1
0
mirror of https://github.com/alliedmodders/hl2sdk.git synced 2024-12-23 01:59:43 +08:00
hl2sdk/tier1/KeyValues.cpp

3057 lines
79 KiB
C++
Raw Normal View History

2013-06-27 06:22:04 +08:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#if defined( _WIN32 ) && !defined( _X360 )
#include <windows.h> // for WideCharToMultiByte and MultiByteToWideChar
#elif defined(POSIX)
#include <wchar.h> // wcslen()
#define _alloca alloca
#define _wtoi(arg) wcstol(arg, NULL, 10)
#define _wtoi64(arg) wcstoll(arg, NULL, 10)
#endif
#include <KeyValues.h>
#include "filesystem.h"
#include <vstdlib/IKeyValuesSystem.h>
#include <Color.h>
#include <stdlib.h>
#include "tier0/dbg.h"
#include "tier0/mem.h"
#include "utlvector.h"
#include "utlbuffer.h"
#include "utlhash.h"
#include "UtlSortVector.h"
#include "convar.h"
// memdbgon must be the last include file in a .cpp file!!!
#include <tier0/memdbgon.h>
template<typename T>
T *KVStringAlloc(size_t nLength)
{
return reinterpret_cast<T*>(MemAlloc_Alloc(sizeof(T) * nLength));
}
void KVStringDelete(void* pMem)
{
MemAlloc_Free(pMem);
}
2013-06-27 06:22:04 +08:00
static const char * s_LastFileLoadingFrom = "unknown"; // just needed for error messages
// Statics for the growable string table
int (*KeyValues::s_pfGetSymbolForString)( const char *name, bool bCreate ) = &KeyValues::GetSymbolForStringClassic;
const char *(*KeyValues::s_pfGetStringForSymbol)( int symbol ) = &KeyValues::GetStringForSymbolClassic;
CKeyValuesGrowableStringTable *KeyValues::s_pGrowableStringTable = NULL;
#define KEYVALUES_TOKEN_SIZE 4096
static char s_pTokenBuf[KEYVALUES_TOKEN_SIZE];
#define INTERNALWRITE( pData, len ) InternalWrite( filesystem, f, pBuf, pData, len )
// a simple class to keep track of a stack of valid parsed symbols
const int MAX_ERROR_STACK = 64;
class CKeyValuesErrorStack
{
public:
CKeyValuesErrorStack() : m_pFilename("NULL"), m_errorIndex(0), m_maxErrorIndex(0) {}
void SetFilename( const char *pFilename )
{
m_pFilename = pFilename;
m_maxErrorIndex = 0;
}
// entering a new keyvalues block, save state for errors
// Not save symbols instead of pointers because the pointers can move!
int Push( int symName )
{
if ( m_errorIndex < MAX_ERROR_STACK )
{
m_errorStack[m_errorIndex] = symName;
}
m_errorIndex++;
m_maxErrorIndex = max( m_maxErrorIndex, (m_errorIndex-1) );
return m_errorIndex-1;
}
// exiting block, error isn't in this block, remove.
void Pop()
{
m_errorIndex--;
Assert(m_errorIndex>=0);
}
// Allows you to keep the same stack level, but change the name as you parse peers
void Reset( int stackLevel, int symName )
{
Assert( stackLevel >= 0 );
Assert( stackLevel < m_errorIndex );
m_errorStack[stackLevel] = symName;
}
// Hit an error, report it and the parsing stack for context
void ReportError( const char *pError )
{
Warning( "KeyValues Error: %s in file %s\n", pError, m_pFilename );
for ( int i = 0; i < m_maxErrorIndex; i++ )
{
if ( m_errorStack[i] != INVALID_KEY_SYMBOL )
{
if ( i < m_errorIndex )
{
Warning( "%s, ", KeyValues::CallGetStringForSymbol(m_errorStack[i]) );
}
else
{
Warning( "(*%s*), ", KeyValues::CallGetStringForSymbol(m_errorStack[i]) );
}
}
}
Warning( "\n" );
}
private:
int m_errorStack[MAX_ERROR_STACK];
const char *m_pFilename;
int m_errorIndex;
int m_maxErrorIndex;
} g_KeyValuesErrorStack;
// a simple helper that creates stack entries as it goes in & out of scope
class CKeyErrorContext
{
public:
CKeyErrorContext( KeyValues *pKv )
{
Init( pKv->GetNameSymbol() );
}
~CKeyErrorContext()
{
g_KeyValuesErrorStack.Pop();
}
CKeyErrorContext( int symName )
{
Init( symName );
}
void Reset( int symName )
{
g_KeyValuesErrorStack.Reset( m_stackLevel, symName );
}
private:
void Init( int symName )
{
m_stackLevel = g_KeyValuesErrorStack.Push( symName );
}
int m_stackLevel;
};
// Uncomment this line to hit the ~CLeakTrack assert to see what's looking like it's leaking
// #define LEAKTRACK
#ifdef LEAKTRACK
class CLeakTrack
{
public:
CLeakTrack()
{
}
~CLeakTrack()
{
if ( keys.Count() != 0 )
{
Assert( 0 );
}
}
struct kve
{
KeyValues *kv;
char name[ 256 ];
};
void AddKv( KeyValues *kv, char const *name )
{
kve k;
Q_strncpy( k.name, name ? name : "NULL", sizeof( k.name ) );
k.kv = kv;
keys.AddToTail( k );
}
void RemoveKv( KeyValues *kv )
{
int c = keys.Count();
for ( int i = 0; i < c; i++ )
{
if ( keys[i].kv == kv )
{
keys.Remove( i );
break;
}
}
}
CUtlVector< kve > keys;
};
static CLeakTrack track;
#define TRACK_KV_ADD( ptr, name ) track.AddKv( ptr, name )
#define TRACK_KV_REMOVE( ptr ) track.RemoveKv( ptr )
#else
#define TRACK_KV_ADD( ptr, name )
#define TRACK_KV_REMOVE( ptr )
#endif
//-----------------------------------------------------------------------------
// Purpose: An arbitrarily growable string table for KeyValues key names.
// See the comment in the header for more info.
//-----------------------------------------------------------------------------
class CKeyValuesGrowableStringTable
{
public:
// Constructor
CKeyValuesGrowableStringTable() :
#ifdef PLATFORM_64BITS
m_vecStrings( 0, 4 * 512 * 1024 )
#else
m_vecStrings( 0, 512 * 1024 )
#endif
, m_hashLookup( 2048, 0, 0, m_Functor, m_Functor )
{
m_vecStrings.AddToTail( '\0' );
}
// Translates a string to an index
int GetSymbolForString( const char *name, bool bCreate = true )
{
AUTO_LOCK( m_mutex );
// Put the current details into our hash functor
m_Functor.SetCurString( name );
m_Functor.SetCurStringBase( (const char *)m_vecStrings.Base() );
if ( bCreate )
{
bool bInserted = false;
UtlHashHandle_t hElement = m_hashLookup.Insert( -1, &bInserted );
if ( bInserted )
{
int iIndex = m_vecStrings.AddMultipleToTail( V_strlen( name ) + 1, name );
m_hashLookup[ hElement ] = iIndex;
}
return m_hashLookup[ hElement ];
}
else
{
UtlHashHandle_t hElement = m_hashLookup.Find( -1 );
if ( m_hashLookup.IsValidHandle( hElement ) )
return m_hashLookup[ hElement ];
else
return -1;
}
}
// Translates an index back to a string
const char *GetStringForSymbol( int symbol )
{
return (const char *)m_vecStrings.Base() + symbol;
}
private:
// A class plugged into CUtlHash that allows us to change the behavior of the table
// and store only the index in the table.
class CLookupFunctor
{
public:
CLookupFunctor() : m_pchCurString( NULL ), m_pchCurBase( NULL ) {}
// Sets what we are currently inserting or looking for.
void SetCurString( const char *pchCurString ) { m_pchCurString = pchCurString; }
void SetCurStringBase( const char *pchCurBase ) { m_pchCurBase = pchCurBase; }
// The compare function.
bool operator()( int nLhs, int nRhs ) const
{
const char *pchLhs = nLhs > 0 ? m_pchCurBase + nLhs : m_pchCurString;
const char *pchRhs = nRhs > 0 ? m_pchCurBase + nRhs : m_pchCurString;
return ( 0 == V_stricmp( pchLhs, pchRhs ) );
}
// The hash function.
unsigned int operator()( int nItem ) const
{
return HashStringCaseless( m_pchCurString );
}
private:
const char *m_pchCurString;
const char *m_pchCurBase;
};
CThreadFastMutex m_mutex;
CLookupFunctor m_Functor;
CUtlHash<int, CLookupFunctor &, CLookupFunctor &> m_hashLookup;
CUtlVector<char> m_vecStrings;
};
//-----------------------------------------------------------------------------
// Purpose: Sets whether the KeyValues system should use an arbitrarily growable
// string table. See the comment in the header for more info.
//-----------------------------------------------------------------------------
void KeyValues::SetUseGrowableStringTable( bool bUseGrowableTable )
{
if ( bUseGrowableTable )
{
s_pfGetStringForSymbol = &(KeyValues::GetStringForSymbolGrowable);
s_pfGetSymbolForString = &(KeyValues::GetSymbolForStringGrowable);
if ( NULL == s_pGrowableStringTable )
{
s_pGrowableStringTable = new CKeyValuesGrowableStringTable;
}
}
else
{
s_pfGetStringForSymbol = &(KeyValues::GetStringForSymbolClassic);
s_pfGetSymbolForString = &(KeyValues::GetSymbolForStringClassic);
delete s_pGrowableStringTable;
s_pGrowableStringTable = NULL;
}
}
//-----------------------------------------------------------------------------
// Purpose: Bodys of the function pointers used for interacting with the key
// name string table
//-----------------------------------------------------------------------------
int KeyValues::GetSymbolForStringClassic( const char *name, bool bCreate )
{
return KeyValuesSystem()->GetSymbolForString( name, bCreate );
}
const char *KeyValues::GetStringForSymbolClassic( int symbol )
{
return KeyValuesSystem()->GetStringForSymbol( symbol );
}
int KeyValues::GetSymbolForStringGrowable( const char *name, bool bCreate )
{
return s_pGrowableStringTable->GetSymbolForString( name, bCreate );
}
const char *KeyValues::GetStringForSymbolGrowable( int symbol )
{
return s_pGrowableStringTable->GetStringForSymbol( symbol );
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
KeyValues::KeyValues( const char *setName )
{
TRACK_KV_ADD( this, setName );
Init();
SetName ( setName );
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
KeyValues::KeyValues( const char *setName, const char *firstKey, const char *firstValue )
{
TRACK_KV_ADD( this, setName );
Init();
SetName( setName );
SetString( firstKey, firstValue );
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
KeyValues::KeyValues( const char *setName, const char *firstKey, const wchar_t *firstValue )
{
TRACK_KV_ADD( this, setName );
Init();
SetName( setName );
SetWString( firstKey, firstValue );
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
KeyValues::KeyValues( const char *setName, const char *firstKey, int firstValue )
{
TRACK_KV_ADD( this, setName );
Init();
SetName( setName );
SetInt( firstKey, firstValue );
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
KeyValues::KeyValues( const char *setName, const char *firstKey, const char *firstValue, const char *secondKey, const char *secondValue )
{
TRACK_KV_ADD( this, setName );
Init();
SetName( setName );
SetString( firstKey, firstValue );
SetString( secondKey, secondValue );
}
//-----------------------------------------------------------------------------
// Purpose: Constructor
//-----------------------------------------------------------------------------
KeyValues::KeyValues( const char *setName, const char *firstKey, int firstValue, const char *secondKey, int secondValue )
{
TRACK_KV_ADD( this, setName );
Init();
SetName( setName );
SetInt( firstKey, firstValue );
SetInt( secondKey, secondValue );
}
//-----------------------------------------------------------------------------
// Purpose: Initialize member variables
//-----------------------------------------------------------------------------
void KeyValues::Init()
{
m_iKeyName = INVALID_KEY_SYMBOL;
m_iDataType = TYPE_NONE;
m_pSub = NULL;
m_pPeer = NULL;
m_pChain = NULL;
m_sValue = NULL;
m_wsValue = NULL;
m_pValue = NULL;
m_bHasEscapeSequences = false;
m_bEvaluateConditionals = true;
// for future proof
memset( unused, 0, sizeof(unused) );
}
//-----------------------------------------------------------------------------
// Purpose: Destructor
//-----------------------------------------------------------------------------
KeyValues::~KeyValues()
{
TRACK_KV_REMOVE( this );
RemoveEverything();
}
//-----------------------------------------------------------------------------
// Purpose: remove everything
//-----------------------------------------------------------------------------
void KeyValues::RemoveEverything()
{
KeyValues *dat;
KeyValues *datNext = NULL;
for ( dat = m_pSub; dat != NULL; dat = datNext )
{
datNext = dat->m_pPeer;
dat->m_pPeer = NULL;
delete dat;
}
for ( dat = m_pPeer; dat && dat != this; dat = datNext )
{
datNext = dat->m_pPeer;
dat->m_pPeer = NULL;
delete dat;
}
KVStringDelete(m_sValue);
2013-06-27 06:22:04 +08:00
m_sValue = NULL;
KVStringDelete(m_wsValue);
2013-06-27 06:22:04 +08:00
m_wsValue = NULL;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *f -
//-----------------------------------------------------------------------------
void KeyValues::RecursiveSaveToFile( CUtlBuffer& buf, int indentLevel, bool sortKeys /*= false*/, bool bAllowEmptyString /*= false*/ )
{
RecursiveSaveToFile( NULL, FILESYSTEM_INVALID_HANDLE, &buf, indentLevel, sortKeys, bAllowEmptyString );
}
//-----------------------------------------------------------------------------
// Adds a chain... if we don't find stuff in this keyvalue, we'll look
// in the one we're chained to.
//-----------------------------------------------------------------------------
void KeyValues::ChainKeyValue( KeyValues* pChain )
{
m_pChain = pChain;
}
//-----------------------------------------------------------------------------
// Purpose: Get the name of the current key section
//-----------------------------------------------------------------------------
const char *KeyValues::GetName( void ) const
{
return s_pfGetStringForSymbol( m_iKeyName );
}
//-----------------------------------------------------------------------------
// Purpose: Read a single token from buffer (0 terminated)
//-----------------------------------------------------------------------------
#ifdef _WIN32
2013-06-27 06:22:04 +08:00
#pragma warning (disable:4706)
#endif
2013-06-27 06:22:04 +08:00
const char *KeyValues::ReadToken( CUtlBuffer &buf, bool &wasQuoted, bool &wasConditional )
{
wasQuoted = false;
wasConditional = false;
if ( !buf.IsValid() )
return NULL;
// eating white spaces and remarks loop
while ( true )
{
buf.EatWhiteSpace();
if ( !buf.IsValid() )
return NULL; // file ends after reading whitespaces
// stop if it's not a comment; a new token starts here
if ( !buf.EatCPPComment() )
break;
}
const char *c = (const char*)buf.PeekGet( sizeof(char), 0 );
if ( !c )
return NULL;
// read quoted strings specially
if ( *c == '\"' )
{
wasQuoted = true;
buf.GetDelimitedString( m_bHasEscapeSequences ? GetCStringCharConversion() : GetNoEscCharConversion(),
s_pTokenBuf, KEYVALUES_TOKEN_SIZE );
return s_pTokenBuf;
}
if ( *c == '{' || *c == '}' )
{
// it's a control char, just add this one char and stop reading
s_pTokenBuf[0] = *c;
s_pTokenBuf[1] = 0;
buf.SeekGet( CUtlBuffer::SEEK_CURRENT, 1 );
return s_pTokenBuf;
}
// read in the token until we hit a whitespace or a control character
bool bReportedError = false;
bool bConditionalStart = false;
int nCount = 0;
while ( ( c = (const char*)buf.PeekGet( sizeof(char), 0 ) ) )
{
// end of file
if ( *c == 0 )
break;
// break if any control character appears in non quoted tokens
if ( *c == '"' || *c == '{' || *c == '}' )
break;
if ( *c == '[' )
bConditionalStart = true;
if ( *c == ']' && bConditionalStart )
{
wasConditional = true;
}
// break on whitespace
if ( isspace(*c) )
break;
if (nCount < (KEYVALUES_TOKEN_SIZE-1) )
{
s_pTokenBuf[nCount++] = *c; // add char to buffer
}
else if ( !bReportedError )
{
bReportedError = true;
g_KeyValuesErrorStack.ReportError(" ReadToken overflow" );
}
buf.SeekGet( CUtlBuffer::SEEK_CURRENT, 1 );
}
s_pTokenBuf[ nCount ] = 0;
return s_pTokenBuf;
}
#ifdef _WIN32
2013-06-27 06:22:04 +08:00
#pragma warning (default:4706)
#endif
2013-06-27 06:22:04 +08:00
//-----------------------------------------------------------------------------
// Purpose: if parser should translate escape sequences ( /n, /t etc), set to true
//-----------------------------------------------------------------------------
void KeyValues::UsesEscapeSequences(bool state)
{
m_bHasEscapeSequences = state;
}
//-----------------------------------------------------------------------------
// Purpose: if parser should evaluate conditional blocks ( [$WINDOWS] etc. )
//-----------------------------------------------------------------------------
void KeyValues::UsesConditionals(bool state)
{
m_bEvaluateConditionals = state;
}
//-----------------------------------------------------------------------------
// Purpose: Load keyValues from disk
//-----------------------------------------------------------------------------
bool KeyValues::LoadFromFile( IBaseFileSystem *filesystem, const char *resourceName, const char *pathID )
{
Assert(filesystem);
#ifdef WIN32
Assert( IsX360() || ( IsPC() && _heapchk() == _HEAPOK ) );
#endif
FileHandle_t f = filesystem->Open(resourceName, "rb", pathID);
if ( !f )
return false;
s_LastFileLoadingFrom = (char*)resourceName;
// load file into a null-terminated buffer
int fileSize = filesystem->Size( f );
unsigned bufSize = ((IFileSystem *)filesystem)->GetOptimalReadSize( f, fileSize + 2 );
char *buffer = (char*)((IFileSystem *)filesystem)->AllocOptimalReadBuffer( f, bufSize );
Assert( buffer );
// read into local buffer
bool bRetOK = ( ((IFileSystem *)filesystem)->ReadEx( buffer, bufSize, fileSize, f ) != 0 );
filesystem->Close( f ); // close file after reading
if ( bRetOK )
{
buffer[fileSize] = 0; // null terminate file as EOF
buffer[fileSize+1] = 0; // double NULL terminating in case this is a unicode file
bRetOK = LoadFromBuffer( resourceName, buffer, filesystem );
}
((IFileSystem *)filesystem)->FreeOptimalReadBuffer( buffer );
return bRetOK;
}
//-----------------------------------------------------------------------------
// Purpose: Save the keyvalues to disk
// Creates the path to the file if it doesn't exist
//-----------------------------------------------------------------------------
bool KeyValues::SaveToFile( IBaseFileSystem *filesystem, const char *resourceName, const char *pathID, bool sortKeys /*= false*/, bool bAllowEmptyString /*= false*/ )
{
// create a write file
FileHandle_t f = filesystem->Open(resourceName, "wb", pathID);
if ( f == FILESYSTEM_INVALID_HANDLE )
{
DevMsg(1, "KeyValues::SaveToFile: couldn't open file \"%s\" in path \"%s\".\n",
resourceName?resourceName:"NULL", pathID?pathID:"NULL" );
return false;
}
RecursiveSaveToFile(filesystem, f, NULL, 0, sortKeys, bAllowEmptyString );
filesystem->Close(f);
return true;
}
//-----------------------------------------------------------------------------
// Purpose: Write out a set of indenting
//-----------------------------------------------------------------------------
void KeyValues::WriteIndents( IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, int indentLevel )
{
for ( int i = 0; i < indentLevel; i++ )
{
INTERNALWRITE( "\t", 1 );
}
}
//-----------------------------------------------------------------------------
// Purpose: Write out a string where we convert the double quotes to backslash double quote
//-----------------------------------------------------------------------------
void KeyValues::WriteConvertedString( IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, const char *pszString )
{
// handle double quote chars within the string
// the worst possible case is that the whole string is quotes
int len = Q_strlen(pszString);
char *convertedString = (char *) _alloca ((len + 1) * sizeof(char) * 2);
int j=0;
for (int i=0; i <= len; i++)
{
if (pszString[i] == '\"')
{
convertedString[j] = '\\';
j++;
}
else if ( m_bHasEscapeSequences && pszString[i] == '\\' )
{
convertedString[j] = '\\';
j++;
}
convertedString[j] = pszString[i];
j++;
}
2014-10-31 00:30:57 +08:00
INTERNALWRITE(convertedString, Q_strlen(convertedString));
2013-06-27 06:22:04 +08:00
}
void KeyValues::InternalWrite( IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, const void *pData, int len )
{
if ( filesystem )
{
filesystem->Write( pData, len, f );
}
if ( pBuf )
{
pBuf->Put( pData, len );
}
}
//-----------------------------------------------------------------------------
// Purpose: Save keyvalues from disk, if subkey values are detected, calls
// itself to save those
//-----------------------------------------------------------------------------
void KeyValues::RecursiveSaveToFile( IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, int indentLevel, bool sortKeys, bool bAllowEmptyString )
{
// write header
WriteIndents( filesystem, f, pBuf, indentLevel );
INTERNALWRITE("\"", 1);
WriteConvertedString(filesystem, f, pBuf, GetName());
INTERNALWRITE("\"\n", 2);
WriteIndents( filesystem, f, pBuf, indentLevel );
INTERNALWRITE("{\n", 2);
// loop through all our keys writing them to disk
if ( sortKeys )
{
CUtlSortVector< KeyValues*, CUtlSortVectorKeyValuesByName > vecSortedKeys;
for ( KeyValues *dat = m_pSub; dat != NULL; dat = dat->m_pPeer )
{
vecSortedKeys.InsertNoSort(dat);
}
vecSortedKeys.RedoSort();
FOR_EACH_VEC( vecSortedKeys, i )
{
SaveKeyToFile( vecSortedKeys[i], filesystem, f, pBuf, indentLevel, sortKeys, bAllowEmptyString );
}
}
else
{
for ( KeyValues *dat = m_pSub; dat != NULL; dat = dat->m_pPeer )
SaveKeyToFile( dat, filesystem, f, pBuf, indentLevel, sortKeys, bAllowEmptyString );
}
// write tail
WriteIndents(filesystem, f, pBuf, indentLevel);
INTERNALWRITE("}\n", 2);
}
void KeyValues::SaveKeyToFile( KeyValues *dat, IBaseFileSystem *filesystem, FileHandle_t f, CUtlBuffer *pBuf, int indentLevel, bool sortKeys, bool bAllowEmptyString )
{
if ( dat->m_pSub )
{
dat->RecursiveSaveToFile( filesystem, f, pBuf, indentLevel + 1, sortKeys, bAllowEmptyString );
}
else
{
// only write non-empty keys
switch (dat->m_iDataType)
{
case TYPE_STRING:
{
if ( dat->m_sValue && ( bAllowEmptyString || *(dat->m_sValue) ) )
{
WriteIndents(filesystem, f, pBuf, indentLevel + 1);
INTERNALWRITE("\"", 1);
WriteConvertedString(filesystem, f, pBuf, dat->GetName());
INTERNALWRITE("\"\t\t\"", 4);
WriteConvertedString(filesystem, f, pBuf, dat->m_sValue);
INTERNALWRITE("\"\n", 2);
}
break;
}
case TYPE_WSTRING:
{
if ( dat->m_wsValue )
{
static char buf[KEYVALUES_TOKEN_SIZE];
// make sure we have enough space
int result = Q_UnicodeToUTF8( dat->m_wsValue, buf, KEYVALUES_TOKEN_SIZE);
if (result)
{
WriteIndents(filesystem, f, pBuf, indentLevel + 1);
INTERNALWRITE("\"", 1);
INTERNALWRITE(dat->GetName(), Q_strlen(dat->GetName()));
INTERNALWRITE("\"\t\t\"", 4);
WriteConvertedString(filesystem, f, pBuf, buf);
INTERNALWRITE("\"\n", 2);
}
}
break;
}
case TYPE_INT:
{
WriteIndents(filesystem, f, pBuf, indentLevel + 1);
INTERNALWRITE("\"", 1);
INTERNALWRITE(dat->GetName(), Q_strlen(dat->GetName()));
INTERNALWRITE("\"\t\t\"", 4);
char buf[32];
Q_snprintf(buf, sizeof( buf ), "%d", dat->m_iValue);
INTERNALWRITE(buf, Q_strlen(buf));
INTERNALWRITE("\"\n", 2);
break;
}
case TYPE_UINT64:
{
WriteIndents(filesystem, f, pBuf, indentLevel + 1);
INTERNALWRITE("\"", 1);
INTERNALWRITE(dat->GetName(), Q_strlen(dat->GetName()));
INTERNALWRITE("\"\t\t\"", 4);
char buf[32];
// write "0x" + 16 char 0-padded hex encoded 64 bit value
#ifdef WIN32
Q_snprintf( buf, sizeof( buf ), "0x%016I64X", *( (uint64 *)dat->m_sValue ) );
#else
Q_snprintf( buf, sizeof( buf ), "0x%016llX", *( (uint64 *)dat->m_sValue ) );
#endif
INTERNALWRITE(buf, Q_strlen(buf));
INTERNALWRITE("\"\n", 2);
break;
}
case TYPE_FLOAT:
{
WriteIndents(filesystem, f, pBuf, indentLevel + 1);
INTERNALWRITE("\"", 1);
INTERNALWRITE(dat->GetName(), Q_strlen(dat->GetName()));
INTERNALWRITE("\"\t\t\"", 4);
char buf[48];
Q_snprintf(buf, sizeof( buf ), "%f", dat->m_flValue);
INTERNALWRITE(buf, Q_strlen(buf));
INTERNALWRITE("\"\n", 2);
break;
}
case TYPE_COLOR:
DevMsg(1, "KeyValues::RecursiveSaveToFile: TODO, missing code for TYPE_COLOR.\n");
break;
default:
break;
}
}
}
//-----------------------------------------------------------------------------
// Purpose: looks up a key by symbol name
//-----------------------------------------------------------------------------
KeyValues *KeyValues::FindKey(int keySymbol) const
{
for (KeyValues *dat = m_pSub; dat != NULL; dat = dat->m_pPeer)
{
if (dat->m_iKeyName == keySymbol)
return dat;
}
return NULL;
}
//-----------------------------------------------------------------------------
// Purpose: Find a keyValue, create it if it is not found.
// Set bCreate to true to create the key if it doesn't already exist
// (which ensures a valid pointer will be returned)
//-----------------------------------------------------------------------------
KeyValues *KeyValues::FindKey(const char *keyName, bool bCreate)
{
// return the current key if a NULL subkey is asked for
if (!keyName || !keyName[0])
return this;
// look for '/' characters deliminating sub fields
char szBuf[256];
const char *subStr = strchr(keyName, '/');
const char *searchStr = keyName;
// pull out the substring if it exists
if (subStr)
{
int size = subStr - keyName;
Q_memcpy( szBuf, keyName, size );
szBuf[size] = 0;
searchStr = szBuf;
}
// lookup the symbol for the search string
HKeySymbol iSearchStr = s_pfGetSymbolForString( searchStr, bCreate );
if ( iSearchStr == INVALID_KEY_SYMBOL )
{
// not found, couldn't possibly be in key value list
return NULL;
}
KeyValues *lastItem = NULL;
KeyValues *dat;
// find the searchStr in the current peer list
for (dat = m_pSub; dat != NULL; dat = dat->m_pPeer)
{
lastItem = dat; // record the last item looked at (for if we need to append to the end of the list)
// symbol compare
if (dat->m_iKeyName == iSearchStr)
{
break;
}
}
if ( !dat && m_pChain )
{
dat = m_pChain->FindKey(keyName, false);
}
// make sure a key was found
if (!dat)
{
if (bCreate)
{
// we need to create a new key
dat = new KeyValues( searchStr );
// Assert(dat != NULL);
dat->UsesEscapeSequences( m_bHasEscapeSequences != 0 ); // use same format as parent
dat->UsesConditionals( m_bEvaluateConditionals != 0 );
// insert new key at end of list
if (lastItem)
{
lastItem->m_pPeer = dat;
}
else
{
m_pSub = dat;
}
dat->m_pPeer = NULL;
// a key graduates to be a submsg as soon as it's m_pSub is set
// this should be the only place m_pSub is set
m_iDataType = TYPE_NONE;
}
else
{
return NULL;
}
}
// if we've still got a subStr we need to keep looking deeper in the tree
if ( subStr )
{
// recursively chain down through the paths in the string
return dat->FindKey(subStr + 1, bCreate);
}
return dat;
}
//-----------------------------------------------------------------------------
// Purpose: Create a new key, with an autogenerated name.
// Name is guaranteed to be an integer, of value 1 higher than the highest
// other integer key name
//-----------------------------------------------------------------------------
KeyValues *KeyValues::CreateNewKey()
{
int newID = 1;
// search for any key with higher values
KeyValues *pLastChild = NULL;
for (KeyValues *dat = m_pSub; dat != NULL; dat = dat->m_pPeer)
{
// case-insensitive string compare
int val = atoi(dat->GetName());
if (newID <= val)
{
newID = val + 1;
}
pLastChild = dat;
}
char buf[12];
Q_snprintf( buf, sizeof(buf), "%d", newID );
return CreateKeyUsingKnownLastChild( buf, pLastChild );
}
//-----------------------------------------------------------------------------
// Create a key
//-----------------------------------------------------------------------------
KeyValues* KeyValues::CreateKey( const char *keyName )
{
KeyValues *pLastChild = FindLastSubKey();
return CreateKeyUsingKnownLastChild( keyName, pLastChild );
}
//-----------------------------------------------------------------------------
KeyValues* KeyValues::CreateKeyUsingKnownLastChild( const char *keyName, KeyValues *pLastChild )
{
// Create a new key
KeyValues* dat = new KeyValues( keyName );
dat->UsesEscapeSequences( m_bHasEscapeSequences != 0 ); // use same format as parent does
dat->UsesConditionals( m_bEvaluateConditionals != 0 );
// add into subkey list
AddSubkeyUsingKnownLastChild( dat, pLastChild );
return dat;
}
//-----------------------------------------------------------------------------
void KeyValues::AddSubkeyUsingKnownLastChild( KeyValues *pSubkey, KeyValues *pLastChild )
{
// Make sure the subkey isn't a child of some other keyvalues
Assert( pSubkey != NULL );
Assert( pSubkey->m_pPeer == NULL );
// Empty child list?
if ( pLastChild == NULL )
{
Assert( m_pSub == NULL );
m_pSub = pSubkey;
}
else
{
Assert( m_pSub != NULL );
Assert( pLastChild->m_pPeer == NULL );
// // In debug, make sure that they really do know which child is the last one
// #ifdef _DEBUG
// KeyValues *pTempDat = m_pSub;
// while ( pTempDat->GetNextKey() != NULL )
// {
// pTempDat = pTempDat->GetNextKey();
// }
// Assert( pTempDat == pLastChild );
// #endif
pLastChild->SetNextKey( pSubkey );
}
}
//-----------------------------------------------------------------------------
// Adds a subkey. Make sure the subkey isn't a child of some other keyvalues
//-----------------------------------------------------------------------------
void KeyValues::AddSubKey( KeyValues *pSubkey )
{
// Make sure the subkey isn't a child of some other keyvalues
Assert( pSubkey != NULL );
Assert( pSubkey->m_pPeer == NULL );
// add into subkey list
if ( m_pSub == NULL )
{
m_pSub = pSubkey;
}
else
{
KeyValues *pTempDat = m_pSub;
while ( pTempDat->GetNextKey() != NULL )
{
pTempDat = pTempDat->GetNextKey();
}
pTempDat->SetNextKey( pSubkey );
}
}
//-----------------------------------------------------------------------------
// Purpose: Remove a subkey from the list
//-----------------------------------------------------------------------------
void KeyValues::RemoveSubKey(KeyValues *subKey)
{
if (!subKey)
return;
// check the list pointer
if (m_pSub == subKey)
{
m_pSub = subKey->m_pPeer;
}
else
{
// look through the list
KeyValues *kv = m_pSub;
while (kv->m_pPeer)
{
if (kv->m_pPeer == subKey)
{
kv->m_pPeer = subKey->m_pPeer;
break;
}
kv = kv->m_pPeer;
}
}
subKey->m_pPeer = NULL;
}
//-----------------------------------------------------------------------------
// Purpose: Locate last child. Returns NULL if we have no children
//-----------------------------------------------------------------------------
KeyValues *KeyValues::FindLastSubKey()
{
// No children?
if ( m_pSub == NULL )
return NULL;
// Scan for the last one
KeyValues *pLastChild = m_pSub;
while ( pLastChild->m_pPeer )
pLastChild = pLastChild->m_pPeer;
return pLastChild;
}
//-----------------------------------------------------------------------------
// Purpose: Sets this key's peer to the KeyValues passed in
//-----------------------------------------------------------------------------
void KeyValues::SetNextKey( KeyValues *pDat )
{
m_pPeer = pDat;
}
KeyValues* KeyValues::GetFirstTrueSubKey()
{
KeyValues *pRet = m_pSub;
while ( pRet && pRet->m_iDataType != TYPE_NONE )
pRet = pRet->m_pPeer;
return pRet;
}
KeyValues* KeyValues::GetNextTrueSubKey()
{
KeyValues *pRet = m_pPeer;
while ( pRet && pRet->m_iDataType != TYPE_NONE )
pRet = pRet->m_pPeer;
return pRet;
}
KeyValues* KeyValues::GetFirstValue()
{
KeyValues *pRet = m_pSub;
while ( pRet && pRet->m_iDataType == TYPE_NONE )
pRet = pRet->m_pPeer;
return pRet;
}
KeyValues* KeyValues::GetNextValue()
{
KeyValues *pRet = m_pPeer;
while ( pRet && pRet->m_iDataType == TYPE_NONE )
pRet = pRet->m_pPeer;
return pRet;
}
//-----------------------------------------------------------------------------
// Purpose: Get the integer value of a keyName. Default value is returned
// if the keyName can't be found.
//-----------------------------------------------------------------------------
int KeyValues::GetInt( const char *keyName, int defaultValue )
{
KeyValues *dat = FindKey( keyName, false );
if ( dat )
{
switch ( dat->m_iDataType )
{
case TYPE_STRING:
return atoi(dat->m_sValue);
case TYPE_WSTRING:
return _wtoi(dat->m_wsValue);
case TYPE_FLOAT:
return (int)dat->m_flValue;
case TYPE_UINT64:
// can't convert, since it would lose data
Assert(0);
return 0;
case TYPE_INT:
case TYPE_PTR:
default:
return dat->m_iValue;
};
}
return defaultValue;
}
//-----------------------------------------------------------------------------
// Purpose: Get the integer value of a keyName. Default value is returned
// if the keyName can't be found.
//-----------------------------------------------------------------------------
uint64 KeyValues::GetUint64( const char *keyName, uint64 defaultValue )
{
KeyValues *dat = FindKey( keyName, false );
if ( dat )
{
switch ( dat->m_iDataType )
{
case TYPE_STRING:
return (uint64)Q_atoi64(dat->m_sValue);
case TYPE_WSTRING:
return _wtoi64(dat->m_wsValue);
case TYPE_FLOAT:
return (int)dat->m_flValue;
case TYPE_UINT64:
return *((uint64 *)dat->m_sValue);
case TYPE_INT:
case TYPE_PTR:
default:
return dat->m_iValue;
};
}
return defaultValue;
}
//-----------------------------------------------------------------------------
// Purpose: Get the pointer value of a keyName. Default value is returned
// if the keyName can't be found.
//-----------------------------------------------------------------------------
void *KeyValues::GetPtr( const char *keyName, void *defaultValue )
{
KeyValues *dat = FindKey( keyName, false );
if ( dat )
{
switch ( dat->m_iDataType )
{
case TYPE_PTR:
return dat->m_pValue;
case TYPE_WSTRING:
case TYPE_STRING:
case TYPE_FLOAT:
case TYPE_INT:
case TYPE_UINT64:
default:
return NULL;
};
}
return defaultValue;
}
//-----------------------------------------------------------------------------
// Purpose: Get the float value of a keyName. Default value is returned
// if the keyName can't be found.
//-----------------------------------------------------------------------------
float KeyValues::GetFloat( const char *keyName, float defaultValue )
{
KeyValues *dat = FindKey( keyName, false );
if ( dat )
{
switch ( dat->m_iDataType )
{
case TYPE_STRING:
return (float)atof(dat->m_sValue);
case TYPE_WSTRING:
#ifdef WIN32
return (float) _wtof(dat->m_wsValue); // no wtof
#else
Assert( !"impl me" );
return 0.0;
#endif
case TYPE_FLOAT:
return dat->m_flValue;
case TYPE_INT:
return (float)dat->m_iValue;
case TYPE_UINT64:
return (float)(*((uint64 *)dat->m_sValue));
case TYPE_PTR:
default:
return 0.0f;
};
}
return defaultValue;
}
//-----------------------------------------------------------------------------
// Purpose: Get the string pointer of a keyName. Default value is returned
// if the keyName can't be found.
//-----------------------------------------------------------------------------
const char *KeyValues::GetString( const char *keyName, const char *defaultValue )
{
KeyValues *dat = FindKey( keyName, false );
if ( dat )
{
// convert the data to string form then return it
char buf[64];
switch ( dat->m_iDataType )
{
case TYPE_FLOAT:
Q_snprintf( buf, sizeof( buf ), "%f", dat->m_flValue );
SetString( keyName, buf );
break;
case TYPE_PTR:
2014-10-31 00:30:57 +08:00
Q_snprintf( buf, sizeof( buf ), "%lld", (int64)(size_t)dat->m_pValue );
SetString( keyName, buf );
break;
case TYPE_INT:
2013-06-27 06:22:04 +08:00
Q_snprintf( buf, sizeof( buf ), "%d", dat->m_iValue );
SetString( keyName, buf );
break;
case TYPE_UINT64:
Q_snprintf( buf, sizeof( buf ), "%lld", *((uint64 *)(dat->m_sValue)) );
SetString( keyName, buf );
break;
case TYPE_WSTRING:
{
// convert the string to char *, set it for future use, and return it
char wideBuf[512];
int result = Q_UnicodeToUTF8(dat->m_wsValue, wideBuf, 512);
if ( result )
{
// note: this will copy wideBuf
SetString( keyName, wideBuf );
}
else
{
return defaultValue;
}
break;
}
case TYPE_STRING:
break;
default:
return defaultValue;
};
return dat->m_sValue;
}
return defaultValue;
}
const wchar_t *KeyValues::GetWString( const char *keyName, const wchar_t *defaultValue)
{
KeyValues *dat = FindKey( keyName, false );
if ( dat )
{
wchar_t wbuf[64];
switch ( dat->m_iDataType )
{
case TYPE_FLOAT:
swprintf(wbuf, Q_ARRAYSIZE(wbuf), L"%f", dat->m_flValue);
SetWString( keyName, wbuf);
break;
case TYPE_PTR:
2014-10-31 00:30:57 +08:00
swprintf( wbuf, Q_ARRAYSIZE(wbuf), L"%lld", (int64)(size_t)dat->m_pValue );
SetWString( keyName, wbuf );
break;
case TYPE_INT:
2013-06-27 06:22:04 +08:00
swprintf( wbuf, Q_ARRAYSIZE(wbuf), L"%d", dat->m_iValue );
SetWString( keyName, wbuf );
break;
case TYPE_UINT64:
{
swprintf( wbuf, Q_ARRAYSIZE(wbuf), L"%lld", *((uint64 *)(dat->m_sValue)) );
SetWString( keyName, wbuf );
}
break;
case TYPE_WSTRING:
break;
case TYPE_STRING:
{
int bufSize = Q_strlen(dat->m_sValue) + 1;
wchar_t *pWBuf = KVStringAlloc<wchar_t>( bufSize );
2013-06-27 06:22:04 +08:00
int result = Q_UTF8ToUnicode(dat->m_sValue, pWBuf, bufSize * sizeof( wchar_t ) );
if ( result >= 0 ) // may be a zero length string
{
SetWString( keyName, pWBuf);
}
else
{
KVStringDelete(pWBuf);
2013-06-27 06:22:04 +08:00
return defaultValue;
}
KVStringDelete(pWBuf);
2013-06-27 06:22:04 +08:00
break;
}
default:
return defaultValue;
};
return (const wchar_t* )dat->m_wsValue;
}
return defaultValue;
}
//-----------------------------------------------------------------------------
// Purpose: Get a bool interpretation of the key.
//-----------------------------------------------------------------------------
2014-10-31 00:30:57 +08:00
bool KeyValues::GetBool( const char *keyName, bool defaultValue, bool* optGotDefault )
2013-06-27 06:22:04 +08:00
{
if ( FindKey( keyName ) )
2014-10-31 00:30:57 +08:00
{
if ( optGotDefault )
(*optGotDefault) = false;
2013-06-27 06:22:04 +08:00
return 0 != GetInt( keyName, 0 );
2014-10-31 00:30:57 +08:00
}
if ( optGotDefault )
(*optGotDefault) = true;
2013-06-27 06:22:04 +08:00
return defaultValue;
}
//-----------------------------------------------------------------------------
// Purpose: Gets a color
//-----------------------------------------------------------------------------
Color KeyValues::GetColor( const char *keyName )
{
Color color(0, 0, 0, 0);
KeyValues *dat = FindKey( keyName, false );
if ( dat )
{
if ( dat->m_iDataType == TYPE_COLOR )
{
color[0] = dat->m_Color[0];
color[1] = dat->m_Color[1];
color[2] = dat->m_Color[2];
color[3] = dat->m_Color[3];
}
else if ( dat->m_iDataType == TYPE_FLOAT )
{
color[0] = dat->m_flValue;
}
else if ( dat->m_iDataType == TYPE_INT )
{
color[0] = dat->m_iValue;
}
else if ( dat->m_iDataType == TYPE_STRING )
{
// parse the colors out of the string
float a = 0.0f, b = 0.0f, c = 0.0f, d = 0.0f;
sscanf(dat->m_sValue, "%f %f %f %f", &a, &b, &c, &d);
color[0] = (unsigned char)a;
color[1] = (unsigned char)b;
color[2] = (unsigned char)c;
color[3] = (unsigned char)d;
}
}
return color;
}
//-----------------------------------------------------------------------------
// Purpose: Sets a color
//-----------------------------------------------------------------------------
void KeyValues::SetColor( const char *keyName, Color value)
{
KeyValues *dat = FindKey( keyName, true );
if ( dat )
{
dat->m_iDataType = TYPE_COLOR;
dat->m_Color[0] = value[0];
dat->m_Color[1] = value[1];
dat->m_Color[2] = value[2];
dat->m_Color[3] = value[3];
}
}
void KeyValues::SetStringValue( char const *strValue )
{
// delete the old value
KVStringDelete(m_sValue);
2013-06-27 06:22:04 +08:00
// make sure we're not storing the WSTRING - as we're converting over to STRING
KVStringDelete(m_wsValue);
2013-06-27 06:22:04 +08:00
m_wsValue = NULL;
if (!strValue)
{
// ensure a valid value
strValue = "";
}
// allocate memory for the new value and copy it in
int len = Q_strlen( strValue );
m_sValue = KVStringAlloc<char>(len + 1);
2013-06-27 06:22:04 +08:00
Q_memcpy( m_sValue, strValue, len+1 );
m_iDataType = TYPE_STRING;
}
//-----------------------------------------------------------------------------
// Purpose: Set the string value of a keyName.
//-----------------------------------------------------------------------------
void KeyValues::SetString( const char *keyName, const char *value )
{
KeyValues *dat = FindKey( keyName, true );
if ( dat )
{
if ( dat->m_iDataType == TYPE_STRING && dat->m_sValue == value )
{
return;
}
// delete the old value
KVStringDelete(dat->m_sValue);
2013-06-27 06:22:04 +08:00
// make sure we're not storing the WSTRING - as we're converting over to STRING
KVStringDelete(dat->m_wsValue);
2013-06-27 06:22:04 +08:00
dat->m_wsValue = NULL;
if (!value)
{
// ensure a valid value
value = "";
}
// allocate memory for the new value and copy it in
int len = Q_strlen( value );
dat->m_sValue = KVStringAlloc<char>(len + 1);
2013-06-27 06:22:04 +08:00
Q_memcpy( dat->m_sValue, value, len+1 );
dat->m_iDataType = TYPE_STRING;
}
}
//-----------------------------------------------------------------------------
// Purpose: Set the string value of a keyName.
//-----------------------------------------------------------------------------
void KeyValues::SetWString( const char *keyName, const wchar_t *value )
{
KeyValues *dat = FindKey( keyName, true );
if ( dat )
{
// delete the old value
KVStringDelete(dat->m_wsValue);
2013-06-27 06:22:04 +08:00
// make sure we're not storing the STRING - as we're converting over to WSTRING
KVStringDelete(dat->m_sValue);
2013-06-27 06:22:04 +08:00
dat->m_sValue = NULL;
if (!value)
{
// ensure a valid value
value = L"";
}
// allocate memory for the new value and copy it in
2014-10-31 00:30:57 +08:00
int len = Q_wcslen( value );
dat->m_wsValue = KVStringAlloc<wchar_t>(len + 1);
2013-06-27 06:22:04 +08:00
Q_memcpy( dat->m_wsValue, value, (len+1) * sizeof(wchar_t) );
dat->m_iDataType = TYPE_WSTRING;
}
}
//-----------------------------------------------------------------------------
// Purpose: Set the integer value of a keyName.
//-----------------------------------------------------------------------------
void KeyValues::SetInt( const char *keyName, int value )
{
KeyValues *dat = FindKey( keyName, true );
if ( dat )
{
dat->m_iValue = value;
dat->m_iDataType = TYPE_INT;
}
}
//-----------------------------------------------------------------------------
// Purpose: Set the integer value of a keyName.
//-----------------------------------------------------------------------------
void KeyValues::SetUint64( const char *keyName, uint64 value )
{
KeyValues *dat = FindKey( keyName, true );
if ( dat )
{
// delete the old value
KVStringDelete(dat->m_sValue);
2013-06-27 06:22:04 +08:00
// make sure we're not storing the WSTRING - as we're converting over to STRING
KVStringDelete(dat->m_wsValue);
2013-06-27 06:22:04 +08:00
dat->m_wsValue = NULL;
dat->m_sValue = KVStringAlloc<char>(sizeof(uint64));
2013-06-27 06:22:04 +08:00
*((uint64 *)dat->m_sValue) = value;
dat->m_iDataType = TYPE_UINT64;
}
}
//-----------------------------------------------------------------------------
// Purpose: Set the float value of a keyName.
//-----------------------------------------------------------------------------
void KeyValues::SetFloat( const char *keyName, float value )
{
KeyValues *dat = FindKey( keyName, true );
if ( dat )
{
dat->m_flValue = value;
dat->m_iDataType = TYPE_FLOAT;
}
}
void KeyValues::SetName( const char * setName )
{
m_iKeyName = s_pfGetSymbolForString( setName, true );
}
//-----------------------------------------------------------------------------
// Purpose: Set the pointer value of a keyName.
//-----------------------------------------------------------------------------
void KeyValues::SetPtr( const char *keyName, void *value )
{
KeyValues *dat = FindKey( keyName, true );
if ( dat )
{
dat->m_pValue = value;
dat->m_iDataType = TYPE_PTR;
}
}
void KeyValues::RecursiveCopyKeyValues( KeyValues& src )
{
// garymcthack - need to check this code for possible buffer overruns.
m_iKeyName = src.GetNameSymbol();
if( !src.m_pSub )
{
m_iDataType = src.m_iDataType;
char buf[256];
switch( src.m_iDataType )
{
case TYPE_NONE:
break;
case TYPE_STRING:
if( src.m_sValue )
{
int len = Q_strlen(src.m_sValue) + 1;
m_sValue = KVStringAlloc<char>(len);
2013-06-27 06:22:04 +08:00
Q_strncpy( m_sValue, src.m_sValue, len );
}
break;
case TYPE_INT:
{
m_iValue = src.m_iValue;
Q_snprintf( buf,sizeof(buf), "%d", m_iValue );
int len = Q_strlen(buf) + 1;
m_sValue = KVStringAlloc<char>(len);
2013-06-27 06:22:04 +08:00
Q_strncpy( m_sValue, buf, len );
}
break;
case TYPE_FLOAT:
{
m_flValue = src.m_flValue;
Q_snprintf( buf,sizeof(buf), "%f", m_flValue );
int len = Q_strlen(buf) + 1;
m_sValue = KVStringAlloc<char>(len);
2013-06-27 06:22:04 +08:00
Q_strncpy( m_sValue, buf, len );
}
break;
case TYPE_PTR:
{
m_pValue = src.m_pValue;
}
break;
case TYPE_UINT64:
{
m_sValue = KVStringAlloc<char>(sizeof(uint64));
2013-06-27 06:22:04 +08:00
Q_memcpy( m_sValue, src.m_sValue, sizeof(uint64) );
}
break;
case TYPE_COLOR:
{
m_Color[0] = src.m_Color[0];
m_Color[1] = src.m_Color[1];
m_Color[2] = src.m_Color[2];
m_Color[3] = src.m_Color[3];
}
break;
default:
{
// do nothing . .what the heck is this?
Assert( 0 );
}
break;
}
}
#if 0
KeyValues *pDst = this;
for ( KeyValues *pSrc = src.m_pSub; pSrc; pSrc = pSrc->m_pPeer )
{
if ( pSrc->m_pSub )
{
pDst->m_pSub = new KeyValues( pSrc->m_pSub->getName() );
pDst->m_pSub->RecursiveCopyKeyValues( *pSrc->m_pSub );
}
else
{
// copy non-empty keys
if ( pSrc->m_sValue && *(pSrc->m_sValue) )
{
pDst->m_pPeer = new KeyValues(
}
}
}
#endif
// Handle the immediate child
if( src.m_pSub )
{
m_pSub = new KeyValues( NULL );
m_pSub->RecursiveCopyKeyValues( *src.m_pSub );
}
// Handle the immediate peer
if( src.m_pPeer )
{
m_pPeer = new KeyValues( NULL );
m_pPeer->RecursiveCopyKeyValues( *src.m_pPeer );
}
}
KeyValues& KeyValues::operator=( KeyValues& src )
{
RemoveEverything();
Init(); // reset all values
RecursiveCopyKeyValues( src );
return *this;
}
//-----------------------------------------------------------------------------
// Make a new copy of all subkeys, add them all to the passed-in keyvalues
//-----------------------------------------------------------------------------
void KeyValues::CopySubkeys( KeyValues *pParent ) const
{
// recursively copy subkeys
// Also maintain ordering....
KeyValues *pPrev = NULL;
for ( KeyValues *sub = m_pSub; sub != NULL; sub = sub->m_pPeer )
{
// take a copy of the subkey
KeyValues *dat = sub->MakeCopy();
// add into subkey list
if (pPrev)
{
pPrev->m_pPeer = dat;
}
else
{
pParent->m_pSub = dat;
}
dat->m_pPeer = NULL;
pPrev = dat;
}
}
//-----------------------------------------------------------------------------
// Purpose: Makes a copy of the whole key-value pair set
//-----------------------------------------------------------------------------
KeyValues *KeyValues::MakeCopy( void ) const
{
KeyValues *newKeyValue = new KeyValues(GetName());
newKeyValue->UsesEscapeSequences( m_bHasEscapeSequences != 0 );
newKeyValue->UsesConditionals( m_bEvaluateConditionals != 0 );
// copy data
newKeyValue->m_iDataType = m_iDataType;
switch ( m_iDataType )
{
case TYPE_STRING:
{
if ( m_sValue )
{
int len = Q_strlen( m_sValue );
Assert( !newKeyValue->m_sValue );
newKeyValue->m_sValue = KVStringAlloc<char>(len + 1);
2013-06-27 06:22:04 +08:00
Q_memcpy( newKeyValue->m_sValue, m_sValue, len+1 );
}
}
break;
case TYPE_WSTRING:
{
if ( m_wsValue )
{
2014-10-31 00:30:57 +08:00
int len = Q_wcslen( m_wsValue );
newKeyValue->m_wsValue = KVStringAlloc<wchar_t>(len + 1);
2013-06-27 06:22:04 +08:00
Q_memcpy( newKeyValue->m_wsValue, m_wsValue, (len+1)*sizeof(wchar_t));
}
}
break;
case TYPE_INT:
newKeyValue->m_iValue = m_iValue;
break;
case TYPE_FLOAT:
newKeyValue->m_flValue = m_flValue;
break;
case TYPE_PTR:
newKeyValue->m_pValue = m_pValue;
break;
case TYPE_COLOR:
newKeyValue->m_Color[0] = m_Color[0];
newKeyValue->m_Color[1] = m_Color[1];
newKeyValue->m_Color[2] = m_Color[2];
newKeyValue->m_Color[3] = m_Color[3];
break;
case TYPE_UINT64:
newKeyValue->m_sValue = KVStringAlloc<char>(sizeof(uint64));
2013-06-27 06:22:04 +08:00
Q_memcpy( newKeyValue->m_sValue, m_sValue, sizeof(uint64) );
break;
};
// recursively copy subkeys
CopySubkeys( newKeyValue );
return newKeyValue;
}
//-----------------------------------------------------------------------------
// Purpose: Check if a keyName has no value assigned to it.
//-----------------------------------------------------------------------------
bool KeyValues::IsEmpty(const char *keyName)
{
KeyValues *dat = FindKey(keyName, false);
if (!dat)
return true;
if (dat->m_iDataType == TYPE_NONE && dat->m_pSub == NULL)
return true;
return false;
}
//-----------------------------------------------------------------------------
// Purpose: Clear out all subkeys, and the current value
//-----------------------------------------------------------------------------
void KeyValues::Clear( void )
{
delete m_pSub;
m_pSub = NULL;
m_iDataType = TYPE_NONE;
}
//-----------------------------------------------------------------------------
// Purpose: Get the data type of the value stored in a keyName
//-----------------------------------------------------------------------------
KeyValues::types_t KeyValues::GetDataType(const char *keyName)
{
KeyValues *dat = FindKey(keyName, false);
if (dat)
return (types_t)dat->m_iDataType;
return TYPE_NONE;
}
//-----------------------------------------------------------------------------
// Purpose: Deletion, ensures object gets deleted from correct heap
//-----------------------------------------------------------------------------
void KeyValues::deleteThis()
{
delete this;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : includedKeys -
//-----------------------------------------------------------------------------
void KeyValues::AppendIncludedKeys( CUtlVector< KeyValues * >& includedKeys )
{
// Append any included keys, too...
KeyValues *insertSpot = this;
int includeCount = includedKeys.Count();
for ( int i = 0; i < includeCount; i++ )
{
KeyValues *kv = includedKeys[ i ];
Assert( kv );
while ( insertSpot->GetNextKey() )
{
insertSpot = insertSpot->GetNextKey();
}
insertSpot->SetNextKey( kv );
}
}
void KeyValues::ParseIncludedKeys( char const *resourceName, const char *filetoinclude,
IBaseFileSystem* pFileSystem, const char *pPathID, CUtlVector< KeyValues * >& includedKeys )
{
Assert( resourceName );
Assert( filetoinclude );
Assert( pFileSystem );
// Load it...
if ( !pFileSystem )
{
return;
}
// Get relative subdirectory
char fullpath[ 512 ];
Q_strncpy( fullpath, resourceName, sizeof( fullpath ) );
// Strip off characters back to start or first /
int len = Q_strlen( fullpath );
2014-10-31 00:30:57 +08:00
for (;;)
2013-06-27 06:22:04 +08:00
{
if ( len <= 0 )
{
break;
}
if ( fullpath[ len - 1 ] == '\\' ||
fullpath[ len - 1 ] == '/' )
{
break;
}
// zero it
fullpath[ len - 1 ] = 0;
--len;
}
// Append included file
Q_strncat( fullpath, filetoinclude, sizeof( fullpath ), COPY_ALL_CHARACTERS );
KeyValues *newKV = new KeyValues( fullpath );
// CUtlSymbol save = s_CurrentFileSymbol; // did that had any use ???
newKV->UsesEscapeSequences( m_bHasEscapeSequences != 0 ); // use same format as parent
newKV->UsesConditionals( m_bEvaluateConditionals != 0 );
if ( newKV->LoadFromFile( pFileSystem, fullpath, pPathID ) )
{
includedKeys.AddToTail( newKV );
}
else
{
DevMsg( "KeyValues::ParseIncludedKeys: Couldn't load included keyvalue file %s\n", fullpath );
newKV->deleteThis();
}
// s_CurrentFileSymbol = save;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : baseKeys -
//-----------------------------------------------------------------------------
void KeyValues::MergeBaseKeys( CUtlVector< KeyValues * >& baseKeys )
{
int includeCount = baseKeys.Count();
int i;
for ( i = 0; i < includeCount; i++ )
{
KeyValues *kv = baseKeys[ i ];
Assert( kv );
RecursiveMergeKeyValues( kv );
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : baseKV - keyvalues we're basing ourselves on
//-----------------------------------------------------------------------------
void KeyValues::RecursiveMergeKeyValues( KeyValues *baseKV )
{
// Merge ourselves
// we always want to keep our value, so nothing to do here
// Now merge our children
for ( KeyValues *baseChild = baseKV->m_pSub; baseChild != NULL; baseChild = baseChild->m_pPeer )
{
// for each child in base, see if we have a matching kv
bool bFoundMatch = false;
// If we have a child by the same name, merge those keys
for ( KeyValues *newChild = m_pSub; newChild != NULL; newChild = newChild->m_pPeer )
{
if ( !Q_strcmp( baseChild->GetName(), newChild->GetName() ) )
{
newChild->RecursiveMergeKeyValues( baseChild );
bFoundMatch = true;
break;
}
}
// If not merged, append this key
if ( !bFoundMatch )
{
KeyValues *dat = baseChild->MakeCopy();
Assert( dat );
AddSubKey( dat );
}
}
}
//-----------------------------------------------------------------------------
// Returns whether a keyvalues conditional evaluates to true or false
// Needs more flexibility with conditionals, checking convars would be nice.
//-----------------------------------------------------------------------------
bool EvaluateConditional( const char *str )
{
if ( !str )
return false;
if ( *str == '[' )
str++;
bool bNot = false; // should we negate this command?
if ( *str == '!' )
bNot = true;
if ( Q_stristr( str, "$X360" ) )
return IsX360() ^ bNot;
if ( Q_stristr( str, "$WIN32" ) )
return IsPC() ^ bNot; // hack hack - for now WIN32 really means IsPC
if ( Q_stristr( str, "$WINDOWS" ) )
return IsWindows() ^ bNot;
if ( Q_stristr( str, "$OSX" ) )
return IsOSX() ^ bNot;
if ( Q_stristr( str, "$LINUX" ) )
return IsLinux() ^ bNot;
if ( Q_stristr( str, "$POSIX" ) )
return IsPosix() ^ bNot;
return false;
}
//-----------------------------------------------------------------------------
// Read from a buffer...
//-----------------------------------------------------------------------------
bool KeyValues::LoadFromBuffer( char const *resourceName, CUtlBuffer &buf, IBaseFileSystem* pFileSystem, const char *pPathID )
{
KeyValues *pPreviousKey = NULL;
KeyValues *pCurrentKey = this;
CUtlVector< KeyValues * > includedKeys;
CUtlVector< KeyValues * > baseKeys;
bool wasQuoted;
bool wasConditional;
g_KeyValuesErrorStack.SetFilename( resourceName );
do
{
bool bAccepted = true;
// the first thing must be a key
const char *s = ReadToken( buf, wasQuoted, wasConditional );
if ( !buf.IsValid() || !s || *s == 0 )
break;
if ( !Q_stricmp( s, "#include" ) ) // special include macro (not a key name)
{
s = ReadToken( buf, wasQuoted, wasConditional );
// Name of subfile to load is now in s
if ( !s || *s == 0 )
{
g_KeyValuesErrorStack.ReportError("#include is NULL " );
}
else
{
ParseIncludedKeys( resourceName, s, pFileSystem, pPathID, includedKeys );
}
continue;
}
else if ( !Q_stricmp( s, "#base" ) )
{
s = ReadToken( buf, wasQuoted, wasConditional );
// Name of subfile to load is now in s
if ( !s || *s == 0 )
{
g_KeyValuesErrorStack.ReportError("#base is NULL " );
}
else
{
ParseIncludedKeys( resourceName, s, pFileSystem, pPathID, baseKeys );
}
continue;
}
if ( !pCurrentKey )
{
pCurrentKey = new KeyValues( s );
Assert( pCurrentKey );
pCurrentKey->UsesEscapeSequences( m_bHasEscapeSequences != 0 ); // same format has parent use
pCurrentKey->UsesConditionals( m_bEvaluateConditionals != 0 );
if ( pPreviousKey )
{
pPreviousKey->SetNextKey( pCurrentKey );
}
}
else
{
pCurrentKey->SetName( s );
}
// get the '{'
s = ReadToken( buf, wasQuoted, wasConditional );
if ( wasConditional )
{
bAccepted = !m_bEvaluateConditionals || EvaluateConditional( s );
// Now get the '{'
s = ReadToken( buf, wasQuoted, wasConditional );
}
if ( s && *s == '{' && !wasQuoted )
{
// header is valid so load the file
pCurrentKey->RecursiveLoadFromBuffer( resourceName, buf );
}
else
{
g_KeyValuesErrorStack.ReportError("LoadFromBuffer: missing {" );
}
if ( !bAccepted )
{
if ( pPreviousKey )
{
pPreviousKey->SetNextKey( NULL );
}
pCurrentKey->Clear();
}
else
{
pPreviousKey = pCurrentKey;
pCurrentKey = NULL;
}
} while ( buf.IsValid() );
AppendIncludedKeys( includedKeys );
{
// delete included keys!
int i;
for ( i = includedKeys.Count() - 1; i > 0; i-- )
{
KeyValues *kv = includedKeys[ i ];
kv->deleteThis();
}
}
MergeBaseKeys( baseKeys );
{
// delete base keys!
int i;
for ( i = baseKeys.Count() - 1; i >= 0; i-- )
{
KeyValues *kv = baseKeys[ i ];
kv->deleteThis();
}
}
g_KeyValuesErrorStack.SetFilename( "" );
return true;
}
//-----------------------------------------------------------------------------
// Read from a buffer...
//-----------------------------------------------------------------------------
bool KeyValues::LoadFromBuffer( char const *resourceName, const char *pBuffer, IBaseFileSystem* pFileSystem, const char *pPathID )
{
if ( !pBuffer )
return true;
int nLen = Q_strlen( pBuffer );
CUtlBuffer buf( pBuffer, nLen, CUtlBuffer::READ_ONLY | CUtlBuffer::TEXT_BUFFER );
// Translate Unicode files into UTF-8 before proceeding
if ( nLen > 2 && (uint8)pBuffer[0] == 0xFF && (uint8)pBuffer[1] == 0xFE )
{
int nUTF8Len = V_UnicodeToUTF8( (wchar_t*)(pBuffer+2), NULL, 0 );
char *pUTF8Buf = KVStringAlloc<char>(nUTF8Len);
2013-06-27 06:22:04 +08:00
V_UnicodeToUTF8( (wchar_t*)(pBuffer+2), pUTF8Buf, nUTF8Len );
buf.AssumeMemory( pUTF8Buf, nUTF8Len, nUTF8Len, CUtlBuffer::READ_ONLY | CUtlBuffer::TEXT_BUFFER );
}
return LoadFromBuffer( resourceName, buf, pFileSystem, pPathID );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void KeyValues::RecursiveLoadFromBuffer( char const *resourceName, CUtlBuffer &buf )
{
CKeyErrorContext errorReport(this);
bool wasQuoted;
bool wasConditional;
// keep this out of the stack until a key is parsed
CKeyErrorContext errorKey( INVALID_KEY_SYMBOL );
// Locate the last child. (Almost always, we will not have any children.)
// We maintain the pointer to the last child here, so we don't have to re-locate
// it each time we append the next subkey, which causes O(N^2) time
KeyValues *pLastChild = FindLastSubKey();;
// Keep parsing until we hit the closing brace which terminates this block, or a parse error
while ( 1 )
{
bool bAccepted = true;
// get the key name
const char * name = ReadToken( buf, wasQuoted, wasConditional );
if ( !name ) // EOF stop reading
{
g_KeyValuesErrorStack.ReportError("RecursiveLoadFromBuffer: got EOF instead of keyname" );
break;
}
if ( !*name ) // empty token, maybe "" or EOF
{
g_KeyValuesErrorStack.ReportError("RecursiveLoadFromBuffer: got empty keyname" );
break;
}
if ( *name == '}' && !wasQuoted ) // top level closed, stop reading
break;
// Always create the key; note that this could potentially
// cause some duplication, but that's what we want sometimes
KeyValues *dat = CreateKeyUsingKnownLastChild( name, pLastChild );
errorKey.Reset( dat->GetNameSymbol() );
// get the value
const char * value = ReadToken( buf, wasQuoted, wasConditional );
if ( wasConditional && value )
{
bAccepted = !m_bEvaluateConditionals || EvaluateConditional( value );
// get the real value
value = ReadToken( buf, wasQuoted, wasConditional );
}
if ( !value )
{
g_KeyValuesErrorStack.ReportError("RecursiveLoadFromBuffer: got NULL key" );
break;
}
if ( *value == '}' && !wasQuoted )
{
g_KeyValuesErrorStack.ReportError("RecursiveLoadFromBuffer: got } in key" );
break;
}
if ( *value == '{' && !wasQuoted )
{
// this isn't a key, it's a section
errorKey.Reset( INVALID_KEY_SYMBOL );
// sub value list
dat->RecursiveLoadFromBuffer( resourceName, buf );
}
else
{
if ( wasConditional )
{
g_KeyValuesErrorStack.ReportError("RecursiveLoadFromBuffer: got conditional between key and value" );
break;
}
if (dat->m_sValue)
{
KVStringDelete(dat->m_sValue);
2013-06-27 06:22:04 +08:00
dat->m_sValue = NULL;
}
int len = Q_strlen( value );
// Here, let's determine if we got a float or an int....
char* pIEnd; // pos where int scan ended
char* pFEnd; // pos where float scan ended
const char* pSEnd = value + len ; // pos where token ends
int ival = strtol( value, &pIEnd, 10 );
float fval = (float)strtod( value, &pFEnd );
bool bOverflow = ( ival == LONG_MAX || ival == LONG_MIN ) && errno == ERANGE;
#ifdef POSIX
// strtod supports hex representation in strings under posix but we DON'T
// want that support in keyvalues, so undo it here if needed
if ( len > 1 && tolower(value[1]) == 'x' )
{
fval = 0.0f;
pFEnd = (char *)value;
}
#endif
if ( *value == 0 )
{
dat->m_iDataType = TYPE_STRING;
}
else if ( ( 18 == len ) && ( value[0] == '0' ) && ( value[1] == 'x' ) )
{
// an 18-byte value prefixed with "0x" (followed by 16 hex digits) is an int64 value
int64 retVal = 0;
for( int i=2; i < 2 + 16; i++ )
{
char digit = value[i];
if ( digit >= 'a' )
digit -= 'a' - ( '9' + 1 );
else
if ( digit >= 'A' )
digit -= 'A' - ( '9' + 1 );
retVal = ( retVal * 16 ) + ( digit - '0' );
}
dat->m_sValue = KVStringAlloc<char>(sizeof(uint64));
2013-06-27 06:22:04 +08:00
*((uint64 *)dat->m_sValue) = retVal;
dat->m_iDataType = TYPE_UINT64;
}
else if ( (pFEnd > pIEnd) && (pFEnd == pSEnd) )
{
dat->m_flValue = fval;
dat->m_iDataType = TYPE_FLOAT;
}
else if (pIEnd == pSEnd && !bOverflow)
{
dat->m_iValue = ival;
dat->m_iDataType = TYPE_INT;
}
else
{
dat->m_iDataType = TYPE_STRING;
}
if (dat->m_iDataType == TYPE_STRING)
{
// copy in the string information
dat->m_sValue = KVStringAlloc<char>(len + 1);
2013-06-27 06:22:04 +08:00
Q_memcpy( dat->m_sValue, value, len+1 );
}
// Look ahead one token for a conditional tag
int prevPos = buf.TellGet();
const char *peek = ReadToken( buf, wasQuoted, wasConditional );
if ( wasConditional )
{
bAccepted = !m_bEvaluateConditionals || EvaluateConditional( peek );
}
else
{
buf.SeekGet( CUtlBuffer::SEEK_HEAD, prevPos );
}
}
Assert( dat->m_pPeer == NULL );
if ( bAccepted )
{
Assert( pLastChild == NULL || pLastChild->m_pPeer == dat );
pLastChild = dat;
}
else
{
//this->RemoveSubKey( dat );
if ( pLastChild == NULL )
{
Assert( m_pSub == dat );
m_pSub = NULL;
}
else
{
Assert( pLastChild->m_pPeer == dat );
pLastChild->m_pPeer = NULL;
}
dat->deleteThis();
dat = NULL;
}
}
}
// writes KeyValue as binary data to buffer
bool KeyValues::WriteAsBinary( CUtlBuffer &buffer )
{
if ( buffer.IsText() ) // must be a binary buffer
return false;
if ( !buffer.IsValid() ) // must be valid, no overflows etc
return false;
// Write subkeys:
// loop through all our peers
for ( KeyValues *dat = this; dat != NULL; dat = dat->m_pPeer )
{
// write type
buffer.PutUnsignedChar( dat->m_iDataType );
// write name
buffer.PutString( dat->GetName() );
// write type
switch (dat->m_iDataType)
{
case TYPE_NONE:
{
dat->m_pSub->WriteAsBinary( buffer );
break;
}
case TYPE_STRING:
{
if (dat->m_sValue && *(dat->m_sValue))
{
buffer.PutString( dat->m_sValue );
}
else
{
buffer.PutString( "" );
}
break;
}
case TYPE_WSTRING:
{
Assert( !"TYPE_WSTRING" );
break;
}
case TYPE_INT:
{
buffer.PutInt( dat->m_iValue );
break;
}
case TYPE_UINT64:
{
buffer.PutDouble( *((double *)dat->m_sValue) );
break;
}
case TYPE_FLOAT:
{
buffer.PutFloat( dat->m_flValue );
break;
}
case TYPE_COLOR:
{
buffer.PutUnsignedChar( dat->m_Color[0] );
buffer.PutUnsignedChar( dat->m_Color[1] );
buffer.PutUnsignedChar( dat->m_Color[2] );
buffer.PutUnsignedChar( dat->m_Color[3] );
break;
}
case TYPE_PTR:
{
buffer.PutUnsignedInt( (int)dat->m_pValue );
}
default:
break;
}
}
// write tail, marks end of peers
buffer.PutUnsignedChar( TYPE_NUMTYPES );
return buffer.IsValid();
}
// read KeyValues from binary buffer, returns true if parsing was successful
bool KeyValues::ReadAsBinary( CUtlBuffer &buffer, int nStackDepth )
{
if ( buffer.IsText() ) // must be a binary buffer
return false;
if ( !buffer.IsValid() ) // must be valid, no overflows etc
return false;
RemoveEverything(); // remove current content
Init(); // reset
if ( nStackDepth > 100 )
{
AssertMsgOnce( false, "KeyValues::ReadAsBinary() stack depth > 100\n" );
return false;
}
KeyValues *dat = this;
types_t type = (types_t)buffer.GetUnsignedChar();
// loop through all our peers
while ( true )
{
if ( type == TYPE_NUMTYPES )
break; // no more peers
dat->m_iDataType = type;
{
char token[KEYVALUES_TOKEN_SIZE];
buffer.GetString( token, KEYVALUES_TOKEN_SIZE-1 );
token[KEYVALUES_TOKEN_SIZE-1] = 0;
dat->SetName( token );
}
switch ( type )
{
case TYPE_NONE:
{
dat->m_pSub = new KeyValues("");
dat->m_pSub->ReadAsBinary( buffer, nStackDepth + 1 );
break;
}
case TYPE_STRING:
{
char token[KEYVALUES_TOKEN_SIZE];
buffer.GetString( token, KEYVALUES_TOKEN_SIZE-1 );
token[KEYVALUES_TOKEN_SIZE-1] = 0;
int len = Q_strlen( token );
dat->m_sValue = KVStringAlloc<char>(len + 1);
2013-06-27 06:22:04 +08:00
Q_memcpy( dat->m_sValue, token, len+1 );
break;
}
case TYPE_WSTRING:
{
Assert( !"TYPE_WSTRING" );
break;
}
case TYPE_INT:
{
dat->m_iValue = buffer.GetInt();
break;
}
case TYPE_UINT64:
{
dat->m_sValue = KVStringAlloc<char>(sizeof(uint64));
2013-06-27 06:22:04 +08:00
*((uint64 *)dat->m_sValue) = buffer.GetInt64();
break;
}
case TYPE_FLOAT:
{
dat->m_flValue = buffer.GetFloat();
break;
}
case TYPE_COLOR:
{
dat->m_Color[0] = buffer.GetUnsignedChar();
dat->m_Color[1] = buffer.GetUnsignedChar();
dat->m_Color[2] = buffer.GetUnsignedChar();
dat->m_Color[3] = buffer.GetUnsignedChar();
break;
}
case TYPE_PTR:
{
dat->m_pValue = (void*)buffer.GetUnsignedInt();
}
default:
break;
}
if ( !buffer.IsValid() ) // error occured
return false;
type = (types_t)buffer.GetUnsignedChar();
if ( type == TYPE_NUMTYPES )
break;
// new peer follows
dat->m_pPeer = new KeyValues("");
dat = dat->m_pPeer;
}
return buffer.IsValid();
}
#include "tier0/memdbgoff.h"
//-----------------------------------------------------------------------------
// Purpose: memory allocator
//-----------------------------------------------------------------------------
void *KeyValues::operator new( size_t iAllocSize )
{
MEM_ALLOC_CREDIT();
2014-10-31 00:30:57 +08:00
return KeyValuesSystem()->AllocKeyValuesMemory( (int)iAllocSize );
2013-06-27 06:22:04 +08:00
}
void *KeyValues::operator new( size_t iAllocSize, int nBlockUse, const char *pFileName, int nLine )
{
MemAlloc_PushAllocDbgInfo( pFileName, nLine );
2014-10-31 00:30:57 +08:00
void *p = KeyValuesSystem()->AllocKeyValuesMemory( (int)iAllocSize );
2013-06-27 06:22:04 +08:00
MemAlloc_PopAllocDbgInfo();
return p;
}
//-----------------------------------------------------------------------------
// Purpose: deallocator
//-----------------------------------------------------------------------------
void KeyValues::operator delete( void *pMem )
{
KeyValuesSystem()->FreeKeyValuesMemory(pMem);
}
void KeyValues::operator delete( void *pMem, int nBlockUse, const char *pFileName, int nLine )
{
KeyValuesSystem()->FreeKeyValuesMemory(pMem);
}
void KeyValues::UnpackIntoStructure( KeyValuesUnpackStructure const *pUnpackTable, void *pDest, size_t DestSizeInBytes )
{
#ifdef DBGFLAG_ASSERT
void *pDestEnd = ( char * )pDest + DestSizeInBytes + 1;
#endif
uint8 *dest=(uint8 *) pDest;
while( pUnpackTable->m_pKeyName )
{
uint8 *dest_field=dest+pUnpackTable->m_nFieldOffset;
KeyValues *find_it=FindKey( pUnpackTable->m_pKeyName );
switch( pUnpackTable->m_eDataType )
{
case UNPACK_TYPE_FLOAT:
{
Assert( dest_field + sizeof( float ) < pDestEnd );
float default_value=(pUnpackTable->m_pKeyDefault)?atof(pUnpackTable->m_pKeyDefault):0.0;
*( ( float *) dest_field)=GetFloat( pUnpackTable->m_pKeyName, default_value );
break;
}
break;
case UNPACK_TYPE_VECTOR:
{
Assert( dest_field + sizeof( Vector ) < pDestEnd );
Vector *dest_v=(Vector *) dest_field;
char const *src_string=
GetString( pUnpackTable->m_pKeyName, pUnpackTable->m_pKeyDefault );
if ( (!src_string) ||
( sscanf(src_string,"%f %f %f",
&(dest_v->x), &(dest_v->y), &(dest_v->z)) != 3))
dest_v->Init( 0, 0, 0 );
}
break;
case UNPACK_TYPE_FOUR_FLOATS:
{
Assert( dest_field + sizeof( float ) * 4 < pDestEnd );
float *dest_f=(float *) dest_field;
char const *src_string=
GetString( pUnpackTable->m_pKeyName, pUnpackTable->m_pKeyDefault );
if ( (!src_string) ||
( sscanf(src_string,"%f %f %f %f",
dest_f,dest_f+1,dest_f+2,dest_f+3)) != 4)
memset( dest_f, 0, 4*sizeof(float) );
}
break;
case UNPACK_TYPE_TWO_FLOATS:
{
Assert( dest_field + sizeof( float ) * 2 < pDestEnd );
float *dest_f=(float *) dest_field;
char const *src_string=
GetString( pUnpackTable->m_pKeyName, pUnpackTable->m_pKeyDefault );
if ( (!src_string) ||
( sscanf(src_string,"%f %f",
dest_f,dest_f+1)) != 2)
memset( dest_f, 0, 2*sizeof(float) );
}
break;
case UNPACK_TYPE_STRING:
{
Assert( dest_field + pUnpackTable->m_nFieldSize < pDestEnd );
char *dest_s=(char *) dest_field;
strncpy( dest_s, GetString( pUnpackTable->m_pKeyName,
pUnpackTable->m_pKeyDefault ),
pUnpackTable->m_nFieldSize );
}
break;
case UNPACK_TYPE_INT:
{
Assert( dest_field + sizeof( int ) < pDestEnd );
int *dest_i=(int *) dest_field;
int default_int=0;
if ( pUnpackTable->m_pKeyDefault)
default_int = atoi( pUnpackTable->m_pKeyDefault );
*(dest_i)=GetInt( pUnpackTable->m_pKeyName, default_int );
}
break;
case UNPACK_TYPE_VECTOR_COLOR:
{
Assert( dest_field + sizeof( Vector ) < pDestEnd );
Vector *dest_v=(Vector *) dest_field;
if (find_it)
{
Color c=GetColor( pUnpackTable->m_pKeyName );
dest_v->x = c.r();
dest_v->y = c.g();
dest_v->z = c.b();
}
else
{
if ( pUnpackTable->m_pKeyDefault )
sscanf(pUnpackTable->m_pKeyDefault,"%f %f %f",
&(dest_v->x), &(dest_v->y), &(dest_v->z));
else
dest_v->Init( 0, 0, 0 );
}
*(dest_v) *= (1.0/255);
}
}
pUnpackTable++;
}
}
//-----------------------------------------------------------------------------
// Helper function for processing a keyvalue tree for console resolution support.
// Alters key/values for easier console video resolution support.
// If running SD (640x480), the presence of "???_lodef" creates or slams "???".
// If running HD (1280x720), the presence of "???_hidef" creates or slams "???".
//-----------------------------------------------------------------------------
bool KeyValues::ProcessResolutionKeys( const char *pResString )
{
if ( !pResString )
{
// not for pc, console only
return false;
}
KeyValues *pSubKey = GetFirstSubKey();
if ( !pSubKey )
{
// not a block
return false;
}
for ( ; pSubKey != NULL; pSubKey = pSubKey->GetNextKey() )
{
// recursively descend each sub block
pSubKey->ProcessResolutionKeys( pResString );
// check to see if our substring is present
if ( Q_stristr( pSubKey->GetName(), pResString ) != NULL )
{
char normalKeyName[128];
V_strncpy( normalKeyName, pSubKey->GetName(), sizeof( normalKeyName ) );
// substring must match exactly, otherwise keys like "_lodef" and "_lodef_wide" would clash.
char *pString = Q_stristr( normalKeyName, pResString );
if ( pString && !Q_stricmp( pString, pResString ) )
{
*pString = '\0';
// find and delete the original key (if any)
KeyValues *pKey = FindKey( normalKeyName );
if ( pKey )
{
// remove the key
RemoveSubKey( pKey );
}
// rename the marked key
pSubKey->SetName( normalKeyName );
}
}
}
return true;
}
//
// KeyValues dumping implementation
//
bool KeyValues::Dump( IKeyValuesDumpContext *pDump, int nIndentLevel /* = 0 */ )
{
if ( !pDump->KvBeginKey( this, nIndentLevel ) )
return false;
// Dump values
for ( KeyValues *val = this ? GetFirstValue() : NULL; val; val = val->GetNextValue() )
{
if ( !pDump->KvWriteValue( val, nIndentLevel + 1 ) )
return false;
}
// Dump subkeys
for ( KeyValues *sub = this ? GetFirstTrueSubKey() : NULL; sub; sub = sub->GetNextTrueSubKey() )
{
if ( !sub->Dump( pDump, nIndentLevel + 1 ) )
return false;
}
return pDump->KvEndKey( this, nIndentLevel );
}
bool IKeyValuesDumpContextAsText::KvBeginKey( KeyValues *pKey, int nIndentLevel )
{
if ( pKey )
{
return
KvWriteIndent( nIndentLevel ) &&
KvWriteText( pKey->GetName() ) &&
KvWriteText( " {\n" );
}
else
{
return
KvWriteIndent( nIndentLevel ) &&
KvWriteText( "<< NULL >>\n" );
}
}
bool IKeyValuesDumpContextAsText::KvWriteValue( KeyValues *val, int nIndentLevel )
{
if ( !val )
{
return
KvWriteIndent( nIndentLevel ) &&
KvWriteText( "<< NULL >>\n" );
}
if ( !KvWriteIndent( nIndentLevel ) )
return false;
if ( !KvWriteText( val->GetName() ) )
return false;
if ( !KvWriteText( " " ) )
return false;
switch ( val->GetDataType() )
{
case KeyValues::TYPE_STRING:
{
if ( !KvWriteText( val->GetString() ) )
return false;
}
break;
case KeyValues::TYPE_INT:
{
int n = val->GetInt();
char *chBuffer = ( char * ) stackalloc( 128 );
V_snprintf( chBuffer, 128, "int( %d = 0x%X )", n, n );
if ( !KvWriteText( chBuffer ) )
return false;
}
break;
case KeyValues::TYPE_FLOAT:
{
float fl = val->GetFloat();
char *chBuffer = ( char * ) stackalloc( 128 );
V_snprintf( chBuffer, 128, "float( %f )", fl );
if ( !KvWriteText( chBuffer ) )
return false;
}
break;
case KeyValues::TYPE_PTR:
{
void *ptr = val->GetPtr();
char *chBuffer = ( char * ) stackalloc( 128 );
V_snprintf( chBuffer, 128, "ptr( 0x%p )", ptr );
if ( !KvWriteText( chBuffer ) )
return false;
}
break;
case KeyValues::TYPE_WSTRING:
{
wchar_t const *wsz = val->GetWString();
int nLen = V_wcslen( wsz );
int numBytes = nLen*2 + 64;
char *chBuffer = ( char * ) stackalloc( numBytes );
V_snprintf( chBuffer, numBytes, "%ls [wstring, len = %d]", wsz, nLen );
if ( !KvWriteText( chBuffer ) )
return false;
}
break;
case KeyValues::TYPE_UINT64:
{
uint64 n = val->GetUint64();
char *chBuffer = ( char * ) stackalloc( 128 );
V_snprintf( chBuffer, 128, "u64( %lld = 0x%llX )", n, n );
if ( !KvWriteText( chBuffer ) )
return false;
}
break;
default:
break;
{
int n = val->GetDataType();
char *chBuffer = ( char * ) stackalloc( 128 );
V_snprintf( chBuffer, 128, "??kvtype[%d]", n );
if ( !KvWriteText( chBuffer ) )
return false;
}
break;
}
return KvWriteText( "\n" );
}
bool IKeyValuesDumpContextAsText::KvEndKey( KeyValues *pKey, int nIndentLevel )
{
if ( pKey )
{
return
KvWriteIndent( nIndentLevel ) &&
KvWriteText( "}\n" );
}
else
{
return true;
}
}
bool IKeyValuesDumpContextAsText::KvWriteIndent( int nIndentLevel )
{
int numIndentBytes = ( nIndentLevel * 2 + 1 );
char *pchIndent = ( char * ) stackalloc( numIndentBytes );
memset( pchIndent, ' ', numIndentBytes - 1 );
pchIndent[ numIndentBytes - 1 ] = 0;
return KvWriteText( pchIndent );
}
bool CKeyValuesDumpContextAsDevMsg::KvBeginKey( KeyValues *pKey, int nIndentLevel )
{
static ConVarRef r_developer( "developer" );
if ( r_developer.IsValid() && r_developer.GetInt() < m_nDeveloperLevel )
// If "developer" is not the correct level, then avoid evaluating KeyValues tree early
return false;
else
return IKeyValuesDumpContextAsText::KvBeginKey( pKey, nIndentLevel );
}
bool CKeyValuesDumpContextAsDevMsg::KvWriteText( char const *szText )
{
if ( m_nDeveloperLevel > 0 )
{
DevMsg( m_nDeveloperLevel, "%s", szText );
}
else
{
Msg( "%s", szText );
}
return true;
}