//========= Copyright © 1996-2006, Valve Corporation, All rights reserved. ============// // // Purpose: Fast low quality noise suitable for real time use // //=====================================================================================// #include #include // Needed for FLT_EPSILON #include "basetypes.h" #include #include "tier0/dbg.h" #include "mathlib/mathlib.h" #include "mathlib/vector.h" #include "mathlib/ssemath.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" #include "noisedata.h" #define MAGIC_NUMBER (1<<15) // gives 8 bits of fraction static fltx4 Four_MagicNumbers = { MAGIC_NUMBER, MAGIC_NUMBER, MAGIC_NUMBER, MAGIC_NUMBER }; static ALIGN16 int32 idx_mask[4]= {0xffff, 0xffff, 0xffff, 0xffff}; #define MASK255 (*((fltx4 *)(& idx_mask ))) // returns 0..1 static inline float GetLatticePointValue( int idx_x, int idx_y, int idx_z ) { int ret_idx = perm_a[idx_x & 0xff]; ret_idx = perm_b[( idx_y + ret_idx ) & 0xff]; ret_idx = perm_c[( idx_z + ret_idx ) & 0xff]; return impulse_xcoords[ret_idx]; } fltx4 NoiseSIMD( const fltx4 & x, const fltx4 & y, const fltx4 & z ) { // use magic to convert to integer index fltx4 x_idx = AndSIMD( MASK255, AddSIMD( x, Four_MagicNumbers ) ); fltx4 y_idx = AndSIMD( MASK255, AddSIMD( y, Four_MagicNumbers ) ); fltx4 z_idx = AndSIMD( MASK255, AddSIMD( z, Four_MagicNumbers ) ); fltx4 lattice000 = Four_Zeros, lattice001 = Four_Zeros, lattice010 = Four_Zeros, lattice011 = Four_Zeros; fltx4 lattice100 = Four_Zeros, lattice101 = Four_Zeros, lattice110 = Four_Zeros, lattice111 = Four_Zeros; // FIXME: Converting the input vectors to int indices will cause load-hit-stores (48 bytes) // Converting the indexed noise values back to vectors will cause more (128 bytes) // The noise table could store vectors if we chunked it into 2x2x2 blocks. fltx4 xfrac = Four_Zeros, yfrac = Four_Zeros, zfrac = Four_Zeros; #define DOPASS(i) \ { unsigned int xi = SubInt( x_idx, i ); \ unsigned int yi = SubInt( y_idx, i ); \ unsigned int zi = SubInt( z_idx, i ); \ SubFloat( xfrac, i ) = (xi & 0xff)*(1.0/256.0); \ SubFloat( yfrac, i ) = (yi & 0xff)*(1.0/256.0); \ SubFloat( zfrac, i ) = (zi & 0xff)*(1.0/256.0); \ xi>>=8; \ yi>>=8; \ zi>>=8; \ \ SubFloat( lattice000, i ) = GetLatticePointValue( xi,yi,zi ); \ SubFloat( lattice001, i ) = GetLatticePointValue( xi,yi,zi+1 ); \ SubFloat( lattice010, i ) = GetLatticePointValue( xi,yi+1,zi ); \ SubFloat( lattice011, i ) = GetLatticePointValue( xi,yi+1,zi+1 ); \ SubFloat( lattice100, i ) = GetLatticePointValue( xi+1,yi,zi ); \ SubFloat( lattice101, i ) = GetLatticePointValue( xi+1,yi,zi+1 ); \ SubFloat( lattice110, i ) = GetLatticePointValue( xi+1,yi+1,zi ); \ SubFloat( lattice111, i ) = GetLatticePointValue( xi+1,yi+1,zi+1 ); \ } DOPASS( 0 ); DOPASS( 1 ); DOPASS( 2 ); DOPASS( 3 ); // now, we have 8 lattice values for each of four points as m128s, and interpolant values for // each axis in m128 form in [xyz]frac. Perfom the trilinear interpolation as SIMD ops // first, do x interpolation fltx4 l2d00 = AddSIMD( lattice000, MulSIMD( xfrac, SubSIMD( lattice100, lattice000 ) ) ); fltx4 l2d01 = AddSIMD( lattice001, MulSIMD( xfrac, SubSIMD( lattice101, lattice001 ) ) ); fltx4 l2d10 = AddSIMD( lattice010, MulSIMD( xfrac, SubSIMD( lattice110, lattice010 ) ) ); fltx4 l2d11 = AddSIMD( lattice011, MulSIMD( xfrac, SubSIMD( lattice111, lattice011 ) ) ); // now, do y interpolation fltx4 l1d0 = AddSIMD( l2d00, MulSIMD( yfrac, SubSIMD( l2d10, l2d00 ) ) ); fltx4 l1d1 = AddSIMD( l2d01, MulSIMD( yfrac, SubSIMD( l2d11, l2d01 ) ) ); // final z interpolation fltx4 rslt = AddSIMD( l1d0, MulSIMD( zfrac, SubSIMD( l1d1, l1d0 ) ) ); // map to 0..1 return MulSIMD( Four_Twos, SubSIMD( rslt, Four_PointFives ) ); } fltx4 NoiseSIMD( FourVectors const &pos ) { return NoiseSIMD( pos.x, pos.y, pos.z ); }