//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// // // VMatrix always postmultiply vectors as in Ax = b. // Given a set of basis vectors ((F)orward, (L)eft, (U)p), and a (T)ranslation, // a matrix to transform a vector into that space looks like this: // Fx Lx Ux Tx // Fy Ly Uy Ty // Fz Lz Uz Tz // 0 0 0 1 // Note that concatenating matrices needs to multiply them in reverse order. // ie: if I want to apply matrix A, B, then C, the equation needs to look like this: // C * B * A * v // ie: // v = A * v; // v = B * v; // v = C * v; //============================================================================= #ifndef VMATRIX_H #define VMATRIX_H #ifdef _WIN32 #pragma once #endif #include #include "vector.h" #include "vplane.h" #include "vector4d.h" #include "mathlib.h" struct cplane_t; class VMatrix { public: VMatrix(); VMatrix( vec_t m00, vec_t m01, vec_t m02, vec_t m03, vec_t m10, vec_t m11, vec_t m12, vec_t m13, vec_t m20, vec_t m21, vec_t m22, vec_t m23, vec_t m30, vec_t m31, vec_t m32, vec_t m33 ); // Creates a matrix where the X axis = forward // the Y axis = left, and the Z axis = up VMatrix( const Vector& forward, const Vector& left, const Vector& up ); // Construct from a 3x4 matrix VMatrix( const matrix3x4_t& matrix3x4 ); // Set the values in the matrix. void Init( vec_t m00, vec_t m01, vec_t m02, vec_t m03, vec_t m10, vec_t m11, vec_t m12, vec_t m13, vec_t m20, vec_t m21, vec_t m22, vec_t m23, vec_t m30, vec_t m31, vec_t m32, vec_t m33 ); // Initialize from a 3x4 void Init( const matrix3x4_t& matrix3x4 ); // array access inline float* operator[](int i) { return m[i]; } inline const float* operator[](int i) const { return m[i]; } // Get a pointer to m[0][0] inline float *Base() { return &m[0][0]; } inline const float *Base() const { return &m[0][0]; } void SetLeft(const Vector &vLeft); void SetUp(const Vector &vUp); void SetForward(const Vector &vForward); void GetBasisVectors(Vector &vForward, Vector &vLeft, Vector &vUp) const; void SetBasisVectors(const Vector &vForward, const Vector &vLeft, const Vector &vUp); // Get/set the translation. Vector & GetTranslation( Vector &vTrans ) const; void SetTranslation(const Vector &vTrans); void PreTranslate(const Vector &vTrans); void PostTranslate(const Vector &vTrans); matrix3x4_t& As3x4(); const matrix3x4_t& As3x4() const; void CopyFrom3x4( const matrix3x4_t &m3x4 ); void Set3x4( matrix3x4_t& matrix3x4 ) const; bool operator==( const VMatrix& src ) const; bool operator!=( const VMatrix& src ) const { return !( *this == src ); } #ifndef VECTOR_NO_SLOW_OPERATIONS // Access the basis vectors. Vector GetLeft() const; Vector GetUp() const; Vector GetForward() const; Vector GetTranslation() const; #endif // Matrix->vector operations. public: // Multiply by a 3D vector (same as operator*). void V3Mul(const Vector &vIn, Vector &vOut) const; // Multiply by a 4D vector. void V4Mul(const Vector4D &vIn, Vector4D &vOut) const; #ifndef VECTOR_NO_SLOW_OPERATIONS // Applies the rotation (ignores translation in the matrix). (This just calls VMul3x3). Vector ApplyRotation(const Vector &vVec) const; // Multiply by a vector (divides by w, assumes input w is 1). Vector operator*(const Vector &vVec) const; // Multiply by the upper 3x3 part of the matrix (ie: only apply rotation). Vector VMul3x3(const Vector &vVec) const; // Apply the inverse (transposed) rotation (only works on pure rotation matrix) Vector VMul3x3Transpose(const Vector &vVec) const; // Multiply by the upper 3 rows. Vector VMul4x3(const Vector &vVec) const; // Apply the inverse (transposed) transformation (only works on pure rotation/translation) Vector VMul4x3Transpose(const Vector &vVec) const; #endif // Matrix->plane operations. public: // Transform the plane. The matrix can only contain translation and rotation. void TransformPlane( const VPlane &inPlane, VPlane &outPlane ) const; #ifndef VECTOR_NO_SLOW_OPERATIONS // Just calls TransformPlane and returns the result. VPlane operator*(const VPlane &thePlane) const; #endif // Matrix->matrix operations. public: VMatrix& operator=(const VMatrix &mOther); // Multiply two matrices (out = this * vm). void MatrixMul( const VMatrix &vm, VMatrix &out ) const; // Add two matrices. const VMatrix& operator+=(const VMatrix &other); #ifndef VECTOR_NO_SLOW_OPERATIONS // Just calls MatrixMul and returns the result. VMatrix operator*(const VMatrix &mOther) const; // Add/Subtract two matrices. VMatrix operator+(const VMatrix &other) const; VMatrix operator-(const VMatrix &other) const; // Negation. VMatrix operator-() const; // Return inverse matrix. Be careful because the results are undefined // if the matrix doesn't have an inverse (ie: InverseGeneral returns false). VMatrix operator~() const; #endif // Matrix operations. public: // Set to identity. void Identity(); bool IsIdentity() const; // Setup a matrix for origin and angles. void SetupMatrixOrgAngles( const Vector &origin, const QAngle &vAngles ); // General inverse. This may fail so check the return! bool InverseGeneral(VMatrix &vInverse) const; // Does a fast inverse, assuming the matrix only contains translation and rotation. void InverseTR( VMatrix &mRet ) const; // Usually used for debug checks. Returns true if the upper 3x3 contains // unit vectors and they are all orthogonal. bool IsRotationMatrix() const; #ifndef VECTOR_NO_SLOW_OPERATIONS // This calls the other InverseTR and returns the result. VMatrix InverseTR() const; // Get the scale of the matrix's basis vectors. Vector GetScale() const; // (Fast) multiply by a scaling matrix setup from vScale. VMatrix Scale(const Vector &vScale); // Normalize the basis vectors. VMatrix NormalizeBasisVectors() const; // Transpose. VMatrix Transpose() const; // Transpose upper-left 3x3. VMatrix Transpose3x3() const; #endif public: // The matrix. vec_t m[4][4]; }; //----------------------------------------------------------------------------- // Helper functions. //----------------------------------------------------------------------------- #ifndef VECTOR_NO_SLOW_OPERATIONS // Setup an identity matrix. VMatrix SetupMatrixIdentity(); // Setup as a scaling matrix. VMatrix SetupMatrixScale(const Vector &vScale); // Setup a translation matrix. VMatrix SetupMatrixTranslation(const Vector &vTranslation); // Setup a matrix to reflect around the plane. VMatrix SetupMatrixReflection(const VPlane &thePlane); // Setup a matrix to project from vOrigin onto thePlane. VMatrix SetupMatrixProjection(const Vector &vOrigin, const VPlane &thePlane); // Setup a matrix to rotate the specified amount around the specified axis. VMatrix SetupMatrixAxisRot(const Vector &vAxis, vec_t fDegrees); // Setup a matrix from euler angles. Just sets identity and calls MatrixAngles. VMatrix SetupMatrixAngles(const QAngle &vAngles); // Setup a matrix for origin and angles. VMatrix SetupMatrixOrgAngles(const Vector &origin, const QAngle &vAngles); #endif //----------------------------------------------------------------------------- // Returns the point at the intersection on the 3 planes. // Returns false if it can't be solved (2 or more planes are parallel). //----------------------------------------------------------------------------- bool PlaneIntersection( const VPlane &vp1, const VPlane &vp2, const VPlane &vp3, Vector &vOut ); //----------------------------------------------------------------------------- // These methods are faster. Use them if you want faster code //----------------------------------------------------------------------------- void MatrixSetIdentity( VMatrix &dst ); void MatrixTranspose( const VMatrix& src, VMatrix& dst ); void MatrixCopy( const VMatrix& src, VMatrix& dst ); void MatrixMultiply( const VMatrix& src1, const VMatrix& src2, VMatrix& dst ); // Accessors void MatrixGetColumn( const VMatrix &src, int nCol, Vector *pColumn ); void MatrixSetColumn( VMatrix &src, int nCol, const Vector &column ); void MatrixGetRow( const VMatrix &src, int nCol, Vector *pColumn ); void MatrixSetRow( VMatrix &src, int nCol, const Vector &column ); // Vector3DMultiply treats src2 as if it's a direction vector void Vector3DMultiply( const VMatrix& src1, const Vector& src2, Vector& dst ); // Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation) inline void Vector3DMultiplyPosition( const VMatrix& src1, const VectorByValue src2, Vector& dst ); // Vector3DMultiplyPositionProjective treats src2 as if it's a point // and does the perspective divide at the end void Vector3DMultiplyPositionProjective( const VMatrix& src1, const Vector &src2, Vector& dst ); // Vector3DMultiplyPosition treats src2 as if it's a direction // and does the perspective divide at the end // NOTE: src1 had better be an inverse transpose to use this correctly void Vector3DMultiplyProjective( const VMatrix& src1, const Vector &src2, Vector& dst ); void Vector4DMultiply( const VMatrix& src1, const Vector4D& src2, Vector4D& dst ); // Same as Vector4DMultiply except that src2 has an implicit W of 1 void Vector4DMultiplyPosition( const VMatrix& src1, const Vector &src2, Vector4D& dst ); // Multiplies the vector by the transpose of the matrix void Vector3DMultiplyTranspose( const VMatrix& src1, const Vector& src2, Vector& dst ); void Vector4DMultiplyTranspose( const VMatrix& src1, const Vector4D& src2, Vector4D& dst ); // Transform a plane void MatrixTransformPlane( const VMatrix &src, const cplane_t &inPlane, cplane_t &outPlane ); // Transform a plane that has an axis-aligned normal void MatrixTransformAxisAlignedPlane( const VMatrix &src, int nDim, float flSign, float flDist, cplane_t &outPlane ); void MatrixBuildTranslation( VMatrix& dst, float x, float y, float z ); void MatrixBuildTranslation( VMatrix& dst, const Vector &translation ); void MatrixBuildRotationAboutAxis( VMatrix& dst, const Vector& vAxisOfRot, float angleDegrees ); void MatrixBuildRotateZ( VMatrix& dst, float angleDegrees ); // Builds a rotation matrix that rotates one direction vector into another void MatrixBuildRotation( VMatrix &dst, const Vector& initialDirection, const Vector& finalDirection ); // Builds a scale matrix void MatrixBuildScale( VMatrix &dst, float x, float y, float z ); void MatrixBuildScale( VMatrix &dst, const Vector& scale ); // Build a perspective matrix. // zNear and zFar are assumed to be positive. // You end up looking down positive Z, X is to the right, Y is up. // X range: [0..1] // Y range: [0..1] // Z range: [0..1] void MatrixBuildPerspective( VMatrix &dst, float fovX, float fovY, float zNear, float zFar ); //----------------------------------------------------------------------------- // Given a projection matrix, take the extremes of the space in transformed into world space and // get a bounding box. //----------------------------------------------------------------------------- void CalculateAABBFromProjectionMatrix( const VMatrix &worldToVolume, Vector *pMins, Vector *pMaxs ); //----------------------------------------------------------------------------- // Given a projection matrix, take the extremes of the space in transformed into world space and // get a bounding sphere. //----------------------------------------------------------------------------- void CalculateSphereFromProjectionMatrix( const VMatrix &worldToVolume, Vector *pCenter, float *pflRadius ); //----------------------------------------------------------------------------- // Given an inverse projection matrix, take the extremes of the space in transformed into world space and // get a bounding box. //----------------------------------------------------------------------------- void CalculateAABBFromProjectionMatrixInverse( const VMatrix &volumeToWorld, Vector *pMins, Vector *pMaxs ); //----------------------------------------------------------------------------- // Given an inverse projection matrix, take the extremes of the space in transformed into world space and // get a bounding sphere. //----------------------------------------------------------------------------- void CalculateSphereFromProjectionMatrixInverse( const VMatrix &volumeToWorld, Vector *pCenter, float *pflRadius ); //----------------------------------------------------------------------------- // Calculate frustum planes given a clip->world space transform. //----------------------------------------------------------------------------- void FrustumPlanesFromMatrix( const VMatrix &clipToWorld, Frustum_t &frustum ); //----------------------------------------------------------------------------- // Setup a matrix from euler angles. //----------------------------------------------------------------------------- void MatrixFromAngles( const QAngle& vAngles, VMatrix& dst ); //----------------------------------------------------------------------------- // Creates euler angles from a matrix //----------------------------------------------------------------------------- void MatrixToAngles( const VMatrix& src, QAngle& vAngles ); //----------------------------------------------------------------------------- // Does a fast inverse, assuming the matrix only contains translation and rotation. //----------------------------------------------------------------------------- void MatrixInverseTR( const VMatrix& src, VMatrix &dst ); //----------------------------------------------------------------------------- // Inverts any matrix at all //----------------------------------------------------------------------------- bool MatrixInverseGeneral(const VMatrix& src, VMatrix& dst); //----------------------------------------------------------------------------- // Computes the inverse transpose //----------------------------------------------------------------------------- void MatrixInverseTranspose( const VMatrix& src, VMatrix& dst ); //----------------------------------------------------------------------------- // VMatrix inlines. //----------------------------------------------------------------------------- inline VMatrix::VMatrix() { } inline VMatrix::VMatrix( vec_t m00, vec_t m01, vec_t m02, vec_t m03, vec_t m10, vec_t m11, vec_t m12, vec_t m13, vec_t m20, vec_t m21, vec_t m22, vec_t m23, vec_t m30, vec_t m31, vec_t m32, vec_t m33) { Init( m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33 ); } inline VMatrix::VMatrix( const matrix3x4_t& matrix3x4 ) { Init( matrix3x4 ); } //----------------------------------------------------------------------------- // Creates a matrix where the X axis = forward // the Y axis = left, and the Z axis = up //----------------------------------------------------------------------------- inline VMatrix::VMatrix( const Vector& xAxis, const Vector& yAxis, const Vector& zAxis ) { Init( xAxis.x, yAxis.x, zAxis.x, 0.0f, xAxis.y, yAxis.y, zAxis.y, 0.0f, xAxis.z, yAxis.z, zAxis.z, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f ); } inline void VMatrix::Init( vec_t m00, vec_t m01, vec_t m02, vec_t m03, vec_t m10, vec_t m11, vec_t m12, vec_t m13, vec_t m20, vec_t m21, vec_t m22, vec_t m23, vec_t m30, vec_t m31, vec_t m32, vec_t m33 ) { m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[0][3] = m03; m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[1][3] = m13; m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; m[2][3] = m23; m[3][0] = m30; m[3][1] = m31; m[3][2] = m32; m[3][3] = m33; } //----------------------------------------------------------------------------- // Initialize from a 3x4 //----------------------------------------------------------------------------- inline void VMatrix::Init( const matrix3x4_t& matrix3x4 ) { memcpy(m, matrix3x4.Base(), sizeof( matrix3x4_t ) ); m[3][0] = 0.0f; m[3][1] = 0.0f; m[3][2] = 0.0f; m[3][3] = 1.0f; } //----------------------------------------------------------------------------- // Methods related to the basis vectors of the matrix //----------------------------------------------------------------------------- #ifndef VECTOR_NO_SLOW_OPERATIONS inline Vector VMatrix::GetForward() const { return Vector(m[0][0], m[1][0], m[2][0]); } inline Vector VMatrix::GetLeft() const { return Vector(m[0][1], m[1][1], m[2][1]); } inline Vector VMatrix::GetUp() const { return Vector(m[0][2], m[1][2], m[2][2]); } #endif inline void VMatrix::SetForward(const Vector &vForward) { m[0][0] = vForward.x; m[1][0] = vForward.y; m[2][0] = vForward.z; } inline void VMatrix::SetLeft(const Vector &vLeft) { m[0][1] = vLeft.x; m[1][1] = vLeft.y; m[2][1] = vLeft.z; } inline void VMatrix::SetUp(const Vector &vUp) { m[0][2] = vUp.x; m[1][2] = vUp.y; m[2][2] = vUp.z; } inline void VMatrix::GetBasisVectors(Vector &vForward, Vector &vLeft, Vector &vUp) const { vForward.Init( m[0][0], m[1][0], m[2][0] ); vLeft.Init( m[0][1], m[1][1], m[2][1] ); vUp.Init( m[0][2], m[1][2], m[2][2] ); } inline void VMatrix::SetBasisVectors(const Vector &vForward, const Vector &vLeft, const Vector &vUp) { SetForward(vForward); SetLeft(vLeft); SetUp(vUp); } //----------------------------------------------------------------------------- // Methods related to the translation component of the matrix //----------------------------------------------------------------------------- #ifndef VECTOR_NO_SLOW_OPERATIONS inline Vector VMatrix::GetTranslation() const { return Vector(m[0][3], m[1][3], m[2][3]); } #endif inline Vector& VMatrix::GetTranslation( Vector &vTrans ) const { vTrans.x = m[0][3]; vTrans.y = m[1][3]; vTrans.z = m[2][3]; return vTrans; } inline void VMatrix::SetTranslation(const Vector &vTrans) { m[0][3] = vTrans.x; m[1][3] = vTrans.y; m[2][3] = vTrans.z; } //----------------------------------------------------------------------------- // appply translation to this matrix in the input space //----------------------------------------------------------------------------- inline void VMatrix::PreTranslate(const Vector &vTrans) { Vector tmp; Vector3DMultiplyPosition( *this, vTrans, tmp ); m[0][3] = tmp.x; m[1][3] = tmp.y; m[2][3] = tmp.z; } //----------------------------------------------------------------------------- // appply translation to this matrix in the output space //----------------------------------------------------------------------------- inline void VMatrix::PostTranslate(const Vector &vTrans) { m[0][3] += vTrans.x; m[1][3] += vTrans.y; m[2][3] += vTrans.z; } inline const matrix3x4_t& VMatrix::As3x4() const { return *((const matrix3x4_t*)this); } inline matrix3x4_t& VMatrix::As3x4() { return *((matrix3x4_t*)this); } inline void VMatrix::CopyFrom3x4( const matrix3x4_t &m3x4 ) { memcpy( m, m3x4.Base(), sizeof( matrix3x4_t ) ); m[3][0] = m[3][1] = m[3][2] = 0; m[3][3] = 1; } inline void VMatrix::Set3x4( matrix3x4_t& matrix3x4 ) const { memcpy(matrix3x4.Base(), m, sizeof( matrix3x4_t ) ); } //----------------------------------------------------------------------------- // Matrix math operations //----------------------------------------------------------------------------- inline const VMatrix& VMatrix::operator+=(const VMatrix &other) { for(int i=0; i < 4; i++) { for(int j=0; j < 4; j++) { m[i][j] += other.m[i][j]; } } return *this; } #ifndef VECTOR_NO_SLOW_OPERATIONS inline VMatrix VMatrix::operator+(const VMatrix &other) const { VMatrix ret; for(int i=0; i < 16; i++) { ((float*)ret.m)[i] = ((float*)m)[i] + ((float*)other.m)[i]; } return ret; } inline VMatrix VMatrix::operator-(const VMatrix &other) const { VMatrix ret; for(int i=0; i < 4; i++) { for(int j=0; j < 4; j++) { ret.m[i][j] = m[i][j] - other.m[i][j]; } } return ret; } inline VMatrix VMatrix::operator-() const { VMatrix ret; for( int i=0; i < 16; i++ ) { ((float*)ret.m)[i] = ((float*)m)[i]; } return ret; } #endif // VECTOR_NO_SLOW_OPERATIONS //----------------------------------------------------------------------------- // Vector transformation //----------------------------------------------------------------------------- #ifndef VECTOR_NO_SLOW_OPERATIONS inline Vector VMatrix::operator*(const Vector &vVec) const { Vector vRet; vRet.x = m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z + m[0][3]; vRet.y = m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z + m[1][3]; vRet.z = m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z + m[2][3]; return vRet; } inline Vector VMatrix::VMul4x3(const Vector &vVec) const { Vector vResult; Vector3DMultiplyPosition( *this, vVec, vResult ); return vResult; } inline Vector VMatrix::VMul4x3Transpose(const Vector &vVec) const { Vector tmp = vVec; tmp.x -= m[0][3]; tmp.y -= m[1][3]; tmp.z -= m[2][3]; return Vector( m[0][0]*tmp.x + m[1][0]*tmp.y + m[2][0]*tmp.z, m[0][1]*tmp.x + m[1][1]*tmp.y + m[2][1]*tmp.z, m[0][2]*tmp.x + m[1][2]*tmp.y + m[2][2]*tmp.z ); } inline Vector VMatrix::VMul3x3(const Vector &vVec) const { return Vector( m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z, m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z, m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z ); } inline Vector VMatrix::VMul3x3Transpose(const Vector &vVec) const { return Vector( m[0][0]*vVec.x + m[1][0]*vVec.y + m[2][0]*vVec.z, m[0][1]*vVec.x + m[1][1]*vVec.y + m[2][1]*vVec.z, m[0][2]*vVec.x + m[1][2]*vVec.y + m[2][2]*vVec.z ); } #endif // VECTOR_NO_SLOW_OPERATIONS inline void VMatrix::V3Mul(const Vector &vIn, Vector &vOut) const { vec_t rw; rw = 1.0f / (m[3][0]*vIn.x + m[3][1]*vIn.y + m[3][2]*vIn.z + m[3][3]); vOut.x = (m[0][0]*vIn.x + m[0][1]*vIn.y + m[0][2]*vIn.z + m[0][3]) * rw; vOut.y = (m[1][0]*vIn.x + m[1][1]*vIn.y + m[1][2]*vIn.z + m[1][3]) * rw; vOut.z = (m[2][0]*vIn.x + m[2][1]*vIn.y + m[2][2]*vIn.z + m[2][3]) * rw; } inline void VMatrix::V4Mul(const Vector4D &vIn, Vector4D &vOut) const { vOut[0] = m[0][0]*vIn[0] + m[0][1]*vIn[1] + m[0][2]*vIn[2] + m[0][3]*vIn[3]; vOut[1] = m[1][0]*vIn[0] + m[1][1]*vIn[1] + m[1][2]*vIn[2] + m[1][3]*vIn[3]; vOut[2] = m[2][0]*vIn[0] + m[2][1]*vIn[1] + m[2][2]*vIn[2] + m[2][3]*vIn[3]; vOut[3] = m[3][0]*vIn[0] + m[3][1]*vIn[1] + m[3][2]*vIn[2] + m[3][3]*vIn[3]; } //----------------------------------------------------------------------------- // Plane transformation //----------------------------------------------------------------------------- inline void VMatrix::TransformPlane( const VPlane &inPlane, VPlane &outPlane ) const { Vector vTrans; Vector3DMultiply( *this, inPlane.m_Normal, outPlane.m_Normal ); outPlane.m_Dist = inPlane.m_Dist * DotProduct( outPlane.m_Normal, outPlane.m_Normal ); outPlane.m_Dist += DotProduct( outPlane.m_Normal, GetTranslation( vTrans ) ); } //----------------------------------------------------------------------------- // Other random stuff //----------------------------------------------------------------------------- inline void VMatrix::Identity() { MatrixSetIdentity( *this ); } inline bool VMatrix::IsIdentity() const { return m[0][0] == 1.0f && m[0][1] == 0.0f && m[0][2] == 0.0f && m[0][3] == 0.0f && m[1][0] == 0.0f && m[1][1] == 1.0f && m[1][2] == 0.0f && m[1][3] == 0.0f && m[2][0] == 0.0f && m[2][1] == 0.0f && m[2][2] == 1.0f && m[2][3] == 0.0f && m[3][0] == 0.0f && m[3][1] == 0.0f && m[3][2] == 0.0f && m[3][3] == 1.0f; } #ifndef VECTOR_NO_SLOW_OPERATIONS inline Vector VMatrix::ApplyRotation(const Vector &vVec) const { return VMul3x3(vVec); } inline VMatrix VMatrix::operator~() const { VMatrix mRet; InverseGeneral(mRet); return mRet; } #endif //----------------------------------------------------------------------------- // Accessors //----------------------------------------------------------------------------- inline void MatrixGetColumn( const VMatrix &src, int nCol, Vector *pColumn ) { Assert( (nCol >= 0) && (nCol <= 3) ); pColumn->x = src[0][nCol]; pColumn->y = src[1][nCol]; pColumn->z = src[2][nCol]; } inline void MatrixSetColumn( VMatrix &src, int nCol, const Vector &column ) { Assert( (nCol >= 0) && (nCol <= 3) ); src.m[0][nCol] = column.x; src.m[1][nCol] = column.y; src.m[2][nCol] = column.z; } inline void MatrixGetRow( const VMatrix &src, int nRow, Vector *pRow ) { Assert( (nRow >= 0) && (nRow <= 3) ); *pRow = *(Vector*)src[nRow]; } inline void MatrixSetRow( VMatrix &dst, int nRow, const Vector &row ) { Assert( (nRow >= 0) && (nRow <= 3) ); *(Vector*)dst[nRow] = row; } //----------------------------------------------------------------------------- // Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation) //----------------------------------------------------------------------------- // NJS: src2 is passed in as a full vector rather than a reference to prevent the need // for 2 branches and a potential copy in the body. (ie, handling the case when the src2 // reference is the same as the dst reference ). inline void Vector3DMultiplyPosition( const VMatrix& src1, const VectorByValue src2, Vector& dst ) { dst[0] = src1[0][0] * src2.x + src1[0][1] * src2.y + src1[0][2] * src2.z + src1[0][3]; dst[1] = src1[1][0] * src2.x + src1[1][1] * src2.y + src1[1][2] * src2.z + src1[1][3]; dst[2] = src1[2][0] * src2.x + src1[2][1] * src2.y + src1[2][2] * src2.z + src1[2][3]; } //----------------------------------------------------------------------------- // Transform a plane that has an axis-aligned normal //----------------------------------------------------------------------------- inline void MatrixTransformAxisAlignedPlane( const VMatrix &src, int nDim, float flSign, float flDist, cplane_t &outPlane ) { // See MatrixTransformPlane in the .cpp file for an explanation of the algorithm. MatrixGetColumn( src, nDim, &outPlane.normal ); outPlane.normal *= flSign; outPlane.dist = flDist * DotProduct( outPlane.normal, outPlane.normal ); // NOTE: Writing this out by hand because it doesn't inline (inline depth isn't large enough) // This should read outPlane.dist += DotProduct( outPlane.normal, src.GetTranslation ); outPlane.dist += outPlane.normal.x * src.m[0][3] + outPlane.normal.y * src.m[1][3] + outPlane.normal.z * src.m[2][3]; } #endif