//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: Utility functions used by AI code. // //=============================================================================// #include "cbase.h" #include "game.h" #include "vstdlib/random.h" #include "movevars_shared.h" // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" #define NUM_LATERAL_CHECKS 13 // how many checks are made on each side of a NPC looking for lateral cover #define NUM_LATERAL_LOS_CHECKS 6 // how many checks are made on each side of a NPC looking for lateral cover //float flRandom = random->RandomFloat(0,1); bool g_fDrawLines = FALSE; //========================================================= // FBoxVisible - a more accurate ( and slower ) version // of FVisible. // // !!!UNDONE - make this CAI_BaseNPC? //========================================================= bool FBoxVisible( CBaseEntity *pLooker, CBaseEntity *pTarget, Vector &vecTargetOrigin, float flSize ) { // don't look through water if ((pLooker->GetWaterLevel() != 3 && pTarget->GetWaterLevel() == 3) || (pLooker->GetWaterLevel() == 3 && pTarget->GetWaterLevel() == 0)) return FALSE; trace_t tr; Vector vecLookerOrigin = pLooker->EyePosition();//look through the NPC's 'eyes' for (int i = 0; i < 5; i++) { Vector vecTarget = pTarget->GetAbsOrigin(); vecTarget.x += random->RandomFloat( pTarget->WorldAlignMins().x + flSize, pTarget->WorldAlignMaxs().x - flSize); vecTarget.y += random->RandomFloat( pTarget->WorldAlignMins().y + flSize, pTarget->WorldAlignMaxs().y - flSize); vecTarget.z += random->RandomFloat( pTarget->WorldAlignMins().z + flSize, pTarget->WorldAlignMaxs().z - flSize); UTIL_TraceLine(vecLookerOrigin, vecTarget, MASK_OPAQUE, pLooker, COLLISION_GROUP_NONE, &tr); if (tr.fraction == 1.0) { vecTargetOrigin = vecTarget; return TRUE;// line of sight is valid. } } return FALSE;// Line of sight is not established } //----------------------------------------------------------------------------- // Purpose: Returns the correct toss velocity to throw a given object at a point. // Input : pEntity - The entity that is throwing the object. // vecSpot1 - The point from which the object is being thrown. // vecSpot2 - The point TO which the object is being thrown. // flHeightMaxRatio - A scale factor indicating the maximum ratio of height // to total throw distance, measured from the higher of the two endpoints to // the apex. -1 indicates that there is no maximum. // flGravityAdj - Scale factor for gravity - should match the gravity scale // that the object will use in midair. // bRandomize - when true, introduces a little fudge to the throw // Output : Velocity to throw the object with. //----------------------------------------------------------------------------- Vector VecCheckToss( CBaseEntity *pEntity, Vector vecSpot1, Vector vecSpot2, float flHeightMaxRatio, float flGravityAdj, bool bRandomize, Vector *vecMins, Vector *vecMaxs ) { trace_t tr; Vector vecMidPoint;// halfway point between Spot1 and Spot2 Vector vecApex;// highest point Vector vecScale; Vector vecTossVel; Vector vecTemp; float flGravity = sv_gravity.GetFloat() * flGravityAdj; if (vecSpot2.z - vecSpot1.z > 500) { // to high, fail return vec3_origin; } Vector forward, right; AngleVectors( pEntity->GetLocalAngles(), &forward, &right, NULL ); if (bRandomize) { // toss a little bit to the left or right, not right down on the enemy's bean (head). vecSpot2 += right * ( random->RandomFloat(-8,8) + random->RandomFloat(-16,16) ); vecSpot2 += forward * ( random->RandomFloat(-8,8) + random->RandomFloat(-16,16) ); } // calculate the midpoint and apex of the 'triangle' // UNDONE: normalize any Z position differences between spot1 and spot2 so that triangle is always RIGHT // get a rough idea of how high it can be thrown vecMidPoint = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5; UTIL_TraceLine(vecMidPoint, vecMidPoint + Vector(0,0,300), MASK_SOLID_BRUSHONLY, pEntity, COLLISION_GROUP_NONE, &tr); vecMidPoint = tr.endpos; if( tr.fraction != 1.0 ) { // (subtract 15 so the object doesn't hit the ceiling) vecMidPoint.z -= 15; } if (flHeightMaxRatio != -1) { // But don't throw so high that it looks silly. Maximize the height of the // throw above the highest of the two endpoints to a ratio of the throw length. float flHeightMax = flHeightMaxRatio * (vecSpot2 - vecSpot1).Length(); float flHighestEndZ = MAX(vecSpot1.z, vecSpot2.z); if ((vecMidPoint.z - flHighestEndZ) > flHeightMax) { vecMidPoint.z = flHighestEndZ + flHeightMax; } } if (vecMidPoint.z < vecSpot1.z || vecMidPoint.z < vecSpot2.z) { // Not enough space, fail return vec3_origin; } // How high should the object travel to reach the apex float distance1 = (vecMidPoint.z - vecSpot1.z); float distance2 = (vecMidPoint.z - vecSpot2.z); // How long will it take for the object to travel this distance float time1 = sqrt( distance1 / (0.5 * flGravity) ); float time2 = sqrt( distance2 / (0.5 * flGravity) ); if (time1 < 0.1) { // too close return vec3_origin; } // how hard to throw sideways to get there in time. vecTossVel = (vecSpot2 - vecSpot1) / (time1 + time2); // how hard upwards to reach the apex at the right time. vecTossVel.z = flGravity * time1; // find the apex vecApex = vecSpot1 + vecTossVel * time1; vecApex.z = vecMidPoint.z; // JAY: Repro behavior from HL1 -- toss check went through gratings UTIL_TraceLine(vecSpot1, vecApex, (MASK_SOLID&(~CONTENTS_GRATE)), pEntity, COLLISION_GROUP_NONE, &tr); if (tr.fraction != 1.0) { // fail! return vec3_origin; } // UNDONE: either ignore NPCs or change it to not care if we hit our enemy UTIL_TraceLine(vecSpot2, vecApex, (MASK_SOLID_BRUSHONLY&(~CONTENTS_GRATE)), pEntity, COLLISION_GROUP_NONE, &tr); if (tr.fraction != 1.0) { // fail! return vec3_origin; } if ( vecMins && vecMaxs ) { // Check to ensure the entity's hull can travel the first half of the grenade throw UTIL_TraceHull( vecSpot1, vecApex, *vecMins, *vecMaxs, (MASK_SOLID&(~CONTENTS_GRATE)), pEntity, COLLISION_GROUP_NONE, &tr); if ( tr.fraction < 1.0 ) return vec3_origin; } return vecTossVel; } // // VecCheckThrow - returns the velocity vector at which an object should be thrown from vecspot1 to hit vecspot2. // returns vec3_origin if throw is not feasible. // Vector VecCheckThrow ( CBaseEntity *pEdict, const Vector &vecSpot1, Vector vecSpot2, float flSpeed, float flGravityAdj, Vector *vecMins, Vector *vecMaxs ) { float flGravity = sv_gravity.GetFloat() * flGravityAdj; Vector vecGrenadeVel = (vecSpot2 - vecSpot1); // throw at a constant time float time = vecGrenadeVel.Length( ) / flSpeed; vecGrenadeVel = vecGrenadeVel * (1.0 / time); // adjust upward toss to compensate for gravity loss vecGrenadeVel.z += flGravity * time * 0.5; Vector vecApex = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5; vecApex.z += 0.5 * flGravity * (time * 0.5) * (time * 0.5); trace_t tr; UTIL_TraceLine(vecSpot1, vecApex, MASK_SOLID, pEdict, COLLISION_GROUP_NONE, &tr); if (tr.fraction != 1.0) { // fail! //NDebugOverlay::Line( vecSpot1, vecApex, 255, 0, 0, true, 5.0 ); return vec3_origin; } //NDebugOverlay::Line( vecSpot1, vecApex, 0, 255, 0, true, 5.0 ); UTIL_TraceLine(vecSpot2, vecApex, MASK_SOLID_BRUSHONLY, pEdict, COLLISION_GROUP_NONE, &tr); if (tr.fraction != 1.0) { // fail! //NDebugOverlay::Line( vecApex, vecSpot2, 255, 0, 0, true, 5.0 ); return vec3_origin; } //NDebugOverlay::Line( vecApex, vecSpot2, 0, 255, 0, true, 5.0 ); if ( vecMins && vecMaxs ) { // Check to ensure the entity's hull can travel the first half of the grenade throw UTIL_TraceHull( vecSpot1, vecApex, *vecMins, *vecMaxs, MASK_SOLID, pEdict, COLLISION_GROUP_NONE, &tr); if ( tr.fraction < 1.0 ) { //NDebugOverlay::SweptBox( vecSpot1, tr.endpos, *vecMins, *vecMaxs, vec3_angle, 255, 0, 0, 64, 5.0 ); return vec3_origin; } } //NDebugOverlay::SweptBox( vecSpot1, vecApex, *vecMins, *vecMaxs, vec3_angle, 0, 255, 0, 64, 5.0 ); return vecGrenadeVel; }