes_UnorderedLineLL; struct GeneratePolyhedronFromPlanes_UnorderedPolygonLL; Vector FindPointInPlanes( const float *pPlanes, int planeCount ); bool FindConvexShapeLooseAABB( const float *pInwardFacingPlanes, int iPlaneCount, Vector *pAABBMins, Vector *pAABBMaxs ); CPolyhedron *ClipLinkedGeometry( GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pPolygons, GeneratePolyhedronFromPlanes_UnorderedLineLL *pLines, GeneratePolyhedronFromPlanes_UnorderedPointLL *pPoints, const float *pOutwardFacingPlanes, int iPlaneCount, float fOnPlaneEpsilon, bool bUseTemporaryMemory ); CPolyhedron *ConvertLinkedGeometryToPolyhedron( GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pPolygons, GeneratePolyhedronFromPlanes_UnorderedLineLL *pLines, GeneratePolyhedronFromPlanes_UnorderedPointLL *pPoints, bool bUseTemporaryMemory ); //#define ENABLE_DEBUG_POLYHEDRON_DUMPS //Dumps debug information to disk for use with glview. Requires that tier2 also be in all projects using debug mathlib //#define DEBUG_DUMP_POLYHEDRONS_TO_NUMBERED_GLVIEWS //dumps successfully generated polyhedrons #ifdef _DEBUG void DumpPolyhedronToGLView( const CPolyhedron *pPolyhedron, const char *pFilename, const VMatrix *pTransform ); void DumpPlaneToGlView( const float *pPlane, float fGrayScale, const char *pszFileName, const VMatrix *pTransform ); void DumpLineToGLView( const Vector &vPoint1, const Vector &vColor1, const Vector &vPoint2, const Vector &vColor2, float fThickness, FILE *pFile ); void DumpAABBToGLView( const Vector &vCenter, const Vector &vExtents, const Vector &vColor, FILE *pFile ); #if defined( ENABLE_DEBUG_POLYHEDRON_DUMPS ) && defined( WIN32 ) #include "winlite.h" #endif static VMatrix s_matIdentity( 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); #endif #if defined( DEBUG_DUMP_POLYHEDRONS_TO_NUMBERED_GLVIEWS ) static int g_iPolyhedronDumpCounter = 0; #endif // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" #if defined( _DEBUG ) && defined( ENABLE_DEBUG_POLYHEDRON_DUMPS ) void CreateDumpDirectory( const char *szDirectoryName ) { #if defined( WIN32 ) CreateDirectory( szDirectoryName, NULL ); #else Assert( false ); //TODO: create directories in linux #endif } #endif void CPolyhedron_AllocByNew::Release( void ) { delete this; } CPolyhedron_AllocByNew *CPolyhedron_AllocByNew::Allocate( unsigned short iVertices, unsigned short iLines, unsigned short iIndices, unsigned short iPolygons ) //creates the polyhedron along with enough memory to hold all it's data in a single allocation { void *pMemory = new unsigned char [ sizeof( CPolyhedron_AllocByNew ) + (iVertices * sizeof(Vector)) + (iLines * sizeof(Polyhedron_IndexedLine_t)) + (iIndices * sizeof( Polyhedron_IndexedLineReference_t )) + (iPolygons * sizeof( Polyhedron_IndexedPolygon_t ))]; #include "tier0/memdbgoff.h" //the following placement new doesn't compile with memory debugging CPolyhedron_AllocByNew *pAllocated = new ( pMemory ) CPolyhedron_AllocByNew; #include "tier0/memdbgon.h" pAllocated->iVertexCount = iVertices; pAllocated->iLineCount = iLines; pAllocated->iIndexCount = iIndices; pAllocated->iPolygonCount = iPolygons; pAllocated->pVertices = (Vector *)(pAllocated + 1); //start vertex memory at the end of the class pAllocated->pLines = (Polyhedron_IndexedLine_t *)(pAllocated->pVertices + iVertices); pAllocated->pIndices = (Polyhedron_IndexedLineReference_t *)(pAllocated->pLines + iLines); pAllocated->pPolygons = (Polyhedron_IndexedPolygon_t *)(pAllocated->pIndices + iIndices); return pAllocated; } class CPolyhedron_TempMemory : public CPolyhedron { public: #ifdef DBGFLAG_ASSERT int iReferenceCount; #endif virtual void Release( void ) { #ifdef DBGFLAG_ASSERT --iReferenceCount; #endif } CPolyhedron_TempMemory( void ) #ifdef DBGFLAG_ASSERT : iReferenceCount( 0 ) #endif { }; }; static CUtlVector s_TempMemoryPolyhedron_Buffer; static CPolyhedron_TempMemory s_TempMemoryPolyhedron; CPolyhedron *GetTempPolyhedron( unsigned short iVertices, unsigned short iLines, unsigned short iIndices, unsigned short iPolygons ) //grab the temporary polyhedron. Avoids new/delete for quick work. Can only be in use by one chunk of code at a time { AssertMsg( s_TempMemoryPolyhedron.iReferenceCount == 0, "Temporary polyhedron memory being rewritten before released" ); #ifdef DBGFLAG_ASSERT ++s_TempMemoryPolyhedron.iReferenceCount; #endif s_TempMemoryPolyhedron_Buffer.SetCount( (sizeof( Vector ) * iVertices) + (sizeof( Polyhedron_IndexedLine_t ) * iLines) + (sizeof( Polyhedron_IndexedLineReference_t ) * iIndices) + (sizeof( Polyhedron_IndexedPolygon_t ) * iPolygons) ); s_TempMemoryPolyhedron.iVertexCount = iVertices; s_TempMemoryPolyhedron.iLineCount = iLines; s_TempMemoryPolyhedron.iIndexCount = iIndices; s_TempMemoryPolyhedron.iPolygonCount = iPolygons; s_TempMemoryPolyhedron.pVertices = (Vector *)s_TempMemoryPolyhedron_Buffer.Base(); s_TempMemoryPolyhedron.pLines = (Polyhedron_IndexedLine_t *)(&s_TempMemoryPolyhedron.pVertices[s_TempMemoryPolyhedron.iVertexCount]); s_TempMemoryPolyhedron.pIndices = (Polyhedron_IndexedLineReference_t *)(&s_TempMemoryPolyhedron.pLines[s_TempMemoryPolyhedron.iLineCount]); s_TempMemoryPolyhedron.pPolygons = (Polyhedron_IndexedPolygon_t *)(&s_TempMemoryPolyhedron.pIndices[s_TempMemoryPolyhedron.iIndexCount]); return &s_TempMemoryPolyhedron; } Vector CPolyhedron::Center( void ) { if( iVertexCount == 0 ) return vec3_origin; Vector vAABBMin, vAABBMax; vAABBMin = vAABBMax = pVertices[0]; for( int i = 1; i != iVertexCount; ++i ) { Vector &vPoint = pVertices[i]; if( vPoint.x < vAABBMin.x ) vAABBMin.x = vPoint.x; if( vPoint.y < vAABBMin.y ) vAABBMin.y = vPoint.y; if( vPoint.z < vAABBMin.z ) vAABBMin.z = vPoint.z; if( vPoint.x > vAABBMax.x ) vAABBMax.x = vPoint.x; if( vPoint.y > vAABBMax.y ) vAABBMax.y = vPoint.y; if( vPoint.z > vAABBMax.z ) vAABBMax.z = vPoint.z; } return ((vAABBMin + vAABBMax) * 0.5f); } enum PolyhedronPointPlanarity { POINT_DEAD, POINT_ONPLANE, POINT_ALIVE }; struct GeneratePolyhedronFromPlanes_Point { Vector ptPosition; GeneratePolyhedronFromPlanes_LineLL *pConnectedLines; //keep these in a clockwise order, circular linking float fPlaneDist; //used in plane cutting PolyhedronPointPlanarity planarity; int iSaveIndices; }; struct GeneratePolyhedronFromPlanes_Line { GeneratePolyhedronFromPlanes_Point *pPoints[2]; //the 2 connecting points in no particular order GeneratePolyhedronFromPlanes_Polygon *pPolygons[2]; //viewing from the outside with the point connections going up, 0 is the left polygon, 1 is the right int iSaveIndices; bool bAlive; //connected to at least one living point bool bCut; //connected to at least one dead point GeneratePolyhedronFromPlanes_LineLL *pPointLineLinks[2]; //rather than going into a point and searching for its link to this line, lets just cache it to eliminate searching GeneratePolyhedronFromPlanes_LineLL *pPolygonLineLinks[2]; //rather than going into a polygon and searching for its link to this line, lets just cache it to eliminate searching #ifdef POLYHEDRON_EXTENSIVE_DEBUGGING int iDebugFlags; #endif }; struct GeneratePolyhedronFromPlanes_LineLL { GeneratePolyhedronFromPlanes_Line *pLine; int iReferenceIndex; //whatever is referencing the line should know which side of the line it's on (points and polygons), for polygons, it's which point to follow to continue going clockwise, which makes polygon 0 the one on the left side of an upward facing line vector, for points, it's the OTHER point's index GeneratePolyhedronFromPlanes_LineLL *pPrev; GeneratePolyhedronFromPlanes_LineLL *pNext; }; struct GeneratePolyhedronFromPlanes_Polygon { Vector vSurfaceNormal; GeneratePolyhedronFromPlanes_LineLL *pLines; //keep these in a clockwise order, circular linking bool bMissingASide; }; struct GeneratePolyhedronFromPlanes_UnorderedPolygonLL //an unordered collection of polygons { GeneratePolyhedronFromPlanes_Polygon *pPolygon; GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pNext; GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pPrev; }; struct GeneratePolyhedronFromPlanes_UnorderedLineLL //an unordered collection of lines { GeneratePolyhedronFromPlanes_Line *pLine; GeneratePolyhedronFromPlanes_UnorderedLineLL *pNext; GeneratePolyhedronFromPlanes_UnorderedLineLL *pPrev; }; struct GeneratePolyhedronFromPlanes_UnorderedPointLL //an unordered collection of points { GeneratePolyhedronFromPlanes_Point *pPoint; GeneratePolyhedronFromPlanes_UnorderedPointLL *pNext; GeneratePolyhedronFromPlanes_UnorderedPointLL *pPrev; }; CPolyhedron *ClipPolyhedron( const CPolyhedron *pExistingPolyhedron, const float *pOutwardFacingPlanes, int iPlaneCount, float fOnPlaneEpsilon, bool bUseTemporaryMemory ) { if( pExistingPolyhedron == NULL ) return NULL; AssertMsg( (pExistingPolyhedron->iVertexCount >= 3) && (pExistingPolyhedron->iPolygonCount >= 2), "Polyhedron doesn't meet absolute minimum spec" ); float *pUsefulPlanes = (float *)stackalloc( sizeof( float ) * 4 * iPlaneCount ); int iUsefulPlaneCount = 0; Vector *pExistingVertices = pExistingPolyhedron->pVertices; //A large part of clipping will either eliminate the polyhedron entirely, or clip nothing at all, so lets just check for those first and throw away useless planes { int iLiveCount = 0; int iDeadCount = 0; const float fNegativeOnPlaneEpsilon = -fOnPlaneEpsilon; for( int i = 0; i != iPlaneCount; ++i ) { Vector vNormal = *((Vector *)&pOutwardFacingPlanes[(i * 4) + 0]); float fPlaneDist = pOutwardFacingPlanes[(i * 4) + 3]; for( int j = 0; j != pExistingPolyhedron->iVertexCount; ++j ) { float fPointDist = vNormal.Dot( pExistingVertices[j] ) - fPlaneDist; if( fPointDist <= fNegativeOnPlaneEpsilon ) ++iLiveCount; else if( fPointDist > fOnPlaneEpsilon ) ++iDeadCount; } if( iLiveCount == 0 ) { //all points are dead or on the plane, so the polyhedron is dead return NULL; } if( iDeadCount != 0 ) { //at least one point died, this plane yields useful results pUsefulPlanes[(iUsefulPlaneCount * 4) + 0] = vNormal.x; pUsefulPlanes[(iUsefulPlaneCount * 4) + 1] = vNormal.y; pUsefulPlanes[(iUsefulPlaneCount * 4) + 2] = vNormal.z; pUsefulPlanes[(iUsefulPlaneCount * 4) + 3] = fPlaneDist; ++iUsefulPlaneCount; } } } if( iUsefulPlaneCount == 0 ) { //testing shows that the polyhedron won't even be cut, clone the existing polyhedron and return that CPolyhedron *pReturn; if( bUseTemporaryMemory ) { pReturn = GetTempPolyhedron( pExistingPolyhedron->iVertexCount, pExistingPolyhedron->iLineCount, pExistingPolyhedron->iIndexCount, pExistingPolyhedron->iPolygonCount ); } else { pReturn = CPolyhedron_AllocByNew::Allocate( pExistingPolyhedron->iVertexCount, pExistingPolyhedron->iLineCount, pExistingPolyhedron->iIndexCount, pExistingPolyhedron->iPolygonCount ); } memcpy( pReturn->pVertices, pExistingPolyhedron->pVertices, sizeof( Vector ) * pReturn->iVertexCount ); memcpy( pReturn->pLines, pExistingPolyhedron->pLines, sizeof( Polyhedron_IndexedLine_t ) * pReturn->iLineCount ); memcpy( pReturn->pIndices, pExistingPolyhedron->pIndices, sizeof( Polyhedron_IndexedLineReference_t ) * pReturn->iIndexCount ); memcpy( pReturn->pPolygons, pExistingPolyhedron->pPolygons, sizeof( Polyhedron_IndexedPolygon_t ) * pReturn->iPolygonCount ); return pReturn; } //convert the polyhedron to linked geometry GeneratePolyhedronFromPlanes_Point *pStartPoints = (GeneratePolyhedronFromPlanes_Point *)stackalloc( pExistingPolyhedron->iVertexCount * sizeof( GeneratePolyhedronFromPlanes_Point ) ); GeneratePolyhedronFromPlanes_Line *pStartLines = (GeneratePolyhedronFromPlanes_Line *)stackalloc( pExistingPolyhedron->iLineCount * sizeof( GeneratePolyhedronFromPlanes_Line ) ); GeneratePolyhedronFromPlanes_Polygon *pStartPolygons = (GeneratePolyhedronFromPlanes_Polygon *)stackalloc( pExistingPolyhedron->iPolygonCount * sizeof( GeneratePolyhedronFromPlanes_Polygon ) ); GeneratePolyhedronFromPlanes_LineLL *pStartLineLinks = (GeneratePolyhedronFromPlanes_LineLL *)stackalloc( pExistingPolyhedron->iLineCount * 4 * sizeof( GeneratePolyhedronFromPlanes_LineLL ) ); int iCurrentLineLinkIndex = 0; //setup points for( int i = 0; i != pExistingPolyhedron->iVertexCount; ++i ) { pStartPoints[i].ptPosition = pExistingPolyhedron->pVertices[i]; pStartPoints[i].pConnectedLines = NULL; //we won't be circular linking until later } //setup lines and interlink to points (line links are not yet circularly linked, and are unordered) for( int i = 0; i != pExistingPolyhedron->iLineCount; ++i ) { for( int j = 0; j != 2; ++j ) { pStartLines[i].pPoints[j] = &pStartPoints[pExistingPolyhedron->pLines[i].iPointIndices[j]]; GeneratePolyhedronFromPlanes_LineLL *pLineLink = &pStartLineLinks[iCurrentLineLinkIndex++]; pStartLines[i].pPointLineLinks[j] = pLineLink; pLineLink->pLine = &pStartLines[i]; pLineLink->iReferenceIndex = 1 - j; //pLineLink->pPrev = NULL; pLineLink->pNext = pStartLines[i].pPoints[j]->pConnectedLines; pStartLines[i].pPoints[j]->pConnectedLines = pLineLink; } } //setup polygons for( int i = 0; i != pExistingPolyhedron->iPolygonCount; ++i ) { pStartPolygons[i].vSurfaceNormal = pExistingPolyhedron->pPolygons[i].polyNormal; Polyhedron_IndexedLineReference_t *pOffsetPolyhedronLines = &pExistingPolyhedron->pIndices[pExistingPolyhedron->pPolygons[i].iFirstIndex]; GeneratePolyhedronFromPlanes_LineLL *pFirstLink = &pStartLineLinks[iCurrentLineLinkIndex]; pStartPolygons[i].pLines = pFirstLink; //technically going to link to itself on first pass, then get linked properly immediately afterward for( int j = 0; j != pExistingPolyhedron->pPolygons[i].iIndexCount; ++j ) { GeneratePolyhedronFromPlanes_LineLL *pLineLink = &pStartLineLinks[iCurrentLineLinkIndex++]; pLineLink->pLine = &pStartLines[pOffsetPolyhedronLines[j].iLineIndex]; pLineLink->iReferenceIndex = pOffsetPolyhedronLines[j].iEndPointIndex; pLineLink->pLine->pPolygons[pLineLink->iReferenceIndex] = &pStartPolygons[i]; pLineLink->pLine->pPolygonLineLinks[pLineLink->iReferenceIndex] = pLineLink; pLineLink->pPrev = pStartPolygons[i].pLines; pStartPolygons[i].pLines->pNext = pLineLink; pStartPolygons[i].pLines = pLineLink; } pFirstLink->pPrev = pStartPolygons[i].pLines; pStartPolygons[i].pLines->pNext = pFirstLink; } Assert( iCurrentLineLinkIndex == (pExistingPolyhedron->iLineCount * 4) ); //go back to point line links so we can circularly link them as well as order them now that every point has all its line links for( int i = 0; i != pExistingPolyhedron->iVertexCount; ++i ) { //interlink the points { GeneratePolyhedronFromPlanes_LineLL *pLastVisitedLink = pStartPoints[i].pConnectedLines; GeneratePolyhedronFromPlanes_LineLL *pCurrentLink = pLastVisitedLink; do { pCurrentLink->pPrev = pLastVisitedLink; pLastVisitedLink = pCurrentLink; pCurrentLink = pCurrentLink->pNext; } while( pCurrentLink ); //circular link pLastVisitedLink->pNext = pStartPoints[i].pConnectedLines; pStartPoints[i].pConnectedLines->pPrev = pLastVisitedLink; } //fix ordering GeneratePolyhedronFromPlanes_LineLL *pFirstLink = pStartPoints[i].pConnectedLines; GeneratePolyhedronFromPlanes_LineLL *pWorkLink = pFirstLink; GeneratePolyhedronFromPlanes_LineLL *pSearchLink; GeneratePolyhedronFromPlanes_Polygon *pLookingForPolygon; Assert( pFirstLink->pNext != pFirstLink ); do { pLookingForPolygon = pWorkLink->pLine->pPolygons[1 - pWorkLink->iReferenceIndex]; //grab pointer to left polygon pSearchLink = pWorkLink->pPrev; while( pSearchLink->pLine->pPolygons[pSearchLink->iReferenceIndex] != pLookingForPolygon ) pSearchLink = pSearchLink->pPrev; Assert( pSearchLink->pLine->pPolygons[pSearchLink->iReferenceIndex] == pWorkLink->pLine->pPolygons[1 - pWorkLink->iReferenceIndex] ); //pluck the search link from wherever it is pSearchLink->pPrev->pNext = pSearchLink->pNext; pSearchLink->pNext->pPrev = pSearchLink->pPrev; //insert the search link just before the work link pSearchLink->pPrev = pWorkLink->pPrev; pSearchLink->pNext = pWorkLink; pSearchLink->pPrev->pNext = pSearchLink; pWorkLink->pPrev = pSearchLink; pWorkLink = pSearchLink; } while( pWorkLink != pFirstLink ); } GeneratePolyhedronFromPlanes_UnorderedPointLL *pPoints = (GeneratePolyhedronFromPlanes_UnorderedPointLL *)stackalloc( pExistingPolyhedron->iVertexCount * sizeof( GeneratePolyhedronFromPlanes_UnorderedPointLL ) ); GeneratePolyhedronFromPlanes_UnorderedLineLL *pLines = (GeneratePolyhedronFromPlanes_UnorderedLineLL *)stackalloc( pExistingPolyhedron->iLineCount * sizeof( GeneratePolyhedronFromPlanes_UnorderedLineLL ) ); GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pPolygons = (GeneratePolyhedronFromPlanes_UnorderedPolygonLL *)stackalloc( pExistingPolyhedron->iPolygonCount * sizeof( GeneratePolyhedronFromPlanes_UnorderedPolygonLL ) ); //setup point collection { pPoints[0].pPrev = NULL; pPoints[0].pPoint = &pStartPoints[0]; pPoints[0].pNext = &pPoints[1]; int iLastPoint = pExistingPolyhedron->iVertexCount - 1; for( int i = 1; i != iLastPoint; ++i ) { pPoints[i].pPrev = &pPoints[i - 1]; pPoints[i].pPoint = &pStartPoints[i]; pPoints[i].pNext = &pPoints[i + 1]; } pPoints[iLastPoint].pPrev = &pPoints[iLastPoint - 1]; pPoints[iLastPoint].pPoint = &pStartPoints[iLastPoint]; pPoints[iLastPoint].pNext = NULL; } //setup line collection { pLines[0].pPrev = NULL; pLines[0].pLine = &pStartLines[0]; pLines[0].pNext = &pLines[1]; int iLastLine = pExistingPolyhedron->iLineCount - 1; for( int i = 1; i != iLastLine; ++i ) { pLines[i].pPrev = &pLines[i - 1]; pLines[i].pLine = &pStartLines[i]; pLines[i].pNext = &pLines[i + 1]; } pLines[iLastLine].pPrev = &pLines[iLastLine - 1]; pLines[iLastLine].pLine = &pStartLines[iLastLine]; pLines[iLastLine].pNext = NULL; } //setup polygon collection { pPolygons[0].pPrev = NULL; pPolygons[0].pPolygon = &pStartPolygons[0]; pPolygons[0].pNext = &pPolygons[1]; int iLastPolygon = pExistingPolyhedron->iPolygonCount - 1; for( int i = 1; i != iLastPolygon; ++i ) { pPolygons[i].pPrev = &pPolygons[i - 1]; pPolygons[i].pPolygon = &pStartPolygons[i]; pPolygons[i].pNext = &pPolygons[i + 1]; } pPolygons[iLastPolygon].pPrev = &pPolygons[iLastPolygon - 1]; pPolygons[iLastPolygon].pPolygon = &pStartPolygons[iLastPolygon]; pPolygons[iLastPolygon].pNext = NULL; } return ClipLinkedGeometry( pPolygons, pLines, pPoints, pUsefulPlanes, iUsefulPlaneCount, fOnPlaneEpsilon, bUseTemporaryMemory ); } Vector FindPointInPlanes( const float *pPlanes, int planeCount ) { Vector point = vec3_origin; for ( int i = 0; i < planeCount; i++ ) { float fD = DotProduct( *(Vector *)&pPlanes[i*4], point ) - pPlanes[i*4 + 3]; if ( fD < 0 ) { point -= fD * (*(Vector *)&pPlanes[i*4]); } } return point; } bool FindConvexShapeLooseAABB( const float *pInwardFacingPlanes, int iPlaneCount, Vector *pAABBMins, Vector *pAABBMaxs ) //bounding box of the convex shape (subject to floating point error) { //returns false if the AABB hasn't been set if( pAABBMins == NULL && pAABBMaxs == NULL ) //no use in actually finding out what it is return false; struct FindConvexShapeAABB_Polygon_t { float *verts; int iVertCount; }; float *pMovedPlanes = (float *)stackalloc( iPlaneCount * 4 * sizeof( float ) ); //Vector vPointInPlanes = FindPointInPlanes( pInwardFacingPlanes, iPlaneCount ); for( int i = 0; i != iPlaneCount; ++i ) { pMovedPlanes[(i * 4) + 0] = pInwardFacingPlanes[(i * 4) + 0]; pMovedPlanes[(i * 4) + 1] = pInwardFacingPlanes[(i * 4) + 1]; pMovedPlanes[(i * 4) + 2] = pInwardFacingPlanes[(i * 4) + 2]; pMovedPlanes[(i * 4) + 3] = pInwardFacingPlanes[(i * 4) + 3] - 100.0f; //move planes out a lot to kill some imprecision problems } //vAABBMins = vAABBMaxs = FindPointInPlanes( pPlanes, iPlaneCount ); float *vertsIn = NULL; //we'll be allocating a new buffer for this with each new polygon, and moving it off to the polygon array float *vertsOut = (float *)stackalloc( (iPlaneCount + 4) * (sizeof( float ) * 3) ); //each plane will initially have 4 points in its polygon representation, and each plane clip has the possibility to add 1 point to the polygon float *vertsSwap; FindConvexShapeAABB_Polygon_t *pPolygons = (FindConvexShapeAABB_Polygon_t *)stackalloc( iPlaneCount * sizeof( FindConvexShapeAABB_Polygon_t ) ); int iPolyCount = 0; for ( int i = 0; i < iPlaneCount; i++ ) { Vector *pPlaneNormal = (Vector *)&pInwardFacingPlanes[i*4]; float fPlaneDist = pInwardFacingPlanes[(i*4) + 3]; if( vertsIn == NULL ) vertsIn = (float *)stackalloc( (iPlaneCount + 4) * (sizeof( float ) * 3) ); // Build a big-ass poly in this plane int vertCount = PolyFromPlane( (Vector *)vertsIn, *pPlaneNormal, fPlaneDist, 100000.0f ); //chop it by every other plane for( int j = 0; j < iPlaneCount; j++ ) { // don't clip planes with themselves if ( i == j ) continue; // Chop the polygon against this plane vertCount = ClipPolyToPlane( (Vector *)vertsIn, vertCount, (Vector *)vertsOut, *(Vector *)&pMovedPlanes[j*4], pMovedPlanes[(j*4) + 3], 0.0f ); //swap the input and output arrays vertsSwap = vertsIn; vertsIn = vertsOut; vertsOut = vertsSwap; // Less than a poly left, something's wrong, don't bother with this polygon if ( vertCount < 3 ) break; } if ( vertCount < 3 ) continue; //not enough to work with pPolygons[iPolyCount].iVertCount = vertCount; pPolygons[iPolyCount].verts = vertsIn; vertsIn = NULL; ++iPolyCount; } if( iPolyCount == 0 ) return false; //initialize the AABB to the first point available Vector vAABBMins, vAABBMaxs; vAABBMins = vAABBMaxs = ((Vector *)pPolygons[0].verts)[0]; if( pAABBMins && pAABBMaxs ) //they want the full box { for( int i = 0; i != iPolyCount; ++i ) { Vector *PolyVerts = (Vector *)pPolygons[i].verts; for( int j = 0; j != pPolygons[i].iVertCount; ++j ) { if( PolyVerts[j].x < vAABBMins.x ) vAABBMins.x = PolyVerts[j].x; if( PolyVerts[j].y < vAABBMins.y ) vAABBMins.y = PolyVerts[j].y; if( PolyVerts[j].z < vAABBMins.z ) vAABBMins.z = PolyVerts[j].z; if( PolyVerts[j].x > vAABBMaxs.x ) vAABBMaxs.x = PolyVerts[j].x; if( PolyVerts[j].y > vAABBMaxs.y ) vAABBMaxs.y = PolyVerts[j].y; if( PolyVerts[j].z > vAABBMaxs.z ) vAABBMaxs.z = PolyVerts[j].z; } } *pAABBMins = vAABBMins; *pAABBMaxs = vAABBMaxs; } else if( pAABBMins ) //they only want the min { for( int i = 0; i != iPolyCount; ++i ) { Vector *PolyVerts = (Vector *)pPolygons[i].verts; for( int j = 0; j != pPolygons[i].iVertCount; ++j ) { if( PolyVerts[j].x < vAABBMins.x ) vAABBMins.x = PolyVerts[j].x; if( PolyVerts[j].y < vAABBMins.y ) vAABBMins.y = PolyVerts[j].y; if( PolyVerts[j].z < vAABBMins.z ) vAABBMins.z = PolyVerts[j].z; } } *pAABBMins = vAABBMins; } else //they only want the max { for( int i = 0; i != iPolyCount; ++i ) { Vector *PolyVerts = (Vector *)pPolygons[i].verts; for( int j = 0; j != pPolygons[i].iVertCount; ++j ) { if( PolyVerts[j].x > vAABBMaxs.x ) vAABBMaxs.x = PolyVerts[j].x; if( PolyVerts[j].y > vAABBMaxs.y ) vAABBMaxs.y = PolyVerts[j].y; if( PolyVerts[j].z > vAABBMaxs.z ) vAABBMaxs.z = PolyVerts[j].z; } } *pAABBMaxs = vAABBMaxs; } return true; } CPolyhedron *ConvertLinkedGeometryToPolyhedron( GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pPolygons, GeneratePolyhedronFromPlanes_UnorderedLineLL *pLines, GeneratePolyhedronFromPlanes_UnorderedPointLL *pPoints, bool bUseTemporaryMemory ) { Assert( (pPolygons != NULL) && (pLines != NULL) && (pPoints != NULL) ); unsigned int iPolyCount = 0, iLineCount = 0, iPointCount = 0, iIndexCount = 0; GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pActivePolygonWalk = pPolygons; do { ++iPolyCount; GeneratePolyhedronFromPlanes_LineLL *pLineWalk = pActivePolygonWalk->pPolygon->pLines; GeneratePolyhedronFromPlanes_LineLL *pFirstLine = pLineWalk; Assert( pLineWalk != NULL ); do { ++iIndexCount; pLineWalk = pLineWalk->pNext; } while( pLineWalk != pFirstLine ); pActivePolygonWalk = pActivePolygonWalk->pNext; } while( pActivePolygonWalk ); GeneratePolyhedronFromPlanes_UnorderedLineLL *pActiveLineWalk = pLines; do { ++iLineCount; pActiveLineWalk = pActiveLineWalk->pNext; } while( pActiveLineWalk ); GeneratePolyhedronFromPlanes_UnorderedPointLL *pActivePointWalk = pPoints; do { ++iPointCount; pActivePointWalk = pActivePointWalk->pNext; } while( pActivePointWalk ); CPolyhedron *pReturn; if( bUseTemporaryMemory ) { pReturn = GetTempPolyhedron( iPointCount, iLineCount, iIndexCount, iPolyCount ); } else { pReturn = CPolyhedron_AllocByNew::Allocate( iPointCount, iLineCount, iIndexCount, iPolyCount ); } Vector *pVertexArray = pReturn->pVertices; Polyhedron_IndexedLine_t *pLineArray = pReturn->pLines; Polyhedron_IndexedLineReference_t *pIndexArray = pReturn->pIndices; Polyhedron_IndexedPolygon_t *pPolyArray = pReturn->pPolygons; //copy points pActivePointWalk = pPoints; for( unsigned int i = 0; i != iPointCount; ++i ) { pVertexArray[i] = pActivePointWalk->pPoint->ptPosition; pActivePointWalk->pPoint->iSaveIndices = i; //storing array indices pActivePointWalk = pActivePointWalk->pNext; } //copy lines pActiveLineWalk = pLines; for( unsigned int i = 0; i != iLineCount; ++i ) { pLineArray[i].iPointIndices[0] = (unsigned short)pActiveLineWalk->pLine->pPoints[0]->iSaveIndices; pLineArray[i].iPointIndices[1] = (unsigned short)pActiveLineWalk->pLine->pPoints[1]->iSaveIndices; pActiveLineWalk->pLine->iSaveIndices = i; //storing array indices pActiveLineWalk = pActiveLineWalk->pNext; } //copy polygons and indices at the same time pActivePolygonWalk = pPolygons; iIndexCount = 0; for( unsigned int i = 0; i != iPolyCount; ++i ) { pPolyArray[i].polyNormal = pActivePolygonWalk->pPolygon->vSurfaceNormal; pPolyArray[i].iFirstIndex = iIndexCount; GeneratePolyhedronFromPlanes_LineLL *pLineWalk = pActivePolygonWalk->pPolygon->pLines; GeneratePolyhedronFromPlanes_LineLL *pFirstLine = pLineWalk; do { //pIndexArray[iIndexCount] = pLineWalk->pLine->pPoints[pLineWalk->iReferenceIndex]->iWorkData; //startpoint of each line, iWorkData is the index of the vertex pIndexArray[iIndexCount].iLineIndex = pLineWalk->pLine->iSaveIndices; pIndexArray[iIndexCount].iEndPointIndex = pLineWalk->iReferenceIndex; ++iIndexCount; pLineWalk = pLineWalk->pNext; } while( pLineWalk != pFirstLine ); pPolyArray[i].iIndexCount = iIndexCount - pPolyArray[i].iFirstIndex; pActivePolygonWalk = pActivePolygonWalk->pNext; } #if defined( _DEBUG ) && defined( ENABLE_DEBUG_POLYHEDRON_DUMPS ) && defined( DEBUG_DUMP_POLYHEDRONS_TO_NUMBERED_GLVIEWS ) char szCollisionFile[128]; CreateDumpDirectory( "PolyhedronDumps" ); Q_snprintf( szCollisionFile, 128, "PolyhedronDumps/NewStyle_PolyhedronDump%i.txt", g_iPolyhedronDumpCounter ); ++g_iPolyhedronDumpCounter; remove( szCollisionFile ); DumpPolyhedronToGLView( pReturn, szCollisionFile, &s_matIdentity ); DumpPolyhedronToGLView( pReturn, "PolyhedronDumps/NewStyle_PolyhedronDump_All-Appended.txt", &s_matIdentity ); #endif return pReturn; } #ifdef _DEBUG void DumpPointListToGLView( GeneratePolyhedronFromPlanes_UnorderedPointLL *pHead, PolyhedronPointPlanarity planarity, const Vector &vColor, const char *szDumpFile, const VMatrix *pTransform ) { #ifdef ENABLE_DEBUG_POLYHEDRON_DUMPS if( pTransform == NULL ) pTransform = &s_matIdentity; FILE *pFile = fopen( szDumpFile, "ab" ); while( pHead ) { if( pHead->pPoint->planarity == planarity ) { const Vector vPointExtents( 0.5f, 0.5f, 0.01f ); DumpAABBToGLView( (*pTransform) * pHead->pPoint->ptPosition, vPointExtents, vColor, pFile ); } pHead = pHead->pNext; } fclose( pFile ); #endif } const char * DumpPolyhedronCutHistory( const CUtlVector &DumpedHistory, const CUtlVector &CutHistory, const VMatrix *pTransform ) { #ifdef ENABLE_DEBUG_POLYHEDRON_DUMPS if( pTransform == NULL ) pTransform = &s_matIdentity; static char szDumpFile[100] = "FailedPolyhedronCut_Error.txt"; //most recent filename returned for further dumping for( int i = 0; i != DumpedHistory.Count(); ++i ) { if( DumpedHistory[i] != NULL ) { Q_snprintf( szDumpFile, 100, "FailedPolyhedronCut_%d.txt", i ); DumpPolyhedronToGLView( DumpedHistory[i], szDumpFile, pTransform ); DumpPlaneToGlView( CutHistory[i], 1.0f, szDumpFile, pTransform ); } } return szDumpFile; #else return NULL; #endif } #ifdef ENABLE_DEBUG_POLYHEDRON_DUMPS #define AssertMsg_DumpPolyhedron(condition, message)\ if( (condition) == false )\ {\ VMatrix matTransform;\ matTransform.Identity();\ matTransform[0][0] = matTransform[1][1] = matTransform[2][2] = 25.0f;\ matTransform.SetTranslation( -DebugCutHistory.Tail()->Center() * 25.0f );\ const char *szLastDumpFile = DumpPolyhedronCutHistory( DebugCutHistory, PlaneCutHistory, &matTransform );\ DumpPointListToGLView( pAllPoints, POINT_ALIVE, Vector( 0.9f, 0.9f, 0.9f ), szLastDumpFile, &matTransform );\ DumpPointListToGLView( pAllPoints, POINT_ONPLANE, Vector( 0.5f, 0.5f, 0.5f ), szLastDumpFile, &matTransform );\ DumpPointListToGLView( pDeadPointCollection, POINT_DEAD, Vector( 0.1f, 0.1f, 0.1f ), szLastDumpFile, &matTransform );\ if( pStartPoint )\ {\ FILE *pFileDumpRepairProgress = fopen( szLastDumpFile, "ab" );\ DumpAABBToGLView( matTransform * pStartPoint->ptPosition, Vector( 2.0f, 0.05f, 0.05f ), Vector( 0.0f, 1.0f, 0.0f ), pFileDumpRepairProgress );\ DumpAABBToGLView( matTransform * pWorkPoint->ptPosition, Vector( 2.0f, 0.05f, 0.05f ), Vector( 1.0f, 0.0f, 0.0f ), pFileDumpRepairProgress );\ fclose( pFileDumpRepairProgress );\ }\ AssertMsg( condition, message );\ } #else #define AssertMsg_DumpPolyhedron(condition, message) AssertMsg( condition, message ) #endif #define Assert_DumpPolyhedron(condition) AssertMsg_DumpPolyhedron( condition, #condition ) #else #define AssertMsg_DumpPolyhedron(condition, message) NULL; #define Assert_DumpPolyhedron(condition) NULL; #endif CPolyhedron *ClipLinkedGeometry( GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pAllPolygons, GeneratePolyhedronFromPlanes_UnorderedLineLL *pAllLines, GeneratePolyhedronFromPlanes_UnorderedPointLL *pAllPoints, const float *pOutwardFacingPlanes, int iPlaneCount, float fOnPlaneEpsilon, bool bUseTemporaryMemory ) { const float fNegativeOnPlaneEpsilon = -fOnPlaneEpsilon; #ifdef _DEBUG CUtlVector DebugCutHistory; CUtlVector PlaneCutHistory; GeneratePolyhedronFromPlanes_Point *pStartPoint = NULL; GeneratePolyhedronFromPlanes_Point *pWorkPoint = NULL; static int iPolyhedronClipCount = 0; ++iPolyhedronClipCount; DebugCutHistory.AddToTail( ConvertLinkedGeometryToPolyhedron( pAllPolygons, pAllLines, pAllPoints, false ) ); #endif //clear out polygon work variables { GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pActivePolygonWalk = pAllPolygons; do { pActivePolygonWalk->pPolygon->bMissingASide = false; pActivePolygonWalk = pActivePolygonWalk->pNext; } while( pActivePolygonWalk ); } //Collections of dead pointers for reallocation, shouldn't be touched until the current loop iteration is done. GeneratePolyhedronFromPlanes_UnorderedPointLL *pDeadPointCollection = NULL; GeneratePolyhedronFromPlanes_UnorderedLineLL *pDeadLineCollection = NULL; GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pDeadPolygonCollection = NULL; GeneratePolyhedronFromPlanes_LineLL *pDeadLineLinkCollection = NULL; for( int iCurrentPlane = 0; iCurrentPlane != iPlaneCount; ++iCurrentPlane ) { //clear out line work variables { GeneratePolyhedronFromPlanes_UnorderedLineLL *pActiveLineWalk = pAllLines; do { pActiveLineWalk->pLine->bAlive = false; pActiveLineWalk->pLine->bCut = false; pActiveLineWalk = pActiveLineWalk->pNext; } while( pActiveLineWalk ); } //TODO: Move these pointers into a reallocation pool pDeadPointCollection = NULL; pDeadLineCollection = NULL; pDeadLineLinkCollection = NULL; pDeadPolygonCollection = NULL; Vector vNormal = *((Vector *)&pOutwardFacingPlanes[(iCurrentPlane * 4) + 0]); /*double vNormalAsDouble[3]; vNormalAsDouble[0] = vNormal.x; vNormalAsDouble[1] = vNormal.y; vNormalAsDouble[2] = vNormal.z;*/ float fPlaneDist = pOutwardFacingPlanes[(iCurrentPlane * 4) + 3]; //=================================================================================================== // Step 1: Categorize each point as being either cut, split, or alive //=================================================================================================== { bool bAllPointsDead = true; bool bAllPointsAlive = true; //find point distances from the plane GeneratePolyhedronFromPlanes_UnorderedPointLL *pActivePointWalk = pAllPoints; do { GeneratePolyhedronFromPlanes_Point *pPoint = pActivePointWalk->pPoint; float fPointDist = vNormal.Dot( pPoint->ptPosition ) - fPlaneDist; if( fPointDist > fOnPlaneEpsilon ) { pPoint->planarity = POINT_DEAD; //point is dead, bang bang //mark connected lines as cut GeneratePolyhedronFromPlanes_LineLL *pLineWalk = pPoint->pConnectedLines; GeneratePolyhedronFromPlanes_LineLL *pFirstLine = pLineWalk; do { pLineWalk->pLine->bCut = true; pLineWalk = pLineWalk->pNext; } while( pLineWalk != pFirstLine ); bAllPointsAlive = false; } else if( fPointDist <= fNegativeOnPlaneEpsilon ) { pPoint->planarity = POINT_ALIVE; //point is in behind plane, not voted off the island....yet bAllPointsDead = false; //mark connected lines as alive GeneratePolyhedronFromPlanes_LineLL *pLineWalk = pPoint->pConnectedLines; GeneratePolyhedronFromPlanes_LineLL *pFirstLine = pLineWalk; do { pLineWalk->pLine->bAlive = true; //mark the line as alive pLineWalk = pLineWalk->pNext; } while( pLineWalk != pFirstLine ); } else { pPoint->planarity = POINT_ONPLANE; //point is on the plane, he's everyone's buddy //Project on-plane points leaning towards death closer to the plane. This battles floating point precision decay. // Consider the case of a large on-plane epsilon leaving protrusions over time /*if( fPointDist < 0.0f ) { double distAsDouble = fPointDist; double vPositionAsDouble[3]; vPositionAsDouble[0] = pPoint->ptPosition.x; vPositionAsDouble[1] = pPoint->ptPosition.y; vPositionAsDouble[2] = pPoint->ptPosition.z; pPoint->ptPosition.x = vPositionAsDouble[0] - (distAsDouble * vNormalAsDouble[0]); pPoint->ptPosition.y = vPositionAsDouble[1] - (distAsDouble * vNormalAsDouble[1]); pPoint->ptPosition.z = vPositionAsDouble[2] - (distAsDouble * vNormalAsDouble[2]); #if ( 0 && defined( _DEBUG ) ) float fDebugDist = vNormal.Dot( pPoint->ptPosition ) - fPlaneDist; //just for looking at in watch windows AssertMsg( fabs( fDebugDist ) < fabs(fPointDist), "Projected point is further from plane than unprojected." ); #endif fPointDist = vNormal.Dot( pPoint->ptPosition ) - fPlaneDist; //recompute dist (not guaranteed to be 0.0 like we want) }*/ } pPoint->fPlaneDist = fPointDist; pActivePointWalk = pActivePointWalk->pNext; } while( pActivePointWalk ); if( bAllPointsDead ) //all the points either died or are on the plane, no polyhedron left at all { #ifdef _DEBUG for( int i = DebugCutHistory.Count(); --i >= 0; ) { if( DebugCutHistory[i] ) DebugCutHistory[i]->Release(); } DebugCutHistory.RemoveAll(); #endif return NULL; } if( bAllPointsAlive ) continue; //no cuts made //Scan for onplane points connected to only other onplane/dead points, these points get downgraded to dead status. { GeneratePolyhedronFromPlanes_UnorderedPointLL *pActivePointWalk = pAllPoints; do { if( pActivePointWalk->pPoint->planarity == POINT_ONPLANE ) { GeneratePolyhedronFromPlanes_LineLL *pOnPlaneLineWalk = pActivePointWalk->pPoint->pConnectedLines; GeneratePolyhedronFromPlanes_LineLL *pStartLineWalk = pOnPlaneLineWalk; bool bDead = true; //assume it's dead and disprove do { if ( pOnPlaneLineWalk->pLine->bAlive ) { bDead = false; } else if ( pOnPlaneLineWalk->pLine->bCut ) { //connected to a dead point. if( pOnPlaneLineWalk->pNext->pLine->bCut || pOnPlaneLineWalk->pPrev->pLine->bCut ) { //This on-plane point is surrounded by dead points on one polygon of the polyhedron. // We have to downgrade this point to dead to avoid situations where float imprecision // turns the polyhedron into a *slightly* concave shape. Concave shapes might break this algorithm, even falsely concave shapes. bDead = true; break; } } pOnPlaneLineWalk = pOnPlaneLineWalk->pNext; } while( pOnPlaneLineWalk != pStartLineWalk ); if( bDead ) { pActivePointWalk->pPoint->planarity = POINT_DEAD; pOnPlaneLineWalk = pStartLineWalk; //mark connected lines as cut do { pOnPlaneLineWalk->pLine->bCut = true; pOnPlaneLineWalk = pOnPlaneLineWalk->pNext; } while( pOnPlaneLineWalk != pStartLineWalk ); } } pActivePointWalk = pActivePointWalk->pNext; } while( pActivePointWalk ); } #ifdef _DEBUG PlaneCutHistory.AddToTail( &pOutwardFacingPlanes[iCurrentPlane * 4] ); #endif } #ifdef _DEBUG //Run around the edges of all the polygons and ensure they don't have more than one point of lowered "alive" status (alive > onplane > dead) surrounded by higher status // It indicates a concave shape. It's impossible to have it occur in theoretical space. But floating point numbers introduce error. { GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pDebugPolygonWalk = pAllPolygons; do { int iSurroundedCount = 0; GeneratePolyhedronFromPlanes_LineLL *pDebugLineWalk = pDebugPolygonWalk->pPolygon->pLines; GeneratePolyhedronFromPlanes_LineLL *pFirstDebugLine = pDebugLineWalk; do { PolyhedronPointPlanarity currentPlanarity = pDebugLineWalk->pLine->pPoints[pDebugLineWalk->iReferenceIndex]->planarity; GeneratePolyhedronFromPlanes_LineLL *pNext = pDebugLineWalk->pNext; PolyhedronPointPlanarity nextPlanarity = pNext->pLine->pPoints[pNext->iReferenceIndex]->planarity; if( currentPlanarity < nextPlanarity ) { GeneratePolyhedronFromPlanes_LineLL *pPrev = pDebugLineWalk->pPrev; PolyhedronPointPlanarity prevPlanarity = pPrev->pLine->pPoints[pPrev->iReferenceIndex]->planarity; if( currentPlanarity < prevPlanarity ) { ++iSurroundedCount; } } pDebugLineWalk = pDebugLineWalk->pNext; } while( pDebugLineWalk != pFirstDebugLine ); AssertMsg_DumpPolyhedron( iSurroundedCount <= 1, "Concave polygon, cutting process might break. Consider adjusting the on-plane epsilon to better compensate for floating point precision." ); pDebugPolygonWalk = pDebugPolygonWalk->pNext; } while( pDebugPolygonWalk ); } #endif //=================================================================================================== // Step 2: Remove dead lines. A dead line is one with a dead point that isn't connected to a living point //=================================================================================================== { GeneratePolyhedronFromPlanes_UnorderedLineLL *pActiveLineWalk = pAllLines; do { GeneratePolyhedronFromPlanes_Line *pLine = pActiveLineWalk->pLine; if( (pLine->bAlive == false) && (pLine->bCut == true) ) //not connected to a live point, but connected to a dead one. Dead line { //remove line from connected polygons for( int i = 0; i != 2; ++i ) { GeneratePolyhedronFromPlanes_Polygon *pPolygon = pLine->pPolygons[i]; GeneratePolyhedronFromPlanes_LineLL *pLineLink = pLine->pPolygonLineLinks[i]; pPolygon->bMissingASide = true; if( pLineLink->pNext == pLineLink ) { //this was the last line of the polygon, it's dead pPolygon->pLines = NULL; } else { //link around this line pPolygon->pLines = pLineLink->pPrev; //Always have the polygon's head line be just before the gap in the polygon pLineLink->pNext->pPrev = pLineLink->pPrev; pLineLink->pPrev->pNext = pLineLink->pNext; } //move the line link to the dead list pLineLink->pNext = pDeadLineLinkCollection; pDeadLineLinkCollection = pLineLink; } //remove the line from connected points for( int i = 0; i != 2; ++i ) { GeneratePolyhedronFromPlanes_Point *pPoint = pLine->pPoints[i]; GeneratePolyhedronFromPlanes_LineLL *pLineLink = pLine->pPointLineLinks[i]; if( pLineLink->pNext == pLineLink ) { //this is the last line pPoint->pConnectedLines = NULL; Assert( pPoint->planarity != POINT_ALIVE ); pPoint->planarity = POINT_DEAD; //in case it was merely POINT_ONPLANE before } else { //link around this line pPoint->pConnectedLines = pLineLink->pNext; //in case pLineLink was the head line pLineLink->pNext->pPrev = pLineLink->pPrev; pLineLink->pPrev->pNext = pLineLink->pNext; } //move the line link to the dead list pLineLink->pNext = pDeadLineLinkCollection; pDeadLineLinkCollection = pLineLink; } //move the line to the dead list { //link past this node if( pActiveLineWalk->pPrev ) pActiveLineWalk->pPrev->pNext = pActiveLineWalk->pNext; else pAllLines = pActiveLineWalk->pNext; if( pActiveLineWalk->pNext ) pActiveLineWalk->pNext->pPrev = pActiveLineWalk->pPrev; GeneratePolyhedronFromPlanes_UnorderedLineLL *pNextLineWalk = pActiveLineWalk->pNext; //add to the dead list pActiveLineWalk->pNext = pDeadLineCollection; pDeadLineCollection = pActiveLineWalk; //next pActiveLineWalk = pNextLineWalk; } } else { pActiveLineWalk = pActiveLineWalk->pNext; } } while( pActiveLineWalk ); } //=================================================================================================== // Step 3: Remove dead polygons. A dead polygon has less than 2 lines. //=================================================================================================== { GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pActivePolygonWalk = pAllPolygons; do { GeneratePolyhedronFromPlanes_Polygon *pPolygon = pActivePolygonWalk->pPolygon; GeneratePolyhedronFromPlanes_LineLL *pHeadLine = pPolygon->pLines; bool bDead = (pHeadLine == NULL) || (pHeadLine->pNext == pHeadLine); if( !bDead ) { //there's a rare case where a polygon can be almost entirely coplanar with the cut, it comes purely out of the land of imprecision bDead = true; //assume it's dead, and disprove GeneratePolyhedronFromPlanes_LineLL *pTestLineWalk = pHeadLine; do { if( pTestLineWalk->pLine->bAlive ) { bDead = false; break; } pTestLineWalk = pTestLineWalk->pNext; } while( pTestLineWalk != pHeadLine ); } if( bDead ) { //dead polygon, move it to the dead list //link around this node if( pActivePolygonWalk->pPrev ) pActivePolygonWalk->pPrev->pNext = pActivePolygonWalk->pNext; else pAllPolygons = pAllPolygons->pNext; //pActivePolygonWalk was the head node if( pActivePolygonWalk->pNext ) pActivePolygonWalk->pNext->pPrev = pActivePolygonWalk->pPrev; GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pNextPolygonWalk = pActivePolygonWalk->pNext; //add to the dead list pActivePolygonWalk->pNext = pDeadPolygonCollection; pDeadPolygonCollection = pActivePolygonWalk; //next pActivePolygonWalk = pNextPolygonWalk; } else { AssertMsg_DumpPolyhedron( (pActivePolygonWalk->pPolygon->pLines != NULL) && (pActivePolygonWalk->pPolygon->pLines != pActivePolygonWalk->pPolygon->pLines->pNext), "Living polygon with less than 2 lines" ); pActivePolygonWalk = pActivePolygonWalk->pNext; } } while( pActivePolygonWalk ); } //=================================================================================================== // Step 4: Remove dead points. //=================================================================================================== { GeneratePolyhedronFromPlanes_UnorderedPointLL *pActivePointWalk = pAllPoints; do { if( pActivePointWalk->pPoint->planarity == POINT_DEAD ) { GeneratePolyhedronFromPlanes_UnorderedPointLL *pNext = pActivePointWalk->pNext; if( pActivePointWalk->pPrev ) pActivePointWalk->pPrev->pNext = pActivePointWalk->pNext; else pAllPoints = pAllPoints->pNext; if( pActivePointWalk->pNext ) pActivePointWalk->pNext->pPrev = pActivePointWalk->pPrev; pActivePointWalk->pNext = pDeadPointCollection; pDeadPointCollection = pActivePointWalk; pActivePointWalk = pNext; } else { pActivePointWalk = pActivePointWalk->pNext; } } while( pActivePointWalk ); } //=================================================================================================== // Step 5: Handle cut lines //=================================================================================================== { GeneratePolyhedronFromPlanes_UnorderedLineLL *pActiveLineWalk = pAllLines; do { GeneratePolyhedronFromPlanes_Line *pWorkLine = pActiveLineWalk->pLine; Assert_DumpPolyhedron( (pWorkLine->bAlive == true) || (pWorkLine->bCut == false) ); //all dead lines should have already been removed if( pWorkLine->bCut ) { GeneratePolyhedronFromPlanes_Point **pLinePoints = pWorkLine->pPoints; Assert_DumpPolyhedron( (pLinePoints[0]->planarity == POINT_DEAD) || (pLinePoints[1]->planarity == POINT_DEAD) ); //one of the two has to be a dead point int iDeadIndex = (pLinePoints[0]->planarity == POINT_DEAD)?(0):(1); int iLivingIndex = 1 - iDeadIndex; GeneratePolyhedronFromPlanes_Point *pDeadPoint = pLinePoints[iDeadIndex]; GeneratePolyhedronFromPlanes_Point *pLivingPoint = pLinePoints[iLivingIndex]; Assert_DumpPolyhedron( pLivingPoint->planarity == POINT_ALIVE ); //if this point were on-plane or dead, the line should be dead //We'll be de-linking from the old point and generating a new one. We do this so other lines can still access the dead point's untouched data. //Generate a new point GeneratePolyhedronFromPlanes_Point *pNewPoint = (GeneratePolyhedronFromPlanes_Point *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_Point ) ); { //add this point to the active list pAllPoints->pPrev = (GeneratePolyhedronFromPlanes_UnorderedPointLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_UnorderedPointLL ) ); pAllPoints->pPrev->pNext = pAllPoints; pAllPoints = pAllPoints->pPrev; pAllPoints->pPrev = NULL; pAllPoints->pPoint = pNewPoint; float fInvTotalDist = 1.0f/(pDeadPoint->fPlaneDist - pLivingPoint->fPlaneDist); //subtraction because the living index is known to be negative pNewPoint->ptPosition = (pLivingPoint->ptPosition * (pDeadPoint->fPlaneDist * fInvTotalDist)) - (pDeadPoint->ptPosition * (pLivingPoint->fPlaneDist * fInvTotalDist)); #if ( 0 && defined( _DEBUG ) ) float fDebugDist = vNormal.Dot( pNewPoint->ptPosition ) - fPlaneDist; //just for looking at in watch windows AssertMsg_DumpPolyhedron( fabs( fDebugDist ) < fOnPlaneEpsilon, "Generated split point is far from plane" ); //verify that the new point isn't sitting on top of another { GeneratePolyhedronFromPlanes_UnorderedPointLL *pActivePointWalk = pAllPoints; do { if( pActivePointWalk->pPoint != pNewPoint ) { Vector vDiff = pActivePointWalk->pPoint->ptPosition - pNewPoint->ptPosition; AssertMsg_DumpPolyhedron( vDiff.Length() > fOnPlaneEpsilon, "Generated a point on top of another" ); } pActivePointWalk = pActivePointWalk->pNext; } while( pActivePointWalk ); } #endif pNewPoint->planarity = POINT_ONPLANE; pNewPoint->fPlaneDist = 0.0f; } GeneratePolyhedronFromPlanes_LineLL *pNewLineLink = pNewPoint->pConnectedLines = (GeneratePolyhedronFromPlanes_LineLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_LineLL ) ); pNewLineLink->pLine = pWorkLine; pNewLineLink->pNext = pNewLineLink; pNewLineLink->pPrev = pNewLineLink; pNewLineLink->iReferenceIndex = iLivingIndex; pWorkLine->pPoints[iDeadIndex] = pNewPoint; pWorkLine->pPointLineLinks[iDeadIndex] = pNewLineLink; pNewPoint->pConnectedLines = pNewLineLink; //A new line is needed on each polygon touching the dead point to connect the two new endpoints for split lines. // So mark connected polygons as missing a side. for( int i = 0; i != 2; ++i ) pWorkLine->pPolygons[i]->bMissingASide = true; //Always have a cut polygon's head line be just before the gap in the polygon. // In this case, we know that one of the two polygons goes clockwise into the dead point, so have that polygon point at this line. // We don't know enough about the other polygon to do anything here, but another cut line will handle that polygon. So it all works out in the end. pWorkLine->pPolygons[iDeadIndex]->pLines = pWorkLine->pPolygonLineLinks[iDeadIndex]; } pActiveLineWalk = pActiveLineWalk->pNext; } while( pActiveLineWalk ); } //=================================================================================================== // Step 6: Repair polygons that are missing a side. And generate the new coplanar polygon. //=================================================================================================== { //Find the first polygon missing a side. // We'll then walk from polygon to polygon using line connections so that we can generate the new polygon in a clockwise manner. GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pActivePolygonWalk = pAllPolygons; while( (pActivePolygonWalk != NULL) && (pActivePolygonWalk->pPolygon->bMissingASide == false) ) { pActivePolygonWalk = pActivePolygonWalk->pNext; } //acquire iteration data #ifndef _DEBUG GeneratePolyhedronFromPlanes_Point *pStartPoint; GeneratePolyhedronFromPlanes_Point *pWorkPoint; #endif GeneratePolyhedronFromPlanes_LineLL *pLastLineLink; GeneratePolyhedronFromPlanes_Polygon *pWorkPolygon; GeneratePolyhedronFromPlanes_LineLL *pTestLine; #ifdef _DEBUG GeneratePolyhedronFromPlanes_Polygon *pLastWorkPolygon = NULL; GeneratePolyhedronFromPlanes_Point *pLastWorkPoint = NULL; #endif if( pActivePolygonWalk ) { //grab the polygon we'll be starting with GeneratePolyhedronFromPlanes_Polygon *pBrokenPolygon = pActivePolygonWalk->pPolygon; { GeneratePolyhedronFromPlanes_LineLL *pTemp = pBrokenPolygon->pLines->pNext; pStartPoint = pTemp->pLine->pPoints[1 - pTemp->iReferenceIndex]; Assert_DumpPolyhedron( pStartPoint->planarity == POINT_ONPLANE ); //every working point should be coplanar pLastLineLink = pTemp->pLine->pPointLineLinks[1 - pTemp->iReferenceIndex]->pNext; pWorkPolygon = pBrokenPolygon; } pWorkPoint = pStartPoint; pTestLine = pLastLineLink->pPrev; //rotate counterclockwise around the point } else { //apparently the plane was entirely through existing polygonal borders, extremely rare but it can happen with inefficient cutting planes GeneratePolyhedronFromPlanes_UnorderedPointLL *pActivePointWalk = pAllPoints; while( (pActivePointWalk != NULL) && (pActivePointWalk->pPoint->planarity != POINT_ONPLANE) ) { pActivePointWalk = pActivePointWalk->pNext; } Assert( pActivePointWalk != NULL ); pStartPoint = pWorkPoint = pActivePointWalk->pPoint; GeneratePolyhedronFromPlanes_LineLL *pLines = pWorkPoint->pConnectedLines; while( !pLines->pLine->bAlive ) //seek clockwise until we find a line not on the plane pLines = pLines->pNext; while( pLines->pLine->bAlive ) //now seek counterclockwise until we find a line on the plane (in case we started on an alive line last seek) pLines = pLines->pPrev; //now pLines points at one side of the polygon, with pActivePointWalk pLastLineLink = pLines; pTestLine = pLines->pPrev; pWorkPolygon = pTestLine->pLine->pPolygons[1 - pTestLine->iReferenceIndex]; } //create the new polygon GeneratePolyhedronFromPlanes_Polygon *pNewPolygon = (GeneratePolyhedronFromPlanes_Polygon *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_Polygon ) ); { //before we forget, add this polygon to the active list pAllPolygons->pPrev = (GeneratePolyhedronFromPlanes_UnorderedPolygonLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_UnorderedPolygonLL ) ); pAllPolygons->pPrev->pNext = pAllPolygons; pAllPolygons = pAllPolygons->pPrev; pAllPolygons->pPrev = NULL; pAllPolygons->pPolygon = pNewPolygon; pNewPolygon->bMissingASide = false; //technically missing all it's sides, but we're fixing it now pNewPolygon->vSurfaceNormal = vNormal; pNewPolygon->pLines = NULL; } //=================================================================================================================== // The general idea of the upcoming algorithm to put together a new polygon and patch broken polygons... // You have a point and a line the algorithm just jumped across. // 1. Rotate through the point's line links one time counterclockwise (pPrev) // 2. If the line is cut, then we make a new bridging line in the polygon between that line and the one counterclockwise to it. (pPrev) // If the line is on-plane. Skip the bridge line making, but set links to the new polygon as if we'd just created the bridge // 3. Once we follow a line back to the point where we started, we should be all done. do { if( pWorkPolygon->bMissingASide ) { //during the cutting process we made sure that the head line link was going clockwise into the missing area GeneratePolyhedronFromPlanes_LineLL *pGapLines[2]; pGapLines[1] = pTestLine->pLine->pPolygonLineLinks[pTestLine->iReferenceIndex]; //get the same line, but in the polygons linked list. Assert_DumpPolyhedron( pGapLines[1]->pLine == pTestLine->pLine ); pGapLines[0] = pGapLines[1]->pPrev; Assert_DumpPolyhedron( pWorkPolygon->bMissingASide ); #ifdef _DEBUG { //ensure that the space between the gap lines is the only space where fixing is required GeneratePolyhedronFromPlanes_LineLL *pDebugLineWalk = pGapLines[1]->pNext; while( pDebugLineWalk != pGapLines[0] ) { Assert_DumpPolyhedron( pDebugLineWalk->pLine->bCut == false ); pDebugLineWalk = pDebugLineWalk->pNext; } } #endif GeneratePolyhedronFromPlanes_Line *pJoinLine = (GeneratePolyhedronFromPlanes_Line *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_Line ) ); { //before we forget, add this line to the active list pAllLines->pPrev = (GeneratePolyhedronFromPlanes_UnorderedLineLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_UnorderedLineLL ) ); pAllLines->pPrev->pNext = pAllLines; pAllLines = pAllLines->pPrev; pAllLines->pPrev = NULL; pAllLines->pLine = pJoinLine; pJoinLine->bAlive = false; pJoinLine->bCut = false; } pJoinLine->pPoints[0] = pGapLines[0]->pLine->pPoints[pGapLines[0]->iReferenceIndex]; pJoinLine->pPoints[1] = pGapLines[1]->pLine->pPoints[1 - pGapLines[1]->iReferenceIndex]; pJoinLine->pPolygons[0] = pNewPolygon; pJoinLine->pPolygons[1] = pWorkPolygon; //now create all 4 links into the line GeneratePolyhedronFromPlanes_LineLL *pPointLinks[2]; pPointLinks[0] = (GeneratePolyhedronFromPlanes_LineLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_LineLL ) ); pPointLinks[1] = (GeneratePolyhedronFromPlanes_LineLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_LineLL ) ); GeneratePolyhedronFromPlanes_LineLL *pPolygonLinks[2]; pPolygonLinks[0] = (GeneratePolyhedronFromPlanes_LineLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_LineLL ) ); pPolygonLinks[1] = (GeneratePolyhedronFromPlanes_LineLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_LineLL ) ); pPointLinks[0]->pLine = pPointLinks[1]->pLine = pPolygonLinks[0]->pLine = pPolygonLinks[1]->pLine = pJoinLine; pJoinLine->pPointLineLinks[0] = pPointLinks[0]; pJoinLine->pPointLineLinks[1] = pPointLinks[1]; pJoinLine->pPolygonLineLinks[0] = pPolygonLinks[0]; pJoinLine->pPolygonLineLinks[1] = pPolygonLinks[1]; pPointLinks[0]->iReferenceIndex = 1; pPointLinks[1]->iReferenceIndex = 0; //Insert before the link from point 0 to gap line 0 (counterclockwise rotation) { GeneratePolyhedronFromPlanes_LineLL *pWorkLink = pGapLines[0]->pLine->pPointLineLinks[pGapLines[0]->iReferenceIndex]; Assert_DumpPolyhedron( pWorkLink->pLine == pGapLines[0]->pLine ); pPointLinks[0]->pPrev = pWorkLink->pPrev; pPointLinks[0]->pNext = pWorkLink; pWorkLink->pPrev->pNext = pPointLinks[0]; pWorkLink->pPrev = pPointLinks[0]; } //Insert after the link from point 1 to gap line 1 (clockwise rotation) { GeneratePolyhedronFromPlanes_LineLL *pWorkLink = pGapLines[1]->pLine->pPointLineLinks[1 - pGapLines[1]->iReferenceIndex]; Assert_DumpPolyhedron( pWorkLink->pLine == pGapLines[1]->pLine ); pPointLinks[1]->pNext = pWorkLink->pNext; pPointLinks[1]->pPrev = pWorkLink; pWorkLink->pNext->pPrev = pPointLinks[1]; pWorkLink->pNext = pPointLinks[1]; } pPolygonLinks[0]->iReferenceIndex = 0; pPolygonLinks[1]->iReferenceIndex = 1; //Insert before the head line in the new polygon (at the end of the clockwise order) { if( pNewPolygon->pLines == NULL ) { //this is the first line being added to the polygon pNewPolygon->pLines = pPolygonLinks[0]; pPolygonLinks[0]->pNext = pPolygonLinks[0]; pPolygonLinks[0]->pPrev = pPolygonLinks[0]; } else { GeneratePolyhedronFromPlanes_LineLL *pWorkLink = pNewPolygon->pLines; pPolygonLinks[0]->pNext = pWorkLink; pPolygonLinks[0]->pPrev = pWorkLink->pPrev; pWorkLink->pPrev->pNext = pPolygonLinks[0]; pWorkLink->pPrev = pPolygonLinks[0]; } } //Insert after the head line in the work polygon { GeneratePolyhedronFromPlanes_LineLL *pWorkLink = pWorkPolygon->pLines; pPolygonLinks[1]->pNext = pWorkLink->pNext; pPolygonLinks[1]->pPrev = pWorkLink; pWorkLink->pNext->pPrev = pPolygonLinks[1]; pWorkLink->pNext = pPolygonLinks[1]; } pWorkPolygon->bMissingASide = false; //repairs are finished #ifdef _DEBUG pLastWorkPolygon = pWorkPolygon; pLastWorkPoint = pWorkPoint; #endif //move to the next point pWorkPoint = pJoinLine->pPoints[0]; pLastLineLink = pJoinLine->pPointLineLinks[0]; Assert_DumpPolyhedron( pWorkPoint->planarity == POINT_ONPLANE ); //every working point should be coplanar pTestLine = pLastLineLink->pPrev; if( pTestLine->pLine->pPoints[pTestLine->iReferenceIndex]->planarity == POINT_ALIVE ) pWorkPolygon = pTestLine->pLine->pPolygons[pTestLine->iReferenceIndex]; else pWorkPolygon = pTestLine->pLine->pPolygons[1 - pTestLine->iReferenceIndex]; Assert_DumpPolyhedron( pWorkPolygon != pLastWorkPolygon ); Assert_DumpPolyhedron( (pWorkPoint == pStartPoint) || (pGapLines[0]->pLine->bCut == false) || (pWorkPolygon->bMissingASide == true) ); //if we're not done fixing, and if the shared line was cut, the next polygon must be missing a side } else { //line is on the plane, meaning the polygon isn't broken and doesn't need patching Assert_DumpPolyhedron( pTestLine->pLine->bCut == false ); Assert_DumpPolyhedron( (pTestLine->pLine->pPoints[0]->planarity == POINT_ONPLANE) && (pTestLine->pLine->pPoints[1]->planarity == POINT_ONPLANE) ); //link to this line from the new polygon GeneratePolyhedronFromPlanes_LineLL *pNewLineLink; pNewLineLink = (GeneratePolyhedronFromPlanes_LineLL *)stackalloc( sizeof( GeneratePolyhedronFromPlanes_LineLL ) ); pNewLineLink->pLine = pTestLine->pLine; pNewLineLink->iReferenceIndex = pTestLine->iReferenceIndex; //Insert before the head line in the new polygon (at the end of the clockwise order) { if( pNewPolygon->pLines == NULL ) { //this is the first line being added to the polygon pNewPolygon->pLines = pNewLineLink; pNewLineLink->pNext = pNewLineLink; pNewLineLink->pPrev = pNewLineLink; } else { GeneratePolyhedronFromPlanes_LineLL *pWorkLink = pNewPolygon->pLines; pNewLineLink->pNext = pWorkLink; pNewLineLink->pPrev = pWorkLink->pPrev; pWorkLink->pPrev->pNext = pNewLineLink; pWorkLink->pPrev = pNewLineLink; } } //Since the entire line is on the plane, that means it used to point to something that used to reside where the new polygon is going // Update the link to the new the polygon pointer and be on our way pTestLine->pLine->pPolygons[pTestLine->iReferenceIndex] = pNewPolygon; pTestLine->pLine->pPolygonLineLinks[pTestLine->iReferenceIndex] = pNewLineLink; #ifdef _DEBUG pLastWorkPolygon = pWorkPolygon; pLastWorkPoint = pWorkPoint; #endif pWorkPoint = pTestLine->pLine->pPoints[pTestLine->iReferenceIndex]; pLastLineLink = pTestLine->pLine->pPointLineLinks[pTestLine->iReferenceIndex]; Assert_DumpPolyhedron( pWorkPoint->planarity == POINT_ONPLANE ); //every working point should be coplanar pTestLine = pLastLineLink->pPrev; if( pTestLine->pLine->pPoints[pTestLine->iReferenceIndex]->planarity == POINT_ALIVE ) pWorkPolygon = pTestLine->pLine->pPolygons[pTestLine->iReferenceIndex]; else pWorkPolygon = pTestLine->pLine->pPolygons[1 - pTestLine->iReferenceIndex]; Assert_DumpPolyhedron( pWorkPolygon != pLastWorkPolygon ); } } while( pWorkPoint != pStartPoint ); } #ifdef _DEBUG //verify that repairs are complete { GeneratePolyhedronFromPlanes_UnorderedPolygonLL *pDebugPolygonWalk = pAllPolygons; do { AssertMsg_DumpPolyhedron( pDebugPolygonWalk->pPolygon->bMissingASide == false, "Some polygons not repaired after cut" ); pDebugPolygonWalk = pDebugPolygonWalk->pNext; } while( pDebugPolygonWalk ); GeneratePolyhedronFromPlanes_UnorderedPointLL *pDebugPointWalk = pAllPoints; do { AssertMsg_DumpPolyhedron( pDebugPointWalk->pPoint->pConnectedLines, "Point connected to no lines after cut" ); pDebugPointWalk = pDebugPointWalk->pNext; } while( pDebugPointWalk ); pStartPoint = NULL; } //maintain the cut history DebugCutHistory.AddToTail( ConvertLinkedGeometryToPolyhedron( pAllPolygons, pAllLines, pAllPoints, false ) ); #endif } #ifdef _DEBUG for( int i = DebugCutHistory.Count(); --i >= 0; ) { if( DebugCutHistory[i] ) DebugCutHistory[i]->Release(); } DebugCutHistory.RemoveAll(); #endif return ConvertLinkedGeometryToPolyhedron( pAllPolygons, pAllLines, pAllPoints, bUseTemporaryMemory ); } #define STARTPOINTTOLINELINKS(iPointNum, lineindex1, iOtherPointIndex1, lineindex2, iOtherPointIndex2, lineindex3, iOtherPointIndex3 )\ StartingBoxPoints[iPointNum].pConnectedLines = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 0];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 0].pLine = &StartingBoxLines[lineindex1];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 0].iReferenceIndex = iOtherPointIndex1;\ StartingBoxLines[lineindex1].pPointLineLinks[1 - iOtherPointIndex1] = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 0];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 0].pPrev = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 2];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 0].pNext = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 1];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 1].pLine = &StartingBoxLines[lineindex2];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 1].iReferenceIndex = iOtherPointIndex2;\ StartingBoxLines[lineindex2].pPointLineLinks[1 - iOtherPointIndex2] = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 1];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 1].pPrev = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 0];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 1].pNext = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 2];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 2].pLine = &StartingBoxLines[lineindex3];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 2].iReferenceIndex = iOtherPointIndex3;\ StartingBoxLines[lineindex3].pPointLineLinks[1 - iOtherPointIndex3] = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 2];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 2].pPrev = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 1];\ StartingPoints_To_Lines_Links[(iPointNum * 3) + 2].pNext = &StartingPoints_To_Lines_Links[(iPointNum * 3) + 0]; #define STARTBOXCONNECTION( linenum, point1, point2, poly1, poly2 )\ StartingBoxLines[linenum].pPoints[0] = &StartingBoxPoints[point1];\ StartingBoxLines[linenum].pPoints[1] = &StartingBoxPoints[point2];\ StartingBoxLines[linenum].pPolygons[0] = &StartingBoxPolygons[poly1];\ StartingBoxLines[linenum].pPolygons[1] = &StartingBoxPolygons[poly2]; #define STARTPOLYGONTOLINELINKS( polynum, lineindex1, iThisPolyIndex1, lineindex2, iThisPolyIndex2, lineindex3, iThisPolyIndex3, lineindex4, iThisPolyIndex4 )\ StartingBoxPolygons[polynum].pLines = &StartingPolygon_To_Lines_Links[(polynum * 4) + 0];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 0].pLine = &StartingBoxLines[lineindex1];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 0].iReferenceIndex = iThisPolyIndex1;\ StartingBoxLines[lineindex1].pPolygonLineLinks[iThisPolyIndex1] = &StartingPolygon_To_Lines_Links[(polynum * 4) + 0];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 0].pPrev = &StartingPolygon_To_Lines_Links[(polynum * 4) + 3];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 0].pNext = &StartingPolygon_To_Lines_Links[(polynum * 4) + 1];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 1].pLine = &StartingBoxLines[lineindex2];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 1].iReferenceIndex = iThisPolyIndex2;\ StartingBoxLines[lineindex2].pPolygonLineLinks[iThisPolyIndex2] = &StartingPolygon_To_Lines_Links[(polynum * 4) + 1];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 1].pPrev = &StartingPolygon_To_Lines_Links[(polynum * 4) + 0];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 1].pNext = &StartingPolygon_To_Lines_Links[(polynum * 4) + 2];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 2].pLine = &StartingBoxLines[lineindex3];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 2].iReferenceIndex = iThisPolyIndex3;\ StartingBoxLines[lineindex3].pPolygonLineLinks[iThisPolyIndex3] = &StartingPolygon_To_Lines_Links[(polynum * 4) + 2];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 2].pPrev = &StartingPolygon_To_Lines_Links[(polynum * 4) + 1];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 2].pNext = &StartingPolygon_To_Lines_Links[(polynum * 4) + 3];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 3].pLine = &StartingBoxLines[lineindex4];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 3].iReferenceIndex = iThisPolyIndex4;\ StartingBoxLines[lineindex4].pPolygonLineLinks[iThisPolyIndex4] = &StartingPolygon_To_Lines_Links[(polynum * 4) + 3];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 3].pPrev = &StartingPolygon_To_Lines_Links[(polynum * 4) + 2];\ StartingPolygon_To_Lines_Links[(polynum * 4) + 3].pNext = &StartingPolygon_To_Lines_Links[(polynum * 4) + 0]; CPolyhedron *GeneratePolyhedronFromPlanes( const float *pOutwardFacingPlanes, int iPlaneCount, float fOnPlaneEpsilon, bool bUseTemporaryMemory ) { //this is version 2 of the polyhedron generator, version 1 made individual polygons and joined points together, some guesswork is involved and it therefore isn't a solid method //this version will start with a cube and hack away at it (retaining point connection information) to produce a polyhedron with no guesswork involved, this method should be rock solid //the polygon clipping functions we're going to use want inward facing planes float *pFlippedPlanes = (float *)stackalloc( (iPlaneCount * 4) * sizeof( float ) ); for( int i = 0; i != iPlaneCount * 4; ++i ) { pFlippedPlanes[i] = -pOutwardFacingPlanes[i]; } //our first goal is to find the size of a cube big enough to encapsulate all points that will be in the final polyhedron Vector vAABBMins, vAABBMaxs; if( FindConvexShapeLooseAABB( pFlippedPlanes, iPlaneCount, &vAABBMins, &vAABBMaxs ) == false ) return NULL; //no shape to work with apparently //grow the bounding box to a larger size since it's probably inaccurate a bit { Vector vGrow = (vAABBMaxs - vAABBMins) * 0.5f; vGrow.x += 100.0f; vGrow.y += 100.0f; vGrow.z += 100.0f; vAABBMaxs += vGrow; vAABBMins -= vGrow; } //generate our starting cube using the 2x AABB so we can start hacking away at it //create our starting box on the stack GeneratePolyhedronFromPlanes_Point StartingBoxPoints[8]; GeneratePolyhedronFromPlanes_Line StartingBoxLines[12]; GeneratePolyhedronFromPlanes_Polygon StartingBoxPolygons[6]; GeneratePolyhedronFromPlanes_LineLL StartingPoints_To_Lines_Links[24]; //8 points, 3 lines per point GeneratePolyhedronFromPlanes_LineLL StartingPolygon_To_Lines_Links[24]; //6 polygons, 4 lines per poly GeneratePolyhedronFromPlanes_UnorderedPolygonLL StartingPolygonList[6]; //6 polygons GeneratePolyhedronFromPlanes_UnorderedLineLL StartingLineList[12]; //12 lines GeneratePolyhedronFromPlanes_UnorderedPointLL StartingPointList[8]; //8 points //I had to work all this out on a whiteboard if it seems completely unintuitive. { StartingBoxPoints[0].ptPosition.Init( vAABBMins.x, vAABBMins.y, vAABBMins.z ); STARTPOINTTOLINELINKS( 0, 0, 1, 4, 1, 3, 0 ); StartingBoxPoints[1].ptPosition.Init( vAABBMins.x, vAABBMaxs.y, vAABBMins.z ); STARTPOINTTOLINELINKS( 1, 0, 0, 1, 1, 5, 1 ); StartingBoxPoints[2].ptPosition.Init( vAABBMins.x, vAABBMins.y, vAABBMaxs.z ); STARTPOINTTOLINELINKS( 2, 4, 0, 8, 1, 11, 0 ); StartingBoxPoints[3].ptPosition.Init( vAABBMins.x, vAABBMaxs.y, vAABBMaxs.z ); STARTPOINTTOLINELINKS( 3, 5, 0, 9, 1, 8, 0 ); StartingBoxPoints[4].ptPosition.Init( vAABBMaxs.x, vAABBMins.y, vAABBMins.z ); STARTPOINTTOLINELINKS( 4, 2, 0, 3, 1, 7, 1 ); StartingBoxPoints[5].ptPosition.Init( vAABBMaxs.x, vAABBMaxs.y, vAABBMins.z ); STARTPOINTTOLINELINKS( 5, 1, 0, 2, 1, 6, 1 ); StartingBoxPoints[6].ptPosition.Init( vAABBMaxs.x, vAABBMins.y, vAABBMaxs.z ); STARTPOINTTOLINELINKS( 6, 7, 0, 11, 1, 10, 0 ); StartingBoxPoints[7].ptPosition.Init( vAABBMaxs.x, vAABBMaxs.y, vAABBMaxs.z ); STARTPOINTTOLINELINKS( 7, 6, 0, 10, 1, 9, 0 ); STARTBOXCONNECTION( 0, 0, 1, 0, 5 ); STARTBOXCONNECTION( 1, 1, 5, 1, 5 ); STARTBOXCONNECTION( 2, 5, 4, 2, 5 ); STARTBOXCONNECTION( 3, 4, 0, 3, 5 ); STARTBOXCONNECTION( 4, 0, 2, 3, 0 ); STARTBOXCONNECTION( 5, 1, 3, 0, 1 ); STARTBOXCONNECTION( 6, 5, 7, 1, 2 ); STARTBOXCONNECTION( 7, 4, 6, 2, 3 ); STARTBOXCONNECTION( 8, 2, 3, 4, 0 ); STARTBOXCONNECTION( 9, 3, 7, 4, 1 ); STARTBOXCONNECTION( 10, 7, 6, 4, 2 ); STARTBOXCONNECTION( 11, 6, 2, 4, 3 ); STARTBOXCONNECTION( 0, 0, 1, 5, 0 ); STARTBOXCONNECTION( 1, 1, 5, 5, 1 ); STARTBOXCONNECTION( 2, 5, 4, 5, 2 ); STARTBOXCONNECTION( 3, 4, 0, 5, 3 ); STARTBOXCONNECTION( 4, 0, 2, 0, 3 ); STARTBOXCONNECTION( 5, 1, 3, 1, 0 ); STARTBOXCONNECTION( 6, 5, 7, 2, 1 ); STARTBOXCONNECTION( 7, 4, 6, 3, 2 ); STARTBOXCONNECTION( 8, 2, 3, 0, 4 ); STARTBOXCONNECTION( 9, 3, 7, 1, 4 ); STARTBOXCONNECTION( 10, 7, 6, 2, 4 ); STARTBOXCONNECTION( 11, 6, 2, 3, 4 ); StartingBoxPolygons[0].vSurfaceNormal.Init( -1.0f, 0.0f, 0.0f ); StartingBoxPolygons[1].vSurfaceNormal.Init( 0.0f, 1.0f, 0.0f ); StartingBoxPolygons[2].vSurfaceNormal.Init( 1.0f, 0.0f, 0.0f ); StartingBoxPolygons[3].vSurfaceNormal.Init( 0.0f, -1.0f, 0.0f ); StartingBoxPolygons[4].vSurfaceNormal.Init( 0.0f, 0.0f, 1.0f ); StartingBoxPolygons[5].vSurfaceNormal.Init( 0.0f, 0.0f, -1.0f ); STARTPOLYGONTOLINELINKS( 0, 0, 1, 5, 1, 8, 0, 4, 0 ); STARTPOLYGONTOLINELINKS( 1, 1, 1, 6, 1, 9, 0, 5, 0 ); STARTPOLYGONTOLINELINKS( 2, 2, 1, 7, 1, 10, 0, 6, 0 ); STARTPOLYGONTOLINELINKS( 3, 3, 1, 4, 1, 11, 0, 7, 0 ); STARTPOLYGONTOLINELINKS( 4, 8, 1, 9, 1, 10, 1, 11, 1 ); STARTPOLYGONTOLINELINKS( 5, 0, 0, 3, 0, 2, 0, 1, 0 ); { StartingPolygonList[0].pPolygon = &StartingBoxPolygons[0]; StartingPolygonList[0].pNext = &StartingPolygonList[1]; StartingPolygonList[0].pPrev = NULL; StartingPolygonList[1].pPolygon = &StartingBoxPolygons[1]; StartingPolygonList[1].pNext = &StartingPolygonList[2]; StartingPolygonList[1].pPrev = &StartingPolygonList[0]; StartingPolygonList[2].pPolygon = &StartingBoxPolygons[2]; StartingPolygonList[2].pNext = &StartingPolygonList[3]; StartingPolygonList[2].pPrev = &StartingPolygonList[1]; StartingPolygonList[3].pPolygon = &StartingBoxPolygons[3]; StartingPolygonList[3].pNext = &StartingPolygonList[4]; StartingPolygonList[3].pPrev = &StartingPolygonList[2]; StartingPolygonList[4].pPolygon = &StartingBoxPolygons[4]; StartingPolygonList[4].pNext = &StartingPolygonList[5]; StartingPolygonList[4].pPrev = &StartingPolygonList[3]; StartingPolygonList[5].pPolygon = &StartingBoxPolygons[5]; StartingPolygonList[5].pNext = NULL; StartingPolygonList[5].pPrev = &StartingPolygonList[4]; } { StartingLineList[0].pLine = &StartingBoxLines[0]; StartingLineList[0].pNext = &StartingLineList[1]; StartingLineList[0].pPrev = NULL; StartingLineList[1].pLine = &StartingBoxLines[1]; StartingLineList[1].pNext = &StartingLineList[2]; StartingLineList[1].pPrev = &StartingLineList[0]; StartingLineList[2].pLine = &StartingBoxLines[2]; StartingLineList[2].pNext = &StartingLineList[3]; StartingLineList[2].pPrev = &StartingLineList[1]; StartingLineList[3].pLine = &StartingBoxLines[3]; StartingLineList[3].pNext = &StartingLineList[4]; StartingLineList[3].pPrev = &StartingLineList[2]; StartingLineList[4].pLine = &StartingBoxLines[4]; StartingLineList[4].pNext = &StartingLineList[5]; StartingLineList[4].pPrev = &StartingLineList[3]; StartingLineList[5].pLine = &StartingBoxLines[5]; StartingLineList[5].pNext = &StartingLineList[6]; StartingLineList[5].pPrev = &StartingLineList[4]; StartingLineList[6].pLine = &StartingBoxLines[6]; StartingLineList[6].pNext = &StartingLineList[7]; StartingLineList[6].pPrev = &StartingLineList[5]; StartingLineList[7].pLine = &StartingBoxLines[7]; StartingLineList[7].pNext = &StartingLineList[8]; StartingLineList[7].pPrev = &StartingLineList[6]; StartingLineList[8].pLine = &StartingBoxLines[8]; StartingLineList[8].pNext = &StartingLineList[9]; StartingLineList[8].pPrev = &StartingLineList[7]; StartingLineList[9].pLine = &StartingBoxLines[9]; StartingLineList[9].pNext = &StartingLineList[10]; StartingLineList[9].pPrev = &StartingLineList[8]; StartingLineList[10].pLine = &StartingBoxLines[10]; StartingLineList[10].pNext = &StartingLineList[11]; StartingLineList[10].pPrev = &StartingLineList[9]; StartingLineList[11].pLine = &StartingBoxLines[11]; StartingLineList[11].pNext = NULL; StartingLineList[11].pPrev = &StartingLineList[10]; } { StartingPointList[0].pPoint = &StartingBoxPoints[0]; StartingPointList[0].pNext = &StartingPointList[1]; StartingPointList[0].pPrev = NULL; StartingPointList[1].pPoint = &StartingBoxPoints[1]; StartingPointList[1].pNext = &StartingPointList[2]; StartingPointList[1].pPrev = &StartingPointList[0]; StartingPointList[2].pPoint = &StartingBoxPoints[2]; StartingPointList[2].pNext = &StartingPointList[3]; StartingPointList[2].pPrev = &StartingPointList[1]; StartingPointList[3].pPoint = &StartingBoxPoints[3]; StartingPointList[3].pNext = &StartingPointList[4]; StartingPointList[3].pPrev = &StartingPointList[2]; StartingPointList[4].pPoint = &StartingBoxPoints[4]; StartingPointList[4].pNext = &StartingPointList[5]; StartingPointList[4].pPrev = &StartingPointList[3]; StartingPointList[5].pPoint = &StartingBoxPoints[5]; StartingPointList[5].pNext = &StartingPointList[6]; StartingPointList[5].pPrev = &StartingPointList[4]; StartingPointList[6].pPoint = &StartingBoxPoints[6]; StartingPointList[6].pNext = &StartingPointList[7]; StartingPointList[6].pPrev = &StartingPointList[5]; StartingPointList[7].pPoint = &StartingBoxPoints[7]; StartingPointList[7].pNext = NULL; StartingPointList[7].pPrev = &StartingPointList[6]; } } return ClipLinkedGeometry( StartingPolygonList, StartingLineList, StartingPointList, pOutwardFacingPlanes, iPlaneCount, fOnPlaneEpsilon, bUseTemporaryMemory ); } #ifdef _DEBUG void DumpAABBToGLView( const Vector &vCenter, const Vector &vExtents, const Vector &vColor, FILE *pFile ) { #ifdef ENABLE_DEBUG_POLYHEDRON_DUMPS Vector vMins = vCenter - vExtents; Vector vMaxs = vCenter + vExtents; //x min side fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); //x max side fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); //y min side fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); //y max side fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); //z min side fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMins.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMins.z, vColor.x, vColor.y, vColor.z ); //z max side fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMaxs.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMaxs.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vMins.x, vMins.y, vMaxs.z, vColor.x, vColor.y, vColor.z ); #endif } void DumpLineToGLView( const Vector &vPoint1, const Vector &vColor1, const Vector &vPoint2, const Vector &vColor2, float fThickness, FILE *pFile ) { #ifdef ENABLE_DEBUG_POLYHEDRON_DUMPS Vector vDirection = vPoint2 - vPoint1; vDirection.NormalizeInPlace(); Vector vPseudoPerpandicular = vec3_origin; if( vDirection.x != 0.0f ) vPseudoPerpandicular.z = 1.0f; else vPseudoPerpandicular.x = 1.0f; Vector vWidth = vDirection.Cross( vPseudoPerpandicular ); vWidth.NormalizeInPlace(); Vector vHeight = vDirection.Cross( vWidth ); vHeight.NormalizeInPlace(); fThickness *= 0.5f; //we use half thickness in both directions vDirection *= fThickness; vWidth *= fThickness; vHeight *= fThickness; Vector vLinePoints[8]; vLinePoints[0] = vPoint1 - vDirection - vWidth - vHeight; vLinePoints[1] = vPoint1 - vDirection - vWidth + vHeight; vLinePoints[2] = vPoint1 - vDirection + vWidth - vHeight; vLinePoints[3] = vPoint1 - vDirection + vWidth + vHeight; vLinePoints[4] = vPoint2 + vDirection - vWidth - vHeight; vLinePoints[5] = vPoint2 + vDirection - vWidth + vHeight; vLinePoints[6] = vPoint2 + vDirection + vWidth - vHeight; vLinePoints[7] = vPoint2 + vDirection + vWidth + vHeight; const Vector *pLineColors[8] = { &vColor1, &vColor1, &vColor1, &vColor1, &vColor2, &vColor2, &vColor2, &vColor2 }; #define DPTGLV_LINE_WRITEPOINT(index) fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vLinePoints[index].x, vLinePoints[index].y, vLinePoints[index].z, pLineColors[index]->x, pLineColors[index]->y, pLineColors[index]->z ); #define DPTGLV_LINE_DOUBLESIDEDQUAD(index1,index2,index3,index4)\ fprintf( pFile, "4\n" );\ DPTGLV_LINE_WRITEPOINT(index1);\ DPTGLV_LINE_WRITEPOINT(index2);\ DPTGLV_LINE_WRITEPOINT(index3);\ DPTGLV_LINE_WRITEPOINT(index4);\ fprintf( pFile, "4\n" );\ DPTGLV_LINE_WRITEPOINT(index4);\ DPTGLV_LINE_WRITEPOINT(index3);\ DPTGLV_LINE_WRITEPOINT(index2);\ DPTGLV_LINE_WRITEPOINT(index1); DPTGLV_LINE_DOUBLESIDEDQUAD(0,4,6,2); DPTGLV_LINE_DOUBLESIDEDQUAD(3,7,5,1); DPTGLV_LINE_DOUBLESIDEDQUAD(1,5,4,0); DPTGLV_LINE_DOUBLESIDEDQUAD(2,6,7,3); DPTGLV_LINE_DOUBLESIDEDQUAD(0,2,3,1); DPTGLV_LINE_DOUBLESIDEDQUAD(5,7,6,4); #endif } void DumpPolyhedronToGLView( const CPolyhedron *pPolyhedron, const char *pFilename, const VMatrix *pTransform ) { #ifdef ENABLE_DEBUG_POLYHEDRON_DUMPS if ( (pPolyhedron == NULL) || (pPolyhedron->iVertexCount == 0) ) return; if( pTransform == NULL ) pTransform = &s_matIdentity; printf("Writing %s...\n", pFilename ); FILE *pFile = fopen( pFilename, "ab" ); //randomizing an array of colors to help spot shared/unshared vertices Vector *pColors = (Vector *)stackalloc( sizeof( Vector ) * pPolyhedron->iVertexCount ); int counter; for( counter = 0; counter != pPolyhedron->iVertexCount; ++counter ) { pColors[counter].Init( rand()/32768.0f, rand()/32768.0f, rand()/32768.0f ); } Vector *pTransformedPoints = (Vector *)stackalloc( pPolyhedron->iVertexCount * sizeof( Vector ) ); for ( counter = 0; counter != pPolyhedron->iVertexCount; ++counter ) { pTransformedPoints[counter] = (*pTransform) * pPolyhedron->pVertices[counter]; } for ( counter = 0; counter != pPolyhedron->iPolygonCount; ++counter ) { fprintf( pFile, "%i\n", pPolyhedron->pPolygons[counter].iIndexCount ); int counter2; for( counter2 = 0; counter2 != pPolyhedron->pPolygons[counter].iIndexCount; ++counter2 ) { Polyhedron_IndexedLineReference_t *pLineReference = &pPolyhedron->pIndices[pPolyhedron->pPolygons[counter].iFirstIndex + counter2]; Vector *pVertex = &pTransformedPoints[pPolyhedron->pLines[pLineReference->iLineIndex].iPointIndices[pLineReference->iEndPointIndex]]; Vector *pColor = &pColors[pPolyhedron->pLines[pLineReference->iLineIndex].iPointIndices[pLineReference->iEndPointIndex]]; fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n",pVertex->x, pVertex->y, pVertex->z, pColor->x, pColor->y, pColor->z ); } } for( counter = 0; counter != pPolyhedron->iLineCount; ++counter ) { const Vector vOne( 1.0f, 1.0f, 1.0f ); DumpLineToGLView( pTransformedPoints[pPolyhedron->pLines[counter].iPointIndices[0]], vOne - pColors[pPolyhedron->pLines[counter].iPointIndices[0]], pTransformedPoints[pPolyhedron->pLines[counter].iPointIndices[1]], vOne - pColors[pPolyhedron->pLines[counter].iPointIndices[1]], 0.1f, pFile ); } for( counter = 0; counter != pPolyhedron->iVertexCount; ++counter ) { const Vector vPointHalfSize(0.15f, 0.15f, 0.15f ); DumpAABBToGLView( pTransformedPoints[counter], vPointHalfSize, pColors[counter], pFile ); } fclose( pFile ); #endif } void DumpPlaneToGlView( const float *pPlane, float fGrayScale, const char *pszFileName, const VMatrix *pTransform ) { #ifdef ENABLE_DEBUG_POLYHEDRON_DUMPS if( pTransform == NULL ) pTransform = &s_matIdentity; FILE *pFile = fopen( pszFileName, "ab" ); //transform the plane Vector vNormal = pTransform->ApplyRotation( *(Vector *)pPlane ); float fDist = pPlane[3] * vNormal.NormalizeInPlace(); //possible scaling going on fDist += vNormal.Dot( pTransform->GetTranslation() ); Vector vPlaneVerts[4]; PolyFromPlane( vPlaneVerts, vNormal, fDist, 100000.0f ); fprintf( pFile, "4\n" ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vPlaneVerts[0].x, vPlaneVerts[0].y, vPlaneVerts[0].z, fGrayScale, fGrayScale, fGrayScale ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vPlaneVerts[1].x, vPlaneVerts[1].y, vPlaneVerts[1].z, fGrayScale, fGrayScale, fGrayScale ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vPlaneVerts[2].x, vPlaneVerts[2].y, vPlaneVerts[2].z, fGrayScale, fGrayScale, fGrayScale ); fprintf( pFile, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", vPlaneVerts[3].x, vPlaneVerts[3].y, vPlaneVerts[3].z, fGrayScale, fGrayScale, fGrayScale ); fclose( pFile ); #endif } #endif