//====== Copyright © 1996-2005, Valve Corporation, All rights reserved. =======// // // Purpose: // // $NoKeywords: $ // // A growable array class that maintains a free list and keeps elements // in the same location //=============================================================================// #ifndef UTLVECTOR_H #define UTLVECTOR_H #ifdef _WIN32 #pragma once #endif #include #include "tier0/platform.h" #include "tier0/dbg.h" #include "tier1/utlmemory.h" #include "vstdlib/strtools.h" #define FOR_EACH_VEC( vecName, iteratorName ) \ for ( int iteratorName = 0; iteratorName < vecName.Count(); iteratorName++ ) //----------------------------------------------------------------------------- // The CUtlVector class: // A growable array class which doubles in size by default. // It will always keep all elements consecutive in memory, and may move the // elements around in memory (via a PvRealloc) when elements are inserted or // removed. Clients should therefore refer to the elements of the vector // by index (they should *never* maintain pointers to elements in the vector). //----------------------------------------------------------------------------- template< class T, class A = CUtlMemory > class CUtlVector { typedef A CAllocator; public: typedef T ElemType_t; // constructor, destructor CUtlVector( int growSize = 0, int initSize = 0 ); CUtlVector( T* pMemory, int allocationCount, int numElements = 0 ); ~CUtlVector(); // Copy the array. CUtlVector& operator=( const CUtlVector &other ); // element access T& operator[]( int i ); const T& operator[]( int i ) const; T& Element( int i ); const T& Element( int i ) const; // Gets the base address (can change when adding elements!) T* Base() { return m_Memory.Base(); } const T* Base() const { return m_Memory.Base(); } // Returns the number of elements in the vector // SIZE IS DEPRECATED! int Count() const; int Size() const; // don't use me! // Is element index valid? bool IsValidIndex( int i ) const; static int InvalidIndex(); // Adds an element, uses default constructor int AddToHead(); int AddToTail(); int InsertBefore( int elem ); int InsertAfter( int elem ); // Adds an element, uses copy constructor int AddToHead( const T& src ); int AddToTail( const T& src ); int InsertBefore( int elem, const T& src ); int InsertAfter( int elem, const T& src ); // Adds multiple elements, uses default constructor int AddMultipleToHead( int num ); int AddMultipleToTail( int num, const T *pToCopy=NULL ); int InsertMultipleBefore( int elem, int num, const T *pToCopy=NULL ); // If pToCopy is set, then it's an array of length 'num' and int InsertMultipleAfter( int elem, int num ); // Calls RemoveAll() then AddMultipleToTail. void SetSize( int size ); void SetCount( int count ); // Calls SetSize and copies each element. void CopyArray( const T *pArray, int size ); // Fast swap void Swap( CUtlVector< T, A > &vec ); // Add the specified array to the tail. int AddVectorToTail( CUtlVector const &src ); // Finds an element (element needs operator== defined) int Find( const T& src ) const; bool HasElement( const T& src ) const; // Makes sure we have enough memory allocated to store a requested # of elements void EnsureCapacity( int num ); // Makes sure we have at least this many elements void EnsureCount( int num ); // Element removal void FastRemove( int elem ); // doesn't preserve order void Remove( int elem ); // preserves order, shifts elements void FindAndRemove( const T& src ); // removes first occurrence of src, preserves order, shifts elements void RemoveMultiple( int elem, int num ); // preserves order, shifts elements void RemoveAll(); // doesn't deallocate memory // Memory deallocation void Purge(); // Purges the list and calls delete on each element in it. void PurgeAndDeleteElements(); // Compacts the vector to the number of elements actually in use void Compact(); // Set the size by which it grows when it needs to allocate more memory. void SetGrowSize( int size ) { m_Memory.SetGrowSize( size ); } int NumAllocated() const; // Only use this if you really know what you're doing! void Sort( int (__cdecl *pfnCompare)(const T *, const T *) ); #ifdef DBGFLAG_VALIDATE void Validate( CValidator &validator, char *pchName ); // Validate our internal structures #endif // DBGFLAG_VALIDATE protected: // Can't copy this unless we explicitly do it! CUtlVector( CUtlVector const& vec ) { Assert(0); } // Grows the vector void GrowVector( int num = 1 ); // Shifts elements.... void ShiftElementsRight( int elem, int num = 1 ); void ShiftElementsLeft( int elem, int num = 1 ); CAllocator m_Memory; int m_Size; #if !defined(_XBOX) || defined(_DEBUG) // For easier access to the elements through the debugger // it's in release builds so this can be used in libraries correctly T *m_pElements; inline void ResetDbgInfo() { m_pElements = Base(); } #else void ResetDbgInfo() {} #endif }; //----------------------------------------------------------------------------- // The CUtlVectorFixed class: // A array class with a fixed allocation scheme //----------------------------------------------------------------------------- template< class T, size_t MAX_SIZE > class CUtlVectorFixed : public CUtlVector< T, CUtlMemoryFixed > { typedef CUtlVector< T, CUtlMemoryFixed > BaseClass; public: // constructor, destructor CUtlVectorFixed( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CUtlVectorFixed( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} }; //----------------------------------------------------------------------------- // The CCopyableUtlVector class: // A array class that allows copy construction (so you can nest a CUtlVector inside of another one of our containers) // WARNING - this class lets you copy construct which can be an expensive operation if you don't carefully control when it happens // Only use this when nesting a CUtlVector() inside of another one of our container classes (i.e a CUtlMap) //----------------------------------------------------------------------------- template< class T, class A = CUtlMemory > class CCopyableUtlVector : public CUtlVector< T, A > { typedef CUtlVector< T, A > BaseClass; public: CCopyableUtlVector( int growSize = 0, int initSize = 0 ) : BaseClass( growSize, initSize ) {} CCopyableUtlVector( T* pMemory, int numElements ) : BaseClass( pMemory, numElements ) {} virtual ~CCopyableUtlVector() {} CCopyableUtlVector( CCopyableUtlVector const& vec ) { CopyArray( vec.Base(), vec.Count() ); } }; //----------------------------------------------------------------------------- // constructor, destructor //----------------------------------------------------------------------------- template< typename T, class A > inline CUtlVector::CUtlVector( int growSize, int initSize ) : m_Memory(growSize, initSize), m_Size(0) { ResetDbgInfo(); } template< typename T, class A > inline CUtlVector::CUtlVector( T* pMemory, int allocationCount, int numElements ) : m_Memory(pMemory, allocationCount), m_Size(numElements) { ResetDbgInfo(); } template< typename T, class A > inline CUtlVector::~CUtlVector() { Purge(); } template< typename T, class A > inline CUtlVector& CUtlVector::operator=( const CUtlVector &other ) { CopyArray( other.Base(), other.Count() ); return *this; } //----------------------------------------------------------------------------- // element access //----------------------------------------------------------------------------- template< typename T, class A > inline T& CUtlVector::operator[]( int i ) { Assert( IsValidIndex(i) ); return Base()[i]; } template< typename T, class A > inline const T& CUtlVector::operator[]( int i ) const { Assert( IsValidIndex(i) ); return Base()[i]; } template< typename T, class A > inline T& CUtlVector::Element( int i ) { Assert( IsValidIndex(i) ); return Base()[i]; } template< typename T, class A > inline const T& CUtlVector::Element( int i ) const { Assert( IsValidIndex(i) ); return Base()[i]; } //----------------------------------------------------------------------------- // Count //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::Size() const { return m_Size; } template< typename T, class A > inline int CUtlVector::Count() const { return m_Size; } //----------------------------------------------------------------------------- // Is element index valid? //----------------------------------------------------------------------------- template< typename T, class A > inline bool CUtlVector::IsValidIndex( int i ) const { return (i >= 0) && (i < m_Size); } //----------------------------------------------------------------------------- // Returns in invalid index //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::InvalidIndex() { return -1; } //----------------------------------------------------------------------------- // Grows the vector //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::GrowVector( int num ) { if (m_Size + num > m_Memory.NumAllocated()) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.Grow( m_Size + num - m_Memory.NumAllocated() ); } m_Size += num; ResetDbgInfo(); } //----------------------------------------------------------------------------- // Sorts the vector //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::Sort( int (__cdecl *pfnCompare)(const T *, const T *) ) { typedef int (__cdecl *QSortCompareFunc_t)(const void *, const void *); if ( Count() > 1 ) qsort( Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare) ); } //----------------------------------------------------------------------------- // Makes sure we have enough memory allocated to store a requested # of elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::EnsureCapacity( int num ) { MEM_ALLOC_CREDIT_CLASS(); m_Memory.EnsureCapacity(num); ResetDbgInfo(); } //----------------------------------------------------------------------------- // Makes sure we have at least this many elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::EnsureCount( int num ) { if (Count() < num) AddMultipleToTail( num - Count() ); } //----------------------------------------------------------------------------- // Shifts elements //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::ShiftElementsRight( int elem, int num ) { Assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 )); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) Q_memmove( &Element(elem+num), &Element(elem), numToMove * sizeof(T) ); } template< typename T, class A > void CUtlVector::ShiftElementsLeft( int elem, int num ) { Assert( IsValidIndex(elem) || ( m_Size == 0 ) || ( num == 0 )); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) { Q_memmove( &Element(elem), &Element(elem+num), numToMove * sizeof(T) ); #ifdef _DEBUG Q_memset( &Element(m_Size-num), 0xDD, num * sizeof(T) ); #endif } } //----------------------------------------------------------------------------- // Adds an element, uses default constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::AddToHead() { return InsertBefore(0); } template< typename T, class A > inline int CUtlVector::AddToTail() { return InsertBefore( m_Size ); } template< typename T, class A > inline int CUtlVector::InsertAfter( int elem ) { return InsertBefore( elem + 1 ); } template< typename T, class A > int CUtlVector::InsertBefore( int elem ) { // Can insert at the end Assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(); ShiftElementsRight(elem); Construct( &Element(elem) ); return elem; } //----------------------------------------------------------------------------- // Adds an element, uses copy constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::AddToHead( const T& src ) { // Can't insert something that's in the list... reallocation may hose us Assert( (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( 0, src ); } template< typename T, class A > inline int CUtlVector::AddToTail( const T& src ) { // Can't insert something that's in the list... reallocation may hose us Assert( (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( m_Size, src ); } template< typename T, class A > inline int CUtlVector::InsertAfter( int elem, const T& src ) { // Can't insert something that's in the list... reallocation may hose us Assert( (&src < Base()) || (&src >= (Base() + Count()) ) ); return InsertBefore( elem + 1, src ); } template< typename T, class A > int CUtlVector::InsertBefore( int elem, const T& src ) { // Can't insert something that's in the list... reallocation may hose us Assert( (&src < Base()) || (&src >= (Base() + Count()) ) ); // Can insert at the end Assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(); ShiftElementsRight(elem); CopyConstruct( &Element(elem), src ); return elem; } //----------------------------------------------------------------------------- // Adds multiple elements, uses default constructor //----------------------------------------------------------------------------- template< typename T, class A > inline int CUtlVector::AddMultipleToHead( int num ) { return InsertMultipleBefore( 0, num ); } template< typename T, class A > inline int CUtlVector::AddMultipleToTail( int num, const T *pToCopy ) { // Can't insert something that's in the list... reallocation may hose us Assert( !pToCopy || (pToCopy + num < Base()) || (pToCopy >= (Base() + Count()) ) ); return InsertMultipleBefore( m_Size, num, pToCopy ); } template< typename T, class A > int CUtlVector::InsertMultipleAfter( int elem, int num ) { return InsertMultipleBefore( elem + 1, num ); } template< typename T, class A > void CUtlVector::SetCount( int count ) { RemoveAll(); AddMultipleToTail( count ); } template< typename T, class A > inline void CUtlVector::SetSize( int size ) { SetCount( size ); } template< typename T, class A > void CUtlVector::CopyArray( const T *pArray, int size ) { // Can't insert something that's in the list... reallocation may hose us Assert( !pArray || (Base() >= (pArray + size)) || (pArray >= (Base() + Count()) ) ); SetSize( size ); for( int i=0; i < size; i++ ) { (*this)[i] = pArray[i]; } } template< typename T, class A > void CUtlVector::Swap( CUtlVector< T, A > &vec ) { m_Memory.Swap( vec.m_Memory ); V_swap( m_Size, vec.m_Size ); V_swap( m_pElements, vec.m_pElements ); } template< typename T, class A > int CUtlVector::AddVectorToTail( CUtlVector const &src ) { Assert( &src != this ); int base = Count(); // Make space. AddMultipleToTail( src.Count() ); // Copy the elements. for ( int i=0; i < src.Count(); i++ ) { (*this)[base + i] = src[i]; } return base; } template< typename T, class A > inline int CUtlVector::InsertMultipleBefore( int elem, int num, const T *pToInsert ) { if( num == 0 ) return elem; // Can insert at the end Assert( (elem == Count()) || IsValidIndex(elem) ); GrowVector(num); ShiftElementsRight(elem, num); // Invoke default constructors for (int i = 0; i < num; ++i) Construct( &Element(elem+i) ); // Copy stuff in? if ( pToInsert ) { for ( int i=0; i < num; i++ ) { Element( elem+i ) = pToInsert[i]; } } return elem; } //----------------------------------------------------------------------------- // Finds an element (element needs operator== defined) //----------------------------------------------------------------------------- template< typename T, class A > int CUtlVector::Find( const T& src ) const { for ( int i = 0; i < Count(); ++i ) { if (Element(i) == src) return i; } return -1; } template< typename T, class A > bool CUtlVector::HasElement( const T& src ) const { return ( Find(src) >= 0 ); } //----------------------------------------------------------------------------- // Element removal //----------------------------------------------------------------------------- template< typename T, class A > void CUtlVector::FastRemove( int elem ) { Assert( IsValidIndex(elem) ); Destruct( &Element(elem) ); if (m_Size > 0) { memcpy( &Element(elem), &Element(m_Size-1), sizeof(T) ); --m_Size; } } template< typename T, class A > void CUtlVector::Remove( int elem ) { Destruct( &Element(elem) ); ShiftElementsLeft(elem); --m_Size; } template< typename T, class A > void CUtlVector::FindAndRemove( const T& src ) { int elem = Find( src ); if ( elem != -1 ) { Remove( elem ); } } template< typename T, class A > void CUtlVector::RemoveMultiple( int elem, int num ) { Assert( elem >= 0 ); Assert( elem + num <= Count() ); for (int i = elem + num; --i >= elem; ) Destruct(&Element(i)); ShiftElementsLeft(elem, num); m_Size -= num; } template< typename T, class A > void CUtlVector::RemoveAll() { for (int i = m_Size; --i >= 0; ) { Destruct(&Element(i)); } m_Size = 0; } //----------------------------------------------------------------------------- // Memory deallocation //----------------------------------------------------------------------------- template< typename T, class A > inline void CUtlVector::Purge() { RemoveAll(); m_Memory.Purge(); ResetDbgInfo(); } template< typename T, class A > inline void CUtlVector::PurgeAndDeleteElements() { for( int i=0; i < m_Size; i++ ) { delete Element(i); } Purge(); } template< typename T, class A > inline void CUtlVector::Compact() { m_Memory.Purge(m_Size); } template< typename T, class A > inline int CUtlVector::NumAllocated() const { return m_Memory.NumAllocated(); } //----------------------------------------------------------------------------- // Data and memory validation //----------------------------------------------------------------------------- #ifdef DBGFLAG_VALIDATE template< typename T, class A > void CUtlVector::Validate( CValidator &validator, char *pchName ) { validator.Push( typeid(*this).name(), this, pchName ); m_Memory.Validate( validator, "m_Memory" ); validator.Pop(); } #endif // DBGFLAG_VALIDATE #endif // CCVECTOR_H